
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 4, APRIL 2020 1503

Operational Perspectives Into the Resilience of
the U.S. Air Transportation Network

Against Intelligent Attacks
Karl H. Thompson and Huy T. Tran

Abstract— Protecting critical infrastructures has been deemed
a natural security imperative by the U.S. Government for the
past 20 years. The resilience of transportation infrastructures
is of particular importance, as they serve a crucial rule in
economic development and citizen mobility throughout the world.
This paper presents a defender–attacker–defender model to
analyze the potential impacts of intelligent attacks and worst
case disruptions on the U.S. air transportation network, as well
as possible protection steps that could be taken to minimize the
negative outcomes of such disruptions. Furthermore, to analyze
the effects of intermodal connections on the resilience of the
air network, a second layer representing a hypothetical bus
network is added to the model and studied. We use these models,
supported by publicly available data, to identify routes likely
to be attacked by intelligent adversaries and those critical to
the resilient operation of the air network in such scenarios.
We also demonstrate the potential benefits of intermodal linkages
toward maintaining network operations and identify promising
research directions for this type of integrated and intelligent
transportation system.

Index Terms— Transportation, networks, optimization, air,
resilience, intelligent, attacker, defender, intermodal, multimodal.

I. INTRODUCTION

PROTECTING critical infrastructures is of utmost
importance to national security. Lewis [1] traces the

development of the US Government’s approach to critical
infrastructure protection (CIP) over the past few decades.
He notes that it has evolved over the years from initial
awareness of the problem due to the emerging need to counter
terrorism to what it is today: a strategy characterized by
risk-informed policy-making guided by practical infrastructure
assessments.

Infrastructure resilience in the context of CIP is defined
according to Presidential Policy Directive (PPD) 21 [2] as
“the ability to prepare for and adapt to changing condi-
tions and withstand and recover rapidly from disruptions.”
The directive goes further to assert that this definition
encompasses disruptions resulting from not only natural inci-
dents, but also human-caused accidents and malicious attacks.
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Faturechi and Miller-Hooks [3] conducted a review of litera-
ture on the assessment of transportation infrastructure perfor-
mance in disasters, both natural and man-made. The authors
determined that while resilience is widely regarded as one
of seven key performance characteristics, along with risk,
vulnerability, survivability, reliability, flexibility and robust-
ness, it is unique in two aspects: its inherent property of
accounting for the strengths and weaknesses measured by
other characteristics, and its encapsulation of the benefits of a
system’s flexibility which enables it to adapt to post-disruption
circumstances. These aspects position resilience as one of the
more important system characteristics with regard to CIP.

Transportation infrastructure has been studied extensively
over the past few decades. In the early nineties, Winston [4]
underlined problems facing both ground and air transportation
and emphasized the significant potential benefits that efficient
infrastructure policy would have. Since then, many authors
have continued to study the problem, and renew the call to
establish effective policy positions to maintain and protect dif-
ferent transportation systems [5]–[7]. Air transportation in par-
ticular, as a subset of the greater transportation infrastructure,
is of valuable interest in the context of resilience analysis due
to its substantial scale and economic role. Comprising approx-
imately 19,700 airports, heliports, and sea plane bases [8]
connected by hundreds of thousands of individual routes,
analysis of the US air transportation network plays a major role
in understanding the resilience of the overall transportation
system. Also of interest are the interdependencies between
the air network and other transportation modes, and how they
affect its own resilience.

This paper develops a defender-attacker-defender model
for exploring and improving the resilience of transportation
networks against attacks by an intelligent adversary, through
quantification of potential disruption impacts and identification
of optimal mitigation actions and critical routes for resilient
operation. The developed model is applied to the US air trans-
portation network, based on publicly available data from the
Bureau of Transportation Statistics that show average traffic,
ticket cost, and distance across routes in the air network.
We also extend this model to consider intermodal connec-
tions between air and ground transportation infrastructures.
Our results demonstrate potential benefits of intelligent and
integrated transportation systems towards overall resilience in
various disruption scenarios.
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II. BACKGROUND

A. Critical Infrastructures

Much work has been dedicated to the study of critical
infrastructures in recent years in an effort to understand
their vulnerabilities and interdependencies and, by extension,
the optimal options for their protection. In its 1997 report,
the President’s Commission on Critical Infrastructure Protec-
tion [9] found that while there was no indication of an imme-
diate threat, a wide range of infrastructure assets remained
highly susceptible to unsophisticated attacks, both by foreign
and domestic actors. The report also highlighted the role
growing complexity and interconnectivity among infrastruc-
ture systems could inadvertently play towards exacerbating the
effects of an outage or attack on even a minor network com-
ponent. Extending this analysis, Rinaldi et al. [10] explored
the various connections and dependencies between infrastruc-
ture systems, identified a number of common infrastructure
characteristics that are central to interdependency studies,
and added that further analysis of these connections is
crucial to optimal infrastructure operation and defense.
Zimmerman [11] theorized that decisions made throughout
infrastructure project phases from planning to operation and
maintenance could cause many unintended vulnerabilities due
to limited understanding of these complexities, and therefore
developed a method to track and share a catalog of infrastruc-
ture interdependencies between decision makers to mitigate
this problem.

