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Abstract—We propose a condition-adaptive representation
learning framework for the driver drowsiness detection based on
3D-deep convolutional neural network. The proposed framework
consists of four models: spatio-temporal representation learning,
scene condition understanding, feature fusion, and drowsiness
detection. The spatio-temporal representation learning extracts
features that can describe motions and appearances in video
simultaneously. The scene condition understanding classifies the
scene conditions related to various conditions about the drivers
and driving situations such as statuses of wearing glasses,
illumination condition of driving, and motion of facial elements
such as head, eye, and mouth. The feature fusion generates a
condition-adaptive representation using two features extracted
from above models. The detection model recognizes drivers
drowsiness status using the condition-adaptive representation.
The condition-adaptive representation learning framework can
extract more discriminative features focusing on each scene
condition than the general representation so that the drowsiness
detection method can provide more accurate results for the
various driving situations. The proposed framework is evaluated
with the NTHU Drowsy Driver Detection video dataset. The
experimental results show that our framework outperforms the
existing drowsiness detection methods based on visual analysis.

Index Terms—Representation learning, adaptive learning, con-
volutional neural network, driver drowsiness detection

I. INTRODUCTION

DRiver drowsiness detection is one of the essential func-
tions in the advanced driver assistant systems (ADAS)

for preventing fatal accidents from the people on a road. Many
drivers and pedestrians are killed or significantly injured by
drowsy driving. The report of the National Sleep Foundations
Sleep in America poll presents 60% of Americans have an
experience of drowsiness driving, and 37% have experienced
falling asleep while driving in the recent one year. According
to the report of the national highway traffic safety admin-
istration in the USA, the driver fatigue is closely related
to the 100,000 of car crashes reported by polices. By this
report, this car crashes made 1,550 deaths, 71,000 injuries,
and 12.5 billion in monetary losses [1]. Also, the car crash
by the driver drowsiness is not unique to drivers in the USA,
drowsiness contributes to as many as 7% of crashes in the
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United Kingdom and 3.9% of crashes in Norway[2], [3]. The
majority of drowsiness-related car accidents, approximately
80%, might be classified as individual vehicle run off road
crashes, where a driver lost the controlling their vehicle and
eventually departed their lane or smashed into the rear of the
car ahead [4]. These figures may be the tip of the iceberg
because of not only it is hard to attribute the cause of crashes
to drowsiness but also the criteria for recognizing drowsiness
differ depending on the driver [1]. There is no Breathalyzer
equivalent for drowsiness. Therefore, in order to prevent these
losses of life and property, it is an important challenge to
develop a driver drowsiness detection method.

The approaches for driver drowsiness detection could be
classified based on their target domain to analysis. One ap-
proach is to directly analyze the driver’s behaviour to identify
changes in driver behaviour. This approach analyzes facial
elements such as eye and mouth using visual sensors [5],
[6], [7], [8], [9], [10], [11], or detects particuar patterns in
electrophysiological signals occurring when a driver is falling
asleep [12], [13], [14], [15]. Other approaches indirectly infer
a driver’s state through analysis of signals extracted from the
steering system [16], [17], [18], [19], [20].

The most commonly applied and theoretically rigorous
approach involves the analysis of electrical bio-signals e.g.,
electroencephalogram (EEG) or facial elements such as eye
based on percent eye-closure over a fixed time window (PER-
CLOS) [21]. Dinges et al. had verified that the approach
using PERCLOS had over than 90% accuracy in recognizing
degraded performance during a vigilance task. This figure
demonstrated that the PERCLOS was more reliable across
drivers than EEG, blinks, and head position in the study
[21]. Khushaba et al. proposed the driver drowsiness detec-
tion method which employs fuzzy mutual-information-based
wavelet packet transform model for extracting drowsiness-
related information from a set of EEG, electrooculogram
(EOG), and electrocardiogram (ECG) signals [12]. Papadelis
et al. developed drowsiness monitoring system using onboard
electrophysiological recording systems [15]. Aforementioned
methods identify the change of patterns of signals such as
brain activity or heartbeat to measure the strength of fatigue of
drivers. These signals reflect brain electrical activity and can
provide more discriminative information than other features
in analyzing the driver’s conditions. For these reasons, the
methods using biomedical signals captured from drivers had
provided relatively higher accurate detection results than other
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methods based on visual analysis or measuring the steering
signals. Nevertheless, the main disadvantage of these methods
is that the sensing equipment for the physiological signals such
as EEG, ECG, and EOG, must be attached to the driver’s body.
The attachment of those sensors could cause inconvenience to
drivers when they are driving. Additionally, the high price of
sensors is one reason that they can not be used in a practical
drowsiness detection system.

In addition to the methods of directly recognizing the
drivers’ condition through the analysis of biomedical signals,
the approaches based on visual analysis of facial elements
generally employ computer vision techniques such as object
detection and tracking to find the interesting objects such
as eye or mouth, on the image containing the driver’s face
[5], [6], [7], [8], [9], [10], [11]. Garcia et al. proposed a
system which consist of three steps [5]. Their system initially
detects and tracks face and eye, and then to stabilize the
performance of analyzing the status of the eye in various
illumination conditions, the system conducts image filtering.
This system evaluates the closure status of the eye using
PERCLOS measurement. Mbouna et al. provided the analysis
method for a visual feature to understand the closure state
and head pose. The proposed method monitors a driver using
a single camera without any source of light [6]. Wang et al.
presented a solution for the situation that driver is wearing
glasses by combining two analysis methods for the status
of eye and mouth [7]. The method proposed by Dwivedi
et al. extracts features using a convolutional neural network
and detects eye blinking, eye closure, and yawning [22].
Generally, these methods assume that facial expressions of
extremely tired drivers, such as eye blinking, yawning, and
eye and head moving, are different from facial expressions
represented when drivers are not tired. These approaches
classify the driver’s condition as whether he/she is asleep or
not, using the hand-crafted features such as the histogram of
gradient (HoG) [23] and Haar-like features [24]. To extract
these facial feature information, visual sensors like an RGB
camera or an active infrared sensor should be installed on the
vehicle dashboard, sun visor, or overhead console for taking
face images of drivers. However, despite the convenience
of installation, the methods based on video analysis using
visual sensors solely, provide unstable detect results in many
situations. For example, general cameras cannot capture clear
images at night without illumination system. The development
of the drowsiness detection method using visual analysis,
invariant to the light condition is still an open question.

