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Benchmark data and method for real-time people
counting in cluttered scenes using depth sensors

ShiJie Sun, Naveed Akhtar, HuanSheng Song, ChaoYang Zhang, JianXin Li, Ajmal Mian

Abstract—Vision-based automatic counting of people has
widespread applications in intelligent transportation systems,
security, and logistics. However, there is currently no large-scale
public dataset for benchmarking approaches on this problem.
This work fills this gap by introducing the first real-world RGB-
D People Counting DataSet (PCDS) containing over 4, 500 videos
recorded at the entrance doors of buses in normal and cluttered
conditions. It also proposes an efficient method for counting peo-
ple in real-world cluttered scenes related to public transportations
using depth videos. The proposed method computes a point cloud
from the depth video frame and re-projects it onto the ground
plane to normalize the depth information. The resulting depth
image is analyzed for identifying potential human heads. The
human head proposals are meticulously refined using a 3D human
model. The proposals in each frame of the continuous video
stream are tracked to trace their trajectories. The trajectories are
again refined to ascertain reliable counting. People are eventually
counted by accumulating the head trajectories leaving the scene.
To enable effective head and trajectory identification, we also
propose two different compound features. A thorough evaluation
on PCDS demonstrates that our technique is able to count people
in cluttered scenes with high accuracy at 45 fps on a 1.7 GHz
processor, and hence it can be deployed for effective real-time
people counting for intelligent transportation systems.

Index Terms—People counting, intelligent transportation, com-
puter vision, large-scale data, cluttered scenes, RGB-D videos.

I. INTRODUCTION

Automatic people counting in real-time has multiple appli-
cations in intelligent public transportation systems [1], [2],
[3]. On effective method to reliably accomplish this task
is to directly analyze continuous video streams of vehicle
entrance and exit doors, and perform automatic counting of
people in those videos. For intelligent public transportation
systems, such as buses with on-line monitoring, knowing
the number of people entering and leaving the transport
can be used in e.g. dynamic planning to avoid congestion.
It also promises significant economic benefits by improving
transportation scheduling in accordance with human traffic on
stations at different hours of operation.
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Computer Vision techniques are well-suited to the problem
of automatic people counting for public transportations. How-
ever, using conventional RGB videos for this purpose is chal-
lenged by multiple issues resulting from real-world conditions
such as clutter, occlusions, illumination variations, handling
shadows etc. In comparison to the conventional video systems,
RGB-D cameras (e.g. Kinect V1 [4], Prime Sense Camera [5]])
can mitigate these issues by providing ‘depth’ information
of the scene in addition to its color video. Nevertheless,
effective people counting in real-world conditions using depth
information still remains a largely unsolved problem due to
noise and occlusion [6].

Vision-based people counting is a comprehensive task that
involves object detection, recognition, and tracking. Exist-
ing approaches in this area can be broadly categorized into
three classes: (a) regression-based methods, e.g. [7l], [8l]
(b) clustering-based methods, e.g. [9], [10]], and (c) detection-
based methods, e.g. [[11]], [12]. Regression-based methods aim
at learning a regression function using features of detection
regions and exploit that for counting. Clustering-based meth-
ods track a set of features of target objects, and cluster their
trajectories for counting them. Detection-based methods have
a common pipeline, comprising foreground extraction, target
localization, tracking, and trajectory classification. We can
further divide these methods based on the data types they
use e.g. color/depth/hybrid video methods (see Section [lI| for
the details). Although useful, the above mentioned approaches
face some common problems while counting people under
practical conditions in real-time, which include; restriction of
camera angles [[13[], [[14]], [L5]; computational inefficiency [16],
and failing to handle cluttered scenes [17]. Moreover, to the
best of our knowledge, there is currently no large-scale public
dataset available to benchmark methods for real-world people
counting.