Researchers have taken different approaches in search
of ways to reinforce and protect critical infrastructures.
Brown et al. [12] introduced the application of new bi-level
and tri-level optimization models to improve the resilience
of various infrastructure networks such as the US Strategic
Petroleum Reserve and Border Patrol against terrorist attacks,
utilizing open-source historical data sets pertaining to these
networks. Scaparra and Church [13] developed an approach
for solving the r-interdiction median problem with fortification
(RIMF) that can be utilized to form an effective defensive
strategy for a given infrastructure system that increases its
resilience in the face of an attack. Murray et al. [14] estab-
lished a spatial optimization mathematical model called the
flow interdiction model (FIM) that is able to assess the worst-
case effect on network flow given a specified interdiction
scenario. While these three approaches are similar, they do
differ in a few ways. Most notably, the first two favor a multi-
level formulation for their representation of the interdiction
problem, while the third favors a single-level formulation.
Primary interdiction metrics used by these methods are arc
length, weighted distance, and network flow. Building on
these methods, our analysis utilizes operational cost, defined
as a function of network flow and routing expense, as its
main interdiction metric. Details of our approach follow
in Section 3.

B. Transportation Networks

Transportation infrastructure has been a key subject of
resilience studies recently due to its elevated importance
to the economy and industry supply chain. Authors have

therefore attempted to devise methods to assess and improve
the resilience of different transportation systems to a wide
range of real and artificial disturbances. Cox et al. [15]
presented a metric for assessing operational resilience of
transportation systems based on the economic resilience metric
first introduced by Rose [16], and applied it to a case study
of the London 2007 bus and subway terror attacks. In a
different direction, Alderson et al. [17] analyzed the resilience
of the San Francisco regional highway system accounting for
peak travel periods and nonlinear traffic congestions using a
sequential tri-level program.

Resilience of air transportation systems, on the other hand,
has been studied less extensively. This may be attributed
to their inherent large scales and dependence on consoli-
dated regional operators. Nevertheless, some researchers have
attempted to tackle the problem of modeling and assessing the
resilience of air transportation networks using specific regions
as case studies. For example, Cardillo et al. [18] examined
the dynamics of air transport in Europe using a multi-level
modeling approach, and analyzed the resilience of the network
against random flight failures. Dunn and Wilkinson [19] also
analyzed air transportation resilience from a network theoretic
point of view, and suggested two methods for increasing
resilience: the first involves adaptively modifying the network
route structure in response to disruptions, while the sec-
ond proposes permanently changing route structure in favor
of an optimized network topology. In a different direction,
Dray et al. [20] and Marzuoli et al. [21], [22] investigated the
effectiveness of using ground transportation, in coordination
with air operations, to alleviate airline costs and passenger
delays in the aftermath of airport-wide disruptions in Europe
and the United States, respectively. Their results suggest that
both metrics could indeed be reduced, and the air network
resilience ultimately improved, with the use of ground trans-
portation to optimally reroute stranded passengers within the
connected networks. These works, however, do not thoroughly
consider optimal disruptions caused by intelligent adversaries,
nor the ways in which their effects could be mitigated through
network defense plans.

C. Sequential Game Models

Attacker-defender (AD) models are an approach to analyz-
ing critical infrastructure resilience with explicit considera-
tion of intelligent adversaries and optimal recovery actions.
AD models, and their extension defender-attacker-defender
(DAD) models, are multi-level, deterministic Stackelberg
games that mimic the dynamics of a real system with operators
and defenders, as well as possible attackers. They were first
introduced as infrastructure resilience assessment tools by
Brown et al. [12], building on the works of Golden [23]
and Wood [24]. The fundamental premise of these models
is the simulation of three opposing agents (two in the case
of AD models). The first agent is a ‘defender’ (described by
Brown as the system operator or user) who seeks to minimize
the network’s operational cost through the efficient routing
of system resources. The second is an ‘attacker’ that seeks to
inflict the most damage on system components given a limited
offensive budget in order to drive the operational cost up.
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And finally, the third agent is a second ‘defender’ that aims to
mitigate the attacker’s actions through the defense of system
components given a limited defensive budget.