The limitations of the above-mentioned approaches have led
researchers to attend to the signals from a steering system
such as the deflection of the top of the wheel from the
zero point [25]. These signals are similar to electrical bio-
signals in that they require significant pre-processing and
transformation before they become viable input measures [26].
Sayed and Eskandarian proposed a steering-wheel angle based
method that filtered raw information for steering angle for the
elimination of road curvature events, and then discretized into
binary signals to represent steering patterns [26]. This method
detected the drowsiness of drivers with nearly 90% accuracy.
Similarly, Krajewski et al. presented an approach to process
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Fig. 1: Illustrations of the processes of general represenration
learning and adaptive representation learning on a classifica-
tion task

raw steering-wheel angle data into features represented by the
signal in the time and frequency domains [27]. Ersal et al.
presented an approach to recognition of driving behaviours
[16], which is based on support vector machines (SVM) [28].
This approach systemically assists determination of whether
a driver is asleep or not by interpreting behaviours of drivers
using the linear discriminative model. Takei et al. [19] esti-
mated a driver’s fatigue by analyzing steering motions with the
fast Fourier transform (FFT) and Chaos characteristics. These
methods judge whether a driver is falling into a drowsy state
by analyzing signals such as variation of velocity, acceleration,
breaking, and gear change, that are recorded from the sensors
embedded in steering systems. These methods are not focused
on the detection of driver drowsiness directly. They try to
recognize the unstable vehicle movements that are caused by
various intrinsic and extrinsic reasons from analyzing steering
signals. Consequently, it can provide a more flexible system to
detect unstable movements than other systems which are only
focused on the detection of driver drowsiness. However, many
automobile manufacturers in the world embed a particular
steering system in their vehicles. In addition, these signals
cannot be a clear basis to distinguish whether a driver is sleepy
or not since every driver has not only a different personality
but also a different driving habit.

Recently, deep learning architectures have been success-
fully used to solve various computer vision problems, such
as image recognition [29], [30], object detection [31], [32],
gesture recognition [33], image segmentation [34], and action
recognition [35], [36]. In particular, the deep learning methods
[35], [36] show good performance in analyzing video streams
to recognize specific actions when compared with conventional
methods based on hand-crafted features [37], [38]. Although
various methods [37], [38], [39] to extract superior hand-
crafted features have been proposed, the key to these successes
is a rich and discriminative representation extracted from
multi-layer nonlinear systems in the deep learning approaches
[40]. We had adopted the convolutional neural network (CNN)
and multi-layer fully connected neural network (a.k.a., deep
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neural network) to discover significant time-space features,
and showed the possibility of the deep learning method for
drowsiness detection in previous works [41]. In our previ-
ous works, we had proposed the driver drowsiness detection
method exploiting extra scene condition prediction to improve
discriminative properties of learnt representation. However,
despite outperforming in drowsiness detection, the previous
method had a critical drawback in generating representations.
The previous method had a possibility that the method gener-
ates extremely sparse representation which cannot contain suf-
ficient information to detect drowsiness. This work is improved
and extended from our earlier work [41], and we propose
an end-to-end learning framework for a novel representation
called condition-adaptive representation for drowsiness detec-
tion.

The condition-adaptive representation learning is a repre-
sentation learning process to take the feature focused on some
particular condition using auxiliary information (a.k.a., meta
information). When the training dataset can be classified to
several conditions, whilst the normal representation learning
perform to extract generalized features from overall training
data the condition-adaptive representation learning can extract
more specific representations reflecting given conditions. Fig-
ure 1 represents the comparison of processes about the normal
representation learning and condition-adaptive representation
learning. An auxiliary information has been used to improve
the performance of the deep learning model in many computer
vision studies [42], [43]. Hong et al. proposed deep learning
system using transferrable knowledge to the scene segmen-
tation in training phase [42]. Zhang et al. proposed a face
alignment method using the result of landmark detection as
auxiliary information [43]. These methods tried to improve
the performance of their solutions by learning the features
biased to extra information that could help to explore useful
features in their target domains. As with the methods described
above, the concept of the condition-adaptive representation
could be possibly interpreted as a representation biased to
some conditions. However, in compared to the above methods
which use extra information solely in training phase as prior
knowledge, the proposed framework can generate the infor-
mation which can help to improve the discrimination of the
learnt representation during not only the training task but also
testing task. By using this paradigm, the proposed framework
can immediately generate the representation which adapts to
the interpreted results.

The proposed framework is composed of four models con-
sisting of representation learning, scene understanding, feature
fusion, and drowsiness detection. The representation learning
model discovers the rich and discriminative representation that
can describe the motion and appearance of an object within the
consecutive frames simultaneously. The scene understanding
model identifies the various scene conditions that relate to
driving conditions, e.g., illumination conditions and wearing
glasses. The feature fusion model generates a condition-
adaptive representation which is biased to a specific scene
condition as opposed to the general spatio-temporal represen-
tation. The proposed framework detects drivers drowsiness in
various situations accurately by using this condition-adaptive
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Fig. 2: Illustrations of (a) 2D and (b) 3D convolution kernels.
The connections sharing the same color denote a weight
sharing in convolution layer. In 3D convolution (b), a temporal
dimension is 3.

representation. The main contribution of this work is the
representation learning framework that could be adapted to
the particular scene conditions via understanding the scenes
and generating the condition adaptive representation.