In this paper, we first introduce a large-scale dataset for
the problem of counting people in real-world scenes of
bus entrance/exit doors. The dataset, called People Counting
DataSet (PCDS) contains 4,689 videos acquired with the
Kinect V1 camera [4] that contains RGB and depth sensors.
The dataset can be publicly downloaded using the following
URL (https://github.com/shijieS/people-counting-dataset.git).
Each video in the dataset is labeled with the number of people
entering or exiting the bus door. The data has been collected
on three different bus routes at different times of the day on
4 - 6 different days, and presents large variations in terms of
illumination, occlusion, clutter and noise. As a second major
contribution, we propose a real-time method for counting
people passing through cluttered scenes. The proposed method
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Fig. 1. Schematics of the proposed approach: The RGB-D camera provides color and depth video streams. The proposed method uses a depth frame (Ip)
to extract the foreground for which 3D-point cloud is computed. The point-cloud is orthogonally projected onto the ground plane to generate a height image.
Multiple potential head locations in the height image are computed by analyzing object features. These potential head proposals are refined and tracked

continuously to count people entering or exiting a bus door.

uses the depth video stream for people counting.

Figure I]illustrates the pipeline of the proposed method. Our
approach assumes the setting where the camera is mounted
on top of the area to be monitored (see ‘Camera Calibration’
in the figure). This is the most common setting in scenarios
like bus doors, corridors, entrances/exits to market places etc.
After retrieving the depth video stream from the input, we
subtract the scene background using a proposed procedure for
the real-time performance of our approach. A 3D-point cloud
of the foreground is computed from the depth information
and then re-projected orthogonally onto the ground plane for
effective segmentation. For each video frame, we analyze its
projected height image for the presence of potential human
heads while employing a 3D-human model to refine those
proposals. The refined proposals are tracked to compute the
head trajectories that are further refined and continuously
monitored in our approach to count people entering or leaving
the buses. To achieve our objective, we also introduce two
discriminative feature vectors for head detection in height im-
ages and trajectory tracking in frame sequences. Our approach
is evaluated using PCDS, and achieves up to 92% accuracy
for the real-world bus videos while enabling processing at
45 fps on a relatively less powerful 1.7GHz Intel processor
with 2GB RAM. These results are significant since people
counting is a challenging problem and our method can achieve
real-time performance in practical conditions with minimal
computational resources.

This paper is organized as follows. The related work is
reviewed in Section [[I] followed by Section [IT which describe
the published dataset named PCDS. In Section [[V] we intro-
duce the proposed approach for people counting in cluttered
environment. The experiments and results are provided in
Section [V] In Section [VIl we draw the conclusion.

II. RELATED WORK

The problem of people counting is often seen from two
different perspectives: (a) Region of Interest (ROI) counting
(L8], [190, [20], [21], and (b) Line of Interest (LOI) counting
[22]. The former deals with counting people in specific regions
(e.g. in playgrounds), whereas the latter aims at counting the
number of people ‘passing through’ a certain region (e.g.
through doorways). This work deals with the LOI counting.
Many methods for LOI counting have been proposed, which
can be divided into three major categories: 1) regression-based
methods, 2) clustering-based methods, and 3) detection-based
methods. Below, we review literature under these categories
with emphasis on detection-based methods because of their
close relevance to the proposed approach.

A. Regression-based Methods

The main objective of the regression-based methods is to
learn a regression function as the representation of changes
in a scene which indicates passing of a pedestrian. Under the
paradigm of regression-based approach, Barandiaran et al. 7]
used a single RGB camera to count people by the state change
of virtual counting lines. Pizzo et al. [12]] proposed a method
which divides the detection region into stripes and counts
people by monitoring the change of state for these stripes
without people head detection and object tracking steps. Fradi
et al. [8] used Gaussian Mixture Model (GMM) to extract the
foreground and used Gaussian Process regression to learn the
correspondence between frame-wise features and the number
of persons. Benabbas et al. [23|] proposed a method which
accumulates image slices and estimates the optical flow. They
applied a linear regression model to blob features which are
extracted by an on-line blob detector to get the position,
velocity, and orientation of the pedestrian. Cong et al. [24]]
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estimated the number of pedestrians passing through a line
by quadratic regression with the number of weighted pixels
and edges which are extracted from the flow velocity field.
Whereas useful, one common drawback of the above methods
is that they place hard restrictions on camera installation angles
and the scene itself, which compromises their practical value.

