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Exact Formulation and Comparison Between the
User Optimum and System Optimum Solution for

Routing Privately Owned Automated Vehicles
J. Theresia van Essen and Gonçalo H. A. Correia

Abstract— The possibility of having driverless cars on the
streets seems to be more real than ever. In this paper, we focus
on developing exact methods that can determine the effects of
privately owned automated vehicles (AVs) and how switching to
those vehicles is going to change mobility in urban environments.
The considered problem determines the routes of family owned
AVs that minimize the transportation costs of that family while
considering the possibility of using public transport as an alterna-
tive for some trips. We introduce a novel exact linear formulation
for this problem which includes a linearized traffic congestion
model and which is able to solve the user and system optimum
variant of the problem to optimality. The introduced formulation
can easily be adapted to consider the current situation with
conventional vehicles and a situation where not only the travel
time costs of the driver but also costs of the other passengers are
taken into account. The main advantage of our novel formulation
is that the optimal results can be obtained to explore potential
changes of flows with vehicle automation in small networks.
We investigated the behavior of the system, given the described
scenarios, by applying our formulation to a case study.

Index Terms— Autonomous vehicles, integer linear program-
ming, user and system optimum, routing, value of travel time.

I. INTRODUCTION

VEHICLE automation is becoming one of the main topics
of transportation research and also of discussions in the

mainstream media and popular science publications. There
is a fascination with the possibility of cars being able to
drive themselves which was before seen as something out
of Science Fiction movies. But the possibility of having
driverless cars on the streets seems more real than ever. This
is being fostered by the successful experiments and pilots
happening all over the world either university based or con-
ducted by car manufacturers. The latter are heavily investing
in developing automated and connected vehicles. Vehicle
automation has become, along with the shared mobility
growth, one of the most disruptive factors of transportation
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systems nowadays [1]. In terms of research, there are several
main research topics that have been gaining more attention:
behavior modeling, traffic flow theory, intelligent vehicles,
traffic pattern changes estimation, or shared mobility opera-
tions with automated vehicles (AVs).

On the behavior modeling, there has been considerable work
on measuring the attitude and perception that travelers have
when facing driverless vehicles either as part of public trans-
port networks [2], [3] or as normal private cars [4], [5]. These
studies produce, among other relevant results, the attractive-
ness of automated driving which is connected to generalized
costs of traveling and transport mode choice.

Probably the most prolific research stream in automated
driving has been on the effects on traffic flow capacity
especially in highways [6] where simulation and analytical
methods are being employed to measure the effects of both
automated and connected vehicles [7]–[10]. While in this
work, we do not consider traffic capacity changes, we do
recognize that this will be different with AVs but there is still
a lot of work to be done particularly regarding changes of
capacity in urban networks.

In the field of intelligent vehicles, researchers are defining
algorithms that should be used to control the cars and trucks in
order to optimize the traffic systems and increase road safety.
Many decisions have to be taken in real time by the vehicle’s
computer including for example braking, lane changing or car
following. This is what can be referred to as the low level
control of the vehicles and it is essential for there to be any
fully automated vehicle on the roads in the future [11]–[15].

Regarding shared mobility, there are several studies that
employ agent-based simulation rational to study the fleet
of vehicles needed and how to operate a shared automated
transport system in order to satisfy part of the current urban
mobility demand. This is the case for the model developed
in [16] for Texas or the model developed in the International
Transport Forum for the city of Lisbon [17] where a signif-
icant reduction on the number of vehicles needed has been
estimated.

Less attention has been devoted to the effects of privately
owned AVs and how switching to those vehicles is going
to change mobility, particularly in urban environments. Some
recent papers aim at doing so in an aggregated way such as the
research of [18] that looks at the trade-offs between capacity,
value of time and preference heterogeneity in the population
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for a car type. The net effects of automation on emissions are
explored in [19] through several illustrative scenarios using
an equation of emissions dependent on factors such as modal
share, energy intensity and fuel.

Very few papers look at route and parking choice of
automated vehicles considering empty trips. One of the few
examples is the work of [20] where the 4-steps method was
changed to address the option of empty vehicle relocation after
a vehicle drops its driver off. However, this is still subject to
many of the limitations of the 4-steps method.

The recent paper [21] proposed a mathematical model for-
mulation to determine the routes of family owned AVs that
minimize the travel costs of that family, while considering
the possibility of parking and of using public transport as an
alternative for some trips. The model was first formulated as
a system optimum traffic assignment and then converted into
the user optimum assignment. The user optimum assignment
was solved by an iterative algorithm until similar households
have similar costs of traveling.

This paper considers a problem similar to [21], however,
we have improved the mathematical problem formulation such
that a global optimum solution can be achieved for both the
system optimum and user optimum. This entails building a
single objective function that results in the referred equilibrium
between households as well as a traffic congestion model that
can be expressed linearly so that the model can be solved
by classic branch-and-bound methods. With this, we lose the
possibility of solving the problem optimally for real road
networks, due to the NP-hardness of the problems, but we
are able to obtain exact global optimum solutions for small
networks that can be compared for different scenarios. To this
end, we apply our novel formulation to a small toy network
and compare the exact system optimum solution to the exact
user optimum solution in the case where we have conven-
tional and automated vehicles. Solving the system optimum
formulation represents a transportation system in which all the
mobility by car would be defined by a central computer, not
leaving any freedom for the traveler to make any decisions.
The user optimum corresponds to vehicles being able to route
themselves empty, but their decisions on routing, departure
and arrival times would still be decided by humans who
would make choices in a selfish way, implicitly equalizing
the generalized cost of traveling between similar families,
i.e., families that have the same trips. In addition to providing
a novel exact formulation which can solve both the system
and user optimum to optimality, we also compare two ways
to calculate the travel time costs. While in the user optimum
only the travel time costs of the driver are considered, in the
system optimum it makes sense to consider the total travel
time costs of all the people in the vehicle.

