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Feature Pyramid and Hierarchical Boosting
Network for Pavement Crack Detection
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Abstract—Pavement crack detection is a critical task for
insuring road safety. Manual crack detection is extremely time-
consuming. Therefore, an automatic road crack detection method
is required to boost this progress. However, it remains a
challenging task due to the intensity inhomogeneity of cracks
and complexity of the background, e.g., the low contrast with
surrounding pavements and possible shadows with similar in-
tensity. Inspired by recent advances of deep learning in com-
puter vision, we propose a novel network architecture, named
Feature Pyramid and Hierarchical Boosting Network (FPHBN),
for pavement crack detection. The proposed network integrates
context information to low-level features for crack detection in a
feature pyramid way. And, it balances the contributions of both
easy and hard samples to loss by nested sample reweighting in a
hierarchical way during training. In addition, we propose a novel
measurement for crack detection named average intersection over
union (AIU). To demonstrate the superiority and generalizability
of the proposed method, we evaluate it on five crack datasets and
compare it with state-of-the-art crack detection, edge detection,
and semantic segmentation methods. Extensive experiments show
that the proposed method outperforms these methods in terms
of accuracy and generalizability. Code and data can be found in
https://github.com/fyangneil/pavement-crack-detection

Index Terms—Pavement crack detection, deep learning, feature
pyramid, hierarchical boosting.

I. INTRODUCTION

RACK is a common pavement distress, which is a
C potential threat to road and highway safety. To maintain
the road in good condition, localizing and fixing the cracks is a
vital responsibility for transportation maintenance department.
One major step of the task is crack detection. However,
manual crack detection is considerably tedious and requires
domain expertises. To alleviate the workload of expertisers
and facilitate the progress of road inspection, it is necessary
to achieve automatic crack detection.

With the development of technologies in computer vision,
numerous efforts have been devoted to applying computer
vision technologies to perform automatic crack detection [/1]-
[7]. In early days, Liu et al [8] and Kaseko et al [6]] use
threshold-based approaches to find crack regions based on the
assumption that real crack pixel is consistently darker than
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Fig. 1: The architecture of HED [16] and FPHBN (ours). Red
and green dashed boxes indicate feature pyramid and hierar-
chical boosting modules, respectively. The thicker outlines of
feature maps means the richer context information.

its surroundings. Currently, most of the methods are based
on hand crafted feature and patch-based classification. Many
types of such features have been used for crack detection such
as: Gabor filters [9] [10], wavelet features [11], Histogram
of Oriented Gradient (HOG) [12], and Local Binary Pattern
(LBP) [13]]. These methods encode the local pattern but lack
global view of crack. To conduct crack detection from a global
view, some works [4]], [14], [15] carry out crack detection by
taking into account photometric and geometric characteristics
of pavement crack images. These methods partially eliminate
noises and enhance continuity of detected cracks.

While these methods perform crack detection in a global
view, their detection performance are not superior when deal-
ing with cracks with intensity inhomogeneity or complex
topology. The failures of these methods can be attributed to
lacking robust feature representation and ignoring interdepen-
dency among cracks.

To overcome the aforementioned shortcomings, CrackForest
[2] incorporates complementary features from multiple levels
to characterize cracks and takes advantage of the structural
information in crack patches. This method is shown to outper-
form state-of-the-art crack detection methods like CrackTree
[4], CrackIT [17]], Free-Form Anisotropy (FFA) [18]], and
Minimal Path Selection (MPS) [14]]. However, CrackForest [2]
still performs crack detection based on hand crafted feature,
which is not discriminative enough to differentiate the cracks
from complex background with low level cues.

Recently, deep learning has been widely applied in computer
vision for its excellent representation capability. Some works
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Fig. 2: Visualization of crack detection results of the proposed

method and state-of-the-art edge detection, semantic segmen-
tation methods.
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[1] [19] [20] [5] have been devoted to leverage this property of
deep learning to learn robust feature representation for crack
detection. Zhang et al [[1]], Pauly et al [19], and Eisenbach et
al [20]] use deep learning to perform patch-based classification
for crack detection, which is inconvenient and sensitive to
patch scale. Schmugge et al [5] treats crack detection as a
segmentation task, which classifies each pixel as crack or
background category using deep learning. Although [5] gains
decent performance, crack detection is very different from
semantic segmentation in terms of ratio of foreground and
background. In semantic segmentation, the foreground and
background are not as unbalanced as those in crack detection.

In contrast, crack detection task is more similar to edge
detection in terms of the foreground to background ratio. In
addition, crack and edge detection share similar characteristics
in shape and structure. Due to these common characteristics, it
is intuitive to adopt edge detection methods to crack detection.
For instance, Shi et al [2] successfully apply structure forest
[21]], a classical edge detection method, for crack detection.
However, this approach is based on hand crafted features,
lacking of representative ability.

