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An Extended Linear Quadratic Model Predictive
Control Approach for Multi-Destination

Urban Traffic Networks
Yu Han , Andreas Hegyi , Member, IEEE, Yufei Yuan, Claudio Roncoli , and Serge Hoogendoorn

Abstract— This paper extends an existing linear quadratic
model predictive control (LQMPC) approach to multi-destination
traffic networks, where the correct origin–destination (OD)
relations are preserved. In the literature, the LQMPC approach
has been presented for efficient routing and intersection signal
control. The optimization problem in the LQMPC has a linear
quadratic formulation that can be solved quickly, which is
beneficial for a real-time application. However, the existing
LQMPC approach does not preserve OD relations and thus
may send traffic to wrong destinations. This problem is tackled
by a heuristic method presented is this paper. We present two
macroscopic models: 1) a non-linear route-specific model which
keeps track of traffic dynamics for each OD pair and 2) a
linear model that aggregates all route traffic states, which can
be embedded into the LQMPC framework. The route-specific
model predicts traffic dynamics and provides information to
the LQMPC before the optimization and evaluates the optimal
solutions after the optimization. The information obtained from
the route-specific model is formulated as constraints in the
LQMPC to narrow the solution space and exclude unrealistic
solutions that would lead to flows that are inconsistent with the
OD relations. The extended LQMPC approach is tested in a
synthetic network with multiple bottlenecks. The simulation of
the LQMPC approach achieves a total time spent close to the
system optimum, and the computation time remains tractable.

Index Terms— Model predictive control, route guidance, signal
control, linear model, spillback.

I. INTRODUCTION

DUE to growing transportation demands and the urbaniza-
tion trend, traffic congestion has become a global issue

that has a significant impact on our society’s productivity.
Expanding the current infrastructure is not always viable due
to high costs. Dynamic traffic control is an effective way to
make better use of existing infrastructure. In urban traffic
networks, traffic signal control strategies play an important
role to improve the traffic flow conditions. Nowadays, existing
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traffic signal control systems in the field have different levels
of coordination. The development of optimal signal control
strategies that are network-wide coordinated and real-time
applicable remains a challenge.

The field of urban traffic control has been studied and devel-
oped in a variety of ways during the past decades. A review of
the literature related to road traffic control of the last century is
given in [1]. In recent years, model predictive control (MPC)
approaches have become more and more popular in road traffic
control related research. MPC approaches for traffic systems
predict the evolution of traffic dynamics and calculate the opti-
mal control actions for the time period in which the relevant
traffic dynamics occurs. This feature enables the controller to
take advantage of potentially larger future gains at a current
(smaller) cost, so as to avoid myopic control actions. MPC
approaches that are based on the store-and-forward model for
traffic flow optimization in saturated conditions are developed
in [2] and [3]. Since the travel time on the roads between
intersections is ignored, these approaches are less effective for
under-saturated conditions. In [4] van den Berg et al. devel-
oped a non-linear MPC approach that is based on a detailed
traffic flow model to optimize the network throughput. The
complexity of the prediction model results in high computation
time of the MPC problem. In [5] Lin et al. proposed a
non-linear MPC and reformulated it into a mixed integer
linear programming (MILP) problem that can be efficiently
solved. In order to reduce computational complexity, this
model assumes constant delay, which leads to the model
inaccuracies in under-saturated traffic. Decentralized MPC
strategies have been developed for urban traffic signal control
in [6] and [7]. Even though decentralized MPC approaches
increase the computation speed, they may result in sub-optimal
control performances [8]. Recently, the macroscopic funda-
mental diagram (MFD) has been exploited as a basis for the
derivation of urban signal control approaches [9]–[13]. Even
though the MFD provides an efficient tool for the development
of traffic control strategies for urban traffic networks, its
accuracy in expressing aggregated dynamics of urban traffic
networks, especially in case the network is characterized by
a high density heterogeneity, still needs to be validated. Due
to the complexity of urban traffic system, the development of
MPC approaches of traffic signal control has to make a trade-
off between model accuracy and computation time.

In the aforementioned MPC approaches, fixed turn fractions
at intersections are assumed in order to simplify the prediction
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models. As a matter of fact, there is a clear linkage between
intersection control algorithms and route choice control [14].
Traffic route choice behavior is an important factor that
influences the arriving flows at intersections. Thus, coordinat-
ing route choice control and intersection control will further
improve traffic operation efficiency. However, the combination
of route choice control and intersection control increases the
complexity of the model, thus results in complicated optimiza-
tion problems that cannot be solved efficiently [15]. Therefore,
many studies regarding the optimization of traffic signals and
route choice use heuristic approaches to solve the problem,
which do not always lead to optimal results [16], [17]. The
linear quadratic model predictive control (LQMPC) approach
presented in [18] is a successful application to efficiently
optimize turn fractions and traffic signals for single destination
networks. However, due to the fact that the LQMPC has a
discrete linear prediction model, traffic state in each discrete
segment of the traffic network is aggregated and route choice
behavior of traffic in each OD (Origin-Destination) pair is not
considered. The controller pushes out traffic flow as much as
possible, regardless of traffic desired origin and destination
relations. Thus, the LQMPC approach may be ineffective when
applied to multi-destination traffic networks, because the traffic
may end up at wrong destinations.

In this paper, the problem that the existing LQMPC cannot
preserve traffic OD relations is tackled by a heuristic method.
We present two models: (1) a non-linear route-specific model
which keeps track of traffic dynamics for each OD pair, and
(2) a linear model that aggregates all route traffic states,
which can be embedded into the LQMPC framework. For
each OD pair, we define a set of links as the crucial links
(c-links), which are links that traffic from the OD pair has
to pass to reach the destination. Before each optimization
run, the route-specific model predicts the route flow of every
c-link based on a non-optimizing control strategy. In this paper,
the non-optimizing control strategy we use is the integration
of a simple routing strategy, which guides traffic flows at the
origins to the route that has the shortest instantaneous travel
time, and a simplified back-pressure algorithm for intersection
signal timing plans [19]. In principle, any other routing and
signal control approach could be used as the non-optimizing
control strategy. In the optimization, we set constraints to the
flows of c-links and the flows of the links towards destinations,
to narrow the solution space and exclude unrealistic solutions
that would lead to flows that are inconsistent with the OD
relations. The optimal solution is evaluated by the route-
specific model after each optimization run and compared with
the non-optimizing control strategy. The control signals that
leads to a better performance will be implemented. The eval-
uation process guarantees that the designed control approach
never performs worse than the non-optimizing approach. The
presented control approach is tested in a synthetic traffic
network with multiple bottlenecks. It shows that the LQMPC
achieves a total time spent close to the system optimal, while
the computation time remains tractable.

The remaining of the paper is organized as follows.
Section II presents the route-specific traffic flow model.
Section III and Section IV present the existing LQMPC

Fig. 1. The depiction of cells and links. Red arrows represent links, and
black dashed lines represent the boundaries between cells. Origin cells have
no incoming link and destination cells have no outgoing link. Normal cells
are connected by one incoming link and one outgoing link.

approach and the extended LQMPC approach respectively.
Section V presents the design and testing results of a synthetic
case. A summary and the discussion of future work conclude
the paper in Section VI.