Summarizing, in this paper, we contribute to the state of the
art of automated vehicles urban flow patterns estimation with
the following:

• Develop a novel mathematical formulation for the routing
of privately owned automated vehicles which is able to
solve the system optimum and user optimum to optimal-
ity. This entails building a single objective function that
results in the referred equilibrium between households

TABLE I

USED SETS

and includes a linear specification of the traffic delay
model inspired by [22],

• Solve the system and user optimum to optimality for
a small toy network for different scenarios including
the comparison between using or not using the total
generalized costs of all travelers in the car and using
conventional or automated vehicles.

The paper is structured as follows: we start with the
problem formulation in Section II which is divided in the
base formulation which is common to all considered scenarios,
continues with a section on the objective function, and ends
with several modifications that have to be done to get different
desired scenarios. The paper continues with Section III on
the description of the toy network and synthetic mobility data
used for running computational experiments as well as the
main scenarios considered. In Section IV, the main results
for different scenarios are presented and discussed. The paper
ends with the main conclusions that can be taken from this
research in Section V.

II. PROBLEM FORMULATION

In this paper, we consider the situation where privately
owned automated vehicles are used to fulfill the trips of family
members in a household. For each trip, a choice is made
whether the trip is done by public transport (PT) or if the
trip is fulfilled by one of the family vehicles. This decision
is based on the generalized transportation costs described in
Section II-C. These generalized transportation costs include
public transport costs, travel time costs by AV, fuel costs and
penalty costs for early and late arrival. Moreover, we make
the following assumptions:

• Automated vehicles are allowed to drive empty in the
network without any human supervision.

• Each (automated) vehicle routing adds to the traffic flows
of the city.

• Each (automated) vehicle has a certain passenger capacity
that must be respected.

• The PT trips do not contribute to the traffic flows in the
network.

• No external trips to the city are considered in the network.
We present a model for both the system optimum and the

user optimum, which can both be solved to optimality by
using a commercial solver. To be able to do this, we model
the traffic congestion by using linear constraints only, based
on the formulation of [22]. One novelty of this paper is that
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TABLE II

USED VARIABLES

TABLE III

USED INPUT PARAMETERS

this enables us to model the problem as an Integer Linear
Programming (ILP) problem.

A. Base Formulation

The base formulation is similar to the formulation provided
in [21]. In the considered problem, a set of trips E is given,
which have to be fulfilled either by (automated) vehicle or pub-
lic transport. Each trip e ∈ E is associated with a member who
belongs to a certain household h ∈ H . The trips corresponding
to household h ∈ H are given by set Eh ⊆ E . For each
household h ∈ H , we introduce an expansion coefficient μh

which represents the number of households with the same
characteristics in the population. Using this expansion coef-
ficient μh allows us to combine several households with the
same characteristics, which reduces the computation time of
our developed model. In addition, this expansion coefficient μh

will enforce congestion in the network. Next to this, each
household h ∈ H has a set of vehicles Vh which they can
use to fulfill their trips. The capacity of vehicle v ∈ Vh of
household h ∈ H is given by Cv . The total set of vehicles is
given by V = ∪h Vh .

The network on which the trips take place is described by
a set of nodes I and the set of arcs R between these nodes.

Each arc (i, j) ∈ R has a minimum travel time tmin
i j and a

maximum travel time tmax
i j by car. Parameter t PT

i j denotes the
travel time in minutes by PT to go from node i ∈ I to node
j ∈ I which does not depend on congestion. The length of
arc (i, j) ∈ R is given by Lgi j and the practical link capacity
of arc (i, j) ∈ R per time step is given by Qij .

The origin and destination of trip e ∈ E is specified by
ie ∈ I and je ∈ I , respectively. For each trip e ∈ E , a preferred
departure time �e

a and a preferred arrival time �e
b is specified.

Moreover, the earliest possible departure time ae and latest
possible arrival time be are given.

For each trip e ∈ E , it has to be decided whether it is
executed by an (automated) vehicle or public transport. Binary
variable Trev equals 1 when trip e ∈ E is performed by vehicle
v ∈ V and 0 otherwise. This leads to the following constraints
which imply that a trip can be executed by at most one vehicle.∑

v∈Vh

T rev ≤ 1, ∀e ∈ Eh, h ∈ H (1)

Note that when
∑

v∈Vh
T rev = 0, trip e ∈ E is performed

by public transport. When a trip e ∈ E is executed by
an (automated) vehicle, the start time of the trip is captured
by binary variable Pev t which is 1 if trip e ∈ E is executed
by vehicle v ∈ V and starts at time t ∈ T and 0 otherwise.
Here, set T is a set of time instants. The routing of vehicle
v ∈ V is specified by binary variables xv

i j t1t2
which are one

when vehicle v ∈ V drives on arc (i, j) ∈ R from time instant
t1 ∈ T to time instant t2 ∈ T and 0 otherwise. The travel
time from node i ∈ I to node j ∈ J when starting at time
instant t1 ∈ T depends on the current traffic flow on this arc
and is specified by binary variables δi j t1t2 which are 1 when
the travel time from node i ∈ I to node j ∈ I starting at time
instant t1 ∈ T equals t2 − t1 time steps, and 0 otherwise.

The following constraints determine the correct routing of
vehicle v ∈ V defined by variables xv

i j t1t2
when trip e ∈ E

is executed by vehicle v ∈ V , i.e., when T rev is one.
Constraints (2) assure that trip e ∈ E can only be satisfied by
vehicle v ∈ V when this vehicle passes through the origin node
ie ∈ I after the earliest possible departure time ae. Constraints
(3) assure that trip e ∈ E can only be satisfied by vehicle
v ∈ V when this vehicle passes through the destination node
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je ∈ I before the latest possible arrival time be.

T rev ≤
∑
j∈I

∑
t1≥ae

∑
t2≤be

xv
ie j t1t2, ∀e∈ Eh , v ∈Vh, h ∈ H (2)

T rev ≤
∑
i∈I

∑
t1≥ae

∑
t2≤be

xv
i jet1t2, ∀e∈ Eh, v ∈Vh, h ∈ H (3)

The next constraints ensure that the routing variables xv
i j t1t2

coincide with the departure time variables Pev t and that each
trip e ∈ E has exactly one departure time when it is executed
by a vehicle.