To learn robust feature representation and to cope with the
highly skewed classes problem for automatic crack detection,
we propose a Feature Pyramid and Hierarchical Boosting
Network (FPHBN) to automatically detect crack in an end-to-
end way. FPHBN adopts Holistically-nested Edge Detection
(HED) [16], a breakthrough edge detection method, as its
backbone architecture.

Fig. [I] shows the architecture configuration of HED [16]
and the proposed FPHBN. The difference is that FPHBN in-
tegrates a feature pyramid module and a hierarchical boosting
module into HED [16]. The feature pyramid is built through
a top-down architecture to introduce context information from
higher-level to lower-level feature maps. This can enhance
feature representation in lower-level layers, leading to a repre-
sentative capability improvement to distinguish the crack from
background. The hierarchical boosting is proposed to reweight
samples from top layer to bottom layer, which makes the
FPHBN pay more attention to hard examples.

Fig. [2] shows the detection results of FPHBN and state-
of-the-art edge and semantic segmentation methods: HED
[16], Richer Convolutional Features for edge detection (RCF)
[22]], Fully Convolutional Networks for semantic segmentation
(FCN) [23]]. From Fig. |2, we can see that detection result of
FPHBN is much clearer than those of other methods and has

Fig. 3: Representative crack images (upper row) and ground
truth (lower row) from five datasets.

less false positives.

To evaluate crack detection algorithms, Shi et al [2] use
precision and recall (PR) as measurements. The detected pixels
are treated as true positives if these pixels locate within
five pixels from labeled pixels. This criterion is too loose
when the crack annotation is with a large width. Moreover,
PR cannot appropriately demonstrate the overlapping extent
between detected crack and ground truth, especially when
crack is large. For example, in Fig.[3] we see that ground truth
in the third column is much wider than others. In this situation,
PR is not precise enough to measure the detection results. Thus
in addition to PR, we propose average intersection over union
(AIU) as a complementary measurement for evaluating crack
detection. By computing the average intersection over union
(IU) over different thresholds, AIU takes the width information
into consideration to evaluate detections and illustrates the
overall overlap extent between detections and ground truth.
Thus the AIU can be used to determine if the width is precisely
estimated, which is critical to assess the damage degree of
pavement.

The contributions of this paper can be summarized in the
following aspects:

o A feature pyramid module is introduced for crack detec-
tion. The feature pyramid is constructed by a top-down
architecture which incorporates context information from
top to bottom, layer by layer.

o A hierarchical boosting module is proposed to reweight
samples layer by layer so as to make the model focus on
hard samples.

¢ A new measurement is proposed to evaluate crack de-
tection methods. The measurement not only takes into
account the crack width, but also avoids the annotation
bias.

The rest of the paper is organized in the following way:
Related works are reviewed in Section [} Section [ITI] describes
the details of the proposed FPHBN; Section [[V| demonstrates
experiments design and analyzes experimental results. Section
[Vl is the conclusion.

II. RELATED WORKS

In this section, we first briefly review traditional works on
crack detection. Then, deep learning-based crack detection
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methods are discussed to demonstrate their superiority to
traditional approaches.

A. Traditional crack detection methods

In this work, we refer to as traditional crack detection meth-
ods the crack detection methods that are based on non-deep
learning techniques. Over the past years, numerous researchers
have been devoted to automating crack detection. These works
can be divided into five categories: 1) wavelet transform, 2)
image thresholding, 3) hand crafted feature and classification,
4) edge detection-based methods, and 5) minimal path-based
methods.

1) Wavelet transform: In [11], a wavelet transform is ap-
plied to a pavement image, such that the image is decomposed
into different frequency subbands. The distresses and noise are
transformed into high and low amplitude wavelet coefficients,
respectively. Subirats et al [24] build a complex coefficient
map by performing a 2D wavelet transform in a multi-scale
way; then crack region can be obtained by searching the
maximum wavelet coefficients from largest to smallest scale.
However, these approaches cannot deal with cracks with low
continuity or high curvature property since the anisotropic
characteristic of wavelet.

2) Image thresholding: In [25]-[28]], preprocessing algo-
rithms are first used to reduce the illumination artifacts. Then
thresholding is applied to the image to yield crack candidates.
The processed crack image is further refined using morpho-
logical technologies. [4] [[15] [29] are variants of this group,
which leverage graph-based methods for crack candidates
refinement.

3) Hand crafted feature and classification: Most of the
current crack detection methods are based on hand crafted
features and patch-based classifier. In [[12], [13[], [30]-[32],
hand crafted features, e.g., HOG [12]], LBP [[13]], are extracted
from an image patch as a descriptor of crack, followed by a
classifier, e.g., support vector machine.

4) Edge detection-based methods: Yan et al [33]] introduce
morphological filters into crack detection and removes noise
with a modified median filter. Ayenu-Prah et al [34] apply
Sobel edge detector to detect crack after smoothing image and
removing speckle noise by a bidimensional empirical mode
decomposition algorithm. Shi et al [2]] apply random structure
forest [21]] to exploit structural information for crack detection.