II. ROUTE-SPECIFIC NETWORK MODEL

In this section, we present a route-specific macroscopic
model. The traffic flow model is based on a discrete model,
where the time is divided into discrete time steps and the
roadway is divided into discrete cells. The definition of model
variables are presented as follows.

A. Definition of Model Variables

Our representation of traffic networks is based on the
queuing model developed in [18]. The model presented in this
paper extends that model in two aspects. First, the previous
model is a queuing model, which is not able to reproduce
the propagation of congestion waves. In our model, we adopt
the same logic as in the cell transmission model (CTM) to
decide the boundary flows between cells, so as to capture
the propagation of shock waves [20]–[22]. Second, routes are
specified in each cell, to keep track of the traffic dynamics
in each OD pair. The network elements and variables of the
model are introduced as follows.

1) Cells and Links: In our model, roadway networks are
divided into discrete cells and links. Cells are categorized into
different types which include origin cells, destination cells,
normal cells, merging cells, diverging cells, and intersection
cells. The depiction of each type of cells can be found in Fig. 1
and Fig. 2. Vehicles flowing out of a cell move to downstream
cells through pre-defined links. Links do not represent physical
roadways, but an abstraction of the boundary that connects two
consecutive cells.

Assume that time evolves in discrete steps, t = 1, 2, 3, . . .,
and traffic state of cell i is represented by the number of
vehicles in a discrete time step t , which is denoted as xi (t).
A link always connects two cells: we define the cell upstream
of link j by �−1

j , and the cell downstream of link j by � j .
The number of vehicles moving from one cell to another in a
time step is defined as the traffic flow of a link, denoted by
f j (t).

2) Routes: There may be multiple routes in a network, and
each route connects one origin and one destination. In our
model, routes are specified in each cell, and the number
of vehicles following route r in cell i is denoted as xr

i (t).
Accordingly, the traffic flow on a route of a link is denoted as
f r

j (t). The traffic state of a cell and a link are the aggregations
of the number of vehicles of every route in the cell and the
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Fig. 2. The depiction of merging and diverging cells. Red arrows represent
links. The incoming links of merging cells are called merging links and the
outgoing links of diverging cells are called diverging links.

link:

xi (t) =
∑

∀r

xr
i (t), (1)

f j (t) =
∑

∀r

f r
j (t). (2)

3) Merge and Diverge: The cells that have one outgoing
link and multiple incoming links are called merging cells,
as shown in the left picture of Fig. 2. The cells that have one
incoming link and multiple outgoing links are called diverging
cells, as shown in the right picture of Fig. 2. We define the
outgoing links of a diverging cell as diverging links, and
the incoming links of a merging cell as merging links. The
proportion of the flow of a diverging link j to the total flow that
originate from the same diverging cell i is called turn fraction,
which is denoted as θ

j
i (t). Traffic at a diverging cell may

change their original routes based on the obtained information
of road traffic conditions or the instructions received from
the traffic control center. Thus, the variables θ

j
i (t) can be

controlled by route guidance measures.
4) Intersections: In the following, we introduce the model-

ing of intersection flows. We define the cells directly upstream
of the intersection conflict area as intersection cells. The
outgoing links of intersection cells are defined as intersection
links. We assume that flows of intersection links are always
controlled by traffic lights. To avoid conflicting flows at an
intersection, the green time of a cycle is divided into different
phases such that conflicting flows do not get green at the same
time. Assume that Tc represents the time duration of a cycle,
then the green time duration of phase p at intersection s is
Tc · u p

s , where u p
s represents the green time fraction. At an

intersection, the sum of the time fraction of each phase needs
to satisfy the traffic light cycle constraint,

p∑
u p

s ≤ 1. (3)

The set of link indices that get green at phase p is denoted
as W p

s . An intersection link may get green in different phases
of a cycle, and the intersection link flow need to satisfy the
green time fraction constraints,

f j (t) ≤
p∑

u p
s (t) · Q j , i ∈ CI , j ∈ W p

s , �−1
j = i (4)

where CI is the set of intersection cell indices. Q j [veh/h] is
the saturation flow of intersection link j .

Fig. 3. An example intersection to explain the model variables. The figure is
taken from [23]. f1, f2, . . . , f8 are the flows of intersection links. Red dots
in the figure represent conflicting points of flows. The intersection is indexed
as intersection 1. For simplicity, we assume that there are four phases in a
cycle, and W1

1 = {1, 3}, W2
1 = {2, 4}, W3

1 = {5, 7}, W4
1 = {6, 8}. Note that

there can be more phases in a cycle as long as the movements in each cycle
do not conflict. u1

1, u2
1, u3

1 and u4
1 are the green time fraction of each phase so

the traffic light cycle constraint is: u1
1 +u2

1 +u3
1 +u4

1 ≤ 1. Green time fraction
constraints are: f1 ≤ u1

1 · Q1, f2 ≤ u2
2 · Q2, f3 ≤ u1

1 · Q3, f4 ≤ u2
1 · Q4,

f5 ≤ u3
1 · Q5, f6 ≤ u4

1 · Q6, f7 ≤ u3
1 · Q7, f8 ≤ u4

1 · Q8.

B. Updating of Traffic States

The route-specific traffic state of each type of cells is
updated as follows.

Origin cells:

xr
o(t + 1) = xr

o(t) +
(

qo,d(t) · αr − f r
j (t)

)
· T,

r ∈ Ro,d , �−1
j = o. (5)

where o is the index of the origin cell, and (o, d) are the
indices of OD pairs. Ro,d is the set of route indices in the OD
pair and qo,d(t) represents the demand of the OD pair at time
t . T is the duration of a discrete time step. αr is the fraction
of the demand that chooses route r , and it is determined by a
simple logit model which is formulated as:

αr = e(−σ ·TFr )

r∑
e(−σ ·TFr )

, r ∈ Ro,d (6)

where, TFr is the free flow travel time of route r . σ is a scaling
parameter that describes how drivers react on a travel time
difference between the alternatives. This simple logit model
represents how traffic chooses their routes at the origins, when
it does not have any information of the traffic situation in the
network [24].

Destination cells:

xr
d(t + 1) = xr

d(t) + f r
j (t), ∀d ∈ CD, � j = d (7)

where d is the index of destination cells and CD is set of
destination cell indices.
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Normal cells and intersection cells:

xr
i (t + 1) = xr

i (t) + f r
j (t) − f r

h (t),

∀i ∈ CN ∪ CI , � j = �−1
h = i. (8)

where CN is the set of normal cell indices.
Merging cells:

xr
i (t + 1) = xr

i (t) +
j∑

f r
j (t) − f r

h (t),

∀i ∈ CM , � j = �−1
h = i, (9)

where CM is the set of merging cells.
Diverging cells:

xr
i (t + 1) = xr

i (t) + f r
j (t) −

h∑
f r
h (t),

∀i ∈ CV , � j = �−1
h = i, (10)

where CV is the set of diverging cells.
The traffic flow updating procedure is presented as follows.

