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Abstract— The increasing integration of electric vehicles (EVs) is

adding higher future potentials for the smart grid because resid-

ual energy stored in EV batteries can be discharged to support the

grid when needed. However, the stochasticity of EV user behav-

iors poses challenges to the regulators of distribution systems.

How regulators decide upon a control strategy for the vehicle to

grid (V2G) and how EV users respond to the strategy will signif-

icantly influence the variation of load profiles in the planning

horizon. In this paper, a comprehensive cost analysis is performed

to obtain the optimal planning scheme considering the variation in

EV penetration, charging preference, and customer damage cost

(CDC). The economics and stability of the planned distribution

system are assessed with real-world travel records and cost sta-

tistics to quantitatively show the effectiveness of the optimization

algorithm and the importance of user behavior concern.

Index Terms—Distribution system planning, vehicle to grid, sto-

chastic user behavior, customer damage cost. 

NOMENCLATURE 

CDC Customer damage cost 

DG Distributed generation 

EPC 
The engineering, procurement and construc-

tion 

EV Electric vehicle 

H Residential areas 

SOC State of charge 

V2G Vehicle to grid 

N Total number of public charging places. 

i Index of EVs 

λ Index of planning years 

c,

i

nT Trip end time of EV i at place n 

i

nS Trip start time of EV i at place n 

, 1

i

n nl 

Travel distance between place n and n+1 of 

EV i 

Bc Total capacity of EV batteries 
i

nE Possible charging demand of EV i at place n 

ω Energy consumption per km 
i

HD Charging duration of EV i at H 

Pc, κc Charging power and efficiency 

ξ
i
 Customer damage cost (CDC) of EV i 
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μc, δc The mean and standard deviation of CDC 

γλ Compensation ratio at year   

Tgc, Dgc Control start time and lasting period 

c

iT , 
c

iD Charging start time and duration of EV i 

eresidual The residual battery energy at time Tgc 

Pd, κd Discharging power and efficiency 

c

ie Energy already charged before Tgc of EV i 

b

ie Energy discharged of EV i 

p

ie Postponed original charging demand of EV i 

t* Reference recharging time. 

r

iT , 
r

iD Recharging start time and duration of EV i 

c,EV

tP Total charging power at time t 

d,EV

tP Total discharging power at time t 

Y Number of years for entire planning horizon 

f
oper

 Total operation cost 

f
cc

 Total customer compensation cost 

f
inv

 Total investment cost 

d
annual

 Number of days in one year 
da

t Day-ahead electricity price at time t 

ρ
CO

2 Fixed carbon tax rate 

ρ
NL

 Unit line loss rate 
s

,tP  Total power demand at the substation 

,

loss

tP  Total system line loss power

π
LL

, π
LS

 
Annuity transform parameter for feeders and 

substations 

ρ
EL

, ρ
ES

 Fixed cost for feeders and substations 

ρ
CL

, ρ
CS

 Capital cost for feeders and substations 

qλ the number of total EV users at year λ. 

,cap

l

xyP Adequate capacity of feeder 

,cap

s

xP Adequate capacity of substation 

Ω
l
 Set of feeders 

Ω
s
 Set of substations 

Ω
x
 Set of system nodes 

Ω
t
 Set of time intervals in a day 
c,EV

,x tP EV charging power at node x, time t 

d,EV

,x tP EV discharging power at node x, time t 

base

,x tP Base power load at node x, time t 

,

s

x tP , ,

s

x tQ Active and reactive power generation 
base

,x tP , 
base

,x tQ Active and reactive base power load 

Ux,t Nodal voltage 

Gxy, Bxy 
Real part and imaginary part of nodal ad-

mittance matrix 
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I. INTRODUCTION 

OPULARIZING electric vehicles (EVs) can effectively reduce 

greenhouse gas emissions and dependence on fossil fuels. 

However, existing studies illustrate that the increasing integra-

tion of EVs with stochastic behavior and improper energy 

management may increase operational pressure on the existing 

power grid [1]-[4]. 

 There are largely two ways for easing the impact of EV 

penetration on power systems. One is to control user charging 

behaviors directly for better peak shaving. The two-stage 

co-ordination strategy considered in [5] optimizes the charging 

power of the aggregators at the upper level and reschedules 

individual EVs accordingly at the lower level. Synergistic 

control of EV charging and other distributed generation (DG) 

systems are analyzed in [6]-[8]. Vehicle to grid (V2G) 

technology can fully utilize EV battery potentials that discharge 

during busy hours to support the grid and recharge at valley 

hours [9]-[12]. However, they seldom consider the willingness 

of EV users or their temporal availability for obeying controls 

from the grid. The price lever is introduced in [12]-[14] to guide 

charging behaviors, but different user perspectives with respect 

to the amount of incentives are not considered. A cooperative 

game between grid regulators and customers is proposed in 

[15]-[16] in which the decrement of the total cost is allocated to 

each participating player. The game is based on the hypothesis 

that users are fully responsive, which may not be realistic for 

the V2G behavior. 