B. Clustering-based Methods

Clustering based methods simultaneously track multiple
features of objects e.g. key points or people component, and
subsequently count people by clustering feature trajectories.
For instance, Antonini et al. [9] clustered trajectories of visual
features and then used the number of clusters for counting
people. Topkaya et al. [10] used features based on spatial,
color and temporal information and clustered the detected
feature trajectories by Dirichlet Process Mixture Models (DP-
MMs) [25]. They used Gibbs sampling to estimate an arbitrary
number of people or groups in their approach. Brostow et
al. [26] proposed a method that first tracks simple image fea-
tures and then probabilistically groups them into clusters based
on space-time proximity and trajectory coherence through the
image space. Rabaud et al. [27] used KLT tracker [28] to
track feature points, and segmented the set of trajectories by
a learned object descriptor.

C. Detection-based Methods

The approaches that fall under this category share a common
sequential processing pipeline which goes as follows. First,
foreground is extracted from the video stream, then the objects
of interest are detected and tracked. The tracked trajectories
are subsequently classified to count the objects of interest.
The detection-based methods can be further divided into three
different groups based on the underlying data modalities,
namely 1) RGB video methods, 2) Depth video methods, and
3) Hybrid methods. We also include an additional category
in our review that includes approaches employing the fast
emerging deep learning framework.

1) RGB video methods: Using RGB videos is more popular
in people counting literature because of easy availability of
color video cameras. Zeng et al. [11] detected head-shoulder
patterns in RGB videos by combining multilevel HOG fea-
tures [29] with multilevel LBP features [30]. They used
PCA [31] to reduce the dimensionality of the multilevel HOG-
LBP feature set, and finally tracked the head-shoulder patterns
to count people. Antic et al. [32] proposed a people segmen-
tation, tracking, and counting system by using an overhead
mounted camera. Garcia et al. [33] also developed an RGB
system for counting people in supervised areas. Their method
is based on finding heads of people by a circular pattern
detector and tracking them using Kalman filter [34]. Their
approach also performs the final counting using the tracked
trajectories. Chen et al. [[13] used a vertical RGB video-camera
to count a crowd of moving people by segmenting the crowd
based on the frame difference method [35]. Their approach
extracts features to describe the individual patterns, and tracks
the individuals for counting. Kurilkin et al. [36] compared
different people detectors in their study.

The methods described above are likely to suffer from
critical failures when the scenes become complicated due to
shadows, light changes, compound objects, occlusion, and
the presence of significant background texture. To alleviate
these problems, researchers exploit stereo cameras which can
provide the third dimension information. For instance, Terada
et al. [37] proposed one of the first approaches for stereo
camera based people counting in RGB video regime. They
detected people using max points, tracked them with template
matching and finally used the two measurements from the
stereo vision for counting. In a related approach, Kristoffersen
et al. [38] used two thermal cameras to reconstruct 3D points
and proposed an algorithm for pedestrian counting based on
clustering and tracking of the 3D point clouds. However, in
their approach, the cost of depth computation remains high,
which makes it difficult to use the approach in real-time with
low computational power devices.

2) Depth video methods: With the popularity of RGB-D
cameras; such as Kinect V1/V2 [39] and Prime-Sense [3]],
depth videos are also becoming popular in people counting
applications. Zhang et al. [40] proposed to use a so-called
‘water filling method’ to detect people and counting them
by the virtual line in a depth image. Barandiaran et al. [7],
and later Pizzo et al. [12]], [41] proposed approaches that
are based on detection without tracking. These approaches
detect changes in scene states across a virtual line, where
the scene is divided by multiple stripes. The state of the
scene changes when people pass by, thereby enabling people
counting. Rauter et al. [42] introduced the Simplified Local
Ternary Patterns (SLTP) that are used to describe a human
head. They trained an SVM using SLTP and tracked human
heads with the nearest neighbor association methods. Vera
et al. [43]] proposed a network of cameras to count people.
They devised a head detection method based on morphology
geodesic reconstruction [44] and performed tracking using the
Hungarian algorithm [45)]. Their approach combines tracks
generated by multiple cameras and the final count is based on
the length of the combined track. Li et al. [14] proposed an
embedded framework for real-time top-view people counting.
They used the Kinect camera and the Jetson TK1 board [46]]
to detect human heads using the water filling technique [40].
Their approach also uses the nearest neighbor association
method for tracking. Enrico Bondi et al. [47] introduced a
framework for real-time people counting which follows the
sequence of background removal, head detection and tracking
the projected heads. Whereas promising, their framework
drastically performs in complicated scenarios where other
head-like objects also appear in the scenes.