Since their introduction, DAD models have been used in a
variety of applications. Ding et al. [25] developed a DAD
model that represents a power grid defense problem with
variable attacks and load types, and demonstrated results for
a bulk power reliability test system. Costa et al. [26] also
examined the power grid fortification problem; however, they
formulated it as a two-stage optimization program where the
defender’s decisions directly influence the attacker’s uncer-
tainty set, impeding their ability to target certain network
components. In the field of networked systems, Rao et al. [27]
considered the problem of defending connected classes of
infrastructures from physical and cyber attacks that target
their communications. They formulated the problem as a
bi-level AD game, where the costs and benefits of offensive
and defensive actions are defined using sum-form and product-
form functions.

This paper examines our development of a DAD model for
the air network resilience problem. Sections 3 and 4 detail
limitations of existing DAD models for our problem, our
methodology to address these issues, and results from appli-
cation of our approach to the US air transportation network
based on publicly available data.

III. METHODS

Previous efforts have demonstrated the suitability and effec-
tiveness of DAD models towards assessing the resilience
of large-scale infrastructure systems. However, one common
theme in many of these studies is the focus on physical
elements, such as electrical transmission lines, transformers,
highway segments, etc., as the subject of both attacks and
reinforcements. Our analysis, which examines the long-term
resilience of the commercial US air transportation network,
is approaching the problem from a different angle. In our
view, air routes, despite being virtual components of the air
network, are as critical to the resilience of the overall system as
the physical airports that support them. The premise for this
notion is twofold. First, due to commercial and competitive
considerations, airline operators rarely modify or cancel key
routes in the network that drive most of the passenger traffic.
This allows us to assume that all air routes can be considered
as fixed assets, such as roads and bridges, within a reasonable
time period without a significant loss of accuracy. Second,
while it undoubtedly carries a much more significant impact,
an airport-wide disruption is far less likely to happen than a
disruption to a specific route. Indeed, adverse weather con-
ditions, human disturbances during flights, and other factors
make route-specific disruptions a more common occurrence,
and therefore, an appropriate subject for air transportation
resilience analysis. Furthermore, many implementations of
DAD models allow traffic over the entire network to be
reoptimized after an attack. However, we believe that re-
optimization of the entire network is unrealistic for air traffic
operations, where traffic is not continuous but discrete. Instead,
our approach assumes that traffic and supply and demand
on individual air routes are not affected by disruptions on

other routes, and therefore only affected passengers are
rerouted after an attack.

Our DAD model takes a tri-level formulation. The system
operator (i.e. the first ‘defender’) aims to reroute all passengers
affected by attacker actions to their destinations in a cost-
effective manner, based on supply and demand. The attacker
agent seeks to maximize the operator’s operational costs by
targeting and disrupting key air routes. Finally, the defender
agent attempts to mitigate potential damage to the network
resulting from the attacker’s actions by fortifying a number of
routes in a way that makes them invulnerable to attack. The
network supply and demand are extracted directly from the
Airline Origin and Destination Market Survey (DB1BMarket)
dataset [28], issued by the Bureau of Transportation Statistics
(BTS). The dataset contains a 10% sample of airline tickets
sold by reporting carriers from Q4 2012 to Q3 2017, showing
the origin and destination airports, ticket price, number of
passengers, and the flying distance for each entry. In our
model, the number of passengers and average ticket price on
each route taken from the dataset are used as proxies for the
network supply and demand at each airport (node) and the
cost for traversing a route (arc), respectively.

This formulation models worst-case air route disruptions.
These disruptions could be due to intentional, man-made
events, such as terrorist attacks, or the result of natural
disasters, such as hurricanes or wildfires. We present the
formulation specifically in the context of intelligent attacks
under the assumption that an intelligent attacker rationally
optimizes its attack to inflict maximum damage on network
operations. In contrast, non-intelligent attacks, like severe
weather disruptions, are not guaranteed to cause the maximum
amount of damage to the network, and are better modelled
as random variables. We focus on intelligent and intentional
attacks within this study to understand impacts of potential
worst-case disruptions. Additionally, we find that analyzing
disruptions from a route-centric, rather than an airport-centric,
perspective is beneficial as it opens the door to finding
potential new measures to improve the air network’s long-
term resilience. Such measures could include establishing new
modes of transportation with the objective of augmenting
critical air routes, as well as the identification of ground trans-
portation routes that could be utilized for passenger rerouting
after a disruption. Finally, we note that our formulation could
be modified in the future to model more detailed temporal
effects of attacks, which in turn would enable the analysis of
specific times or days of interest to system planners.