Another feasible method is to upgrade power system infra-

structure ahead of the increasing EV charging demand antici-

pated over the long-term planning horizon. The distribution 

system planning proposed in [17]-[29] aims to reduce the in-

frastructure investment cost and system operation cost. Con-

structing DGs that provide wind and solar energy is suggested 

as an option in [18]-[25], but the power from DGs is intermit-

tent and cannot guarantee timely support during busy hours. An 

incentive-based planning is proposed in [24] that grid investors 

and DG investors collaborate for mutual benefits. The extra 

cost of automation equipment in distribution system expansion 

is taken into account in [26]. Optimal siting and capacity of EV 

charging stations within metropolitan areas are investigated in 

[27]-[29]. However, the stochasticity of EV user behavior is 

underestimated that no incentive is provided for mutual bene-

fits of grid investors and EV users. 

Considering stochastic V2G behavior in residential areas, 

probabilistic evaluation of a power system can recognize not 

only the severity of a state and its impact on system operation 

but also the probability of its occurrence. In the long-term 

distribution planning, a proper combination of both severity 

and occurrence probability creates indices that better represent 

system reliability and risk. It is common that more investment 

brings a higher reliability level but it’s hard to quantify the 

correlation. [23] considers the reliability penalty as a preset 

percentage of the cost of the energy supplied by substations 

while fuzzy optimization technique is used in [25] to handle 

these two contradicting objectives, namely, decreasing cost and 

improving reliability. However, the quantified correlation ob-

tained in [23] and [25] is based on assumed data.   

Distribution system planning expands existing grid assets 

according to future load growth. The appropriate incentive 

control strategy may attract V2G adoption for peak mitigation 

and facilitate an overall cost reduction of system planning. 

Single cost-related functions which consider customer inter-

ruption cost or infrastructure upgrade cost independently, are 

used in [17]-[23] and [25]-[29]. However, a trade-off always 

exists among grid reliability, facility reinforcement cost, and 

incentive control cost. A single objective may lead to a biased 

control strategy that some of the participants may not follow 

and the benefits of some participants are impaired.  

The comparison of different distribution planning models is 

summarized in Table I. The novel distribution system planning 

scheme proposed in this paper is devised based on the proba-

bilistic evaluation of system risk by upgrading system infra-

structure to acceptable levels of reliability at the lowest possible 

cost (including infrastructure investment cost, compensation 

cost to control acceptance and operation cost after system up-

grade). Reliability worth assessment [30] incorporates the in-

terruption cost, investment, and operation cost analysis, and 

quantitative reliability assessment into an overall cost mini-

mization procedure searching for mutual benefits between the 

grid operator and EV users. Interruption cost is adopted in 

[30]-[31] to provide an indirect measurement of reliability 

worth whereas the content of interruption cost shall be modified 

in accordance to the V2G application proposed in this paper. 

The main contributions of this paper include: 

1). The stochasticity of EV traveling/charging behavior is 

fully analyzed with probabilistic techniques under the 

combined model of the transportation network and power 

grid. 

2). The response of EV users to system control signals is 

clarified with the concept of customer damage cost (CDC). 

The planning scheme is therefore devised based on 

“dgrees of customer acceptance to potential control” ra-

ther than the usual “yes or no” logic. 

3). By taking the amount of compensation to users into ac-
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Fig. 1 Illustration of travel route modeling 

Table I 
COMPARISON OF DISTRIBUTION PLANNING MODELS 

 With DG With EV 
Reliability 

concern 

Mutual 

benefits 

[17-20], 

[26] ✔ ✖ ✖ ✖ 

[21-22] ✔ ✖ ✖ ✖ 

[23], [25] ✔ ✖ ✔ ✖ 

[24] ✔ ✖ ✖ ✔ 

[27-29] ✖ ✔ ✖ ✖ 
Proposed 

model 
✖ ✔ ✔ ✔ 
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count in the reliability worth assessment of distribution 

system planning, grid regulators are able to determine the 

trade-off between encouraging more control acceptance 

and investing more in infrastructure for optimal overall 

cost. 

4). This paper is the first to quantitatively analyze the im-

portance of user behavior consideration on the overall cost 

of distribution system planning. 

The rest of the paper is organized as follows. In Section II, a 

general model for forecasting residential EV charging demand 

is formulated. In Section III, modeling of the V2G profile is 

proposed considering EV user behavior and the corresponding 

system control signal. A comprehensive planning cost analysis 

is given in Section IV that takes customer compensation cost 

into account. The planning optimization procedure is provided 

in Section V and its effectiveness is assessed by numerical 

studies in Section VI. Section VII concludes the paper. 