3) Hybrid methods: Combining the advantages of RGB and
depth data streams are well documented in related problems,
e.g. action recognition [27]. Therefore, few methods have also
used the hybrid approach in people counting. For instance, Gao
et al. [15] detected head candidates in depth videos by water
filling method and refined these candidates by training an SVM
classifier using HOG features of the frame in RGB videos.
Their approach eventually generates a set of trajectories by the
nearest distance between the head candidates and the previous
tracks. Liu et al. [48] also used RGB-D camera for detecting
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Fig. 2. Representative RGB and depth images of different types of scenarios in PCDS: (a) Normal one-person entry. (b) A person wearing a large hat and
the other person holding a child’s hand. (c) Noisy sensor data. (d) Multiple people queuing with partial occlusion.

people. Their approach projects people into a virtual plane
and trains an SVM classifier using features that are used
for detecting the upper body of humans. Zhang et al. [49]
proposed head detection by blob detection in depth frames
and projected the blobs into the 3D space. Their approach
filters the candidate blobs for heads by physical constraints and
employs the histogram of multi-order depth gradient (HMDG)
features and joint histogram of color and height (JHCH)
features to train an SVM classifier. The trained SVM is used to
classify the candidate blobs as heads. However, their approach
remains sensitive to occlusion.

4) Deep Learning-based Methods: Recently, Deep Learn-
ing [50], [S1], [52] has demonstrated great success in object
detection and classification tasks [53]], which has also moti-
vated researchers to employ it for the problem of people count-
ing. For instance, Liu et al. [16] proposed a people counting
system based on Convolutional Neural Network (CNN) [54]
and Spatio-Temporal Context (STC) model [S5]. The CNN
model is used to detect people whereas the STC model is used
to track heads of moving people. Similarly, Wei et al. [56]
proposed a framework based on supervised learning. They
extracted spatio-temporal multi-features by joining super-pixel
based multi-appearance features and multi-motion features,
and then fused the multi-features with the features extracted
from the VGG-16 model [57].

III. PEOPLE COUNTING DATASET (PCDS)

In this Section, we present the People Counting DataSet
(PCDS) introduced for the problem of people counting in real-
world conditions. The dataset is publicly available for down-
load at https://github.com/shijieS/people-counting-dataset.git.

A. Settings and Data Taxonomy

The data consists of videos of bus-door scenes recorded
using Kinect V1 camera [39]]. The camera is mounted on the
ceiling of (front/back) doors of different buses, and captures
people entering or exiting through the doors. Figure [2] shows
four representative scenes from the dataset. Due to the real-
world scenarios, complexity of the data is apparent from the
figure. In comparison to the existing related datasets [12]], [40],

videos in PCDS are recorded by the camera with a pitch angle
that is not necessarily vertical to the ground plane.

We divide the videos in the dataset based on the bus
route numbers. The dataset is recorded for three different bus
routes, namely No. 25, No. 301 and No. 106 in the cities of
Xi’An, XiNing and YinChuan, respectively in China. The data
samples cover all the bus stops in the complete circuit route
of the buses. For No. 25, the videos have been collected on 6
different days. For No. 301 and No. 106, the number of days
are 5 and 4 respectively. For each day, we collected data for the
front door as well as the back door. Thus, in total, there are 30
different scenes in our dataset. We can further sub-categorize
the videos of these scenes based on their noise level and crowd
in the scene. In the above mentioned URL for the dataset, we
organize the dataset according to these measures. In Fig. [3]
we provide the folder structure of the proposed dataset. We
denote the noisy/clean scenes with N* /N~ and crowded/un-
crowded scenes by C/C ™. As an example, a noisy-crowded
scene is denoted by N*tC* according to the adopted notation.