5) Minimal path-based methods: Kass et al [35] propose
to use minimal path method to extract simple open curves in
images for given both endpoints of a curve. Kaul et al [36] pro-
pose to detect same type of contour-like image structures using
an improved minimal path method. The improved method
needs less prior knowledge of both topology and endpoints
of the desired curves. Amhaz et al [14]] propose a two-stage
method for crack detection: first select endpoint at local scale;
second select minimal paths at global scale. Nguyen et al 18]
present a method to take into account intensity and crack shape
features for crack detection simultaneously by introducing
Free-Form Anisotropy [[18].

B. Deep learning-based crack detection

Recent years, deep learning achieves unprecedented success
in computer vision [37]. A lot of works try to apply deep
learning to crack detection task. Zhang et al [1]] first propose
a relatively shallow neural network, consisting of four convolu-
tional layers and two fully connected layers, to perform crack
detection in a patch-based way. Moreover, Zhang et al [
compare their method with hand crafted feature based methods
to demonstrate the advantages of feature representation of deep
learning. Pauly et al [19] apply a deeper neural network to
classify crack and non-crack patches and demonstrates the
superiority of deeper neural network. Feng et al [38]] propose a
deep active learning system to deal with limited label resources
problem. Eisenbach et al [20] present a road distress dataset for
training deep learning network and first evaluates and analyzes
state-of-the-art approaches in pavement distress detection.

The aforementioned approaches treat crack detection as a
patch-based classification task. Each image is cropped to small
patches, then a deep neural network is trained to classify
each patch as crack or not. This way is inconvenient and
sensitive to patch scale. Due to the rapid development in
semantic segmentation task [23]] [39] [40], Schmugge et al [35]
present a crack segmentation method based on SegNet [39] for
remote visual examination videos. This method performs crack
detection by aggregating the crack probability from multiple
overlapping frames in a video.

III. METHOD
A. Overview of proposed method

In this paper, crack detection is formulated as a pixel-
wise binary classification task. For a given crack image, a
designed model yields a crack prediction map, where crack
regions have higher probability and non-crack regions have
lower probability. Fig. ] shows the architecture of the pro-
posed Feature Pyramid and Hierarchical Boosting Network
(FPHBN). FPHBN is composed of four major components:
1. a bottom-up architecture for hierarchical feature extraction,
2. a feature pyramid for merging context information to lower
layers using a top-down architecture, 3. side networks for deep
supervision learning, and 4. a hierarchical boosting module to
adjust sample weights in a nested way.

Given a crack image and corresponding ground truth, the
crack image is first fed into the bottom-up network to extract
features of different levels. Each conv layer corresponds to a
level in the pyramid. At each level, except for the fifth one, a
feature merging operation is conducted to incorporate higher-
level feature maps to lower-level ones layer-by-layer to make
context information flow from higher to lower ones. At each
level the feature maps in top-down architecture are fed to a
convolutional filter of size 1 x 1 for dimension reduction and a
de-convolutional filter to resize feature map to the same size of
the input image. Then each resized feature map is introduced
to the hierarchical boosting module to yield crack prediction
map and compute sigmoid cross-entropy loss with ground
truth. The convolutional filter, de-convolutional filter, and loss
layer at each level comprise a side network. Finally, all the
five resized feature maps are fused together by a concatenate
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Fig. 5: Visual comparison of crack detection of HED [16] and
HED [16] with feature pyramid (HED-FP). Top row is the
results of HED [16]; bottom is the results of HED-FP.

layer followed by a 1 x 1 convolutional filter to produce a crack
prediction map and compute a final sigmoid cross-entropy loss
with ground truth.

B. Bottom-up architecture

In our method, the bottom-up architecture consists of the
convl-conv5 parts of VGG [41]] including max pooling layers
between convolutional layers. Through the bottom-up architec-
ture, convolutional networks (ConvNets) compute a hierarchi-
cal feature representation. Due to the max pooling layers, the
feature hierarchy has an inherent multi-scale, pyramid shape.

Unlike multi-scale features built upon multi-scale images,
the multi-scale feature computed by deep ConvNets is more
robust to variance in scale [42]. Thus it facilitates recognition
on a single input scale. More importantly, deep ConvNets
make the progress of producing multi-scale representation
automated and convenient. This is much more efficient and
effective than computing engineered features on various scales
of images.

In the bottom-up network, the in-network hierarchy pro-
duces feature maps of different spatial resolutions, but intro-
duces large context gaps. The bottom levels of feature maps
are of higher resolution but have less context information than

Fig. 6: Illustration of feature merging operation in feature
pyramid. The feature maps from conv5 are upsampled twice
first and then concatenated with the feature maps from conv4.

top levels of features. In contrast, the top levels of feature maps
are lower resolution but have more context information. The
context information is helpful for crack detection. Therefore,
if these feature maps are directly fed into each side network,
the output from different side network varies significantly.