 

II. MODELING OF EV CHARGING DEMAND 

This section outlines a general probabilistic technique for 

forecasting daily EV charging demand. As EV user behavior is 

stochastic, gathering the forecast information is crucial to reg-

ulators.  

A. Travel Route Modeling 

Daily trips that start and end at residential areas (H) are 

classified into different travel purposes, including trips trans-

iting between districts 1 2 H{A } {A , A ,...,A ,A }n N  (for public 

places n=1,…, N; for residential areas n=H). Each district is 

equipped with an aggregator that connects to one bus in the 

distribution network and integrates local charging/discharging 

facilities. An EV may perform several trips a day, and the series 

trip chain is described in Fig.1. By using the data from local 

travel surveys, the output of travel route modeling includes the 

forecast for each trip end time in the trip chain

c, c,1 c,2 c, c,H{ } { , ,..., , }i i i i i

n NT T T T T and each travel distance {ln, n+1}. 

For details of the travel route modeling, the reader is referred to 

our previous work [4]. If the average urban driving speed is v, 

the trip start time at place n can be estimated as: 

, 1

c, 1

i

n ni i

n n

l
S T

v



                               (1)                                                            

B. Charging Behavior Modeling 

For the i
th

 EV, which starts in a fully charged state from HA

and travels along the series trip chain, constraints exist for the 

amount of energy charged at public places. First, the energy 

charged at each stop should not exceed the total state of charge 

(SOC) deficit; second, there should be enough SOC for the next 

trip after charging. For a day’s final destination at H, EV users 

would fully charge their batteries before the start of the next 

day’s trip. Equations (2), (3) and (4) are constituted to reflect 

these respective constraints (H can be regarded as place 0 or 

N+1): 

1 H,1

2 H,1 1,2 1

1

-1,

1 1

( )

i i

i i i i

N N
i i i

N n n n

n n

E l

E l l E

E l E








 

  


   

 

   


 

                                     (2)                                                                       

1 H,1 1,2 c

2 H,1 1,2 2,3 1 c

1

-1, c

1 1

max{0, ( ) }

max{0, ( ) }

max{0, }

i i i

i i i i i

H N
i i i

N n n n

n n

E l l B

E l l l E B

E l E B








 

    


     



    


 

         (3)                                   

H

H -1,

1 1

N
i i i

n n n

n n

E l E
 

   
                                 

(4)

                                                        

  

where ω is the energy consumption per km, i

nE  is the energy to 

be charged at place n, and Bc is 80% of the total capacity of EV 

batteries. As the potential charging energy at public places is 

defined in a range, as reflected in (2) and (3), three possible 

scenarios are assumed in Table II to represent different user 

preference. 

In this paper, only the residential charging demand i

HE  is 

considered in the distribution system (the charging place pa-

rameter n is therefore omitted in the following analysis) but it 

will be greatly influenced by the stochastic charging behavior at 

public places as shown in (4). The charging duration 
H

iD  at 

home is calculated in (5): 

 

H

H

c c

i

i E
D

P



                                     (5) 

where Pc and κc are the charging power and efficiency, respec-

tively.  

III. MODELING OF V2G PROFILE 

This section describes the prerequisites for performing V2G, 

namely, the fulfillment of individual customer damage cost 

gcT gc gcT D

c H

i iT D

*t

r

iT r r

i iT D

iS

t

c

iT

p

ie
c

ie

b

ie

b p

i ie e

dP

cP

Fig. 2 Timeline and energy flow of V2G control 

Table II 
POSSIBLE SCENARIOS FOR PUBLIC CHARGING PREFERENCE 

Public charg-

ing preference 
Definition 

No ,min

i i

n nE E , for i  

Moderate 
i

nE  obeys 
,min ,max( , )i i

n nU E E , for i  

High ,max

i i

n nE E , for i  
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(CDC), temporal feasibility for discharging, and enough time 

for recharging after V2G. 

A. Amount of Compensation to Customers 

For EV customers, accepting V2G control may raise privacy 

concerns, influence convenience, and affect EV battery life. In 

fact, the flexible pricing proposed in [12]-[14] may not natu-

rally make all customers charge during the low-tariff period 

because their attitude towards the revenue gained by accepting 

control is fairly arbitrary. A comprehensive customer survey is 

conducted in [30] to quantify user behavior by investigating 

customer’s willingness to pay to avoid a power interruption and 

the willingness to accept compensation for having had one. The 

amount of CDC obtained from the survey directly portrays the 

unit interruption compensation ($/kWh) claimed by individual 

customers. 