The rest of the paper is organized as follows. In Section
II, we give an overview of the 2D and 3D CNNs. The
architectural detail of the proposed framework is explained in
Section III. We describe the training and inferencing procedure
of the proposed framework in Section IV, and represent the
method of data argumentation in Section V. In Section VI, we
show the experimental results and analysis those results. The
conclusion and discussion are described in Section VII.

II. 2D AND 3D CONVOLUTIONAL NEURAL NETWORKS

A convolutional neural network (CNN) (a.k.a., Deep convo-
lutional neural network) is a multi-layer weighted filter model
introduced by LeCun et al. [44]. CNNs show outstanding
performance in many computer vision studies such as image
classification [45], object detection, and recognition [32]. The
key architectural characteristics of CNNs are ensuring some
degree of shift, scale, and distortion invariance: local receptive
field, shared weight, and spatial or temporal sub-sampling [44].
The function of a locally connected neural network in CNNs
permits that CNNs can extract locally meaningful features,
and by using the weight sharing, CNNs can be used as a
elementary feature detector for one part of an image, across
the set of entire images.

In general CNNs, the convolution is performed at the convo-
lution layers to discover features from spatial neighbourhoods
on feature maps in each layer. Formally, the value of a unit
at position (x, y) in the i-th feature map in the j-th layer
presented as axyij is represented by

axyij = α[

W∑
p

H∑
q

(vpqwpqij ) + bij ] (1)

where α is the activation function such as hyperbolic
tangent, sigmoid, and rectified linear functions, and bij is the
bias for the feature map, and v is latent representation of
the unit at position (x, y) in the i-th feature map in the j-
th layer. w is the value of the kernel (Local receptive field)
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Fig. 3: Overall architecture of the proposed framework. The red boxes with bold line denote the models, and the black boxes
drawn by dotted line define extracted features or outputs of each model.

connected to the feature map, and W and H are the width
and the height of the kernel respectively. In the sub-sampling
layer, the dimensional scale of the feature map is reduced
by pooling over the spatially adjacent neighbourhood on the
feature maps in the previous layer. The learnt feature using 2
dimensional-CNN (2D-CNN) can not only discover the locally
useful feature but also be helpful to understand an entire
image.

However, although the spatial features extracted from the
2D-CNN is robust to various computer vision studies, this
paradigm of 2D-CNNs plays the role of a hurdle in learning
the temporal representations about the sequential data such
as video. To discover the rich and informative information
from the sequential data using CNNs, Ji et al. proposed
the 3D convolution [46]. The 3D convolution is achieved
by convolving a 3D feature map to the 3D volume formed
by stacking multiple images together. By this principle, the
feature maps in the convolution layers can capture temporal
information that is contained in multiple contiguous frames.
The value of a unit at position (x, y, t) in the i-th feature map
in the j-th layers which is denoted as axytij can be formulated
as

axytij = α[

W∑
p

H∑
q

D∑
k

(vpqkwpqkij ) + bij ] (2)

where α is the activation function in 3D convolution, v is
latent representation of a unit at position (x, y, t) in the i-th
feature map in the j-th layer, bij is the bias for the feature
map, w is the value of the kernel (3D Local receptive field)
connected to the feature map, and W , H and D are the
width, the height, and the depth of the kernel, respectively.
Figure 2 shows the comparison of 2D and 3D convolutions.
While the 2D convolution extracts spatial representation from
given single image only, a 3D convolution can extract both
spatial and temporal representation simultaneously in multiple
consecutive images because the kernel of 3D convolution
explore not only spatial axis but also temporal axis.

III. ARCHITECTURE

The proposed framework is based on four models for repre-
sentation learning, the scene understanding, the feature fusion,
and the drowsiness detection. The representation learning
model fd based on 3D-DCNN is used to extract the spatio-
temporal representation from an input data. The scene un-
derstanding model consists of four sub-models fgl, fh, fm, fe
for interpreting the condition of glasses, illuminations, and
movement of facial elements. The fusion model ffu gener-
ates condition-adaptive representation which can acclimatize
the scene conditions. The detection model fdet determines
whether a driver is sleepy or not. Figure 3 shows an overall
architecture of the proposed framework. The brief explanation
for how to generate condition-adaptive representation and
detect drowsiness of drivers, using the proposed framework
is as follows. Initially, the representation learning based on
the 3D-DCNN extracts a feature that can describe motion
and appearance from a video clip simultaneously. Secondly,
the scene understanding predicts five scene conditions that
associated with wearing glasses, illumination conditions, and
facial elements using the spatio-temporal feature extracted
from the representation learning. The scene understanding
results are represented by a vector that is defined by the one-
hot encoding method. The one-hot encoding is one of the
encoding approaches which indicates the state of a system
using the binary values. The encoding result is represented
by the group of bits among which the legal combinations of
values are only those with a single high (1) bit and all the
others low (0) bits. Then, feature fusion learns a condition-
adaptive representation by agglomerating the spatio-temporal
representation and the one-hot vectors. Finally, the detection
model identifies a state of driver drowsiness by analyzing the
condition-adaptive representation. In the following, we will
describe the detail of information of each model and training
scheme of the proposed framework.
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Fig. 4: Illustration of the 3D-DCNN in representation learning module. The green box and red box denote an input data
and extracted spatio-temporal representation respectively, and the blue boxes represent convolution layers and pooling layers.
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A. Spatio-temporal representation learning