The first row in Fig. [5] shows the five side outputs and fused
output. We note that the side outputs 1-3 are very messy and
hardly recognized; the side outputs 4-5 and fused are much
better than the side outputs 1-3. In addition, we find that
although fused result is clearer than side outputs 1-4, it is still a
little blur. This is because fused result merges the information
from the side outputs 1-4, which is cluttered and blur. The
reason causes these messy side outputs is that the lower-level
layers lack context information.

C. Feature pyramid

To deal with the aforementioned issue, we introduce context
information to lower-level layers to generate a feature pyramid
through a top-down architecture, which is inspired by [42]. As
shown in Fig. 4 the top-down architecture feeds the fifth and
fourth levels of feature maps into a feature merging operation
unit, then feeds the output and third level of feature maps
to next merging operation unit. This operation is conducted
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progressively until the bottom level. In this way, we produce a
set of new feature maps, which contain much richer features at
each level than that in bottom-up network except for fifth level.
From Fig. 5] we note that after introducing feature pyramid,
the side outputs 1-4 and fused result are significantly clearer
than counterparts from HED [16]. Combining multi-scale
context information into low-level feature maps by the feature
pyramid module benefits the performance improvement of
low-level side networks. Specifically, detecting various scales
of crack requires different extents of context information.
Since the deeper convolution layers have much larger receptive
fields than the shallower ones, the high-level features contain
more context information than the low-level ones. Therefore,
when high-level features are combined with low-level ones,
the low-level side networks utilize the multi-scale context
information to increase its detection performance and to boost
the fused detection performance.

The feature merging operation of the feature pyramid is
illustrated in Fig. [l We use the feature merging operation
at the fourth level as an example to demonstrate the concrete
operations. The feature maps from conv5 are upsampled twice
and concatenated with the feature maps from conv4. The
concatenated feature maps are fused and reduced by a 1 x 1
convolutional layer of 512 filters. Note that from conv3 to
convl level, the filter number is set to 256, 128, and 64,
respectively.

D. Side networks

The side network at each level performs crack predic-
tion individually. This configuration of learning is named as
deeply supervised learning, proposed in [43] and justified
considerably useful for edge detection in HED [16]. The key
characteristic of the deep supervision is that instead of per-
forming recognition task at the highest layer, the recognition
is conducted at each level through the side network. Let us
first introduce HED [16] in the context of crack detection.

1) Training Phase: We denote our crack training dataset as
S=(X,,Y,),n=1,...,N, where sample X,, and Y,, denote
the raw crack image and the corresponding binary ground
truth crack map, respectively. For convenience, we drop the
subscript n in subsequent paragraphs. The parameters of the
entire network are denoted as 1. Assume there are M side
networks in HED [16]]. Each side network is associated with
a classifier, in which the corresponding weights are denoted
as w = (w, ..., w™)). The objective function is defined as

M
Laige(W,w) = > 40, (W, w™), (1)
m=1
where /,;4. represents the image-level loss function for a side
network. During the image-to-image training, the loss function
is computed over all pixels in a training image X = (x;,7 =
1,...,|X|) and crack map Y = (y;,i = 1,...,|Y]), 5 € {0,1}.
However, this kind of loss function regards positives and
negatives equally, which is not suited for practical situation.
For a typical crack image, as shown in Fig. [3] the distribution
of crack and non-crack pixels is heavily biased. Most regions
of the image are non-crack pixels. HED [16] uses a simple

strategy to automatically balance the contribution to the loss
from positives and negatives. A class-balancing weight 3 is
introduced in a pixel-wise way. Index ¢ is over the image
spatial dimensions of image X. Then [ is used to offset the
imbalance between crack and non-crack pixels. Specifically,
Equation [I] is rewritten as

(5 Wowt™) = =B 3™ log Py(yi = 11X; W,w(™)
1€EY L
—(1=B) Y log Pi(y; = 0|X; W,w™),
€Y.
where = |Y_|/|Y]| and 1 — 8 = |Y,|/|Y]. |Y-| and |Y.]
denote the crack and non-crack pixels in ground truth image,
respectively. P;(y; = 1|1X;W,w™) = o(a™) € [0,1] is
computed by a sigmoid function o(.) on the activation at
pixel i. At each side output network, we then obtain crack

2

map predictions V") = ¢(A")), where A" = {a{™ i =
1,...,|Y|} are activations of the side output of layer m.

To leverage the side output prediction, a ‘weighted-fusion’
layer is added to the network and simultaneously learns the
fusion weight with all side networks during training. The loss
function of the fusion layer L. becomes

L juse(W,w,h) = Ds(Y, Yyuse), 3)

where quse = 5(Z%=1 hmAgZ)e) where h = (hy, ..., hpr) is
the fusion weight. Ds(.,.) is the distance between the fused
predictions and the ground truth crack map, which is set to a
sigmoid cross-entropy loss. For the entire network, the overall

object function needs to be minimized is
(W, w, h)* = argmin(Lgige (W, w) + Luse(W,w, ), (4)

2) Test Phase: During testing, for image X, a set of crack
map predictions are yielded from both side network and the
fusion layer:

VY — CNN(X, (W, w, h)*),

)~ side

(qusm Y(l)

side’ """

&)
where CNN(.) denotes the crack maps generated by HED [16].