In this paper, CDC can be regarded as the extra amount of 

compensation claimed by EV customers for obeying V2G 

control in addition to the revenue gained from flexible pricing. 

The average and standard deviation of CDC for residential EV 

customers are represented by μc and δc. For the i
th 

customer, the 

CDC is ξ
i
 which follows the normal distribution [30] shown in 

(6):  
i  obeys ( , )c cN                                 (6) 

Before undertaking system planning for future years, the grid 

operator should have carefully investigated the habits of local 

EV customers. The parameters μc and δc are assumed to be 

known to the grid operator and the best compensation ratio γλ at 

the λth year is determined based on the information. Therefore, 

c   represents the unit V2G compensation rate at the λth 

year and only those users fulfilling (7) potentially consider 

accepting V2G control [30]. 
i

c                                      (7) 

B. Energy Amount for Discharging 

Fig. 2 shows the timeline of V2G control for the i
th

 EV. Tgc 

and Dgc are the grid control start time and the lasting period, 

respectively. The original charging arrangement, charging start 

time c

iT and duration c

iD  vary among different users but V2G is 

temporally feasible only if the trip end time 
c

iT  is satisfied 

according to:  

c gc gc

iT T D                                  (8) 

For those EVs under control,
p

ie , the part of original charging 

arrangement falling within the period [Tgc , Tgc+Dgc] should be 

postponed. The residual battery energy eresidual at time Tgc is 

calculated using (9) and the energy discharged back b

ie  during 

[Tgc , Tgc+Dgc] is determined in (10): 

residual c H c

i ie B E e                          (9) 

d

b residual gc gc c gc

d

min( , ( max( , )))i iP
e e T D T T


   

    

(10) 

where c

ie is the energy already charged at H before Tgc ( c 0ie   

if 
c gc

iT T ). Pd and κd are discharging power and efficiency, 

respectively. 

C. Recharging Demand after V2G 

One of the premises for V2G control is that the normal ac-

tivity of EVs ought not to be affected. Therefore, EVs should be 

recharged to fulfill the original charging demand after the V2G 

control period. The time needed for recharging is calculated 

using: 

b p

r

c c

i i

i
e e

D
P





                                (11) 

where r

iD is recharging duration of EV i; 
p

ie is Postponed 

original charging demand of EV i. 

Experiments suggest that recharging immediately after the 

termination of control will create another power demand peak 

ensuing time Tgc+Dgc. Unlike other existing works, this paper 

puts forward the concept of reference recharging time t*. Con-

sidering the urgency of and fairness to each EV customer, the 

recharging start time r

iT for the i
th

 EV based on t* is given by:  

* * *

r 1 r 2 c( ) ( )i i i iT t h S t D h t T                  (12) 

where h1 associates with urgency, in that EVs with less spare 

time before the start of next trip are assigned earlier charging, 

and h2 associates with fairness, i.e., the regulators assign rela-

tively earlier recharging start times to EVs plugging in earlier. 

The following constraint (13) guarantees that recharging will 

complete before the start of next trip: 

r r

i i iT D S                                   (13) 

For the ith EV

Is (9), (10) and (15) 

fulfilled?

c,EV c,EV

ct tP P P 

c gc c gc

r r r

for [ , ], if 

and [ , ]

i i

i i i

t T T T T

t T T D

  

  

d,EV d,EV

dt tP P P 

c gc

d
c gc b

d

for [max( , ),

max( , ) ]

i

i i

t T T

T T e
P



 

 

c,EV c,EV

ct tP P P 

c c Hfor [ , ]i i it T T D  

Last EV at year λ?

   Initialize         and          , i=1
c,EV

tP d,EV

tP

i=i+1

       Output           and  c,EV

tP
d,EV

tP

No (Without V2G)

Yes (With V2G)

Yes

No

Fig. 3 Flowchart for power aggregation 
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D. Aggregated Charging and Discharging Profile 

The aggregated charging power
c,EV

tP and discharging power

d,EV

tP are obtained via the process presented in Fig. 3 by su-

perposition of the individual charging/discharging power of all 

EVs performed at each time of the day. Fig. 3 shows that the 

aggregated load profile is greatly influenced by EV behavior 

and system control scheme defined by (7), (8) and (13). 

IV. COST ANALYSIS FOR DISTRIBUTION SYSTEM PLANNING 

Differing from the planning models proposed in [17]-[29], 

the cost analysis in this paper simultaneously ponders the mu-

tually influenced parts, including operation cost, V2G com-

pensation cost and infrastructure investment cost, and obtains 

the trade-offs among them. According to the variation of 

baseload demand and number of EVs integrated each year, the 

local regulator can control the overall V2G profile by adjusting 

the compensation ratio γλ to satisfy system stability require-

ments and total cost reduction. 