Similar to the CTM, which uses a triangular fundamental
diagram, we define a sending flow, Si (t), and a receiving flow,
Ri (t), for cell i . Si (t) and Ri (t) are formulated as,

Si (t) = min

(
xi (t)

Li
· vi , ci

)
,

Ri (t) = min

(
βi

( x J
i

Li
− xi (t)

Li

)
, ci

)
, (11)

where vi and ci are the free-flow speed and capacity of cell i .
βi is the congestion wave speed of cell i . x J

i is the maximum
number of vehicles in cell i . Li is the length of cell i . For the
links whose source cell and sink cell are normal cells, the flows
are determined by the minimum between the sending flow and
the receiving flow,

f j (t) = min(Si (t), Rl (t)), ∀i, l ∈ CN , �−1
j = i, � j = l.

(12)

It is assumed that there is no route choice in normal cells.
Thus the flow of every route is represented as,

f r
j (t) = f j (t) · xr

i (t)

xi (t)
, ∀i ∈ CN , �−1

j = i (13)

For a merging cell, the sending flow of the source cell is
represented by the first equation of (11). The receiving flow is
shared by multiple merging links. If the total sending flow is
higher than the receiving flow, then the receiving flow needs
to be distributed to each merging link. The sending flow of
the source cell of a merging link is represented as,

Si (t) = min

(
xi(t)

Li
· vi , ci

)
, i ∈ CM . (14)

The merging flow updating procedure is presented as follows.
Note that the receiving flow distribution process is the same
as the first-order node model presented in [25].

1) The receiving flow is first distributed to the links, whose
source cells have lower sending flow than the merging

flow rate.

f j (t) = Si (t), if Si (t) ≤ Rl(t) · ci

i∑
ci

,

l ∈ CM �−1
j = i, � j = l, (15)

where, Rl(t)· ci
i∑

ci

is the merging flow rate of cell i . Once

the receiving capacity is assigned to a link, the assigned
flow is subtracted from the remaining receiving flow
which is represented as R̃l(t).

2) Exclude the links which have been assigned, and calcu-
late the remaining receiving flow. Update the merging
flow rate for the remaining source cells and repeat the
first step until no source cell has lower sending flow than
the merging flow rate.

3) Distribute the remaining receiving flow to the remaining
links, whose source cells have higher sending capacity
than the merging flow rate:

f j (t) = R̃l(t) · ci

i∑
ci

(16)

4) The merging flow in each route is calculated by (13).

Traffic at a diverging cell may change its original route
based on the obtained information of road traffic condi-
tions or the instructions received from the traffic control center.
In our model, we assume that if there is no control action,
traffic continues traveling on its original routes. The turn
fraction θ

j
i (t) of each diverging link is calculated as,

θ
j

i (t) =
r∑

xr
i (t)

xi (t)
, r : j ∈ J r (17)

where Jr is the set of link indices in route r . Based on θ
j

i (t),
the total flow of all the links, l1, l2, . . . , ln , that are leaving
cell i , Fi (t), is calculated as,

Fi (t) = min

(
Si (t),

Rl1(t)

θ l1
i (t)

,
Rl2(t)

θ l2
i (t)

, . . . ,
Rln (t)

θ
ln
i (t)

)
, ∀i ∈ CV .

(18)

The flow of each route is calculated as,

f r
j (t) = Fi (t) · xr

i (t)

xi (t)
∀i ∈ CV , �−1

j = i (19)

If route guidance control is applied at diverging cells, then
θ

j
i (t) is the resulting turn fraction after control. The optimiza-

tion problem is formulated as,

min
r∑

xr
i,a(t) · TTr

i (t) ∀i ∈ Cv

subject to

r∑
xr

i,a(t)

xi (t)
= θ

j
i (t), r : j ∈ J r

r∑
xr

i,a(t) =
r∑

xr
i,b(t), r : r ∈ Rod (20)

where TTr
i (t) is the instantaneous travel time of the part of

route r , that starts from the diverging cell i . The first constraint
in (20) ensures that the turn fraction of a diverging link j
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equals to θ
j

i (the optimal value obtained from the controller)
after re-routing, and the second constraint guarantees that
the OD relations of the traffic in cell i unchanged. For
diverging links, the total flow Fi (t) is calculated accord-
ing to (18) and the flow of each route is calculated based
on (19) by changing xr

i (t) to xr
i,a(t). Note that the opti-

mization problem (20) represents the autonomous process of
the drivers’ route choice, and it does not change the turn
fractions.

As introduced in II-A, intersection flows are determined by
the following equations,

f j (t) = min

(
Si (t), Rl (t),

p∑
u p

s (t) · Q j

)
,

i ∈ CI , j ∈ W p
s , �−1

j = i, � j = l, (21)

and the flow in each route is calculated by (13).

III. THE CLASSICAL LQMPC APPROACH

In [18] Le et al. presented an LQMPC approach based on
a queuing model for optimal routing and intersection signal
control of urban networks. Later, LQMPC approaches using
extended discrete Lighthill-Whitham-Richards (LWR) models
as prediction models have been presented for optimal ramp
metering or variable speed limit control [26], [27]. In general,
any model that has a linear formulation can be applied to the
LQMPC framework. In this section, we present the general
LQMPC framework using a discrete LWR model as the
prediction model.

In the model, the states of cells and links are aggregated
numbers of vehicles and aggregated flows, which are rep-
resented by xi (k) and f j (k), where k is the index of the
discrete time step in the prediction. It is worth to note that
the route-specific model presented in the previous section will
be used to represent the reality, and the time index is t in that
model. Usually the time step size of the prediction model is
larger than the process model, because in the process model,
detail traffic dynamics is usually needed but in the prediction
model, a trade-off between the level of predicted details and
the computation time has to be made. In this paper we use
the same time step size for both the prediction model and the
process model. Traffic states of each class of cells is predicted
according to the following equations.

Origin cells:

xo(k + 1) = xo(k) − f j (k) + qo(k), �−1
j = o

qo(k) =
o∑

qo,d(k) (22)

Destination cells:

xd(k + 1) = xd(k) + f j (k), � j = d (23)

Normal cells and intersection cells:

xi (k + 1) = xi (k) + f j (k) − fh(k),

∀i ∈ CN , CI , � j = �−1
h = i. (24)

Merging cells:

xi (k + 1) = xi (k) +
j∑

f j (k) − fh(k),

∀i ∈ CM , � j = �−1
h = i. (25)

Diverging cells:

xi (k + 1) = xi (k) + f r
j (k) −

h∑
fh(k),

∀i ∈ CV , � j = �−1
h = i. (26)

The flows must satisfy the following linear constraints,
Demand constraints:

f j (k) ≤ xi (k)

Li
· vi ,

f j (k) ≤ ci , ∀i ∈ CO , CN , CM , CI , �−1
j = i (27)

j∑
f j (k) ≤ xi (k)

Li
· vi ,

j∑
f j (k) ≤ ci , ∀i ∈ CV , �−1

j = i (28)

Supply constraints:

f j (k) ≤ βi · x J
i

(
1 − xi (k)

x J
i

)
,

f j (k) ≤ ci , ∀i ∈ CO , CN , CV , � j = i (29)

f j (k) ≤ βi · x J
i

(
1 − xi (k)

x J
i

)
,

j∑
f j (k) ≤ ci , ∀i ∈ CM , � j = i. (30)

Apart from the demand and supply constraints, intersection
flows need to satisfy also the constraints of (3) and (4). The
traffic dynamic can be represented by the following equation:

X (k + 1) = X (k) + B F(k) + d(k) (31)

where X (k + 1) is a vector of traffic states xi (k + 1) of all
the cells, excluding the destination cells. F(k) is the vector
of flows f j (k) of all the links. B is the matrix that contains
topological information of the network. d(k) is the demand
vector, in which the non-zero values correspond to origin cells,
and for the other cells the values are zero.