In this section, we describe the representation learning
model using 3D-DCNN for extracting the spatio-temporal
representation from given mutlitple consecutive frames. The
objective of the representation learning is discovering a rich
and discriminative feature from inputted consecutive frames.
Videos taken by the frontal facing camera in the display
units of a vehicle can be variously modified depending on
the various conditions of the vehicle interiors or exteriors,
such as illumination conditions and an interior design of a
vehicle. When drivers feel drowsiness, their facial elements
make various changes, and these changes would be interpreted
as either a shift in shape or change of motion. Therefore,
to detect a drowsiness of drivers, we have to consider the
representation which can describe spatial information (ap-
pearance) and temporal information (motion) simultaneously.
It is impossible to estimate a temporal information using
only a single frame since a single frame cannot contain a
change according to a time sequence. When we consider these
limitations observed when a input is a single frame, it is
necessary to use multiple consecutive frames as an input to
discover the spatial and temporal information simultaneously.
In this work, we employed 3D-DCNN to discover various
spatial and temporal change in given multiple consecutive
frames.

Let x ∈ RW×H×T denotes a training video clip where
W , H , and T are the width, height, and the temporal length
respectively. For a given input video clip x, the representation
learning based on the 3D-DCNN extract a spatio-temporal
representation as

a = fd(x; θd), a ∈ RWa×Ha×Da (3)

where θd is the parameter vector of the representation
learning, and a is a learnt spatio-temporal representation.
The spatio-temporal representation is defined as the activation
values of the hidden units in the last convolutional layer of
3D-DCNN of the representation learning model. Wa, Ha, and

Da denote the width, height, and depth of the spatio-temporal
representation. The 3D-DCNN in the representation learning is
composed of six convolutional layers and two pooling layers.
Figure 4 shows the architectural detail of the 3D-DCNN in
the representation learning. To discover a spatial and temporal
feature simultaneously, we employed a 3D local receptive field
suggested by Tran et al. [47]. The convolutional operation
based on 3D local receptive field can be defined as

a = ρ[

Wr∑
i

Hr∑
j

Dr∑
k

(vi,j,kwi,j,k + b)] (4)

where a is an activation value of the hidden unit, and v, w,
and b are the input value, the weight, and bias respectively.
Wr, Hr, and Dr denote the width, the height, and the depth
of 3D local receptive field, and ρ is an activation function
for the convolution layer. We adopt the Rectified Linear
Units (ReLUs) [45] for the proposed 3D-DCNN. While the
ordinary 2D structure of the kernel (local receptive field) in
2D convolution layers can extract spatial information only, the
3D structure of the kernel in 3D convolution layer allows to us
capturing the spatial and temporal features simultaneously. The
extracted representations which contain spatial and temporal
features convey to the scene understanding model and feature
fusion model to identify the various scene conditions and
generate the condition-adaptive representation.

B. Scene understanding

The goal of the scene understanding is interpreting of the
scenes with drivers, and understanding the various condition
of drivers that can be categorized by the physiological and en-
vironmental conditions such as movement of facial elements,
wearing glasses, and a difference between a day and night.
These interpreted information help to train the framework
for adapting the learnt representation to the various scene
conditions. We hypothesize that each video clip is associated
with the scene conditions and a driver drowsiness status. These
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are represented by either ground-truth (in training phase) or
prediction results (in inferencing phase).

In this work, the scene condition contains the three cate-
gories of the facial elements and one category for the status
of glasses and illumination: 1) conditions of glasses and
illumination Lgl, 2) head Lh, 3) mouth Lm, and 4) eye Le.
We define states of facial elements and the conditions for
glasses wearing and illumination using a one-hot vector. The
detailed explanation for the annotation of each scene condition
is described in Table I. We adopt a fully connected neural
network since there is a possibility that given spatiotemporal
representations have complex distributions which can not be
modelled by a linear kernel. The predictions of conditions
using the scene understanding model are written by

L̂gl = fgl(a; θgl), Lgl ∈ RLgl×1

L̂h = fh(a; θh), Lh ∈ RLh×1

L̂m = fm(a; θm), Lm ∈ RLm×1

L̂e = fe(a; θe), Le ∈ RLe×1

(5)

where L̂ ∈ {L̂gl, L̂h, L̂m, L̂e} are predicted scene condi-
tions associated to input data x, and L ∈ {Lgl, Lh, Lm, Le}
are dimensions of each annotation for the condition con-
taining glasses and illumination, head, mouth, and eye. θ ∈
{θgl, θh, θm, θe} are the parameters of the each model that
defined by the fully connected network in the scene under-
standing model. Each model is composed of two hidden layers
and a corresponding output layer. The aforementioned models
are represented as

o = fo{fh2[fh1(aWh1 + bh1)Wh2 + bh2]Wo + bo} (6)

where fh1, fh2, and fo are activation functions of the first
and second hidden layers and an output layer respectively. a is
reshaped a spatio-temporal representation which is extracted
from the representation learning model based on 3D-DCNN.
Wh1, Wh2, and Wo are weight parameters of two hidden layers
and the output layer. bh1, bh2, and bo are the bias parameters
of each layer. The learning procedure of each sub-model in
the scene understanding is similar to the back propagation
algorithm [48]. Each sub-model estimates a condition that
corresponding to the given spatio-temporal representations a,
then computes the difference between the predicted conditions
and annotations to train the parameters of the network of
the sub-model. The dimensionalities of the outputs for each
scene understanding model correspond to their target domain
to predict. For example, the dimensonality of the output o
of the scene understanding model for glasss and illumination
conditions is five, because of the model is designed to identify
the conditions defined as five classes. For a given spatio-
temporal representation as input, the scene understanding
model is trained to optimize the objective function defined
as follows

Esu(L̂,L; θ) = min
θd,θgl,θh,θm,θe

β
∑
i

[Egl(Lgl, L̂gl)

+Eh(Lh, L̂h) + Em(Lm, L̂m) + Ee(Le, L̂e)].
(7)

TABLE I: Annotations for the sub-models in the scene under-
standing and its status.