The rationale of dividing the dataset into noisy and clean
videos is that Kinect V1 camera is sensitive to illumination
conditions. For strong illumination, there is often noise in the
videos, as can also be observed in Fig. [2] The videos in our
dataset are mainly recorded in either direct sunlight or diffused
sunlight, resulting in a natural division of corresponding levels
of noise. Similarly, the division of videos according to conges-
tion in the scenes is also natural. During rush hours, multiple
people are generally passing through the bus doors. On the
other hand, sequential entry with clear separation between
people is observed during normal conditions.

In light of the division provided in Fig. [3} one can expect
the following from the four possible sub-categories for each
scene in the proposed dataset:

e NTC™: Videos are captured in strong sunlight during
rush hours, with multiple people attempting to enter/exit
the bus at once.

e NTC~™: Videos recorded in sharp sunlight during normal
hours where people are entering/exiting bus doors in a
more sequential manner.

e N~CT: The recording is performed with mild sunlight
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Fig. 3. Structure of the People Counting DataSet (PCDS): The root directory
contains 30 scenes, with two subdirectories each. Each subdirectory either
contains noisy scenes (denoted by N 1) or clean/normal scenes (denoted by
N7). The 3rd-level of directories contains crowded (i.e. Ct) or un-crowded
(i.e. C7) scenes.

TABLE 1
THE NUMBER OF PEOPLE IN PCDS
N-C—- N CT NFfC- NTCt
Entering 2,704 5,427 616 937
Exiting 2,760 6,647 668 1,149
Total 5,464 12,074 1,284 2,086

but in crowded situations.
e N~ C7: The recording is done in mild/diffused sunlight
with sequential entry/exit of people through the doors.
Table. ] summarizes the number of people entering and exiting
the bus doors for each sub-category.

B. Video Information

In Table [l we summarize the basic attributes of the videos
in our dataset. We note that, these video attributes along the
camera parameter details are also provided in each folder of
the dataset. Moreover, the total number of people passing
through the doors is also provided as the ground truth. We
also provide RGB videos along the depth videos that can be
used for verification purposes. However, we emphasize that
the depth modality is more useful for the problem of people
counting in the real-world conditions because of its robustness
to e.g, illumination conditions and shadows.

IV. PROPOSED APPROACH

The schematics of the proposed approach for people count-
ing is illustrated in Fig. [I Our method performs counting by
analyzing the depth video frames retrieved from the RGB-
D camera. The major steps involved in our approach are;
1) removing the scene background, 2) re-projecting point
cloud onto the ground plane, 3) generating candidate head
proposals in the projected images, 4) refining those proposals,
and 5) tracking the trajectories of human heads for counting.
We provide details of each of these steps below.

A. Background Removal

There are multiple techniques for background subtraction
from RGB videos [[L1], [58], [S9]. However, depth videos are
inherently different from RGB videos and such methods are
not readily applicable to them. Few methods for background
removal from depth videos also exist [60], [61]. However,
those techniques are generally computationally expensive,
which makes them unsuitable for our real-time application.

TABLE II
VIDEO ATTRIBUTES
Type fps  Resolution  Channels  Count
RGB video 25 320 x 240 3 4,689
Depth video 25 320 x 240 1 4,689

Moreover, such methods were also found to be unsuitable
for handling the noise in PCDS resulting from the real-world
conditions. Therefore, we develop our own method for efficient
background subtraction from depth videos for people counting
scenarios, such that the results also remain robust to noise in
the real-world data.

In our settings, a depth frame Ip € R¥*W is a matrix,
with its each element representing the distance of a point in
the real-world to the camera sensor. For a camera mounted on
top of the area to be monitored (as in PCDS), one can expect
that the farthest points in the scene would generally belong to
the background. Based on this simple intuition, we develop a
‘farthest background model’ B; € R¥*W of dynamic scenes
that enables automatic estimation of the background on-the-
fly. A major advantage of such an approach is that it can be
readily used for any scene without the need of calibration for
the background.