A. Problem Formulation

Our resilience assessment problem is formulated as a non-
linear optimization program with the following form and
constraints:

min
D

max
A

min
P,R

∑
[i, j ]∈E

[
ti j +hi j Ai j

(
1−Dij

)]
Pij +

∑
n,q∈N

lqn Rqn

(1)
s.t.

∑
[i, j ]∈E

Ai j ≤ AB ∀ [i, j ] ∈ E (2)

∑
[i, j ]∈E

Dij ≤ DB ∀ [i, j ] ∈ E (3)
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TABLE I

DEFINITIONS OF MODEL INPUT DATA AND DECISION VARIABLES

∑
(n, j )∈Z

Pqnj −
∑

(i,n)∈Z

Pqin

− Rqn ≤ mqn ∀n, q ∈ N (4)∑
q∈N

Pqi j − Pij = 0 ∀ [i, j ] ∈ E (5)

Aij ∈ {0, 1} ∀ [i, j ] ∈ E (6)
Dij ∈ {0, 1} ∀ [i, j ] ∈ E (7)
Rqn ≥ 0 ∀n, q ∈ N (8)
0 ≤ Pij + Pji ≤ ui j ∀ [i, j ] ∈ E (9)

where [i, j ] ∈ E refers to an undirected route between
airports i and j , (i, j) ∈ Z refers to a directed route between i
and j , and the indices n, q ∈ N represent airport nodes. The
set E is defined as the set of all undirected routes, Z is the
set of all directed routes, and N is the set of all nodes.

The input data and decision variables included in
Equations (1-9) are defined in Table I. The variable ti j

represents the per-passenger operational cost incurred on the
system operator for utilizing route i j . Variables hi j and lqn are
arbitrary high-value penalty figures designed to incentivize the
system operator to only utilize functional routes and to reroute
as many passengers as possible, respectively. Both variable
values are arbitrary, but for computational stability purposes,
hi j should be, at a minimum, an order of magnitude higher
than lqn . The variable ui j represents the upper limit of traffic
on a given route at any time, and is taken to be 190% of
the nominal traffic value. Finally, variable mqn constitutes the
supply and demand of passengers with respect to each pair of
airports q and n.

The objective function, shown in Equation (1), is a three-
level problem. The first level represents the system operator
attempting to minimize operational costs incurred by airlines
through rerouting of passengers affected by disrupted routes.

This process is represented mathematically through the mul-
tiplication of the ticket cost variable ti j and the number of
route travelers variable Pij on all air routes. In the last term
of the equation, the variable Rqn exists as a deterrent to
prevent the network operator from failing to route travelers to
their destinations through the use of the penalty variable lqn .
The second level of the problem represents the system attacker
aiming to maximize that same operational cost to the system
operator through the disruption of a set of air routes, which in
turn incurs additional rerouting costs. This process is achieved
mathematically by the attacker agent selecting one or more
routes in Aij that then get multiplied by the penalty vari-
able hi j , effectively making it impossible for the first-level
operator to utilize disrupted routes to transport passengers. The
third level then represents the system defender attempting to
mitigate the effects of the attacks by ‘defending’ one or more
air routes in a way that makes them invulnerable to attack. This
objective is mathematically attained by the

(
1 − Dij

)
term,

which effectively prevents attacks on defended routes.
Eight constraints are included in the optimization problem,

represented by Equations (2-9). Constraints (2) and (3) ensure
that the number of attacked and defended air routes fall within
their allocated, respective budgets. Constraints (6) and (7)
define the acceptable values for an air route to have in the
arrays Aij and Dij as the integers zero (for non-attacked
and non-defended routes) and one (for attacked and defended
routes). Constraints (4) and (5) ensure that original passenger
supply and demand is satisfied by making certain at each
airport, for each airport pair, that the sum of the number of pas-
sengers arriving minus the number of passengers departing and
the number of passengers who are stranded is less than or equal
to the original data-driven passenger supply and demand
value. Constraint (8) defines the variable Rqn , representing the
number of unrouted passengers at each airport for each airport
pair, as a positive integer. Finally, Constraint (9) sets an upper
limit for the number of passengers travelling on each route at
any given time according to the values of the variable ui j .

In our representation of the airline operational cost as the
product of ticket cost and passenger numbers, we assume that
this product serves as a good proxy for the true operational
cost incurred on the airlines. For example, we assume this cost
accounts for wages for crew, ground, and management teams
among other expenses, due to the proportionality of these costs
to flight sizes.