The total cost of the Y-year distribution system planning is 

given as follows: 

Objective:   

min 
oper cc invf f f f                              (14) 

2COannual da NL

, ,

1

( ( ) )
t t

Y
oper s loss

t t t

t t

f d P P 


  
  

    
       

(15) 

 annual

c b

1

( )
qY

cc i

i

f d e





 


                                  (16) 

,cap

,cap

= [ ( )

( )]

l

s

inv LL EL CL l

xy

xy

LS ES CS s

x

x

f Y P

P

  

  





 

 



                      

   (17) 

where 

,cap ,max

l

xy xyP P  ,         
lxy                     (18) 

,cap ,max=s

x xP P  ,             
sx                     (19) 

(1 )

(1 ) 1

LL
LL

LL

 







 
  , 

(1 )

(1 ) 1

LS
LS

LS

 







 
             

(20) 

subject to: 
c,EV d,EV base

, , , ,

, , , ,

( ) ,

( cos sin )
n

s x t

x t x t x t x t

x t y t xy xy t xy xy t

y

P P P P x t

U U G B 


      

 
     (21) 

base

, ,

, , , ,

,

( sin cos )
n

s x t

x t x t

x t y t xy xy t xy xy t

y

Q Q x t

U U G B 


    

 
    (22) 

min , maxx tU U U                          (23) 

The objective function (14) aims to minimize the overall 

operation cost f
oper

, customer compensation cost f
cc

 and in-

vestment cost f
inv

 across the planning horizon. The operation 

cost in (15) is composed of the electricity purchase cost from 

the wholesale market and the network line loss cost. 
annuald  is 

the number of days in one year. da

t , ρ
CO

2, and ρ
NL

 represent the 

day-ahead electricity price at time t, the fixed carbon tax rate, 

and unit line loss rate, respectively. s

,tP 
and 

,

loss

tP 
denote the 

total power demand at the substation and the total system line 

loss power, respectively. The total cost of customer compen-

sation is calculated in (16) where qλ represents the number of 

total EV users fulfilling all the prerequisites (7), (8) and (13) at 

year λ with compensation ratio γλ. 

0 1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17

25 26 27 28 29 30 31 32

22 23 24

18 19 20 21

Nodes with EV penetration

Substation 

Fig. 4 32-bus distribution test system 

Table III 
ILLUSTRATION OF PLANNING OPTIMIZATION PROCEDURE 

Step 1 Input distribution system topology, EV travel 

statistics, charging behavior at public stations 

(2)-(3), and CDC distribution (6). 

Step 2 Generate the chromosomes with control variables 

Tgc, Dgc, i
*
, and γλ for each planning year. 

Step 3 Obtain 
c

iT ,
c

iD , S
i
 and ξ

i
 for all EVs penetrating 

the system at year λ by using the probabilistic 

technique proposed in Sections II and III.A. 

Step 4 Obtain the V2G profile for year λ with (6)-(13) 

corresponding to the control variables. 

Step 5 Repeat Steps 2-4 for all Y years over the planning 

horizon. It should be noted that the base load and 

the number of EVs penetrating the system in-

crease with each successive year. 

Step 6 Calculate the total planning cost from (14)-(23). 

Step 7 Repeat Steps 3-6 with the Monte Carlo method 

and obtain the expected total planning cost cor-

responding to the chromosomes. 

Step 8 Perform selection, crossover and mutation to 

generate chromosomes of the next generation. 

Step 9 Repeat Steps 2-8 until maximum generation is 

reached or no improvement found for several 

generations to obtain the optimal planning 

scheme with the least cost. 

Step 

10 

Perform a stability evaluation for the obtained 

planning scheme with indices including the 

minimum nodal voltage Vmin and expected energy 

not supplied (EENS) [11], [20], [30] for the whole 

planning horizon. 
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In (17), the equivalent total infrastructure investment cost for 

the planning horizon is presented. The adequate capacities of 

feeders 
,cap

l

xyP  and substation 
,cap

s

xP
 
are appropriately planned 

by satisfying the maximum power flow at line xy (18) and 

maximum power demand of the substation located at node x (19) 

over the Y-year planning horizon. ρ
EL

, ρ
ES

 and ρ
CL

, ρ
CS

 are the 

engineering, procurement and construction (EPC) fixed cost 

and capital cost, respectively for constructing feeders and sub-

stations. π
LL

 and π
LS

 calculated from (20) transform the con-

struction cost of feeders and substations into annuities which 

are related to the interest rate  and their respective lifespans 

LL and LS . 

The AC power flow equality constraints are depicted in (21) 

and (22). c,EV

,x tP , d,EV

,x tP , and base

,x tP  are the charging, discharging, 

and base power load, respectively, at node x time t. The nodal 

voltage constraint is given in (23).  