Pev t ≤
∑
j∈I

∑
t1≤be

xv
ie j t t1,

∀e ∈ Eh, v ∈ Vh, h ∈ H, t ≥ ae ∈ T (4)

Pev t ≤ Trev , ∀e ∈ Eh, v ∈ Vh, h ∈ H, t ∈ T (5)

Pev t ≥
∑
j∈I

∑
t1≤be

xv
ie j t t1 + T rev − 1,

∀e ∈ Eh, v ∈ Vh, h ∈ H, t ≥ ae ∈ T (6)∑
t∈T

Pev t ≤ 1, ∀e ∈ Eh, v ∈ Vh, h ∈ H (7)

Similar constraints ensure that the binary variables Aev t ,
which are 1 when trip e ∈ E is executed by vehicle v ∈ V
arriving at time t ∈ T and 0 otherwise, coincides with the
routing variables xv

i j t1t2
.

Aev t ≤
∑
i∈I

∑
t1≥ae

xv
i je t1t ,

∀e ∈ Eh, v ∈ Vh, h ∈ H, t ≤ be ∈ T (8)

Aev t ≤ Trev , ∀e ∈ Eh, v ∈ Vh, h ∈ H (9)

Aev t ≥
∑
i∈I

∑
t1≥ae

xv
i je t1t + T rev − 1,

∀e ∈ Eh, v ∈ Vh, h ∈ H, t ≤ be ∈ T (10)∑
t∈T

Aev t ≤ 1, ∀e ∈ Eh, v ∈ Vh, h ∈ H (11)

In addition, it must hold that the departure time of trip e ∈ E
is less than or equal to the arrival time of trip e ∈ E , which
is ensured by the following constraint. The departure time can
be determined by

∑
t∈T t Pev t which will return the value of t

for which Pev t is 1. The same holds for the arrival time.∑
t∈T

t Pev t ≤
∑
t∈T

t Aev t , ∀e ∈ E, ∀v ∈ V (12)

Given the departure time and arrival time of trip e ∈ E
(when trip e ∈ E is executed by a vehicle), we can determine
the deviation φe from the preferred arrival time �e

b by means
of the following constraint.

φe =
∑
v∈Vh

(
�e

bT rev −
∑
t∈T

t Aev t

)
, ∀e ∈ Eh, h ∈ H (13)

A distinction is made whether a trip arrives earlier or later
than preferred. The amount of time a trip arrives earlier than
preferred is denoted by eφe and the amount of time a trip
arrives later than preferred is denoted by lφe. The following

two constraints ensure that eφe and lφe attain the correct value.

eφe ≥ φe, ∀e ∈ E (14)

lφe ≥ −φe, ∀e ∈ E (15)

eφe ≥ 0, ∀e ∈ E (16)

lφe ≥ 0, ∀e ∈ E (17)

Here, both the amount of time a trip arrives earlier and later
have to be bigger than 0, which is ensured by constraints (16)
and (17). When trip e ∈ E arrives earlier than preferred, φe is
positive. This value is then assigned to variable eφe. When
φe is negative, trip e ∈ E arrives later than preferred. This
value is then made positive by multiplying it with -1 and this
positive value is assigned to variable lφe by constraints (15).
Note that constraints (15) are redundant when φe is positive,
because of constraints (17). In a similar way, constraints (14)
are redundant when φe is negative, because of constraints (16).

Next, we have to make sure that the number of people in
vehicle v ∈ V at any time instant t ∈ T , represented by
variable Lv t , is less than or equal to the capacity Cv of this
vehicle. This is ensured by the following two constraints.

Lv t =
∑
e∈E

(∑
t1≤t

(Pev t1 − Aev t1)

)
, ∀v ∈ V , t ∈ T (18)

Lv t ≤ Cv , ∀v ∈ V , t ∈ T (19)

Constraints (18) only add 1 to variable Lv t when a trip
e ∈ E departs before or at time t ∈ T , i.e., when Pev t1 is 1 for
a t1 ≤ t , and arrives after time t ∈ T , i.e., when Aev t1 is 1 for
a t1 ≥ t . Otherwise,

∑
t1≤t (Pev t1 − Aev t1) will equal 0.

At each time instant, a vehicle is either moving on a
certain arc or waiting at a certain node. The movement of
vehicle v ∈ V on a certain arc (i, j) ∈ R from time instant
t1 ∈ T to time instant t2 ∈ T is already specified by binary
variable xv

i j t1t2
. In addition to this, a vehicle v ∈ V waiting

at time instant t1 ∈ T at node i ∈ I is represented by binary
variable wv

it1
. The following two constraints represent flow

conservation in the network.∑
i, j∈I

∑
t1>1

xv
i j1t1 + wv

i1 = 1, ∀v ∈ V (20)

∑
j∈I

∑
t1>t

xv
i j t t1 + wv

it =
∑
j∈I

∑
t1<t

xv
j it1t + wv

i(t−1),

∀i ∈ I, t ∈ T, v ∈ V (21)

In addition, we ensure by the following constraint that a
vehicle cannot be waiting at a certain node when there are
people in the vehicle.∑

i∈I

wv
it ≤ Cv − Lv t

Cv
, ∀t ∈ T, v ∈ V (22)

B. Traffic Congestion

Differently from [21], we use the formulation of [22] to
include congestion in our problem formulation. This is one
of the contributions of the paper as it allows us to solve
the system optimum and (an approximation of the) user
optimum to optimality by solving one ILP formulation. In the
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TABLE IV

PARAMETERS TRAFFIC CONGESTION

formulation of [22], the Bureau of Public Roads (BPR)
function [23] is used to model congestion where the current
travel time depends on the flow F in a link and is given by

t0

(
1 + a

(
F
Q

)b
)

. Here, t0 denotes the free-flow travel time,

F the current volume, Q the practical link capacity, and a and
b are estimation parameters.