B. Decomposition Algorithm

Our formulation of the problem, represented by
Equations (1-9), is solved computationally by converting it
into a mixed-integer, non-linear optimization program in the
form:

z = min
d∈D

max
a∈A

min
p∈P,r∈R

f (a, d, p, r), (10)

f (a, d, p, r)

=
∑

[i, j ]∈E

[
ti j + hi j ai j

(
1 − di j

)]
pi j

+ [
t j i + h j i a j i

(
1 − d j i

)]
p j i

+
∑

n,q∈N
lqnrqn + lnqrnq (11)
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A =
{

a ∈ {0, 1}|E ||
∑

a∈Ai j
ai j ≤ AB∀ [i, j ] ∈ E

}
(12)

D =
{

d ∈ {0, 1}|E ||
∑

d∈Dij
di j ≤ DB∀ [i, j ] ∈ E

}
(13)

P =
{

p ∈ R|N ||E ||
∑

(i, j )∈Z
pni j − pnj i ≤ mnn +rnn∀n ∈ N

}
(14)

R =
{

r ∈ R|N ||E ||rqn + rnq ≥ 0∀n, q ∈ N
}

(15)

Such a non-linear program, however, is often difficult
to compute directly. To reach more efficient computa-
tion, researchers have historically resorted to decomposi-
tion [29], [30] and implicit enumeration techniques [31],
among other approaches. For our model, we apply elements of
the decomposition technique described by Alderson et al. [32].
The full decomposition algorithm works as follows:
1. Initialization:

a) Input DB1BMarket data and optimality tolerance ε > 0.
b) Set the lower bound (LB) to −∞ and the upper
bound (UB) to ∞.
c) Set loop counter K to 1.
d) Set initial defense plan D(0)

i j = 0.
2. Attack Subproblem:

a) Given defense plan D(K )
i j , compute attack plan A(K )

i j and

rerouted traffic P(K )
i j such that zU P

AS − zL O
AS ≤ εzL O

AS .
b) If zU P

AS < UB, update UB to zU P
AS .

c) If any previous attack is repeated, add the temporary
constraint

∑
A(K )

i j − A(K−1)
i j ≥ 1.

d) If UB LB ≤ ε LB, end the program.
3. Defense Subproblem:

a) Compute defense plan D(K+1)
i j , such that zU P

DS −
zL O

DS ≤ εzL O
DS .

b) If zL O
DS > LB, update LB to zL O

DS .
c) If UB LB ≤ ε LB, end the program.

4. Looping:
a) Update loop counter K = K + 1.
b) Return to step 2a.

The terms zL O and zU P refer to the lower and upper bounds
of the value of the respective subproblem’s objective function
at the termination of the algorithm. In step one, the program
processes the DB1B input data and sets values to the various
constants and variables described in the problem formulation
as well as the optimality tolerance ε, loop counter K , and
initial defense plan D(0)

i j . Steps two and three describe the
computation of the various iterations of the attack and defense
plans, respectively, until an optimal solution is found and
program is ended. In step two, to avoid the repetition of
previous attacks, which could lead to cycling, we enforce that
a new attack plan be found that contains at least one unique
route not included in previous plans. Finally, if the program
is not terminated in either step two or three, the loop counter
is updated, and the two subproblems are re-solved until an
optimal, or near optimal, objective value is reached.

C. Application Problem

Our main data source is the DB1BMarket table within
the Airline Origin and Destination Survey database that is

maintained by the BTS. As the table only contains a 10%
sample of tickets sold by reporting air carriers, a need arises
for a way to extrapolate the data to reflect actual air traffic
figures on the entire air network that would be impacted by
a disruption on any given route. Our data, spanning a five-
year period from Q4 2012 to Q3 2017, contains records for
approximately 240.6 million passengers flying domestically.
This figure translates to a daily average of 131.8 thousand
passengers across all domestic US routes. The Federal Avi-
ation Administration (FAA) estimates the daily number of
passengers flying in and out of US airports to be approximately
2.587 million [33]. Moreover, the Department of Transporta-
tion, in its US International Air Passenger and Freight Sta-
tistics report [34], estimates that approximately 217.3 million
passengers have travelled to and from the United States by
air for the year-ended March 2017. Assuming mostly uniform
travel patterns throughout the year, we can then calculate
the average international travel rate to be 595.3 thousand
passengers per day. We finally subtract the international travel
rate from the total travel rate to obtain an average net domestic
travel volume of 1.992 million daily passengers. Using linear
interpolation, we multiply our DB1B data points by a factor
of 1.992/0.1318=15.11 to obtain an approximate figure for
daily traffic volume on all domestic US air routes, visualized
in Figure 1.