V. PLANNING OPTIMIZATION PROCEDURE 

For a given system with annual load growth rate a and EV 

penetration growth rate b, the total cost of distribution system 

planning depends on the power load profile each year, the 

compensation paid to customers for improving the load profile, 

and the infrastructure investment required to satisfy the max-

imum load demand over the planning horizon. As the EV 

charging demand and V2G profile are really stochastic, the 

Monte Carlo method [30] is adopted for error reduction and 

reliability evaluation. To be consistent with our previous work 

in [4], the same EV travel behavior forecast (Section II.A) is 

carried out whereas the general charging behaviors before 

arriving home (2) and (3) are assumed to be known to the local 

grid operator. The optimization procedure for the Y-year system 

planning is summarized in Table III: 

VI. NUMERICAL STUDIES 

A. Test System and Basic Data 

To assess the effectiveness of the proposed planning opti-

mization algorithm, the 32-bus radial distribution system 

shown in Fig. 4 [32] is chosen because, as stated by M. E. 

Baran, “The system is not well-compensated and lossy”. For a 

planning horizon of 5 years (Y=5), the obsolete feeders and the 

substation at Bus-0 shall be completely replaced to satisfy load 

growth and increasing EV penetration. This distribution system 

is designed to supply power to residential customers. The res-

idential EVs cover the nodes of 5 to 17 and 25 to 32, and are 

distributed among the nodes based on the proportions of base 

power load at those nodes. For the analysis of EENS for all 

nodes with EV penetration, the failure rate of the feeder at line 

4-5 is assumed to be 0.065 faults/year [20] and the repair time is 

1 hour. 

Daily variation of the residential base load is collected from 

the Residential Energy Consumption Survey [33] and the var-

iation of day-ahead electricity price is obtained from PJM data 

[34]. The EV travel behavior is derived from the 2009 National 

Household Travel Survey (NHTS) [35]-[36]. The data for in-

frastructure investment costs ρ
EL

, ρ
ES

, ρ
CL

 and ρ
CS

 are derived 

from [21]. As the EPC fixed costs ρ
EL

 and ρ
ES

 are much higher 

than the capital costs ρ
CL

 and ρ
CS

, the capacity of feeders and 

substations should be sufficient for the entire 5-year develop-

ment and therefore reconstruction is avoided. The standard 

deviation of CDC is in fixed relation to the mean value 

(δc=0.5μc). Other parameters are listed in Table IV.  

In the base case, the initial number of EVs penetrating the 

grid in the first year is 1000. Charging at public places is 

moderately preferred and the mean value of CDC μc=0.02. The 

efficiency of the planning optimization is assessed based on 

cases with different initial EV penetration, user charging pref-

erence, and CDC distribution. For each case, only one variable 

changes while the others keep the same as in the base case. 

B. Planning with Different Initial EV Penetration 

When the initial number of penetrating EVs increases, both 

the charging demand and the potential energy for V2G grow 

 
Fig. 5 Comparison with respect to initial EV penetration 
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Table IV 
SYSTEM PLANNING PARAMETERS 

Symbol Value Symbol Value 

a 0.05 b 0.1 

LL 15 years [17] LS 15 years [17] 

ρCO2 $0.0092/kWh [17] ρNL $0.036/kWh [17] 

Umin 0.95 [17] Umax 1.05 [17] 

Pc 3.3 kW [4] Pd 3.3 kW [4] 

ω 0.24 kWh/km [4] Bc 0.8×30 kWh  

 

Table V 
PLANNING WITH DIFFERENT INITIAL EVS 

Initial 

EVs 

operf  

($×106) 

ccf  

($×105) 

invf  

($×106) 

f 
($×106) 

Vmin 
(p.u.) 

0 5.073 0 1.037 6.110 0.9428 

500 5.186 1.096 1.021 6.316 0.9614 

1000 5.381 1.531 1.026 6.559 0.9555 
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accordingly. The planning comparison is shown in Table V 

with the initial EV penetration changing from 0 to 500 to 1000. 

The annual growth rates of the base load and EV penetration are 

given in Table IV and remain the same for all cases. 

Table V demonstrates that the system operation cost in-

creases with the augmentation of EV penetration because the 

total daily power demand increases with the number of pene-

trating EVs regardless of V2G scheduling. Both the infra-

structure investment cost and the minimum nodal voltage with 

V2G control are significantly improved by the proposed plan-

ning optimization compared to the case without EVs because 

the annual peak load demand is largely reduced.  

The comparison of system-wide daily power demand pro-

files in the fifth year is shown in Fig. 5 as an example to 

demonstrate the effectiveness of the proposed optimal planning. 