E. Hierarchical boosting

Although HED [16] takes into account the issue of un-
balanced positives and negatives by using a class-balancing
weight 3, it cannot differentiate easy and hard samples.
Specifically, in crack detection, the loss function Equation
is dominated by easily classified negative samples since
the samples are highly skewed. Thus, the network cannot
effectively learn parameters from misclassified samples during
training phase.

To address this problem, a common solution is to perform
some forms of hard mining [44] [45] that samples hard sam-
ples during training or more complex sampling/reweighting
schemes [46]. In contrast, Lin et al [47]] propose a novel loss
to down-weight well-classified examples and focus on hard
examples during training.

Different from these previous works, we design a new
scheme, hierarchical boosting, to reweight samples. From Fig.
[ we note that in the hierarchical boosting module, from top to
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bottom, a sample reweighting operation is conducted layer by
layer. This top-down hierarchical is inspired by the observation
that in Fig. [5] the side output predictions are similar with each
other. This means each side network has similar capability
for crack detection. In addition, the five side networks are
sequential in terms of information flowing. For example, the
fourth side network needs the feature maps from the fifth side
network to compute crack prediction map and loss. If the upper
network can inform lower network which samples are hard to
classify, the lower networks will pay more attention to these
hard samples. Through this communication, crack detection
performance can be improved. Therefore, we propose the
hierarchical boosting method to deal with the hard sample
problem by facilitating communication between adjacent side
networks.

Specifically, given P™*! the output from the m + 1 th side
network, the difference between P™1! and ground truth is
denoted as D™+ = (d7"*' i = 1,..,]Y]|). Thus, the loss
function Equation 2] of the m-th side network can be rewritten
to

LW,y = =8 3 |dr+ [ log Py = 11X; W, w(™)
ieyy
—(1=8) 3 17 log P,(yi = 0|X; W,w(™),
i€y
(6)
where d;”“ is the difference at pixel ¢, m is integer and
1 < m < M —1. Thus, the prediction of deeper side network is
leveraged to weight loss term in the shallower side network to
encourage the communication among different side networks.

IV. EXPERIMENTS AND RESULTS

In this section, we describe the implementation details of
the proposed FPHBN. Then datasets for evaluation, compared
methods, and evaluation criteria are introduced. Finally, we
present and analyze experimental results.

A. Implementation details

The proposed method is implemented on the widely used
Caffe library [48]] and an open implementation of FCN [23]].
The bottom-up part is the convl-conv5 of pretrained VGG
[41]. The feature pyramid is implemented by using Concat
and Convolutional layers in Caffe. Sample reweighting is
implemented using python.

1) Parameters setting: The hyperparameters include: mini-
batch (10), learning rate (le-8), loss weight of each side
network (1), momentum (0.9), weight decay (0.0002), ini-
tialization of the each network (0), initialization of fusion
layer (0.2), initialization of filters in feature merging operation
(Gaussian kernel with mean 0 and std 0.01), the number of
training iteration (40,000), learning rate divided by 10 per
10,000 iterations. The model is saved every 4,000 iterations.

2) Upsampling operation: Within the proposed FPHBN,
the upsampling operations are implemented with in-network
de-convolutional layers. Instead of learning the parameters of
de-convolutional layers, we freeze the parameters to perform
bilinear interpolation.

3) Sample reweighting: For sample reweighting, as there is
no layer in Caffe to complete such function, we implement it
with a python layer and integrate it to the proposed network
using python Caffe interface. To make sure the performance
gained is not caused by our implementation, we first conduct
experiments using our implemented class-imbalance cross-
entropy loss and compare it with the original implementation.
We find that the experimental results are same.

4) Computation platform: At inference phase, deep learn-
ing based methods are tested on a 12G GeForce GTX TITAN
X. Non-deep learning method is tested on a computer with
16G RAM and i7-3770 CPU@3.14GHz.

B. Datasets

1) CRACKS500: We collect a pavement crack dataset with
500 images of size around 2,000 x 1,500 pixels on main
campus of Temple University using cell phones. This dataset
is named as CRACKS500. Each crack image has a pixel-
level annotated binary map. To facilitate future research, we
share the CRACKS00 to the research community, To our
best knowledge, this dataset is currently the largest publicly
accessible pavement crack dataset with pixel-wise annotation.
The dataset is divided into 250 images of training data, 50
images of validation data, and 200 images of test data.

Due to limited number of images, large size of each image,
and restricted computation resource, we crop each image
into 16 non-overlapped image regions and only the region
containing more than 1,000 pixels of crack is kept. Through
this way, the training data consists of 1,896 images, validation
data contains 348 images, test data contains 1124 images. The
validation data is used to choose the best model during training
process to prevent overfitting. Once the model is chosen, it is
tested on the test data and other datasets for generalizability
evaluation.