The objective of the LQMPC is to minimize the quadratic
function of the number of vehicles in the network over the
prediction horizon, X̂(k), in order to approximately minimize
the total travel time. The prediction of X̂(k) over a horizon
Kp is represented by the following equation:

X̂(k) = AX (k) + B1 F̂(k) + A1d̂(k), (32)
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where

X̂(k) =

⎡
⎢⎢⎢⎣

X (k + 1)
X (k + 2)

...
X (k + K p)

⎤
⎥⎥⎥⎦, A =

⎡
⎢⎢⎢⎣

I
I
...
I

⎤
⎥⎥⎥⎦,

F̂ =

⎡
⎢⎢⎢⎣

F(k)
F(k + 1)

...
F(k + K p − 1)

⎤
⎥⎥⎥⎦, d̂ =

⎡
⎢⎢⎢⎣

d(k)
d(k + 1)

...
d(k + K p − 1)

⎤
⎥⎥⎥⎦,

A1 =

⎡
⎢⎢⎢⎢⎣

I 0 · · · 0

I I
...

...
. . .

I I · · · I

⎤
⎥⎥⎥⎥⎦

, B1 =

⎡
⎢⎢⎢⎢⎣

B 0 · · · 0

B B
...

...
. . .

B B · · · B

⎤
⎥⎥⎥⎥⎦

,

(33)

I is the identity matrix. The overall optimization problem
is formulated as:

min
F̂

[AX (k) + B1 F̂(k) + A1d̂(k)]′U
[AX (k) + B1 F̂(k) + A1d̂(k)] + G F̂

subject to equations (3)-(4), (22)-(30)

F̂(k) ≥ 0. (34)

where U is a matrix with all 1 elements. With this configura-
tion the quadratic term aims to minimize the quadratic function
of the number of vehicles in the network in the prediction
horizon.

The quadratic term in the objective function is not exactly
equivalent to the total travel time, nevertheless the previous
work in [18] has demonstrated that the minimization of this
objective function generally leads to good performance in
reducing total travel time. G is a vector of cell lengths
multiplied by a small negative value. The term G F̂ aims to
maximize the flows, so as to address the so-called holding
back problem. Holding back may occur when the traffic state
is congested and the traffic control measures cannot increase
the outflows. In such a case, the quadratic term can lead to
holding back of the traffic (because keeping traffic away from
the congested parts can lead to a more homogeneous density
distribution), while holding back is generally not favorable
for travel time minimization. The term G F̂ intends to dis-
courage such holding back by slightly rewarding the forward
movement of the traffic. The term was initially suggested
in [28]. Note that this second term in (34) has a physical
meaning, as it is proportional to the total travel distance (TTD).
Thus, (34) may be perceived as a weighted combination of
TTT minimization and TTD maximization. A more detailed
explanation of this objective function can be found in [18]. The
optimization problem can be solved by an appropriate solver
(e.g., CPLEX). The outputs of the controller are optimal flows
between cells.

Optimal control signals, i.e., green time fraction u p
s (k) and

turn fraction θ
j

i (k), can be derived from the optimal flows by

Fig. 4. Example networks to explain the usage of the LQMPC. Network 1 is
a single destination network and network 2 is a multiple destination network.
Red arrows in network 1 indicate the bifurcations, where traffic can make their
route choices. Grey area in network 2 represents congestion. If the receiving
flow of the gray area is 0, and the turn fraction of link 2 is higher than 0,
then according to (18), both f1 and f2 are 0.

the following equations:

θ
j

i (k) = f j (k)

j :�−1
j =i∑

f j (k)

,

u p
s (k) =

j∈W p
s∑

f j (k)

p∑ j∈W p
s∑

f j (k)

. (35)

In [18], the LQMPC approach was applied to a single des-
tination network for optimal vehicle routing, and the targeting
network is shown as Network 1 in Fig. 4. In the network, route
choices occur at bifurcations, which are shown as red arrows
in Fig. 4. According to (34), traffic flows at bifurcations will
be assigned to the optimal route, which leads to a minimum of
system cost. However, when the LQMPC approach is applied
to Network 2 in Fig. 4, the desired OD relations may not
be preserved. Suppose that the whole network is in free flow
state. Then the controller will assign as much traffic as possible
to Destination 1 because it is closer to the origins so that
the controller can achieve a lower cost by pushing out flows
as quickly as possible. However, this is not realistic because
traffic flows have their own intended destinations and the
flow that is assigned to Destination 1 may intend to go to
Destination 2. In other words, if we apply the optimal turn
fraction θ

j
i obtained from (35) to the optimization problem in

(20) for traffic assignment, there may be no feasible solution.
In addition, traffic assignment errors in the LQMPC have a
significant influence on the performance of signal control. For
example, if the LQMPC assigns traffic flows from some OD
pairs to a route that belongs to a different OD pair, then the
intersection links in this route may get unnecessarily long
green time because traffic in reality will not use these links.
This may significantly decrease the efficiency of intersection
control.

IV. AN EXTENDED LQMPC APPROACH

This section extends the method presented in the previous
section to account for multiple destination networks. The
reason why the previous LQMPC may not work for multi-
destination networks is that the prediction model of the
LQMPC does not have any information about the OD relations
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Fig. 5. The flowchart of the control approach. There are two blocks in this
flowchart, where the upper block is the traffic control part and the lower block
is the control performance evaluation part.

of traffic flows, thus traffic dynamics cannot be accurately
predicted. The way we tackle this problem is to impose
constraints (i.e., the lower or upper bounds of flows) to the
LQMPC, to reduce the freedom of the controller in such a way
that some unrealistic solutions, which may be optimal in the
mathematical sense but not practically feasible, are excluded.
The control approach is shown by a flowchart in Fig. 5. The
extended LQMPC calculates the optimal flows based on real-
time traffic states and predefined constraints to ensure the flow
conservation at destinations. The constraints are set based on
a heuristic method, in which the lower or upper bounds of
flows are determined based on the OD relations of dynamic
flows that are predicted by a forward simulation. The heuristic
method intends to ensure the flow conservation at destinations,
but cannot guarantee it. Thus, after each optimization run,
the performance of the extended LQMPC is evaluated by
the route-specific model. The performance of the extended
LQMPC is compared with a non-optimizing control strategy,
and the one that performs better is implemented into the
process. This evaluation process ensures that the controller
never performs worse than the non-optimizing approach.

The remaining of this section is set up as follows.
Section IV-A presents the forward simulation method. Sec-
tions IV-B-IV-D introduce the heuristic approach to narrow the
solution space and exclude unrealistic solutions. Section IV-E
explains the evaluation process after each optimization run of
the extended LQMPC.