Considering the growth of base load and EV penetration during 

the planning horizon, the blue dotted line denotes the trend of 

baseload power derived from [33]. Corresponding to the result 

in Table V, its peak load is so high that more investment in 

feeders and substations is required. For the two cases with EV 

penetration, their V2G control intervals are both constrained 

from 18:00 to 22:00, which greatly improves the peak load 

profiles with acceptable compensation paid to users. The load 

profiles from 17:00 to 22:00 follow a zig-zag trend because the 

compensation ratio γλ is kept the same during the whole control 

period. For example, raising γλ at 20:00 will be unfair to those 

starting V2G earlier and will discourage them from accepting 

V2G at an earlier hour. Furthermore, the recharging arrange-

ment proposed in Section III.C works efficiently and makes the 

recharging demand of all controlled EVs well-distributed 

within the low-tariff period (from 24:00 to 7:00).  

C. Planning with Different Charging Preference 

The charging preference in public places can be stochastic, 

as shown in (2) and (3). The relationship between public 

charging preference and residential charging demand is 

demonstrated in (4). A planning comparison of the three 

charging preference scenarios specified in Table II is shown in 

Table VI. 

Although the residential charging demands of the three cases 

are fairly different, the planning optimization proposed effi-

ciently raises the minimum voltage to meet the system stability 

requirement (23). The case of no interest in public charging 

means that EV users will only keep the battery energy above the 

minimum SOC that can support their next trip. As a result, the 

residential charging demand will increase significantly, as 

inferred from (4), making the operation cost and infrastructure 

investment of this case higher compared to the other two cases.  

For the daily load comparison of the fifth year shown in Fig.6, 

the proposed planning optimization successfully lowers the 

peak load to an acceptable level and makes the recharging 

demand well-distributed in the low-tariff periods regardless of 

the charging preference. For the case with no interest in public 

charging, the residential charging demand is so high such that 

the V2G control starts earlier, i.e., 17:00 instead of 18:00. As a 

result, the power load at 17:00 is significantly reduced com-

pared to the peak loads of the other two cases at that time. With 

respect to the cases with a moderate and high preference for 

public charging, variation trends in the load profile with V2G 

control are largely the same. 

D. Planning with Different CDC Distributions 

In this section, the optimal planning scheme varies with 

different CDC distributions. The planning comparison in Table 

VII is made among the cases of full cooperation between grid 

operator and EV customers (μc=0), μc=0.01 to 0.03, and the 

case of no cooperation whatsoever (μc=∞, equivalent to the case 

without V2G).  

Based on Table VII, the operation cost decreases with the 

reduction of μc due to the fact that when less CDC is claimed by 

EV customers, a relatively larger compensation ratio γλ can be 

applied to attract more control acceptance. The electricity 

purchase cost and network line loss cost will simultaneously 

decrease owing to the control that more power can be dis-

charged back in busy hours and recharged at valley periods. 

The fact that many more customers will be attracted to accept 

V2G control when μc is lower also makes the total 

 
Fig. 6 Comparison with respect to charging preference 
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Table VII 
PLANNING WITH DIFFERENT CDC DISTRIBUTIONS 

μc 
f
oper 

($×106) 
f
cc 

($×105) 
f
inv

 
($×106) 

f 
($×106) 

Vmin 
(p.u.) 

EENS 
(kWh) 

0 5.130 0 1.025 6.155 0.9562 55.817 

0.01 5.233 1.795 1.025 6.438 0.9559 55.673 

0.02 5.381 1.531 1.026 6.559 0.9555 55.619 

0.03 5.467 1.217 1.027 6.616 0.9551 55.643 

  5.673 0 1.054 6.727 0.9230 55.819 

 

Table VI 
PLANNING WITH DIFFERENT CHARGING PREFERENCE 

Public 

charging   

preference 

operf  

($×106) 

ccf  

($×105) 

invf  

($×106) 

f 
($×106) 

Vmin 
(p.u.) 

No 5.667 1.820 1.028 6.876 0.9515 

Moderate 5.381 1.531 1.026 6.559 0.9555 

High 5.168 1.500 1.018 6.337 0.9590 
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compensation cost fcc increases from $1.217 × 10
5
 to 

$1.795×10
5
 when μc decreases from 0.03 to 0.01. 

For the case with no cooperation, no EV users will obey the 

control signals but charge upon arrival at home instead. The 

operation cost and investment cost are both the highest among 

all cases because of the coincidence of base peak load and EV 

charging peak load. Moreover, the minimum nodal voltage will 

drop to as low as 0.9230, which contravenes constraint (23). 

EENS also increases considerably compared to the cases with 

μc=0.01 to 0.03. Thus, a complete lack of cooperation between 

grid operator and EV customers will not only increase the total 

planning cost but also make system unstable.  