Following the terminology of [22], we calculate the spatial
link capacity C Fij t1t2 from node i ∈ I to node j ∈ I from
time instant t1 ∈ T to time instant t2 ∈ T beforehand by using
the BPR function as follows:

C Fij t1t2 = (t2 − t1)Qij

(
1

a

(
t2 − t1

tmin
i j

− 1

)) 1
b

,

∀i, j ∈ I, t1 < t2 ≤ t1 + tmax
i j ∈ T (23)

Note that we use in essence a truncated BPR function,
since we limit the travel time to tmax

i j . This means that flow

exceeding the threshold Q

((
tmax
i j /t0

)
−1

a

) 1
b

incurs a fictional

travel time of infinity.
The flow resulting from routing variables xv

i j t1t2
is denoted

by Fij t1 t2 and provides the flow from node i ∈ I to node j ∈ I
from time instant t1 ∈ T to time instant t2 ∈ T . Note that the
expansion factor μh is included in the following constraints
to determine the correct value for the flow Fij t1t2 .

Fij t1t2 =
∑
h∈H

μh

⎛
⎝∑

v∈Vh

xv
i j t1t2

⎞
⎠, ∀i, j ∈ I, t1, t2 ∈T (24)

To match the flow Fij t1t2 with the spatial link capacity
C Fij t1t2 , [22] introduces binary variables δi j t1t2 which are
1 when the travel time from node i ∈ I to node j ∈ I starting
at time instant t1 ∈ T equals t2−t1 time steps, and 0 otherwise.
First, for each arc (i, j) ∈ R and starting time instant t1 ∈ T ,
at most one travel time is chosen by the following constraint.∑

t1+tmax
i j ≥t2≥t1+tmin

i j

δi j t1t2 ≤ 1, ∀i, j ∈ I, t1 ∈ T (25)

Then, the following constraints make sure that the flows
fulfill the capacity constraints. Constraints (26) make sure that
flow from node i ∈ I to node j ∈ I from time instant t1 ∈ T to
time instant t2 ∈ T is only allowed when the travel time from
node i ∈ I to node j ∈ I at time instant t1 ∈ T equals t2 − t1
time steps. Constraints (26) also make sure that, in this case,
flow Fij t1t2 is limited to the spatial link capacity C Fij t1 t2 .

Fij t1t2 ≤ C Fij t1t2δi j t1t2, ∀i, j ∈ I, t1, t2 ∈ T (26)

The following link consistency constraints ensure that vehi-
cles do not pass one another, i.e., the vehicle that enters an arc
later can not leave the arc earlier. To ensure this, an inequality
should be used. The term M

(
1 − ∑

t>t2 δi j t2t
)

makes sure that
these constraints also hold when

∑
t>t2 δi j t2t = 0. This could

occur because of the inequality sign in constraints (25).

t1 +
∑
t>t1

(t − t1)δi j t1t

≤ t2 +
∑
t>t2

(t − t2)δi j t2t

+ M

(
1 −

∑
t>t2

δi j t2t

)
, ∀i, j ∈ I, t1 < t2 ∈ T (27)

This formulation does not consider any queuing in the net-
work, and more importantly, it does not express the continuity
of the relationship between flow and travel time. However,
it does allow considering the time-space network changes as
a result from the degradation of travel time with the number
of vehicles present in the network. The fact that queuing is
not considered and that traffic is represented in a simplified
way through a time-space network associated with a simplified
BPR function, leads necessarily to a reduction of realism
on the traffic flows that are estimated in the network, and
therefore, also on the mode share between public transport
and AVs. We are willing to accept those limitations as we want
to isolate potential changes among the scenarios related to the
value of travel time and user optimum versus system optimum.
A more detailed description of the mode choice and traffic
flows requires other types of models and data that virtually
make our approach impossible to be applied.

C. Generalized Transportation Costs

As stated before, our aim is to minimize the generalized
transportation costs. These costs consist of the following
components:

• Public transport cost
• Travel time cost by AV
• Fuel costs
• Early or late arrival
The costs of a trip fulfilled by public transport are given by

the value of in-vehicle time, the ticket cost T ick multiplied
with a scale factor between fuel costs and ticket costs ς ,
and a penalty cost ρ for using public transport. The value
of in-vehicle time for public transport is given by multiplying
the total travel time cost per minute in public transport β by
the travel time in public transport in minutes from node i ∈ I
to node j ∈ I given by t PT

i j . Therefore, for a given solution,
the public transport costs are given by:

∑
h∈H

μh

⎛
⎝ ∑

e∈Eh

⎛
⎝1 −

∑
v∈Vh

Trev

⎞
⎠(

βt PT
ie je + T ick · ς + ρ

)⎞
⎠.

(28)

When a trip is fulfilled by a vehicle, travel time costs, fuel
costs and costs for early or late arrival are incurred. The travel
time costs are given by the total travel time of the driver in
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TABLE V

PARAMETERS COST FUNCTIONS

time steps multiplied by the travel time cost per time step
in a car α. In order to determine the total travel time of
occupied vehicles, we introduce binary variable lv t , which is
1 when vehicle v ∈ V is occupied at time t and 0 otherwise.
To ensure this variable attains the correct value, we introduce
the following two constraints:

lv t ≤ Lv t , ∀v ∈ V , t ∈ T (29)

lv t ≥ Lv t

Cv
, ∀v ∈ V , t ∈ T (30)

Then, the travel time costs are determined as in equa-
tion (31) where only the travel time of the driver is being
considered. We argue that, at least under a user optimum
perspective, the driver makes his own selfish decisions without
considering the travel time of other occupants of the car that
he/she is driving.

∑
h∈H

μh

⎛
⎝α

∑
v∈Vh

∑
t∈T

lv t

⎞
⎠. (31)

The fuel costs can be determined based on the length of
the arcs used by the vehicles multiplied by the fuel costs per
kilometer ω:

∑
h∈H

μh

⎛
⎝∑

v∈Vh

∑
i, j∈I

∑
t1,t2∈T

xv
i j t1t2 · Lgi j · ω

⎞
⎠. (32)

As specified by constraints (14) - (17), the amount of time a
trip arrives earlier or later than preferred when it is executed by
car is given by eφe and lφe, respectively. The penalty time cost
for early and late arrival are given by σ1 and σ2, respectively.
Therefore, the total penalty cost for early and late arrival is
given by:

∑
h∈H

μh

⎛
⎝∑

e∈Eh

eφe · σ1 + lφe · σ2

⎞
⎠. (33)

D. Formulation for Different Scenarios

In Sections II-A, II-B and II-C, a base formulation for the
considered problem is described. One of the contributions
of this paper is that this base formulation can be modified
to express different scenarios such as 1) conventional vehi-
cles (CVs) instead of AVs, 2) user optimum versus system
optimum, and 3) considering the time of all passengers in
the vehicle whereas the base formulation does not. These
modifications are discussed in more detail in the following
sections.