Figure 1 shows the average ticket costs for domestic US
air routes plotted versus their average estimated daily traffic
volumes. The number of routes composing the study’s air
network, and that are represented in the graph, is 15,469.
They were selected after eliminating all routes with fewer
than 1,000 annual passengers from the raw dataset. The routes
connect a total of 327 airports, all of which are commercial
service airports. In the figure, we notice three notable groups
of routes: a group comprising routes that are high in both
average ticket costs and number of daily passengers such as
JFK-LAX and JFK-SFO, a group comprising routes with
relatively higher ticket costs but lower average passenger
traffic such as PHL-SFO and EWR-HNL, and finally a group
composed of routes with relatively higher average daily num-
ber of passengers but lower ticket costs such as LAX-SFO
and LGA-ORD. In the next section, we examine the overall
network dynamics, as well as the relative vulnerabilities of
these groups.

IV. RESULTS

We now examine some practical results pertaining to
the resilience of the US air transportation network. First,
we observe and interpret the application of the model to the air
network for multiple cases representing different attacker and
defender capabilities. This is achieved by varying the attack
and defense budget parameters, effectively limiting the number
of air routes the attacker and defender can target and defend,
respectively. We then investigate the potential effect integration
with other transportation modes could have on the resilience
of the air network. To this end, a second layer is added to the
model representing an operational bus network that has the
same nodes as the air network but with a different topology
representing the US highway network.
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Fig. 1. Distribution of the number of daily travelers and ticket costs across all domestic US air routes. Circle sizes represent relative route lengths.

A. Operational Scenarios of Interest

As defender-attacker-defender models are intended to pro-
vide general insights to inform high-level policy decisions, it
follows that the quality of these recommendations increases
with the number of data points used as their underlying basis.
In other words, the higher the number of cases an optimization
model is used to analyze, the better overall idea we get of
the implications of its results due to various uncertainties and
assumptions made in the model. For our air network model,
we chose to examine 25 cases representing attack and defense
budgets ranging from one to five. We find that this is an ade-
quate choice due to the longer run times incurred by additional
run cases and the limited value added by them. The average
computing time for each case is approximately 20 minutes
on a quad-core second-generation Intel i7 processor. Before
attempting to analyze the overall network behavior, however,
we first examine three individual run cases of interest: a case
with a larger attack budget than defense, a case with the
opposite conditions, and a case with balanced budgets.

Figure 2 shows the resulting network dynamics for a case
where the defender’s budget is five times that of the attacker.
We see that the defender used their budget to defend key routes
connecting different regions, while the attacker made use of
their limited resources to target a high-traffic, regional route.
This result underscores the advantages of a higher defense bud-
get with respect to protecting critical resources, and in effect,
limiting the effects of a potential attack. Based on the inset
close-up image of passenger rerouting operations following the
attack in Figure 2, we observe that the system operator made
use of multiple airports in Southeastern California to reroute
passengers, with a majority of the traffic passing through the
LAX and SAN airports.

We now consider the case where the attacker’s budget
outweighs the defender’s, also with a margin of five to one,
shown in Figure 3. We notice that the attacker is now able to
more freely target long-range routes connecting the coasts.
The result is a near six-fold increase in the number of
disrupted passengers compared to the first case, as well as
a 14% increase in the per-passenger rerouting cost incurred
on the system operator. In practice, this result underscores the
potential cost of failing to adequately appropriate funds for the
protection of critical infrastructures in an active rather than a
reactive manner.

We also explore the effect of balanced attacker and defender
budgets, with each set to five. The resulting network behavior
is shown in Figure 4. We notice that the attacker is still
able to target multiple long-range routes. However, thanks
to the added resources, we see that the defender is able
to minimize the overall effect of the attacker’s actions by
protecting important routes in different regions of the network.
The outcome is a 38% decrease in the number of disrupted
travelers compared to the previous case, and a 9% decrease in
the per-passenger rerouting cost. This result further cements
our view that system operators and policy makers alike ought
to keep track of potential threats to their critical systems, and
devise appropriate defense strategies to protect them. Table II
summarizes numbers of disrupted travelers and per-passenger
rerouting costs for these three cases.

B. Air Network Resilience Metrics

Two key metrics of interest to this study are the number of
potentially impacted travelers for each of the attack scenarios,
and how effective increasing the defense budget is at reducing
that impact. Figure 5 shows the average number of daily
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Fig. 2. Best defended (black) and attacked (red) routes for an Attack budget of one and a defense budget of five, with routes used for Optimal passenger
rerouting (blue).