The total planning cost is the lowest for the case with full 

cooperation. Note that this scenario conforms to the hypothesis 

proposed in [15]-[16], in that users are fully responsive and the 

cost decrement will be allocated to users. Here, the planning 

cost reduction is considered without variation of electricity 

purchase cost (as CDC is claimed in addition to the revenue 

from flexible pricing). Changing from the case with μc=∞
 
to 

that with μc=0, the planning cost reduction is $2.126×10
4
 with a 

total of 2.007×10
7 

kWh discharged over the entire planning 

horizon. It is calculated that only $0.0016/kWh can be allocated 

to users accepting V2G control. This amount of compensation 

is so small compared to the residential electricity price that only 

the revenue from flexible pricing cannot guarantee the “full 

responsiveness” of all users. Furthermore, excess discharging 

will create another recharging peak during the original valley 

hours so that the EENS is higher than for the cases with μc=0.01 

to 0.03. 

E. Cases with insufficient concern on user behavior 

Grid operator shall make specific control strategy responding 

to different user behaviors. In this section, the comparison 

among the case with wrong forecast number of EVs charging at 

H, the case with wrong forecast number of EVs accepting V2G 

and the case with full consideration on EV user behavior is 

conducted to assess the significant influence of insufficient 

concern on EV user behavior. 

As this paper proposes a long-term distribution planning that 

cannot respond to real-time charging demand variation, grid 

operator should have carefully investigated the number of EVs, 

growth rate, distribution of CDC, traveling and charging be-

havior in order to devise control or infrastructure upgrade 

strategy in advance. Failing to work out the practical and ac-

curate forecast of EV user behavior will weaken the effec-

tiveness of V2G control. 

In the base case with an accurate forecast of EV user be-

havior, the daily load profile at fifth year after V2G is shown as 

the green line in Fig. 7. If the forecast lacks practical consid-

eration on EV traveling and charging behavior, for example, the 

actual number of EVs charging at H is 20% less than estimated, 

the daily load profile changes to the red line as a result. Alt-

hough the overall load is decreased because of the decline of 

actual EV charging, there will be insufficient EV users re-

sponding to V2G control signal that its peak is higher than the 

case with an accurate forecast. It is shown in Table VIII that 

wrong forecast number of EVs charging at H will lead to peak 

increase and potential augmentation of infrastructure invest-

ment. 

On the other hand, if the operator has the wrong estimation 

on distribution of local CDC, for example the preset compen-

sation rate attracts 20% less EVs accepting V2G control than 

estimation, EVs providing V2G support will not be enough 

when maintaining the original customer compensation rate that 

the load profile during the whole V2G control period will be 

much higher and denoted by blue dotted line in Fig. 7. As 

shown in Table VIII, it is apparent that failing to figure out how 

local users accept V2G compensation rate, i.e. the distribution 

of CDC, will largely increase the total cost by 1.2% to 

$6.64×10
6
 due to the peak increase during control hours.  Be-

sides, the grid minimum voltage is decreased that the stability 

margin of the grid is impaired. 

VII. CONCLUSION 

This paper puts forward an innovative idea that takes cog-

nizance of stochastic user behavior in the realm of distribution 

system planning. This paper has successfully drawn the fol-

lowing three major conclusions: 

1). The proposed method is able to forecast EV charging and 

V2G demand considering user behavior in a practical way. 

2). The proposed optimization method for distribution sys-

tem planning is proved effective in solving the trade-off be-

tween V2G incentive control and grid infrastructure investment 

under different initial EV penetration, charging preference or 

distribution of CDC. 

 Fig. 7 Comparison with respect to EV user behavior 

 

Table VIII 
PLANNING WITH DIFFERENT CHARGING PREFERENCE 

Case 
operf  

($×106) 

ccf  

($×105) 

invf  

($×106) 

f 
($×106) 

Vmin 
(p.u.) 

Wrong EVs 

charge at H 
5.313 1.236 1.027 6.464 0.9583 

Wrong EVs 

accept V2G 
5.487 1.235 1.029 6.640 0.9551 

Accurate 

forecast 
5.381 1.531 1.026 6.559 0.9555 
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3). It is the first attempt to quantitatively obtain the im-

portance of user behavior consideration: 20% less EVs ac-

cepting V2G control than expected corresponds to 1.2% in-

crease in total grid cost in the case study. 

The mere revenue from flexible pricing is proved to be in-

sufficient for attracting “full responsiveness” of all users. It is 

of great importance to investigate the charging behavior and 

CDC of local EV users in advance for the reliability worth 

assessment proposed in this paper. With appropriate customer 

compensation and system planning scheme, the total planning 

cost is the lowest with an acceptable reliability level. 
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