Scene condition Category One-hot vector Condition

Glasses and illumination
conditions

1 10000 Day bare face
2 01000 Day glasses
3 00100 Night glasses
4 00010 Night bare face
5 00001 Day sunglasses

Head condition
1 100 Normal status
2 010 Looking at both sides
3 001 Nodding

Mouth condition
1 100 Normal status
2 010 Talking and laughing
3 001 Yawning

Eye condition 1 10 Sleepiness eye
2 01 Normal status

where L ∈ {Lgl,Lh,Lm,Le} denote annotations of input
data, and Egl, Eh, Em, and Ee denote loss functions defined
by the softmax cross-entropy loss between the annotation and
predicted results. β is a hyper-parameter for regularization
of the summation of values of error functions. The details
of training and inference tasks are given in Section IV.
The spatio-temporal representation and the outputs of the
scene understanding model are then combined to produce the
condition-adaptive representation explained in the following
subsections.

C. Feature fusion

The objective of the model for feature fusion is to learn a
set of condition-adaptive representations from the given spatio-
temporal representation α and its associated scene condition
annotations L̂ ∈ {L̂gl.L̂h.L̂m.L̂e}. Given the spatio-temporal
representation extracted from 3D-DCNN α ∈ RWα×Hα×Dα

and its associated and predicted scene conditions L̂, the fusion
model discovers a set of condition-adaptive representation β.
The condition-adaptive feature vector β is generated by using
the multiplicative interaction approach proposed by Memisevic
et al., [49]. Hong et al. observed that the high-order depen-
dency between relevant features can be captured by using
element-wise multiplication interaction between the feature
maps [50]. To train the proposed framework that generates the
combined representation which needs joint learning between
the multiple resources, we refer to the training procedure
proposed by Hong et al., [50]. The fusion model is defined
as follows

β = ffu(α,L; θfu) (8)

β =Wfu(Wfeaα⊗WglLgl ⊗WhLh
⊗WmLm ⊗WeLe) + bfu.

(9)

where β denotes the unnormalized condition-adaptive rep-
resentation, bfu ∈ Rd×1 is the bias of the fusion model, and ⊗
denotes element-wise multiplication. The weights are given by
Wfu ∈ RM×d, Wfea ∈ Rd×WαHαDα , and Wgl, Wh, Wm, and
We are defined as the specific sizes based on the dimensional
scale of each associated annotation. The variables M and d
denote the number of hidden units in the fusion model. This
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(a) (c)(b)

Fig. 5: Illustration of the deep spatio-temporal representation and condition-adaptive representation according to input data.
(a) Input frames, (b) Deep spatio-temporal representation, and (c) denotes condition-adaptive representation obtained by the
fusion model ffu. Two images in (b) and (c) represents the visualization of activation results of hidden units in representation
learning and feature fusion modules. The proposed condition-adaptive representation learning framework adaptively discover
the conditional feature in an input volumes depending on the result of the scene understanding model.

5-way tensor product can capture the correlation between the
input domains containing the spatio-temporal representation
and the scene conditions.

However, the element-wise multiplication with the spatio-
temporal representation and the outputs of the scene under-
standing empirically computes values that are close to zero.
These computed values can influence not only the result of the
fusion model but also computational procedure when the mul-
tiplication results exceeded the range that can be represented
by computation machine. We adopted a normalization scheme
to prevent values close to zero for avoiding the computational
errors and finding high-order dependency between the spatio-
temporal representation and the identified scene conditions.
To prevent computational error and to pay attention to only
a scene condition, we normalize β to v using the softmax
function in [34], [51]. The normalization is formulated as
follows

vi =
exp(βi)∑
j exp(βj)

(10)

where βi represents i-th element of the unnormalized joint
feature, and vi is i-th element of the normalized fusion feature.
Intuitively, v represents a condition-adaptive representation
defined over all spatio-temporal representations and the corre-
sponding scene conditions. Figure 5 shows the input images,
the spatio-temporal representations, and the condition-adaptive
representations. The condition-adaptive representations are
then used as an inputs to the detection model, which is
explained in next section.

D. Drowsiness detection

The fusion model described in the previous subsection gen-
erates a set of condition-adaptive representations v, which pro-
vide scene adaptive features containing information of facial
elements and illumination of drivers. The drowsiness detection
of the proposed framework using the given condition-adaptive
representation v in Eq. (10) is carried out via additional neural
networks. As same as the scene understanding model, we put
an additional fully connected deep neural network on top of
the fusion model as follow:

odet = fdet(v; θdet). (11)

where odet denotes the output of the detection model, and
θdet is the model parameter. The output of the fully connected
network is consists of two units: non-drowsiness unit and
drowsiness unit, to classify the drowsiness of a driver. To
compute the likelihood of the driver drowsiness, we apply the
soft-max function exi∑2

k=1 e
xk

which reflects the drowsiness and
non-drowsiness degrees of input. Using the soft-max function,
we can detect the driver drowsiness in each input. A high
value of the non-drowsiness unit signifies that a driver in the
input frames is likely to be awake, and a high value of the
drowsiness unit signified that the driver is falling asleep. An
optimization scheme for both ffu and fdet operates under the
detection objective. Our detection model is trained to minimize
the detection loss using detection annotation associated with
fusion feature, and representation as follows:

min
θf ,θdet

∑
i

Edet(odet, ôdet) (12)
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where ôdet is a ground-truth value that corresponds to each
input data x, and Edet denotes the objective function of the
detection model. We used the softmax cross-entropy function
as the objective function for Edet. The objective function is
worked to all models embedding into the proposed framework.