Fig. 3. Best defended (black) and attacked (red) routes for an attack budget of five and a defense budget of one, with routes used for optimal passenger
rerouting (blue).

travelers that could potentially be disrupted given different
attack and defense scenarios. As expected, we notice that
as the attack budget grows, the number of affected travelers
generally does as well, if the defense budget remains constant.
Similarly, as the defense budget is increased, we notice a
decrease in the number of disrupted travelers in some cases
for the same attack budget. While the results are inconclusive,
they are indicative of a trend of the potential disruption
being proportional to the discrepancy between offensive and

defensive resources. In practical terms, these results indicate
that in order to minimize the effects of an attack on a given
network, defensive capabilities should sufficiently surpass that
of a potential attacker, or the estimated impact of a natural
disaster.

Further examination of the results displayed in
Figure 5 reveals that, in some cases, in order to minimize
operational costs due to route disruptions, the system
defender opts to utilize increased defense budgets to protect
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Fig. 4. Best defended (black) and attacked (red) routes for attack and defense budgets of five, with routes used for optimal passenger rerouting (blue).

Fig. 5. Estimated number of daily affected passengers for attack and defense
budgets ranging from one to five.

TABLE II

SUMMARY OF THE THREE TEST CASES

certain critical routes, even at the cost of increasing the
overall number of disrupted passengers. This observation
highlights a key difference between passenger-centric, and
our operator-centric view of the air network passenger
rerouting problem. In a passenger-centric model, the number
of impacted travelers is generally expected to increase as the

Fig. 6. Most frequently attacked and defended routes based on twenty-five
test cases representing attack and defense budgets ranging from one to five.

attack budget increases for a constant defense budget, and
vice versa. However, in our model, due to the incorporation of
average route ticket cost as a proxy for the operational cost,
and the use of this operational cost along with route traffic
to formulate the attacker, defender, and operator actions, we
reach a non-monotonic network behavior that attempts to
attain optimal choices on a case-by-case basis.

We also examine the routes that are most attacked and
defended in our 25 test cases to characterize the relative
importance of individual routes in the network. Figure 6 shows
the frequency with which different routes were chosen by the
model to be attacked or defended. Inspecting the top ten routes,
we notice that they all contain some combination of the east
coast’s JFK and LGA and west coast’s LAX, LAS and SFO
airports, either interchangeably, or with other key airports. This
result indicates that connectivity between the two coasts is
potentially a more important factor in shaping the resilience
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Fig. 7. Most frequently used routes for rerouting operations following
one or more attacks. Circle sizes represent relative route lengths.

of the US air network than other criteria such as sheer traffic
volume.

Looking back at the distribution of ticket prices and pas-
senger traffic in Figure 1, we notice that the four right-
most routes – namely, JFK-LAX, JFK-SFO, LGA-ORD, and
LAX-SFO – also dominate the attack and defense frequency
chart. Conversely, routes such as EWR-SFO and BOS-SFO
do not appear in the attacked nor the defended routes at all,
despite both also having high daily passenger traffic and
average ticket costs. This observation ties back to our original
point that airport characteristics, beyond traffic and ticket cost,
play an important role in the selection of routes for attack and
defense. Specifically, the more connected an airport is to the
rest of the network, the more valuable each of its routes are,
from a resilience point of view, compared to other routes of
comparable statistics but with less connected airports.

Relatedly, an analysis of the most frequently used routes
by the network operator for rerouting air passengers in the
aftermath of an attack is conducted, the results of which
are shown in Figure 7. We again notice the prevalence of
routes containing at least one key east or west airport. This
is to be expected as a natural result of the more frequent
disruption of routes serviced by these airports. Nevertheless,
their relatively higher significance to the resilience of the air
network in general is an area that could benefit from future
research.

C. Bus Network Integration Case Study

In order to fully investigate the different elements that
impact the resilience of a complex infrastructure system such
as the US air transportation network, it is necessary to also
consider its connections to and interdependencies with other
transportation networks. As a first step, the bus network is a
prime candidate for such analysis because of its ubiquitous
availability and considerable popularity for low to mid-range
travel. The Highway Performance Monitoring System (HPMS)
geospatial database [35], a component of the National Trans-
portation Atlas Database (NTAD) database issued by BTS,
contains nation-wide data on the performance, characteristics,
and conditions of all public roads in the US. Using this data,

we construct a bus network for preliminary exploration of this
problem, with road segments from HPMS serving as network
edges and airport locations from DB1B serving as network
nodes. We integrate this bus network into our optimization
program described in Section III.A by allowing the network
operator to reroute passenger over air or bus routes connecting
their original origin and destination pairs. In order to model
the temporal component of rerouting operations, we use BTS’s
Airline On-Time Performance Database [36] to define an
average flight time for each origin-destination airport pair.
To derive a similar metric for the bus network, we calculate
the ground travel time between each airport pair by summing
the lengths of the HPMS road segments along the shortest
path divided by segment speed limits. For road segments with
missing associated HPMS speed limits, we use an assumed
speed limit of 65 mph.