A. Forward Simulation

Before each optimization run, we perform a forward sim-
ulation to predict dynamic flows that respect the given OD

relations. The forward simulation runs based on the route-
specific model using a non-optimizing control strategy, which
is the integration of a simple routing strategy and a back-
pressure algorithm for intersection timing plans. The routing
strategy guides traffic flows to the routes that have the shortest
instantaneous travel time. Traffic flows are assigned at the
origins based on the instantaneous travel time of each route
using equations (6) and (7), and it is assumed that there is
no route choice for the traffic that is already in the network.
A simplified back-pressure algorithm is used to determine the
signal timing plans at intersections. For the original back-
pressure algorithm, readers are referred to [19]. The integration
of back-pressure traffic signal control and adaptive routing
was explored in [29]. Note that any non-optimizing control
strategy could be used in the forward simulation. In this paper,
we use a simple routing strategy and a simplified back-pressure
algorithm for convenience. The performance of the extended
LQMPC may be related to the non-optimizing control strategy,
because it serves as a lower bound of the performance of the
proposed controller.

In the simplified back-pressure algorithm, there is a weight
b j

s associated with the link j at an intersection s. The weight
is the difference in the number of vehicles between the source
cell and the sink cell.

b j
s (τ ) = xi (τ ) − xl(τ ), j ∈ W p

s , �−1
j = i, � j = l (36)

The back-pressure algorithm determines the active phase p of
intersection s at every time slot τ based on the back pressure B
of phase p, B p

s (τ ). The back pressure B p
s (τ ) is the summation

of link weights in that phase, which is formulated as,

B p
s (τ ) =

j∑
b j

s (τ ). j ∈ W p
s (37)

The phase that has the maximum pressure is activated at τ .
We assume that Tc is the time duration of a cycle and Tτ is
the time duration of a slot time, and that Tc/Tτ is an integer.
Then the green time fraction of phase p at intersection s is
calculated as n p

s
Tc/Tτ

, where n p
s is the total number of activations

of phase p in a cycle.

B. Minimum Flow Constraint on Each OD Pair

As introduced at the beginning of this section, the LQMPC
may assign traffic flows to the routes that are not leading
to their desired destinations, which is not realistic and may
undermine the control performance. The reason is that the
LQMPC has the freedom to assign flows to any connected
links (if the receiving flows are high enough), which may result
in unrealistic flow distributions, under the assumption that the
destination are conserved, the flows cannot be realized. To this
end, we restrict the freedom of the LQMPC by imposing
hard constraints, to exclude unrealistic solutions that may
deteriorate the control performance. To illustrate how the hard
constraints are imposed, we first introduce the concept of
crucial links (c-links).

For each OD pair a set of c-links is defined, among the
links that are on the routes corresponding to the given OD pair.
We first give an example where there is only one route for each
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Fig. 6. An example to show the c-links (red arrows) of a specific OD pair
that has a single route. Dashed rectangles represent cells and arrows represent
links. In Network 1, link 2 is the c-link of OD pair O1-D1. In Network 2,
links 1 and 2 are the c-links of O1-D1.

OD pair, shown as the networks in Fig. 6. In both networks,
there are two bifurcations on the route that belong to the OD
pair O1-D1, where the upstream one also directs to destination
D2 and the downstream one also directs to destination D3.
Traffic flows from O1 need to pass all the links in this route to
reach the destination. Nevertheless, traffic flows may be guided
to wrong destinations only at the bifurcations where the traffic
from O1-D1 may be assigned to destinations D2 or D3. The
same principle applies to other OD pairs of the network. In a
route of an OD pair, if traffic flow of all diverging links that
belong to the route comes from only one origin (e.g., the route
of O1-D1 in Network 1), then only the most downstream link
is a c-link because the flow that passes the most downstream
diverging link must have passed all of the upstream diverging
links. Therefore, only link 2 is the c-link in Network 1 whereas
both links 1 and 2 are the c-links in network 2. The key of the
extended LQMPC is to impose constraints to the flows of c-
links, such that the predicted dynamic traffic flow satisfies the
desired OD relations or alternatively has a small bias that does
not have a significant influence on the control performance.

In Network 1, the c-link constraint of OD pair O1-D1 is
formulated as,

f2(k) ≥ f̃ 1
2 (k), k = t, t + 1, . . . , t + K p − 1. (38)

where f̃ 1
2 (k) is the flow of link 2 in route 1 (the route that

belongs to O1-D1) that is predicted by the forward simulation.
f̃ 1
2 (k) is perceived as the lower bound of flow that needs to

pass link 2 at time step k.
In Network 2, the c-link constraint of OD pair O1-D1 is

formulated as,

f1(k) ≥ f̃ 1
1 (k),

f2(k) ≥ f̃ 1
2 (k), k = t, t + 1, . . . , t + K p − 1. (39)

In Network 2, links 1 and 2 are also the c-links of OD pair
O2-D1, thus links 1 and 2 are loaded with traffic flow from
both O1-D1 and O2-D1. Under this circumstance, the c-link
constraint is formulated as,

f1(k) ≥ f̃ 1
1 (k) + f̃ 2

1 (k),

f2(k) ≥ f̃ 1
2 (k) + f̃ 2

2 (k), k = t, t + 1, . . . , t + K p − 1.

(40)

where the route that belongs to O2-D1 is indexed by 2.
Now we extend the example to networks that have multiple

routes in each OD pair, which are shown in Fig. 7. There are
three routes in OD pair O1-D1, indexed as 1, 2, and 3 from top

Fig. 7. An example to show the c-links of an OD pair that has multiple
routes. Bold lines represent the roadways with two directions. In Network 3,
links 1, 2, and 3 are the c-link of OD pair O1-D1. In Network 4, links 1, 2,
3, 4, 5, and 6 are the c-links of OD pair O1-D2.

to bottom. Similar to the analysis of the single route example,
link 1 (indicated by f1) is the c-link of route 1 (i.e. traffic
flow in O1-D1 that choose route 1 cannot reach the destination
without passing link 1). Note that link 1 is a diverging link and
other diverging links that originate from the same source cell
may go to destination 3 or 4. Similarly, links 2 and 3 are the
c-links of routes 2 and 3, thus links 1, 2, and 3 are the c-links
of this OD pair. The c-link constraint of OD pair O1-D1 is
formulated as,

f1(k) + f2(k) + f3(k) ≥ f̃ 1
1 (k) + f̃ 2

2 (k) + f̃ 3
3 (k),

k = t, t + 1, . . . , t + K p − 1. (41)

where the right-hand side of the inequality represents the lower
bound of flow that needs to pass the c-links of O1-D1. Note
that such constraint does not restrict the route choice freedom
of traffic flow. In Network 4, traffic flow from different origins
is added to the network. Similar to the analysis of the single
route example, links 1 and 4 are the c-links of route 1, links
2 and 5 are the c-links of route 2, and links 3 and 6 are the
c-links of route 3. We use J r

C(o,d) to represent the set of c-
links of route r in OD pair (o, d). For readability, we use J to
represent JC(o,d) in equations (43) and (44). In this example,
J 1

C(o,d) = {1, 4}, J 2
C(o,d) = {2, 5}, and J 3

C(o,d) = {3, 6}. The
c-link constraint of O1-D1 is formulated as,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(k) + f2(k) + f3(k) ≥ f̃ 1
1 (k) + f̃ 2

2 (k) + f̃ 3
3 (k)

f1(k) + f2(k) + f6(k) ≥ f̃ 1
1 (k) + f̃ 2

2 (k) + f̃ 3
6 (k)

...

f4(k) + f5(k) + f6(k) ≥ f̃ 1
4 (k) + f̃ 2

5 (k) + f̃ 3
6 (k).