IV. TRAINING AND INFERENCE

The training of the proposed framework has two objectives
including the scene understanding objective in Eq. (7) and the
drowsiness detection objective in Eq. (12), and the harmony of
those two objectives is essential for achieving a superb locally
optimized solution. Combining Eq. (7) and (12), the overall
objective function is defined by

min
θd,θsc,θf ,θD

∑
i

((1− λ)Esu(Lc, L̂c) + λEdet(oD, ôD)) (13)

where λ is a parameter for balancing during training two
modules for the scene understanding and drowsiness detection.
The objective function can optimize the four modules of the
proposed framework simultaneously. However, when we begin
the training, we do not train the all models of the proposed
framework simultaneously. The overall architecture (see Fig
2.) shows that the proposed framework is sharing the output
of the representation learning model, and also denotes that
the representation learning and scene understanding models
can considerably influence to the other models (feature fusion
and drowsiness detection). First, we train the representation
learning and scene understanding models during n steps. After
that, we train all models containing the feature fusion and
detection models.

To detect the drowsiness of drivers from input video clip,
the proposed framework generates spatio-temporal represen-
tations using the representation learning, and then the spatio-
temporal representation is used to understand scene conditions.
these two pieces of information are combined to produce the
condition-adaptive representation. Drowsiness is detected by
using this condition-adaptive representation.

V. DATA AUGMENTATION

The most general approach to reduce overfitting on a given
training dataset is artificially enlarging the dataset using label-
preserving transformations [45]. In this work, we apply the
data augmentation based on horizontal transformation and im-
age pyramid technique. This approach allows transformation
of an image with very little computation so that we can make
an additional dataset without huge computational load. We
generate horizontally flipped images from the original images,
and these original images and flipped images are transformed
by using the image filtering methods based on the Gaussian fil-
ter. Figure 6 illustrates the procedure of the data augmentation.
We conduct this by extracting training patches using various
values of variations and training our proposed framework
on this extended dataset. In our experiments, we used three
different variations to generate additional training samples
by using the image pyramid paradigm. These two types of
data augmentation approaches can sufficiently increase the
number of the training samples. Without this scheme, our

Data argumentation

Original training sample
(Multiple consecutive frames)

Rotation

Result of data augmentation

…
…

Data augmentation
Based on image pyramid

Image filtering

Fig. 6: Illustration for the procedure of the data augmentation.
Original training sample and the rotated sample of it generates
another training samples by using the image filtering such as
Gaussian filter.

proposed framework suffers from substantial overfitting, and
it can converge to a poorly local optimized solution.

VI. EXPERIMENTS

A. Benchmark dataset

Previous studies [12], [19], [20] on driver drowsiness detec-
tion attempted to recognize small cases in the private dataset
which is constructed in their own experimental environment
for driver drowsiness detection. Abtahi et al. provided a
publicly-available dataset for yawning detection [52]. How-
ever, it is still insufficient for a comprehensive drowsy driver
study. We used the NTHU Drowsy Driver Dataset (NTHU-
DDD Dataset) to demonstrate an efficiency of the proposed
framework for the drivers drowsiness detection. It is too
difficult and dangerous to construct a dataset for detecting
of driver drowsiness detection in real situations. The NTHU-
DDD dataset is composed of several videos containing a driver
who was sitting on a car seat and playing a racing game with
driving simulator wheel and pedals. The drivers in the dataset
conducted various facial expressions during video recording.
The total time of the entire dataset is about 9 and a half hours.

The NTHU-DDD dataset is composed of three subsets for
training, evaluation, and test, which are composed of non-
redundant video files. Each subset consists of the videos which
contain diverse situations for the condition for drivers that is
captured using visual sensors such as a camera and an active
infrared (IR) sensor. The entire dataset including training and
evaluation datasets contain 36 of drivers of different ethnicities
recorded with and without glasses/sunglasses under a variety
of driving scenarios. The driving scenarios include normal
driving, yawning, slow blink rate, falling asleep, and burst
out laughing, under day and night illumination conditions.
All videos contain frame-level annotation for the drowsiness
condition. The video resolution is 640 × 480 in AVI format.
Figure 7 shows example snapshots of the NTHU-DDD dataset.

The training dataset is composed of subsets that are com-
posed of 18 subject folders. Each subject folder contains
videos recorded in various driving condition. Each subset
is classified into four scenarios defined as the condition of
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Fig. 7: The example snapshots of NTHU Drowsy Driver Detection Dataset (NTHU-DDD Dataset).

Annotation for frame
(5 frames)

Annotation for clip

Fig. 8: The illustration for the concept of temporal IOU.

TABLE II: Validation accuracies of the scene understanding
model using the evaluation dataset in NTHU-DDD dataset.

Scenario Glasses and illumination Head Mouth Eye

Day bare face 0.99 0.99 0.98 0.89
Day glasses 0.97 0.93 0.95 0.81
Day sunglasses 0.98 0.97 0.78 0.78
Night bare face 0.99 0.95 0.97 0.82
Night glasses 0.97 0.96 0.88 0.92
Average 0.98 0.96 0.912 0.844
Total average 0.924

the glasses and illumination conditions (i.e., glasses, bare
face, sunglasses, night glasses, night bare face). Each scenario
contains four videos with different situation and corresponding
annotation files. The evaluation dataset provides four subject
folders and each subject contains five videos with different
scenarios and corresponding annotation files. The training
dataset is composed of 360 videos (722,223 frames), and
the evaluation dataset contains 20 videos (173,259 frames).
In this work, we only used training and evaluation datasets
because test dataset can not publicly accessible and the test
dataset not contains annotation for performance evaluation. We
used all given training data to train the proposed framework.
We make a small video clip that consists of five consecutive
frames, and assign an annotation about the scene conditions
and drowsiness status.