To define an approximate measure of the operational cost
associated with the two transportation modes, without explicit
pricing data for bus transportation, we use the following
formulation:

operational cost = ticket price×(idle time+travel time)

where the bus ticket price is assumed to be 30% of that for
air travel for sub-300-mile trips, 60% for sub-800-mile trips,
and 100% for over-800-mile trips, where air travel costs are
based on DB1B data. Idle times for both air and bus modes are
estimated to be: 60, 60, and 90 minutes for air and 15, 30, and
60 minutes for bus transport for sub-300-mile, sub-800-mile,
and over-800-mile trips, respectively.

The bus network is then added as a second layer to the
air network in our mathematical model. To determine the
practical implications of this change, we re-run the case
with an attack budget of five and a defense budget of one,
given the multi-modal network structure. Figure 8 shows the
impacted routes for the integrated network. We observe that
the attacker focused their effort on disrupting mid and long-
range routes connecting key east and west coast airports to
those in the inland. The defender, to counteract this plan, opted
to protect inter-coast connectivity by defending the JFK-LAX
route. In this case, the number of daily affected passengers is
estimated to be 36,881, and the average rerouting cost incurred
on the system operator per passenger is $724. Comparing this
result to that of the air model alone in Table II indicates
that an integration between the air and bus networks has the
potential to not only reduce the number of affected passengers
in the case of a disruption to air operations, but also lower
the overall passenger rerouting cost resulting from such a
disruption.

Figure 9 shows the most attacked and defended air routes
across 25 run cases of the integrated model. In contrast to the
same analysis of the air network alone, shown in Figure 6,
two differences stand out between the two. First, we observe
that the JFK-LAX route was chosen to be protected in all
25 run cases, compared to only 17 in the first analysis. This
result is to be expected, and it can be attributed to the large
annual traffic volume on the route and the lack of direct ground
transportation options that could alleviate passenger rerouting
burden in the event of a disruption. Second, we note that the
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Fig. 8. Best defended (black) and attacked (red) routes for an attack budget of five and a defense budget of one, with air (blue) and bus (orange) routes
used for optimal passenger rerouting.

Fig. 9. Most frequently attacked and defended air routes in the integrated air-
bus network. Plotted are twenty-five test cases representing attack and defense
budgets ranging from one to five.

JFK-SFO route has been targeted 60% less frequently than in
the first analysis. This metric could be a result of the persistent
protection of the JFK-LAX route and the existence of a variety
of transportation options between LAX and SFO that rendered
an attack on the route less effective.

These preliminary results highlight the potential advan-
tages an integration between the different transportation
modes could have on the overall transportation system’s
resilience and reliability. This effort would require cooperation
between federal, state and local authorities, as well as private
contractors, airlines, and regional transportation companies in
appropriating the required funding and planning the needed

infrastructural changes that would facilitate such an integra-
tion. New high-speed, low-cost transportation modes would
also likely be needed to fill the gap in transportation range and
accessibility between the long-range-but-high-cost air travel
and low-cost-but-short-range bus travel.

V. CONCLUSION

This paper presents the use of a three-stage DAD opti-
mization model to analyze the resilience of the US air trans-
portation network against an intelligent adversary. The model
approximates the dynamics between three opposing agents: an
operator that seeks to minimize the network’s operational cost
through optimal passenger rerouting, an attacker that aims to
maximize that cost by disrupting a number of network routes,
and a defender that is tasked with mitigating the actions of
the attacker by protecting key routes. The network topology
and behavioral characteristics used in the model are derived
from operational data issued by the Bureau of Transportation
Statistics. An exploratory case study that examines potential
benefits of inter-modal connections on the resilience of the air
network is also considered. We find that in order to maintain
a resilient air network, appropriate defensive resources ought
to be dedicated to augmenting routes maintaining connectiv-
ity between the two coasts. We also find that multi-modal
integration shows promise in reducing the impact of worst-
case attacks on the air network, as measured through the
number of disrupted passengers and the cost associated with
rerouting passengers. We conclude that multi-modal integra-
tion between different transportation modes is potentially a
highly valuable endeavor for the public and private sectors to
pursue.
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