(42)

In each inequality, the left hand side contains one of the
c-links from each route. The c-links of a route are indexed
as �r , and �r = 1, 2, . . . , κr . The general formulation
of (38-39) and (41-42) is,

r∑
f J r (�r )(k) ≥

r∑
f r
J r (�r )(k),

∀r ∈ Ro,d , ∀�r = 1, 2, . . . , κr . (43)
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If link j is the c-link of multiple OD pairs, i.e., ∃ r ′ ∈ Ro′,d ′
,

(o′, d ′) 	= (o, d): j = J r
C(o,d)(�

r ) = J r ′
C(o′,d ′)(�

r ′
), then the

right hand side of each OD pair’s inequalities that contains the
route flow of link j need to be integrated, like the example
shown in equation (40). The general formulation of (40) is,

r∑
f J r (�r )(k) ≥

o,d∑ r∑
f r

J r (�r )(k),

∀r ∈ Ro,d , ∀�r = 1, 2, . . . , κr . (44)

To summarize, we elaborate several features of c-links:
(i) C-links are the diverging links that do not direct traffic
to the same destination. (ii) If the most downstream diverging
link of a route has a destination choice, then it is a c-link. (iii)
If traffic from other origins joins the links that are located
between two consecutive diverging links, then the upstream
diverging link is a c-link. We present a generic algorithm
to search for the c-links of each route. Jr

V(o,d) is the set of
diverging links in route r . The diverging links are indexed as
υr , and the diverging links in route r are represented as Jr,υr

V(o,d).
υr = 1, 2, . . . , ϑr , numbered from downstream to upstream.

�r = 1;
υr = 1;
∀ j ′: �−1

j ′ = �−1
J r,υr

V(o,d)

, if ∃ r , ∃ d ′: j ′ ∈ J r , r ∈ Ro,d ′
, d ′ 	= d

Jr,�r

C(o,d) = J r,υr

V(o,d);
υr = υr + 1;

end
for υr = 1: ϑr

∀o′ 	= o, if ∃ r ∈ Ro,d ′
: J r,υr

V(o,d) ∈ J r , J r,υr +1
V(o,d) /∈ J r

if υr + 1 ≤ ϑr

J r,�r +1
C(o,d) = J r,υr +1

V(o,d) ;
υr = υr + 1;

end
end

end

C. Reproducing Spillback

The c-link constraint narrows the solution space of the
LQMPC such that the OD relations are better preserved. How-
ever, the LQMPC with the c-link constraint cannot reproduce
spillback. Spillback is a phenomenon that the congestion of
a downstream link affects the possible outflow volume of an
upstream link. The route-specific model presented in Section II
is able to reproduce spillback. For example, if the grey area
in network 2 of Fig. 4 is fully blocked (the receiving flow
is 0), and the turn fraction of link 2 is higher than 0, then
according to (18-19), the total flow of f1 and f2 is 0. The
classical LQMPC approach introduced in the previous section
is not able to reproduce the spillback phenomenon because
the LQMPC always limits the turn fraction of a link to zero
(or one, or small or large enough) if one of the receiving cell
is congested, in such a way that the outflow to other links is
still maximal. However, such kind of traffic assignment is not
always realistic. If all of the traffic flows that intend to pass the
congested link can reach their desired destinations by changing
routes to the uncongested links, then it is realistic for the
LQMPC to limit the turn fractions of the congested links to 0.

Fig. 8. The cumulative curves, representing the number of vehicles, at the
origin and the destination of an OD pair. The red line is the cumulative
curve at the origin No,d

O (t) and the dashed blue line is the cumulative curve

at the destination No,d
D (t). Assuming that the controller runs at t and that

TFo,d is the free flow travel time for the considered OD pair, the difference
between No,d

O (t + Kp − TFo,d ) and No,d
D (t) is the maximum number of

vehicles that can reach destination d from origin o during (t , t + Kp).
Thus, the maximum number of vehicles that may reach destination d is
o∑(

No,d
O (t + K p − TFo,d ) − No,d

D (t)
)

.

Nevertheless, if some traffic flows cannot reach their desired
destinations by changing their routes, then it is not realistic to
avoid spillback by forcing traffic to change their routes. If the
LQMPC still limits the turn fractions of the congested links
to 0, there will be a discrepancy between traffic dynamics that
predicted by the LQMPC and real traffic dynamics, which may
have a significant influence on the control performance.

In the classical LQMPC, the supply constraint (30) is
imposed to each individual diverging link. To reproduce spill-
back, the supply constraint should be imposed to the total
flow of all diverging link that originate from one diverging
cell, as explained in equation (18). To this end, we define
a minimum turn fraction of a diverging link, θ

i, j
min(k), which

indicates the proportion of traffic flow that cannot reach their
desired destination without passing link j . Since the route-
specific model keeps track of the OD relations of traffic flows,
θ

i, j
min(k) can be easily obtained from the forward simulation.

According to (18), the following constraint is added to the
LQMPC to reproduce spillback.

n∑

v=1

flv (k) ≤ min

(
Rl1(t)

θ
i,l1
min(t)

,
Rl2(t)

θ
i,l2
min(t)

, . . . ,
Rln (t)

θ
i,ln
min(t)

)
,

∀i ∈ CV , k = t, t + 1, . . . , t + K p − 1. (45)

D. Destination Constraint

The extended LQMPC always has a tendency to assign
traffic flows to attractive destinations where traffic can leave
the network faster, even if the c-link constraint is imposed.
To avoid that the traffic flows assigned to attractive destinations
are higher than the maximum flows, we add the so-called
destination constraint to balance the flows arriving at each
destination.
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The destination constraint is set based on the maximum
possible arriving flow of each destination. As shown in Fig. 8,
the red line represents the cumulative curve at the origin of an
OD pair, and the dashed blue line represents the cumulative
curve at the destination of this OD pair. Suppose that the
controller runs at time t , then the maximum possible number of
vehicles that can arrive at the destination within the prediction

horizon Kp is
o∑ (

No,d
O (t + Kp − TFo,d) − No,d

D (t)
)

, where

TFo,d is the free flow travel time of the OD pair. No,d
O (t) and

No,d
D (t) are the cumulative number of vehicles at the origin and

the destination, respectively. We set the following constraint to
the extended LQMPC, to ensure the flow that arrives at each
destination proportional to the maximum possible number of
vehicles that can arrive to the destination within the prediction
horizon.
t+Kp−1∑

k=t
f j (k)

t+Kp−1∑
k=t

f j ′(k)

=
o∑ (

No,d ′
O (t + K p − TFo,d ′) − No,d ′

D (t)
)

o∑ (
No,d ′

O (t + Kp − TFo,d ′) − No,d ′
D (t)

) ,

∀d, d ′ ∈ CD, � j = d, � j ′ = d ′. (46)

The destination constraint balances the number of vehicles
that arrive at each destination, to avoid that redundant traffic
flow is assigned to attractive destinations. For example, if a
bottleneck is activated, which may block the flow that will
arrive at a (unattractive) destination, then the LQMPC without
the destination constraint will try to push the flow to other des-
tinations to maximize throughput. Under such circumstance,
the LQMPC with the destination constraint tries to resolve
the congestion first, because if the flow that arrives at the
unattractive destination is low, the flows that arrives at any
other destinations will be low as well.