Unfortunately, the given training data provides frame-level
annotation, so that we employed a concept of the intersection
over union (IOU) [53], in order to change the frame-level
annotation to clip-level annotation. Figure 8 shows the concept
of the temporal IOU used in our experiment. We assume
that the annotation value of each clip is defined as a value

occupying more than 50% among the frame-level annotations.
Therefore, we defined the annotation value as the value which
is observed more than three frames in each clip in our
experiment. In addition, we downsample all frames using a
bilinear interpolation method in Opencv library to the uniform
size with width of 224 pixels and height of 224 pixels for
improving an experimental and time efficiencies.

B. Experimental results

We demonstrate an efficiency of our framework using the
evaluation set of the NTHU-DDD dataset. The evaluation
dataset is composed of 5 scenarios, and each scenario contains
five videos that captured various virtual driving situations. The
videos in the evaluation dataset are not duplicated to the videos
in the training dataset. The dataset also includes multiple
annotations that are concerned with the scene conditions and
drowsiness detection. We tested the performances of the scene
understanding and drowsiness detection respectively.

The scene understanding module is evaluated by using
validation accuracy, represented as n

m where the numerator
n is the number of the correctly classified results of each sub-
model in the scene understanding model, and the denominator
m denotes the total number of test samples. Table II shows the
validation accuracies of the scene understanding model that is
composed of four sub-models: the glasses and illumination
conditions fgl, the head model fh, mouth model fm, and
eye model fe. The averages are computed by the formulation
of the arithmetic mean so that the weights according to the
number of data that classified to the same categories in the
table did not consider. This measurement has been applied
equally to subsequent experiments. The average of validation
accuracies across to all scene conditions for sub-models is
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TABLE III: Average accuracy comparison of the drowsiness detection approaches in different situations using the evaluation
dataset in NTHU-DDD dataset. The bolded values represent the best accuracies in each scenario and the averages.

Scenario LeNet[44] AlexNet[45] VGG-FaceNet[54] LRCN[55] FlowImageNet[55] DDD-FFA[56] DDD-IAA[56] Ours

Day bare face 0.531 0.704 0.638 0.687 0.563 0.782 0.698 0.796
Day glasses 0.592 0.616 0.705 0.617 0.616 0.741 0.759 0.781
Day sunglasses 0.682 0.702 0.570 0.714 0.675 0.618 0.698 0.738
Night bare face 0.602 0.646 0.737 0.573 0.668 0.702 0.749 0.765
Night glasses 0.599 0.627 0.741 0.556 0.551 0.683 0.747 0.734
Average 0.601 0.659 0.678 0.629 0.615 0.708 0.730 0.762

TABLE IV: F-measures and accuracies of the drowsiness
detection using for the evaluation dataset in NTHU-DDD
dataset. The listed values below the drowsiness and non-
drowsiness attributes represent the results of F-measures.

Scenario Drowsiness (F) Non-drowsiness (F) Accuracy

Day bare face 0.809 0.784 0.796
Day glasses 0.789 0.774 0.781
Day sunglasses 0.758 0.718 0.738
Night bare face 0.753 0.777 0.765
Night glasses 0.718 0.750 0.734
Average 0.765 0.760 0.762

0.924. Experimental results in Table II show that the scene
understanding module in the proposed framework achieves
good classification results in the classification problems of
the glasses and illumination conditions and the status of a
head. However, the classification result for the condition of
mouth and eye is relatively lower than the other categories.
The performance gaps between the sub-models in the scene
understanding could be interpreted as a bias of representation
learning. The understanding of the scene conditions based on
our spatio-temporal representation could be influenced by the
geometrical size and scale of a target object. Since the portion
of each frame for an eye and mouth is relatively smaller than
the portion of a frame for glasses, illumination, and head in the
NTHU-DDD dataset, the learnt representation learning model
would have been over-fitted to the conditions for glasses,
illumination and head.

We evaluated the proposed framework quantitatively by
using the F-measure. F-measure is harmonic mean of precision
and detection rate, where precision and recall are defined as
follows:

Precision =
TP

TP + FP
(14)

Detectionrate(DR) =
TP

TP + FN
(15)

F −measure = 2× Precision×DR
Precision+DR

(16)

where TP (True positive) is the number of correctly de-
tected as drowsiness state, and FN (False negative) is the
number of incorrect detection results that classified to non-
drowsiness condition. FP (False positive) is the number of
non-drowsiness detection result incorrectly identified to the
drowsiness state, and TN (True negative) is the number of

correctly classified as non-drowsiness state. The quantitative
evaluation denotes an average over all videos represented
as same glass and illumination categories. Table IV shows
the accuracy of the proposed framework for the drowsiness
detection. The results show that our proposed framework
achieves an average accuracy of 0.762.

Due to the lack of performance comparison using a publicly
available dataset for drowsiness detection, we referred the
previous method which was evaluated their performance using
the NTHU-DDD dataset or implement a method based on
the well-known multiclass classification algorithm for images.
We compared our framework to several methods [54], [55],
[56], [45], [44]. Parkhi et al. proposed a face recognition
method (VGG-FaceNet) using a deep neural network [54].
The VGG-FaceNet consists of 36 convolution layers, and
this network is much deeper than the 3D-DCNN used in
the proposed framework. Donahue et al. provide the method
based on long-term recurrent convolutional networks (LRCN)
for visual recognition and description for long-term time
series data [55]. We modified these methods to evaluate
the performance of driver drowsiness detection. Park et al.
proposed the deep drowsiness detection (DDD) network for
drowsiness detection using feature-fused architecture [56].
Park et al. used two different fusion strategies to their network:
independently-averaged architecture (IAA) and feature-fused
architecture(FFA). They provide the experimental results using
the NTHU-DDD dataset. These methods were trained and
tested with the equal procedure of the proposed framework.
Additionally, we compare the results using the NTHU-DDD
dataset, which is listed in Part et al.[56].