We compute By as a map of the largest distances appearing
in the sequences of depth frames, while accounting for the
possible noise accumulation. To ensure that effective By is
available for each video frame, we take the help of two
intermediate models B, and Bs., where ‘¢’ stands for cache.
We initialize By and B, with Ip at the start of the video
stream ( By, is initialized later, see below). For an input frame
sequence, we update B, at every frame as follows:

B! = max{lf),Bi_l}, (D)

where the superscript ‘¢” denotes the current frame and ¢ — 1
indicates the previous frame. The max{.} operation is per-
formed element-wise. After every n. frames, we update Bj
by assigning it the values of B..

It is easy to see that under the above mentioned strategy, any
large distance values in B, resulting from noise at any stage
can eventually get stored in B;. To cater for this problem, we
separately initialize By, with Ip just after B is updated (i.e.
after n. frames), and keep updating it with every frame as
follows:

B, = max{I}, Bi1Y. (2)

We update B, as well as By with By, after each no., whereas
we impose that ny. — n. # 0 to ensure that the update of Bj
under B, and By, is asynchronous. This strategy entails that
a maximum value once entered in B as a result of noise can
be replaced by the correct smaller value in the later frames.
For computational purpose, we also constrain ng. > 2n.. As a
result of the asynchronous updates with intermediate models,
effective B; remains available for each frame. We use this
farthest background model to extract the foreground Iy at each
frame as follows:

I (4, v) = { O; |B§(u,v) — It (u,v)| < dais

Iy (u,v), otherwise

3)
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Fig. 4. Camera mounted position and camera calibration: The RGB-D
camera is mounted on top of the scene and has a pitch angle. The camera
coordinate frame is shown by (X¢, Yo, Zc,O¢), the world frame is
given by (Xw,Yw, Zw,Ow ), and (z1,yr) represent image coordinates.
(m(i),y(i), z(i)) denotes the i-th point in image coordinates where z(?) is
the pixel value. (X ‘(,ZV) , Y(Z)7 Zé‘z,) ) is the i-th point in the world coordinates
which corresponds to (zg%, y(@ 2(D),

where B! (u,v) is the pixel value at (u,v) position of B,
I, (u,v) is the pixel value at (u,v) position of I}, and ;s
denotes the threshold parameter for our approach.

B. Reprojection

Generally, cameras used for counting people are installed
with non-zero pitch angle, e.g. see Fig. @} The camera per-
spective often causes occlusion and overlap in the depth
maps of people, which adds to the complexity of counting
problem. The objective of “reprojection” stage is to remove
the perspective distortions so that individuals become well
separated in the reprojected depth frames. For that purpose,
we first construct a 3D point cloud from a depth frame of the
camera and then re-project it normally onto the ground plane
to obtain a normalized depth image. We present details of the
reprojection procedure below.

First, we convert the foreground image Iz into 3D points
in the camera coordinates. For every pixel in Ir, we recover
its 3D point as follows:

XC = H;TCJ : IF(U,’U)
Yo = v};y I (u,v) “4)
Zo = Ir(u,v),

where (fz,fy) denote the camera focal length, (cs,c,) is
the camera principal point, Ir(u,v) is the pixel value at the
position (u,v) in Ip, and X¢,Ye, Zo are the recovered 3D
point coordinates.

For projecting points onto the ground, we must first
convert 3D points in the camera coordinates to the world
coordinates. Let us denote the world coordinate frame by
{Xw,Yw, Zw,Ow}. We fix this frame directly below the
camera coordinate reference frame, as shown in Fig. El To
perform the transformation between the coordinate frames, we
compute the homogeneous transformation matrix (T € R**%)
based on the extrinsic parameters of the camera. To that end,
we first identify N points in a depth frame acquired by the
camera and physically measure the corresponding points in

Camera 2 Camera 1

Fig. 5. Effects of reprojection: a) Color frame. b) Illustration of change in
camera perspective from Camera 1 to Camera 2 by reprojection. ¢) Depth
frame obtained by camera. d) Depth image constructed by reprojection.

the world coordinates. The following optimization problem is
then solved using the least squares approach [62]]:

<T>=min|Py - T Pcllf, )

where Py € R**Y contains N points arranged as its columns
in the world coordinates, and Po € R**N contains the
corresponding points in the camera coordinates. The last row
of these matrices consist of 1s. For a unique solution, we
constrain N > 4 in our measurements.