1) Automated Versus Conventional Vehicle: The model
introduced in Sections II-A, II-B and II-C can easily be
modified to a situation with conventional vehicles by including
the following constraint.

xv
i, j,t,t1 ≤ Lv t , ∀i, j ∈ I, t, t1 ∈ T, v ∈ V (34)

These constraints ensure that the routing variables should
be zero when there are no people in the vehicle, i.e., when
Lv t = 0. It is assumed that when at least one human is present,
he or she can drive the vehicle.

2) User Optimum Versus System Optimum: Minimizing the
total costs described in Section II-C leads to the following
objective function:

min
∑
h∈H

μh

⎛
⎝∑

e∈Eh

⎛
⎝1−

∑
v∈Vh

T rev

⎞
⎠(

βt PT
ie je +T ick · ς+ρ

)

+ α
∑
v∈Vh

∑
t∈T

lv t +
∑
v∈Vh

∑
i, j∈I

∑
t1,t2∈T

xv
i j t1t2 · Lgi j · ω

+
∑
e∈Eh

eφe · σ1 + lφe · σ2

⎞
⎠, (35)

which yields the system optimum solution for the situation
described in Sections II-A and II-B.

In order to attain the user optimum, each household should
be able to minimize their own costs. To our knowledge, this is
the first attempt to approximate the user optimum in a dynamic
traffic assignment setting by including it in an ILP formulation.
One way to approximate this user optimum is the following.
First, we determine for each household the minimum cost
Mh they incur when they are the only one in the network.
This can be achieved by solving the problem formulation
introduced in Sections II-A and II-B for one household at a
time with the objective function given by equation (35). When
for each household their minimum cost Mh is known, we can
approximate the user optimum by minimizing the maximum
relative deviation from this minimum cost. By minimizing
this maximum relative deviation, we try to push these relative
deviations closer to each other such that the households have
similar relative deviations. However, this approach will only
give an approximation of the user optimum, because we cannot
control the costs of the households that have a lower relative
deviation than the maximum relative deviation.

The maximum relative deviation D can be included in the
base formulation by adding the following constraints, where
Kh denotes the costs of household h ∈ H for a given solution
when also competing with the other households.

Kh = μh

⎛
⎝ ∑

e∈Eh

⎛
⎝1 −

∑
v∈Vh

Trev

⎞
⎠(

β · t PT
ie je + T ick · ς + ρ

)

+ α
∑
v∈Vh

∑
t∈T

lv t +
∑
v∈Vh

∑
i, j∈I

∑
t1,t2∈T

xv
i j t1t2 · Lgi j · ω

+
∑
e∈Eh

eφe · σ1 + lφe · σ2

⎞
⎠, ∀h ∈ H, (36)

D ≥ Kh − Mh

Mh
, ∀h ∈ H. (37)
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TABLE VI

PARAMETERS AND VARIABLES FOR THE DIFFERENT SCENARIOS

The objective function and its attained value are then
given by:

min D = D∗. (38)

However, preliminary results showed that using this formu-
lation for the user optimum might result in undesirable behav-
ior. Because we only minimize the maximum relative deviation
from the minimum costs over the households, no incentive
is given to minimize the relative deviation for the other
households. Therefore, preliminary results showed that for
households that did not attain this maximum relative deviation,
the vehicles would drive around empty without any reason.
As these additional costs would not increase the value of
objective function (38), this undesirable behavior was allowed
by the given base formulation. In order to overcome this
limitation, we solve the model again with the system optimum
objective function (35), constraints (36)-(37) and the following
constraint where D∗ is the optimal solution found for the
maximum relative deviation D in the previous step:

D ≤ D∗. (39)

For the scenarios considered in Section IV, we could not
control the costs for 70% of the households by minimizing the
maximum relative deviation from the minimum costs. These
costs could be reduced by solving the problem with the system
optimum objective function and constraint (39).

3) Unit Load Versus Load of All Passengers: When using
automated vehicles, vehicles transporting more people might
be given priority in terms of reducing travel time if these
decisions are taken by a central computer. Therefore, we can
modify the system optimum objective function (35) such that
it takes into account the number of people in the vehicle by
changing lv t to Lv t :

min
∑
h∈H

μh

⎛
⎝ ∑

e∈Eh

⎛
⎝1−

∑
v∈Vh

Trev

⎞
⎠ (

βt PT
ie je +T ick · ς+ρ

)

+ α
∑
v∈Vh

∑
t∈T

Lv t +
∑
v∈Vh

∑
i, j∈I

∑
t1,t2∈T

xv
i j t1t2 · Lgi j · ω

+
∑
e∈Eh

eφe · σ1 + lφe · σ2

⎞
⎠. (40)

III. SETUP EXPERIMENTS

The problem of routing privately owned automated vehicles
formulated by the constraints in Sections II-A and II-B and
the objective function in Section II-C is an NP-hard problem
as it generalizes the well-known multi-commodity integral
flow problem [24]. Therefore, we test and compare our various

TABLE VII

CHARACTERISTICS OF HOUSEHOLD TYPES

Fig. 1. Network for used data set.

models on a small artificial data set that represents three
different types of households. Each household type is repre-
sented three times in our data set, which gives a total of nine
households. For each of these nine households, the expansion
factor μh is set to 30 to enforce congestion in the network.
Each household has its own vehicle with a capacity of 4 people
that can be used for their own trips. Table VII shows for each
household type how many members the household has and
how many trips are done by all members of the household
combined.