2) GAPs384: German Asphalt Pavement Distress (GAPs)
dataset is presented in [20] to address the issue of com-
parability in the pavement distress domain by providing a
standardized high-quality dataset of large scale. The GAPs
dataset includes a total of 1,969 gray valued images, with
various classes of distress such as cracks, potholes, inlaid
patches, et. al. The image resolution is 1,920 x 1,080 pixels
with a per pixel resotution of 1.2mm x 1.2mm. For more
details of the dataset, the readers are referred to [20]

The actual damage in an image is enclosed by a bounding
box. This type of annotation is not fine enough to training
deep model for a pixel-wise crack prediction task. To ad-
dress this problem, we manually select 384 images from the
GAPs dataset, which only includes crack class of distress,
and conduct pixel-wise annotation. This pixel-wise annotated
crack dataset is named as GAPs384 and used to test the
generalization of the model trained on CRACKS500.

Due to the large size of image and limited memory of GPU,
each image is cropped to 6 non-overlapped image regions of
size 640 x 540 pixels. Only the image regions with more than
1,000 pixels are remained. Thus we gain 509 images for test.

3) Cracktree200: Zou et al [4]] present a dataset to evaluate
their proposed method. The dataset includes 206 pavement
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TABLE I: The AIU of FPHBN, HED-FP, HED [16]], RCF [22],
FCN [23]] at the chosen iteration on the CRACKS500 validation
dataset.

Methods
AIU

FPHBN
0.560

HED-FP
0.553

HED
0.541

RCF
0.455

FCN
0.455

images of size 800 x 600 with various types of cracks.
Therefore, we name this dataset as Cracktree200. This dataset
is with challenges like shadows, occlusions, low contrast,
noise, etc. The annotation of the dataset is pixel-wise label,
which can be directly used for evaluation.

4) CFD: Shi et al [2] propose an annotated road crack
dataset called CFD. The dataset consists of 118 images of
size 480 x 320 pixels. Each image has manually labeled crack
contours. The device used to acquire the images is an iPhone5
with focus of 4mm, aperture of f/2.4 and exposure time of
1/135s. The CFD is used for evaluating model.

5) Aigle-RN & ESAR & LCMS: Aigle-RN is proposed in
[14], which contains 38 images with pixel-level annotations.
The dataset is acquired at traffic speed for periodically moni-
toring the French pavement surface condition using Aigle-RN
system. ESAR is acquired by a static acquisition system with
no controlled lighting. ESAR has 15 fully annotated crack
images. LCMS contains 5 pixel-wise annotated crack images.
Since the three datasets have small number of images, they are
combined to one dataset named AEL for model evaluation.

C. Compared methods

1) HED: HED [16] is a breakthrough work in edge de-
tection. We train HED [16|] for crack detection on Crack500
training data and choose the best model using Crack500
validation data. During training the hyperparameters are set
as in FPHBN except for the feature merging operation unit.

2) RCF: RCF [22] is an extension work based on HED
[16] for edge detection. The training and validation procedure
are same as in HED [16]]. The hyperparameters are set same
as those in HED [16] except the learning rate, which is set to
le-9.

3) FCN: We adopt FCN-8s [23] by replacing the loss
function with sigmoid cross-entropy loss for crack detection.
The training and validation data used are same with those
in HED [16]. The hyperparameters: base learning rate is set
to 0.00001, momentum is set to 0.99, weight decay is set to
0.0005.

4) CrackForest: We train CrackForest [2] on CRACKS500
training data. All the hyperparameters are set as default.

D. Evaluation criteria

Since the similarity with edge detection, it is intuitive
to directly leverage criteria of edge detection to conduct
evaluation for crack detection. The standard criteria in edge
detection domain are the best F-measure on the data set for
a fixed scale (ODS), the aggregate F-measure on the data set
for the best scale in each image (OIS).

The definitions of the ODS and OIS are max{2£2xLE: .

N i ot
t=001,0.02,...,0.99} and 1= >N max{2 F2X0 ¢ =

AlU over iterations
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Fig. 7: The curves of AIU over training iterations of FPHBN,
HED-FP, HED [16], RCF [22], FCN [23] on CRACKS500
validation data.

TABLE II: The AIU, ODS, and OIS of compared methods on
CRACKS500 test dataset.

Methods AIU ODS OIS time/image (s)
HED [16] 0.481 | 0.575 | 0.625 | 0.067 (GPU)
RCEF [22] 0.403 | 0490 | 0.586 | 0.066 (GPU)
FCN [23] 0.379 | 0.513 | 0.577 | 0.101 (GPU)
CrackForest [2]] N/A 0.199 | 0.199 2.951 (CPU)
FPHBN 0.489 | 0.604 | 0.635 | 0.197 (GPU)

0.01,0.02, ...,0.99}. The ¢ denotes the threshold, i is the index
of image, N;q is the total number of images. P; and IR; are
precision and recall at threshold ¢ over dataset. P} and R}
are computed over image ¢. For the detailed definition of the
two criteria, the readers are referred to [49]]. The edge ground
truth annotation is a binary boundary map, which is different
from the ground truth annotation in some crack datasets, where
crack annotation is a binary segmentation map. Therefore,
during evaluation both crack detection and ground truth are
first processed by non-max suppression (NMS), then thinned to
one pixel wide before computing ODS and OIS. Note that the
maximum tolerance allowed for correct matches of prediction
and ground truth is set to 0.0075.