Note that, estimation of T is an off-line process in our
approach and it is performed only once for calibration. Using
the matrix T we eventually transform all points in I to
a 3D point cloud in the word coordinates. We then project
this point cloud normally onto the ground plane. Intuitively,
multiple points in the 3D point cloud can be mapped to the
same point on 2D ground plane. In our approach, we only
store the 2D mappings of the highest;)oint_s in the 3D point
cloud. Concretely, for the points (X‘(,[l, ; YV(I;), I(,;,)),Vi in the
3D point cloud, we compute a 2D ground plane projection
Iy (x,y) as follows:

{ Z(y) —
I H ('T ) y) =
where (z,y) indexes points in the 2D plane. Henceforth, we
refer to I as the “height image” because each point/pixel in

this image represents the highest point in the corresponding
3D point cloud.

(ZX©) = e AV =y, Vi

max(Z @) ©

The effects of reprojection can be understood as acquiring
the depth image by ‘Camera 2’ instead of ‘Camera 1’ in
Fig. 5b. Looking at the scene exactly from the top, Camera 2
is able to separate the individuals in the scene very well. This
is clear from Fig. [5d when we compare it with the camera
captured depth frame (with background) in Fig. [Sk. The figure
clearly demonstrates the benefits of the reprojection step in the
proposed approach.
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Fig. 6. Division of human body used: A body is divided into ‘Head’,
‘Shoulders’ and ‘Lower body’ parts and a cuboid is placed on each part.
Practical thresholds are placed on the dimensions of each cuboid to localize
the corresponding part in the height image.

TABLE III
THRESHOLDS OF EACH PART OF HUMAN MODEL.
Head Shoulder Lower body
min  max min max min max
L pixels 10 25 25 60 / /
W pixels 10 25 10 20 / /

H cm 15 30 10 30 60 170

C. Candidate Head Proposals

Although the reprojected height images separate individuals
well, the loss of information due to occlusions in the original
depth frames can not be recovered from these images. Due to
their height, human heads suffer the least from the occlusions
caused by the camera perspective. Therefore, instead of track-
ing the complete human body to count people, we focus on
reliable localization of human heads in the height images and
eventually use head trajectories for people counting.

To locate human heads in the reprojected images, we exploit
our prior knowledge about a human body. We make use of a
3D human model, shown in Fig. [6] by dividing the body into
three major parts, namely; Head, Shoulders, and Lower body.
We place a cuboid on each of these parts that represents the
volume where the body part is most likely to be located in
the 3D space. For instance, we expect the head to be located
in the blue cuboid of dimensions W}, Hy, Ly in the figure.
The exact dimensions of the cuboid would vary from person
to person. Therefore, we empirically place minimum and
maximum thresholds on these dimensions in our approach. The
used thresholds are summarized in Table [[Ill Our intuition is
that we can locate the corresponding body parts of individuals
in the height image using the human model. Therefore, the
thresholds in the table cover reasonably large ranges to account
for the variability in human sizes in height images.

With the help of underlying human model, we generate
candidate proposals about the human heads possibly present
in the height image by sequentially performing the following
steps. 1) Down sampling the height image, 2) computing the
local maxima in the down sampled image, 3) expanding the
local maximum points, and 4) filtering the expanded areas.
Below, we describe each of these steps in detail.

Fig. 7. Intermediate results for generating head proposals: a) Down sampled
height image. b) Local maximum point in original height image. ¢) Expanding
local maximum points. d) Filtering the local maximum areas.

1) Down sampling: Recall that our aim is to develop a real-
time method that can deal with the real-world noise. To reduce
computations and mitigate the adverse effects of noise in this
step, we first down sample the height image [ by averaging
its wy, X wy, dimensional disjoint patches. As a result, we get an
image Ip with its pixel at (z, y) location computed as follows:

wpTHwp WpY+wy

Iy (u7 U)
U=WpT V=WpHY

IB(xvy) = 2 9 (7)

wy

where, (u,v) denotes a pixel location in Iy. For the height
image shown in Fig. 54, the resulting down sampled image
Ip is illustrated in Fig. [7h.