E. Evaluation Step of the Extended LQMPC

We assume that the route-specific model introduced in
Section II is accurate enough to represent reality and we
employ the route-specific model in a model predictive con-
trol framework to optimize the network performance (e.g.,
minimize the total time spent). The optimization problem is
formulated as,

min
r∑ i∑

∀i /∈CD

t+K p−1∑

k=t

xr
i (k) · T

subject to (1)-(19)

f j (k) ≥ 0, ∀k = t, t + 1, . . . , t + K p − 1. (47)

where CD is the set of destination cells. The above opti-
mization problem is non-linear because the traffic dynamics
represented by the route-specific model is non-linear. The
original MPC can be perceived as a simplification of the non-
linear optimization problem. However, the solution space of
the original LQMPC is larger than the non-linear optimization,
because the original LQMPC has the freedom to assign
vehicles to any links even if they do not lead to the desired
destination. A conceptual depiction of the solution spaces

Fig. 9. A conceptual explanation about the boundaries of the solution spaces
of the original LQMPC (the red line), the extended LQMPC (the black line),
and the non-linear optimization (the blue line).

of the different formulations is shown in Fig. 9, where the
solution boundary of the non-linear optimization is shown as
the blue line. If the optimal solution of the original LQMPC
lies in the boundary of the solution space (the red line), then it
has a large bias towards the optimal solution of the non-linear
optimization, which may have a significant influence on the
control performance.

The c-link constraint and the destination constraint intro-
duced in the previous sections narrow the solution space of
the LQMPC to exclude unrealistic solutions. In other words,
the inclusion of the constraints reduces the distance of the
solution space boundary between the extended LQMPC and
the non-linear optimization. Therefore, even if the optimal
solution of the extended LQMPC lies in the boundary of the
solution space (shown as the dashed blue line in Fig. 9), it will
have less influence to the control performance.

Note that the constraints cannot guarantee the solution
space of the extended LQMPC to be exactly the same as the
non-linear optimization. To avoid extremely bad performance
of the extended LQMPC, we evaluate the performance of
the extended LQMPC at the end of each optimization run.
As shown in Fig. 5, the optimal control signals obtained from
the extended LQMPC are implemented into the route-specific
model and compared with the ones of the non-optimizing con-
trol strategy. If the performance of the non-optimizing strategy
is better than the extended LQMPC, then the non-optimizing
actions are implemented for real-time traffic control.

V. CASE STUDY

We test the performance of the presented control approach
in a synthetic network, in Fig. 10, which contains 7 OD
pairs and two signalized intersections, whose movements are
shown in Fig. 11. The bold line that connects A and B
represents a two-lane urban expressway, while other lines
represent one-lane urban arterial roads. This network contains
two potential bottlenecks, which are denoted as ’BN1’ and
’BN2’ in Fig. 10. BN1 represents an accident area, and the
capacity of this area reduces to half of the free flow capacity
when it is activated, whereas BN2 represents the blockade of
the downstream boundary, and the capacity of this area reduces
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Fig. 10. Sketch of the synthetic network. The bold line indicates freeway and other lines indicate urban arterials. ’BN1’ and ’BN2’ represent bottlenecks.
The circles represent signalized intersections.

Fig. 11. The depiction of the movements. Red circled numbers in the
right intersection are the index of roadway sections at the upstream of the
intersection. Blue numbers represent the index of some of the links.

TABLE I

THE DEMAND PATTERN OF THE SYNTHETIC CASE

to one-third of the free flow capacity when it is activated.
Finally, we employ the demand patterns shown in Tab. I. In all
experiments presented in this paper, we assume that the OD
flows are known; if this information is not available, one may
employ an on-line OD estimation method [30].

The route-specific model is used as the process model to
represent reality. The parameters of the process model are set
up as follows. The free flow speed v and the cell length l
are set to 120 (km/h) and 1 (km/cell) for the freeway, and
60 (km/h) and 0.5 (km/cell) for urban roads. The duration of
one simulation step, T , is set to 30s, which satisfies the CFL
condition. The capacity c is set to 2000 (veh/h/lane) for the
freeway and 1800 (veh/h/lane) for urban roads. The saturation
flow Q of intersection movements are set to 1800 (veh/h). The
congestion wave speeds for all cells are set to -20 (km/h). The
parameter σ , which is used to model traffic route choices at
origins, is set to 0.05 (1/s).

Three control scenarios are tested in the synthetic case study.

1) Scenario 1 is the reference scenario which indicates that
the solution is close to the system optimum. The route-
specific model is used as both the prediction model
and the process model. The prediction horizon Kp is
set to 15 minutes and the control horizon Kc is set

to 30 seconds. The non-linear optimization problem
is solved by MATLAB implementation of the SQP
algorithm (fmincon).

2) Scenario 2 applies the presented extended LQMPC. Kp
and Kc are set to same values as in scenario 1. In the
forward simulation, the slot time τ of the simplified
back-pressure algorithm is set to 1 second. The optimiza-
tion of LQMPC is solved by CPLEX from MATLAB
toolbox.

3) Scenario 3 applies the non-optimizing control strategy.
The slot time τ of the simplified back-pressure algorithm
is set to 1 second. Traffic is routed at the origins
according to (6) based on the instantaneous travel time.

We test the performance of the three control scenarios for
a simulation period of an hour. It is assumed that ’BN1’ is
activated during the first half an hour and ’BN2’ is activated
during the second half an hour. During the first half an hour,
due to the capacity reduction of the freeway, we expect that
controllers assign less traffic flow that comes from origin C
to the freeway, to avoid congestion occurs at the freeway
bottleneck. During the second half an hour, the demand of
destination F is higher than the maximum outflow, therefore,
if the congestion propagates to the intersection and blocks
link 3 (see Fig. 11), then the flow of link 4 is also blocked,
which results in a reduction of the outflow at destination B.
Thus, we expect that controllers prevent the blockade of the
intersection for as long as possible.

In addition, to investigate how OD relations are preserved
by the original LQMPC, we run the simulation of another
scenario (scenario 4) where both the process model and the
prediction model are the macroscopic model that does not
keep track of flows in each route. In this scenario we do
not use the destination preserving process model, becasue it
is not straightforward to simulate infeasible solutions with
the presented process model. The presented process model
assign traffic flows to different routes through an optimization
problem, i.e. equation (20). If a controller (e.g., the LQMPC)
generates infeasible turn fractions, the traffic assignment in the
presented process model will not have a feasible solution.