The proposed new measurement, AIU, is computed on
the detection and ground truth without NMS and thinning
operation. AIU of an image is defined as

1y Ny
Ny < N} + N} — N},

)

where N; denotes the total number of thresholds ¢t &
[0.01,0.99] with interval 0.01; for a given threshold t, N},
is the number of pixels of intersected region between the
predicted and ground truth crack area; N; and N, ; denote the
number of pixels of predicted and ground truth crack region,
respectively. Thus the AIU is in the range of O to 1, the higher
value means the better performance. The AIU of a dataset is
the average of the AIU of all images in the dataset.
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Fig. 8: The evaluation curve of compared methods on five datasets. The upper row is curve of IU over thresholds. The lower

row is PR curve.
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Fig. 9: The visualization of detection results of compared methods on five datasets.

E. Experimental results

1) Results on CRACK500: On CRACKS500, we use the
validation data to select the best training iteration. From Fig.
we can note that the AIU metric tends to converge over the
training iterations. Based on the curve, we choose the model
when its AIU curve has converged. In other word, FPHBN,
HED [16]], and RCF [22] are chosen at 12,000th iteration, FCN
[23] is chosen at 36,000th iteration. From TABLE [I, we see
that on validation dataset FPHBN surpasses RCF [22], HED
[16], and FCN [23] in terms of AIU.

We explore the contributions of each component of the
proposed method on the validation set of CRACKS500. As
shown in TABLE I, we first introduce Feature Pyramid to
HED, i.e., HED-FP. Compared with the original HED, we
observe that the AIU improves from 0.541 to 0.553. We
then integrate the Hierarchical Boosting into HED-FP, i.e.,
FPHBN. The AIU increases from 0.553 to 0.560 compared
with HED-FP. Both the Feature Pyramid and Hierarchical

Boosting contribute to the improvement of the performance.

On the Crack500 test dataset, the evaluation curves and
detection results of compared methods are shown in the first
column of Fig. [§] and the first row of Fig. 9] respectively. For
intersection over union (IU) curve, we see that FPHBN always
has considerably promising IU over various thresholds. For
precision and recall (PR) curve, FPHBN is the highest among
all compared methods. Since the output of CrackForest [2] is
a binary map, we cannot compute the IU and PR curve and
just list the ODS and OIS value in related tables.

As shown in TABLE |[lI} FPHBN improves the performance
by 5% relative to HED [16]], second best, in terms of ODS.
In the first row of Fig.[9] we note that FPHBN gains visually
much clearer crack detections than others.

2) Results on GAPs384.: From Fig. [§] and TABLE we
see that the proposed FPHBN achieves best performance.
However, the gained performance is much lower than that on
other datasets. It is because the GAPs384 dataset has non-
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Fig. 10: The visualization of detection results of compared methods on special cases, i.e., shadow, low illusion, and complex

background.

TABLE III: The AIU, ODS, and OIS of competing methods
on GAPs384 dataset.

Methods AIU ODS OIS time/image (s)

HED [16] 0.069 | 0.209 | 0.175 | 0.086 (GPU)

RCF [22] 0.043 | 0.172 | 0.120 | 0.083 (GPU)

FCN [23]] 0.015 | 0.088 | 0.091 | 0.119 (GPU)

CrackForest [2] | N/A | 0.126 | 0.126 | 4.101 (CPU)

FPHBN 0.081 | 0.220 | 0.231 | 0.241 (GPU)
TABLE 1V: The AIU, ODS, and OIS of compared methods

on Cracktree200 dataset.

Methods AIU ODS OIS time/image (s)
HED [16] 0.040 | 0.317 | 0.449 0.130(GPU)
RCF [22] 0.032 | 0.255 | 0.487 | 0.128 (GPU)
FCN [23] 0.008 | 0.334 | 0.333 | 0.166 (GPU)
CrackForest [2] | N/A | 0.080 | 0.080 | 5.091 (CPU)
FPHBN 0.041 | 0.517 | 0.579 | 0.377 (GPU)

uniform illumination and similar background. For example, in
the last row of Fig. [0] a sealed crack is by the side of a true
crack and misclassified as a crack. In addition, we note that
the AIU value of all compared methods are very small. This is
because the ground truth of GAPs384 is one or several pixels
wide.

3) Results on Cracktree200: From the second column of
Fig. 8] and the second row of Fig.[9] we can see that FPHBN
gains best performance. Especially, in PR curve, FPHBN
improves the performance by a large margin. In TABLE
we see that FPHBN outperforms HED by 63.1% and 28.9%
in ODS and OIS, respectively.