In addition, we consider a toy network with 9 nodes and
10 edges which is depicted in Figure 1. Each arc has a
length Lgi j of 4 kilometers, a practical link capacity Qij

of 120 vehicles, a minimum travel time tmin
i j of 5 minutes

and a maximum travel time of tmax
i j of 20 minutes.

The trips of the households on the toy network can be
described as follows, where the given times are the desired
arrival and departure times.

Household type 1

• Two trips from home (node 1) to the workplace (both
located at node 5) from 8:00 am until 8:10 am.

• One lunch meeting appointment at node 6 which includes
a trip from 12:00 am until 12:10 am to lunch and a trip
from 1:00 pm until 1:10 pm back to work.

• Two trips in the afternoon back home (node 1) from the
workplace (node 5) from 6:00 pm until 6:10 pm.
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TABLE VIII

VALUES FOR REMAINING PARAMETERS

Household type 2
• Two trips in the morning from home (node 1) to the

workplace (node 2 and 5) from 8:00 am until 8:10 am.
• The family member working at node 2 goes for grocery

shopping at node 3 at the end of the day with a trip from
5:00 pm until 5:10 pm.

• Both members return back home at the end of the day.
One from the workplace (node 5) and the other from the
supermarket (node 3) leaving nodes 3 and 5 at 6:30 pm
and arriving home at 6:40 pm.

Household type 3
• Three trips in the morning from home (node 1) to

university (node 8) and the office (node 5 and 7) from
8:00 am until 8:10 am.

• The student leaves the university (node 8) and goes home
(node 1) with a trip from 5:30 pm until 5:40 pm.

• The other two family members leave the office
(node 5 and 7) at 6:00 pm. The member working at
node 5 returns home (node 1) at 6:10 pm and the member
working at node 7 goes to the gym at 6:10 pm at node 4.

• The family member working out at the gym (node 4)
returns home (node 1) from 7:00 pm until 7:10 pm.

For each trip e ∈ E , a preferred departure time �e
a and

a preferred arrival time �e
b is given. The earliest possible

departure time ae is given by �e
a minus 5 minutes and the

latest possible arrival time be is given by �e
b plus 5 minutes.

Besides a time step of 5 minutes, we use the values given
in Table VIII for the remaining parameters. Note that the PT
costs are the same for all origin-destination pairs such that we
can isolate the effect between using the UO and SO to route
the vehicles.

We compare several scenarios. In the scenarios, we go from
the current situation to several future scenarios where AVs are
allowed on the public roads.

a) User optimum with conventional vehicles: The first
scenario we consider is the current situation on the public
roads. Currently, we have conventional vehicles where each
household tries to minimize their own costs. A solution to
this scenario can be obtained by solving the problem formu-
lation given by the base formulation (constraints (1) - (22)
and (24) - (27)), the additional constraints (34) which eliminate
empty trips, and constraints (36), (37) and objective func-
tion (38) introduced in Section II-D.2 for considering the user
optimum. We will refer to this scenario as ‘UO CV unit-load.’

b) User optimum with automated vehicles: The first
step in the adoption of automated vehicles may be that
households will own their own automated vehicle which they
control themselves. By this, we mean that the owner is in
control of the route that the vehicle takes. Therefore, each
household will still try to minimize their own transportation
costs in which only the travel time costs of the driver are
considered. The main difference between this scenario and
the previous scenario is that in this scenario it is allowed for
vehicles to drive around without a driver. Therefore, we first
solve the formulation given by the base formulation (con-
straints (1) - (22) and (24) - (27)) and constraints (36), (37),
and objective function (38) introduced in Section II-D.2
for considering the user optimum. As solving this formu-
lation might result in unnecessary empty trips as discussed
before, we then solve the base formulation in combination
with (36), (37), (39) and objective function (35) to eliminate
these unnecessary empty trips. We will refer to this scenario
as ‘UO AV unit-load’.

c) System optimum with automated vehicles: The next
step in the adoption of automated vehicles may be that a
central operating system decides on which route the vehicles
should take in order to minimize the costs of the entire system.
Here, only a unit load per vehicle is considered as is the
case for both UO scenarios. A solution to this scenario can
be obtained by solving the problem formulation given by the
base formulation (constraints (1) - (22) and (24) - (27)) and
objective function (35). We will refer to this scenario as ‘SO
AV unit-load’.

d) System optimum with automated vehicles and load:
A modification to the previous scenario could be that the travel
time costs are not counted per vehicle but per passenger. This
means that the travel time costs of a vehicle with 2 people
in it will be higher than the travel time costs of a vehicle
with 1 person in it. The idea behind this is that preference
might be given to a car with more people in it in terms of
shorter routes. A solution to this scenario can be obtained by
solving the problem formulation given by the base formulation
(constraints (1) - (22) and (24) - (27)) and objective function
(40). We will refer to this scenario as ‘SO AV load-all’.

e) User optimum with automated vehicles and
load: For the sake of completeness, we also include the
scenario with automated vehicles where households will own
their own automated vehicle which they control themselves,
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TABLE IX

MINIMUM COST Mh

TABLE X

RELATIVE DEVIATIONS TO MINIMUM HOUSEHOLD COSTS (NESTED COLUMNS) AND TOTAL COSTS (TWO BOTTOM ROWS)
(IN BOLD WHEN CORRESPONDING TO THE SCENARIO PRESENTED IN A SPECIFIC COLUMN)

but where the travel time costs are those of all passengers.
A solution to this scenario can be obtained by solving first
the problem formulation given by the base formulation (con-
straints (1) - (22) and (24) - (27)), adding the following two
constraints

K Lh = μh

⎛
⎝∑

e∈Eh

⎛
⎝1 −

∑
v∈Vh

Trev

⎞
⎠ (

βt PT
ie je + T ick · ς + ρ

)

+ α
∑
v∈Vh

∑
t∈T

Lv t +
∑
v∈Vh

∑
i, j∈I

∑
t1,t2∈T

xv
i j t1t2 · Lgi j · ω

+
∑
e∈Eh

eφe · σ1 + lφe · σ2

⎞
⎠, ∀h ∈ H, (41)