Table III shows that the comparison results of driver drowsi-
ness detection using NTHU-DDD dataset. The experimental
results show that the proposed framework outperforms other
methods in most of the scenarios. Only in the night glasses
scenario did the proposed method achieve a performance
lower than the DDD-IAA. Additionally, the experimental
results illustrate that the proposed framework achieves higher
and stable performance in various scene conditions than the
listed methods, even though several methods used the deeper
network structure. Figure 9 shows the receiver operating
characteristic (ROC) curves and the area under curves (AUCs),
generated by the evaluation dataset predictions. The results of
the ROC plots in Fig. 9 present that the proposed method does
not take a benefit in the lower regions of the curve, where the
false positive rate (FPR) is less than 0.05 approximately, but
provides a definite benefit for much of the rest of the curve,
over the other methods [44], [45], [54], [55].
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Fig. 9: The ROCs for the driver drowsiness detection. Figures
in parentheses indicate the area under curves (AUCs).

The overall experimental results demonstrate that the pro-
posed method can provide an accurate and effective method
for the driver drowsiness detection than the other drowsiness
detection method based on a visual analysis. Driver’s drowsi-
ness in the real world could appear with various variations
of facial elements in diverse illumination conditions. The
feature fusion helps to discover the discriminative and rich
condition-adaptive representation for detecting the drowsiness,
and this function plays a significant role to provide high-
quality drowsiness detection in various situations. Figure 10
shows the example snapshots of the correct detection results
using NTHU-DDD dataset.

C. Computational complexity

Although the computational cost of the framework depends
on the size of input images and the structure details such as the
number of layers and the size of kernels in a neural network,
theoretically, the computational complexity of representation
learning and feature fusion models based on 3D-CNN is
O
(∑d

i=1WiHiDinimiki

)
,

where i and d are the index of a convolutional layer and
the number of convolutional layers of each model. Wi, Hi,
and Di denote the width, height, and depth of input data in
each convolutional layer. ni, mi, and ki denote the width,
height, and depth of 3D-convolutional kernel in i-th layer.
The computational complexity of the scene understanding and
drowsiness detection models using two-layers neural networks
is O(N2C), where N and C denote the dimensionalities
of each hidden layer and target domain for objectives. We
have estimated the computational complexity of the proposed
framework based on the approaches of He et al., [57] and
Notchenko et al., [58].

Note these computational complexities apply to both train-
ing and testing phases, however practical execution times
in both phases are different since the proposed framework
shows different work-flows in training and test phases. The
training task consists of the three steps: 1) calculation of
output, 2) computing an error, and 3) updating the parameters.

Therefore, the execution time in the training task is relatively
longer than the time in the testing task. Once the model
training end, the execution time in testing phase is much faster
because of the framework only needs to compute the output for
drowsiness detection. The execution time in our experimental
setting was 38.1 FPS (28.6 ms) which is almost real-time,
and was obtained. We calculated this value by averaging the
execution time of the proposed framework for 300 seconds,
except displaying an output on a screen.

The proposed framework is implemented with Google
Tensorflow library. Although the training in the framework
requires long times, after the model training is finished, the
entire framework is able to perform in real-time with Python
implementation using a Core i7, 3.4GHz PC with 16GB RAM
and GTX TITAN GPU.

VII. DISCUSSION AND CONCLUSION

In this paper, we have proposed an condition-adaptive
representation learning for efficient driver drowsiness detec-
tion method which is invariant to various driving conditions
containing a driving time such as day and night and a driver’s
appearance. To this end, we extracted the spatio-temporal
representation and merged it with the vectors that represent the
scene understanding results using the feature fusion method
based on the tensor product approach. These problems are
effectively modelled using 3D-DCNN and fully connected
neural network based on recent advances in computer vision
fields. The spatio-temporal representation and estimated scene
conditions are merged to enhance the discriminative power
for providing precise driver drowsiness detection in various
driving conditions. With the feature fusion properly harnessed,
the merged feature can provide more discrimination than
the original spatio-temporal representation even though the
original representation contains the motion and appearance
information about the driving and drivers conditions. Experi-
mental results show that the proposed framework outperforms
other methods, including methods based on deep learning, in
drowsiness detection accuracies.

The limitation of the proposed framework can be sum-
marized as follows. First, although the proposed framework
achieves good detection performance, it also needs a high-
performance GPU computing unit that must be installed on a
vehicle. It may cause high price of the vehicle and an increase
in vehicle weight. Second, the proposed method needs many
training samples that are labelled with the scene conditions and
drowsiness state, for learning the representation that can cover
various situations about drivers. Third, since the proposed
framework is an off-line method, it can not guarantee to detect
the drowsiness of drivers of entirely different types that are not
included in training samples.

In future works, several suggestions should be taken into
account. First, we will optimize the network structure in the
proposed framework for use in an embedded board or micro-
computing systems to reduce the financial cost and improve
the computational efficiency without performance degradation.
Second, we will develop an on-line updating method in order
to improve the drowsiness detection reliability of the model
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Fig. 10: The detection results using NTHU-DDD dataset. The images of the first row show the detection results for the driver
drowsiness, and the images of the second row denote the detection results of a normal condition of drivers.

through continuous updating. Third, we will study a data
augmentation method based on generative models to improve
the performance of drowsiness detection by enlarging the scale
and variety of a given dataset.
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