The Total Time Spent(TTS) of the four control scenarios are
322.5h, 324.7h, 544.8h, 126.2 h respectively. The outflows of
destinations B, D, and F in every scenario are shown in Fig. 12
(a), (b), and (c). There is a significant difference between the
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Fig. 12. Outflow of each destination in very scenario. (a), (b), and (c) are ouflows of destinations B, D, and F. Red, blue, black, and pink lines represent
scenarios 1, 2, 3, and 4 respectively.

Fig. 13. Queue lengths of section 1, 2 and 3 in Fig. 11 in scenarios 1, 2, and 3. (a), (b), and (c) are queue lengths of destinations B, D, and F. Red, blue,
and lines represent scenarios 1, 2, and 3 respectively.

outflows for each destination in scenario 4 with respect to other
scenarios. The original LQMPC assigns more flows (around
2000 veh/h) from destination D and less flows (nearly 0) from
destination F. This is because destination D is closer to the
origins and the controller can achieve a lower cost by assigning
a very high flow to destination D. However, this violates the
conservation of destinations because the desired demand at
destination D is, in fact, limited(300 veh/h). Therefore, even
though the original LQMPC achieves a small TTS, it cannot be
applied to reality because these results are based on incorrect
OD relations.

The performances of scenarios 1, 2, and 3 are reflected by
Fig. 12. At the first 60 steps (half an hour), the outflows
in scenario 2 (the presented control approach) are gener-
ally higher than in scenario 3 (the non-optimizing control
approach). This is attributed to the better operation of the
route guidance. Due to the fact that the capacity at BN1 is
only 2000 veh/h and traffic flows of OD pairs AB and AF
(the total demand of which is 2000 veh/h) have to pass
BN1, extra traffic flow that comes from origin C will trigger
congestion on the freeway. As a consequence, the controller
in scenario 2 assigns all of the flow from origin C to urban
roads. As shown by the blue line in Fig. 14, in the first
60 steps the turn fraction of link 1 in Fig. 11 is 1, which
means that the controller assigns all of the flow from origin A
to urban roads to avoid triggering congestion on the freeway.
On the other hand, the non-optimizing approach assigns traffic
flows based on the instantaneous travel time, and the turn
fraction shows oscillated behavior. Once the freeway has a
lower instantaneous travel time, the controller assigns more
flows to the freeway which results in travel time increasing
and turn fraction decreasing, and vice versa. Consequently,

Fig. 14. Turn fraction of link 1 at the left intersection in Fig. 11. Red line
represents scenario 2 and blue line represents scenario 3.

the outflow also shows an oscillating behavior and, when the
turn fraction of link 1 is high, the outflow are also high because
more traffic flow avoids being delayed in the congestion that
occurs on the freeway. The presented control approach keeps
high outflow for the first 60 steps, which is close to the system
optimal controller.

In the second 60 steps, the capacity at BN1 recovers to
4000 (veh/h) and a new bottleneck, BN2, is activated. The
total demand of destination F is 1000 (veh/h), which is higher
than the maximum outflow of the bottleneck, 600 (veh/h).
Thus, congestion occurs at destination F and propagates to
the right intersection. If the road section at the upstream of
destination F is fully blocked, the flows of both link 3 and 4 in
Fig. 11 are 0, which will reduce the outflow of destination B.
Thus, the controller needs to gate the flow at road section
3 to prevent the congestion spillbacks to the intersection.
Controllers of scenario 1 (system optimal) and scenario 2
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(the presented control approach) have similar control patterns.
As shown by the dashed lines in Fig. 13 (b), a queue is
accumulated at road section 2 from time step 60. The gating
of road section 3 generates a queue, which, if it back-spilling
to the freeway, the freeway mainstream flow will reduce and
the outflow of destination B will decrease. Thus, the controller
should balance the queue lengths of road sections 1 and 2 to
avoid the reduction of the total outflow for as long as possible.
At the end of the simulation, since both sections 1 and 2 are
blocked and the controller cannot gain any benefit from gating,
the outflow starts decreasing. For the non-optimizing control
approach, as shown in Fig. 13, the controller balances of
queue lengths of sections 1, 2, and 3 because of the feature of
the back-pressure algorithm. However, gating at road section
3 but releasing the flows of road sections 1 and 2 prompts the
blockade of the intersection. Thus, the outflow of destination
B in scenario 3 starts decreasing before time step 90, which
is much earlier than which in scenarios 1 and 2.

We employ for optimization and simulation a personal
computer with an E5-1620 processor and 16 GB RAM.
The computation time of the presented controller and the
system optimal controller are 1.2 seconds per control step
and 89 seconds per control step, respectively. In this case
study, the presented controller achieves a performance that
is close to the system optimal performance, while it keeps
a tractable computation time. It is expected that employing a
different, more advanced, numerical algorithm for computing
the solution in the system optimal control case instead of the
SQP algorithm, such as, for example, the ones used in [31],
would improve the computational performance. On the other
hand, any non-linear programming method presents some dis-
advantages with respect to LQMPC. In fact, LQMPC not only
generates a globally optimal solution with less computational
time, but it also guarantees convergence independently on
any initial guess (which is necessary in the system optimal
control case). In addition, even in case the system optimal
control case converges in a reasonable time, the solution
may be trapped in a local optimum, while any algorithm
targeting at avoiding local optima (e.g., multi-start) would
substantially increase computational time. Finally, an increase
in size of the optimization problem (e.g., considering a bigger
network or extending the prediction horizon) is expected to
affect more consistently the computational time of the system
optimal control case with respect to the proposed LQMPC,
since the latter belongs to the category of QP problems,
which has been proven being characterized by polynomial
complexity [32]. The quantitative relation between the size
of the optimization problem and the computation time of the
extended LQMPC will be investigated in the future.

VI. CONCLUSIONS

In this paper, we presented an extended LQMPC approach
for multi-destination networks. The previously proposed
LQMPC approach is ineffective for multi-destination net-
works because the prediction model cannot preserve traffic
OD relations. The optimal solution of the previous LQMPC
may violate the flow conservation of destinations, which may
significantly influence the control performance. To overcome

this shortcoming, we introduced a heuristic method to narrow
the solution space of the LQMPC by introducing additional
constraints, so as to exclude unrealistic solutions. In principle,
not all of the unrealistic solutions can be excluded by the
constraints and it is still possible that the optimal solution
does not conserve destinations. To this end, we evaluate the
control performance at the end of each optimization run. The
performance of the extended LQMPC is compared with a non-
optimizing control approach, and the one that has a better
performance is implemented to the process. This approach
ensures that the presented control approach never has a worse
performance than the non-optimizing approach.

The presented control approach is tested in a synthetic
network that has multiple bottlenecks. When the bottleneck
appears at the expressway, the controller effectively assigns
traffic flows to the parallel arterial road, and when the
bottleneck appears at an urban intersection, the controller
effectively gates flow to maximize the intersection outflow.
It is of particular significance that the computation time of
the presented control approach is real-time tractable, which
is essential for field applications. A future step is to test the
presented approach by using microscopic simulation tools. It is
also interesting to investigate how to reformulate the linear
constraints of the extended LQMPC such that the optimization
outperforms the non-optimizing approach in all cases.
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