DL ≥ K Lh − Mh

Mh
, (42)

and objective function

min DL = DL∗ (43)

where Mh is now the minimum cost household h ∈ H
incurs when they are the only one in the network and
the travel time costs are counted per passenger. Then,
the problem formulation given by the base formulation (con-
straints (1) - (22) and (24) - (27)), constraints (41), (42), and
constraint

DL ≤ DL∗, (44)

where DL∗ is the optimal solution found for DL in the
previous step, is solved with objective function (40). We will
refer to this scenario as ‘UO AV load-all’.

f) System optimum with conventional vehicles: Finally,
we also consider the system optimum case with conventional
vehicles where only the travel time costs of the driver are
considered. A solution to this scenario can be obtained by
solving the problem formulation given by the base formula-
tion (constraints (1) - (22) and (24) - (27)), the additional
constraints (34) which eliminate empty trips, and objective
function (35). We will refer to this scenario as ‘SO CV
unit-load’.

IV. RESULTS

The introduced problem formulations are implemented in
the Mosel language and solved using Xpress 8 on an Intel®

CoreTM 2 Duo @3.00 GHz with 4.00GB RAM. This mathe-
matical programming tool uses state of the art branch-and-
cut methods. For the considered toy network, the differ-
ent scenarios have approximately 180,000 constraints and
70,000 variables. In this section, we compare all scenarios
on several performance indicators. All but the scenario ‘UO
AV unit-load’ are solved to optimality. For scenario ‘UO AV
unit-load’, we present the results after interrupting the solver
after 12 hours which resulted in an integrality gap of 14.56%.
Running the model for 4 weeks did reduce the integrality
gap to 4% since the lower bound increased, but no better
solution was found. We compare the scenarios on costs and
computation time, and we provide some statistics on trip and
arc level.

A. Scenarios Compared on Costs

In this section, we compare the different scenarios based on
cost. For each scenario, we present the minimum, average and
maximum relative deviation from the household’s minimum
costs (without competition with the other households) and also
the total costs incurred for the entire system. In order to do
so, we need for each household the minimum cost Mh they
incur when they are the only one in the network. In Table IX,
these values are shown for the three household types for all
scenarios.

In Table X, the minimum, average, and maximum relative
deviation from the minimum costs and also the total costs
incurred for the entire system are given. The deviations and
total costs are given calculated based on unit load (so travel
time costs of a car) and based on the total load (so travel time
costs of all the passengers). For each scenario, we present both
the ‘unit-load’ and ‘load-all’ for the relative deviations (pre-
sented in the nested columns) and generalized transportation
costs (presented in the two bottom rows) for comparison pur-
poses. The relative deviations and generalized transportation
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TABLE XI

STATISTICS PER TRIP

TABLE XII

STATISTICS ON ARC LEVEL

costs corresponding to the scenario presented in a specific
column are given in bold.

As expected, we see that the total costs decrease when
we compare the user optimum case with CVs and AVs. This
means that AVs can be used more efficiently compared to CVs.

When we take the adoption of AVs to the next level,
i.e., a central operating system being in control of routing the
vehicles (scenario ‘SO AV unit-load’), we see that the total
costs of the network can be reduced even further. However,
we see that the costs, and therefore, also the travel time,
are spread less evenly over the different households, which
denotes no user equilibrium.

The total costs ‘load-all’ for scenarios ‘UO AV load-all’
and ‘SO AV load-all’ are higher than the total costs ‘unit-
load’ for scenarios ‘UO AV unit-load’ and ‘SO AV unit-
load’, respectively. However, these costs are determined in
a different way which makes comparing it unfair. These
scenarios are compared on different performance indicators
in the coming sections. It is, however, interesting to see that
the total costs ‘unit-load’ are lower for scenario ‘UO AV load-
all’ when compared to scenario ‘UO AV unit-load’. This can
be explained by the fact that the UO scenarios do not aim
at minimizing the total costs but at minimizing the maximum
deviation for the minimum costs Mh . When considering these
deviations, we see in Table X that the ‘UO AV load-all’
solution has a higher maximum deviation when considering
‘UO AV unit-load’ costs when compared to the ‘UO AV unit-
load’ solution.

B. Scenarios Compared per Trip

In this section, we present some statistics on trip level.
We compare the number of trips that are fulfilled by car and
public transport, the average penalty costs per trip done by
car, and the average travel time per trip by car. These results
are presented in Table XI.

From Table XI, we see that the number of trips done by
car increases when going from scenario ‘UO CV unit-load’
to ‘UO AV unit-load’ and to ‘SO AV unit load’. This number

decreases when we go from scenario ‘UO AV unit-load’ to
‘UO AV load-all’ or from scenario ‘SO AV unit-load’ to ‘SO
AV load-all’, because the travel time costs for the ‘load-all’
scenarios are higher as these are counted per passenger instead
of per vehicle. When comparing the ‘UO’ scenarios with the
equivalent ‘SO’ scenarios, we see that the number of trips
done by car increases.

In addition, when comparing ‘UO CV unit-load’ to ‘UO AV
unit-load’, we see that the average penalty costs and average
travel time per trip increases, because there is more congestion
in the network (shown in Table XII).

When we compare scenario ‘UO AV unit-load’ to ‘UO AV
load-all’ and scenario ‘SO AV unit-load’ to ‘SO AV load-all’,
we see that the number of trips done by car decreases, but
we also see that the penalty costs and travel time per trip
decreases. This is because there is a higher focus on reducing
the travel time when there are more people in the car.

C. Scenarios Compared per Arc

In this section, we compare the different scenarios on arc
level, where an arc is defined by (i, j, t1, t2). For each scenario,
we count the number of arcs with empty driving cars, with cars
with 1 person, and with cars with 2 or 3 people. We also show
the occupancy rate of the vehicles including and excluding
empty cars. This way we can measure the effect of using AVs
instead of CVs, and the effect the other scenarios have on
combined trips in the same vehicle. In addition, we provide
the congestion which is given by the travel time above the
minimum as a percentage of the total travel time. The results
are shown in Table XII.