4) Results on CFD: From the third column of Fig. [§] we
see that FPHBN achieves superior performance compared to
HED [16], RCF [22], and FCN [23]. In TABLE [V] FPHBN
improves HED [16] by 15.2% and 12.6% in terms of ODS
and OIS, respectively.

5) Results on AEL: As shown in Fig. [§] and TABLE
although RCF [22] gains the highest value on IU curve, the
best AIU is achieved by FPHBN. From Fig. [0] we note that

TABLE V: The AIU, ODS, and OIS of competing methods
on CFD dataset.

Methods AIU ODS OIS time/image (s)
HED [16] 0.154 | 0.593 | 0.626 | 0.047 (GPU)
RCF [22] 0.105 | 0.542 | 0.607 | 0.040 (GPU)
FCN [23] 0.021 | 0.585 | 0.609 0.07 (GPU)
CrackForest [2] | N/A | 0.104 | 0.104 | 3.742 (CPU)
FPHBN 0.173 | 0.683 | 0.705 | 0.133 (GPU)

TABLE VI: The AIU, ODS, and OIS of competing methods
on AEL dataset.

Methods AIU ODS OIS time/image (s)
HED [16] 0.075 | 0.429 | 0.421 0.098 (GPU)
RCF [22]] 0.069 | 0.469 | 0.397 | 0.097 (GPU)
FCN [23] 0.022 | 0.322 | 0.265 | 0.128 (GPU)
CrackForest [2] | N/A | 0.231 | 0.231 2.581 (CPU)
FPHBN 0.079 | 0.492 | 0.507 | 0.259 (GPU)

FPHBN has much less false positives than the other methods.
In TABLE [VI, FPHBN increases ODS and OIS by 4.9% and
20.4% compared with the second best, respectively.

E Cross dataset generalization

To compare the generalizability of compared methods,
we compute mean and standard deviation of the ODS and
OIS over datasets GAPs384, Cracktree200, CFD, and AEL.
TABLEVI]| shows the quantitative results. We note that the
proposed FPHBN achieves best mean ODS and OIS and
surpasses the second best by a large margin. This demonstrates
that the proposed method has significantly better generalizabil-
ity than state-of-the-art methods. The reason of the superior
performance of the proposed method can be attributed in
two aspects: 1. multi-scale context information is fed into
low-level layers via the top-down feature pyramid structure
to enrich the feature representation in low-level layers for
crack detection; and 2. hard example mining is performed
by the hierarchical boosting which helps the side networks
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TABLE VII: The mean and standard deviation (std) of ODS
and OIS over datasets GAPs384, Cracktree200, CFD, and
AEL.

Method ODS (mean=std) | OIS (mean4std)
HED [16] 0.387 + 0.164 0.418 + 0.186
RCF [22] 0.35940.175 0.403 4+ 0.207
FCN [23] 0.332+0.203 0.325 + 0.215

CrackForest [2] 0.135+0.067 0.135+0.067

FPHBN 0.478+0.192 0.505 + 0.201

to perform crack detection in a complementary way. The low-
level side networks focus on pixels that are not well classified
by high-level ones, such that the final detection performance
is improved.

G. Speed comparison

We test the inference time of compared methods on all
datasets. Since CrackForest [2] is not implemented on GPU,
only CPU time is listed. From TABLE [I| to [VI we note
that the proposed FPHBN is slower than HED [16] around
0.086s to 0.249s. This is because the feature pyramid increases
the computation expense for each side network. Although
our method is not real time, the speed can be improved by
the development of hardware and the technology of model
compression [50].

H. Special cases discussion

To further compare and analyze the proposed and state-
of-the-art methods, we conduct experiments on some special
cases, i.e., complex background, low illumination, and shadow.
Fig.[I0shows representative results of all methods. In complex
background, the real crack is surrounded by sealed crack. In
this case, all algorithms misclassify the sealed crack as crack.
Compared with the state-of-the-art methods, the proposed
FPHBN yields a clearer and better result (the first row of Fig.
[I0). The reason of the failure of these methods is the similar
pattern between crack and sealed crack.

In low illumination condition, all methods fail to detect
crack. This is because these scenarios are unseen in training
data. An appropriate data augmentation may solve the problem
to certain extent. For the scene with shadow, compared with
HED [16], the proposed FPHBN produces much fewer false
positives. This indicates that FPHBN is more robust to shad-
ows than HED [16]], which can be contributed to the feature
pyramid and hierarchical boosting.

V. CONCLUSION

In this work, a feature pyramid and hierarchical boosting
network (FPHBN) is proposed for pavement crack detection.
The feature pyramid is introduced to enrich the low-level
feature by integrating semantic information from high-level
layers in a pyramid way. A hierarchical boosting module is
proposed to deal with hard examples by reweighting samples
in a hierarchical way. Incorporating the two components to
HED [16] results in the proposed FPHBN. A novel crack
detection measurement, i.e., AIU has been proposed. Extensive
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