Table XII shows that using AVs indeed leads to cars driving
around empty to pick up family members at different locations.
Therefore, the occupancy rate decreases when we include the
empty trips.

When comparing scenarios ‘UO AV unit-load’ and ‘UO AV
load-all’, we see that the number of arcs on which an empty
car drives stays the same. Because the number of trips done by
AV slightly decreases for ‘UO AV load-all’ when compared to
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TABLE XIII

COMPUTATION TIMES IN MINUTES

‘UO AV unit-load’, the occupancy rate including empty trips
decreases.

The occupancy rate increases when we compare the UO
scenarios with the equivalent SO scenarios. This shows that
more trips are combined, which increases the efficient use of
the cars in the system optimum.

Comparing scenarios ‘SO AV unit-load’ and ‘SO AV load-
all’ shows again a decrease in the occupancy rate, because
a longer travel time for a car with 3 people in it counts
three times as much. Therefore, the number of combined trips
reduces in this scenario.

The last part of Table XII compares the scenarios based on
congestion. We see that there is only congestion in scenarios
‘UO AV unit-load’. When comparing ‘UO AV unit-load’ with
‘SO AV unit-load’, we see that the routing is done more
efficiently such that no congestion occurs. When comparing
‘UO CV unit-load’ and ‘UO AV unit-load’, we see that using
AVs instead of CVs increases congestion.

D. Scenarios Compared on Computation Time

In this section, we compare the scenarios on computation
time. For scenarios ‘UO AV unit-load’ and ‘UO AV load-all’,
the total computation time consists of first solving the UO
model, and then, the SO model with an additional constraint as
described in Section II-D.2. For scenario ‘UO CV unit-load’,
solving the SO model afterwards is not necessary as vehicles
are not allowed to drive around empty. The computation times
in minutes are given in Table XIII.

Table XIII shows that all scenarios can be solved within
one hour, except the ‘UO AV unit-load’ scenario. This sce-
nario took over 12 hours to solve the UO model, and thus,
we decided to interrupt the solver. The integrality gap of the
UO model was 14.6%. Solving the SO model for the ‘UO AV
unit-load’ scenario took slightly less than 12 hours. Therefore,
the total computation time took over 24 hours. This makes the
‘UO AV unit-load’ scenario by far the hardest scenario to solve
for the considered network. Note that this does not have to be
the case in general as, for example, the computation time for
scenario ‘UO AV load-all’ is still reasonable while only the
costs for this scenario are calculated differently. Therefore,
the long computation time of scenario ‘UO AV unit-load’ has
to do with the NP-hardness of the problem which may cause
extremely long computation times for specific instances.

E. Comparision With UO-POAVAP Method [21]

The UO-POAVAP method [21] was also applied to and
solved for the small network introduced in this paper.
Only the ‘UO’ scenarios were considered, since the
UO-POAVAP method can only be used to solve the user
optimum. In order to make a fair comparison, additional

constraints to cope with the fact that travel times change in
each iteration had to be added to the UO-POAVAP method:

Fij t1t2 ≤C Fij t1t2(1−φ)+C Fij t1(t2+1)φ, ∀i, j ∈ I, t1, t2 ∈T .

(45)

Here, φ is the coefficient for the equilibrium computation
that will balance the contribution of the previous and current
assignment for the calculation of volumes and other perfor-
mance indicators in each iteration. Coefficient φ was set to
1/n for the calculations.

For the ‘UO AV’ scenarios, the results were similar,
although the objective function values were slightly better
for the exact method presented in this paper. However, there
was a bigger difference in results for the ‘UO CV’ scenario.
An explanation for this is that the UO-POAVAP method is very
sensitive to each trip, which is enhanced by the small network
considered. The UO-POAVAP method performs better in terms
of computation time.

The exact method presented in this paper cannot be applied
to the case study discussed in [21] because of the size of the
network.

V. CONCLUSIONS

In this paper, we have introduced a novel exact linear
formulation, including a linearized traffic congestion model,
that can solve both the user optimum and system optimum
to optimality for the routing of privately owned automated
vehicles. Using this formulation, we compare several scenarios
for a small toy network ranging from the current situation
on the roads to a future scenario where a central operating
system is in charge of routing AVs while taking the time of
all people in the car into account. By not using an algorithm
to approximate the solution, we make the model harder to
be applied in a realistic network given its NP-hard nature.
However, by solving our ILP formulation to (near) optimality,
we are able to explore the behavior for different model
configurations.

The results show that using AVs instead of conventional
cars may reduce the costs of the entire system and may enable
more trips being done by car. However, because of the latter,
also the average travel time increases. In addition, the results
show that the total costs of the system should decrease
when a central operating system is in charge of routing the
vehicles while even executing more trips by AVs. The system
optimum solution reduces congestion which in turn reduces the
average travel time per trip. However, this slightly increases
the average penalty costs for arriving early or late at the
destination location of the trip. The occupancy rate of the
AVs also increases when we compare the system optimum
without considering the number of people in the car with the
user optimum. Therefore, the AVs are used more efficiently
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in this scenario. When the central operating system is able to
also consider the number of people in the car, by counting
the travel time of all family members, we see that less trips
are done by AV and that the occupancy rate decreases which
means less trips are combined. This denotes that the current
externalization of all the occupants of car trips may be leading
to too many trips being done in this mode. However, we also
see that the average travel time reduces significantly and that
the average penalty costs also decrease.

For future research, it would be interesting to validate our
‘UO CV unit-load’ scenario against standard traffic assign-
ments algorithms and to expand these algorithms to be able
to deal with the other scenarios considered in this paper.
In addition, efficient heuristics should be developed to solve
real-life instances under these different scenarios. Determining
an exact solution for our formulation already takes a long time
for our small data set. In addition, these efficient heuristics
should be able to solve the real-time version of the considered
problem, i.e., assign trips to AVs or PT and determine the
routes for the AVs when new trips are requested. Applying
the developed heuristics on the same scenarios for a realistic
data set will show if our conclusions also hold up in a realistic
setting. The heuristics can also be used to evaluate another
scenario even further in the future when AVs are not privately
owned anymore, but can be shared between the different
households.
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