2) Local Maximum Point Computation: Intuitively, the pix-
els corresponding to human heads are more likely to have the
largest values in height images. This property is also well
preserved in the down sampled image [p, as can be seen in
Fig.[7h. Thus, to locate the areas that can potentially belong to
human heads in Iz, we adopt a simple strategy of identifying
a set Cp, of the pixels in I that contain the maximum values in
their 8-connected pixels. These pixels are then used to identify
the local maximum points in the original height image. Note
that, the 7" element of Cp, i.e. C; is computed as the mean of
a set of pixels in the height image. We represent the set of
the desired maximum pixels in Iy as Cg, and compute the
j" element of that set, i.e. CJ; as follows:

CJ, = maz{pixels in Ij; corresponding to Ci}.  (8)

As a result of this operation, we are able to efficiently
identify the local maximum points in our height image. Fig.
illustrates the computed points from the corresponding down
sampled image in Fig. [7h.

3) Expanding Local Maximum Points: A local maximum
point in Iy may or may not belong to a human head.
Therefore, we must analyze the local vicinity of the maximum
point and compare it with our human model to ascertain that
the point is indeed located on a human head. We adapt the
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Algorithm 1 EzpandingLocal M aximumPoints

Input:
I height image. Cgr: local maximum point set.
Op: expanding threshold. W, ,,: maximum head width.
Lpaz: maximum head length.

Qutput:
€ the set of expanded rectangles.

Initialize:
H + rows(Ig); % height of the image.
W <« columns(Ig); % width of the image.

1: for each pixel (zg,yo) € Cy do

22 I+ Wir<«0;t< H;b<+ 0

3 Co + {(%0,%0)};Cs < Co;

4:  for each pixel (u,v) € Cy do

5 Np is 8-connected pixels of (u,v)

6: for each pixel (z,y) € Cy do

7: if (z,y) ¢ Cs and |Ig(x0,v0) — Lu(x,y)| < dp
and r — [; < Wi and b — t; < L,,4. then

8: Iy < min(x,l);ry < maz(x,r);

9: ty + min(y,t); by + maz(y,b);

10: Cs + CsU{(z,y)}

11: Co + CoU{(z,vy)}

12: end if

13: end for

14: Co+ Co— {(u,v)}
15:  end for

16: Eg+ EgU{(,rtb)}
17: end for

18: return Ep

seed fill method [63] to expand the local maximum points
into rectangles such that the object bounded by each rectangle
can be compared with the human model. The procedure for
expanding the local maximum point is given as Algorithm [I]

Along the height image Iy and the set of local maximum
points Cp, the algorithm requires the maximum allowable
height and width of a head (from Table as the input. It
also uses an expanding threshold §;, as an input parameter,
that restricts the expanded rectangles to contain object pixels
with similar values. The algorithm eventually results in a set
&y that contains the expanded rectangles as its elements. The
main iteration of Algorithm E] runs over each element of Cpg,
that are called seeds in the context of seed fill method [63]].
The first inner ‘for loop’ (lines 4-15 in the algorithm) performs
the actual expansion process. It first identifies the 8-connected
neighborhood of a considered pixel (line 5) and then iterates
over each of the neighboring pixels (line 6-13) to evaluate the
condition given on line 7 of the algorithm. If the condition is
satisfied, the sets Cs and Cy are updated which are subsequently
used in the outer loop. The algorithm gradually expands a seed
in Cy to a rectangle that is upper-bounded by the maximum
dimensions W4, and L,,,, while ensuring that the pixel
values in the expanded rectangles remain close to the seed
value so that the rectangle only bounds a single object.

4) Filtering Local Maximum Areas: Despite capitalizing
on the physical attributes of human body parts, we can still
expect that few rectangles in £y may not actually belong to

Fig. 8. Result of removing overlapped rectangles. a) color image, b) depth
video frame, c¢) expanded local maximum areas, d) result of removing
overlapped rectangles.

human heads (see e.g. Fig. [7c). Therefore, we further filter the
computed rectangles using the human model. In the filtration
process, we also consider incomplete human heads resulting
from occlusions. To filter, we discard all the rectangles in £
that do not satisfy the following condition:

Lmin
{ T2 S L § Lm.am

Wasin < W < Winaa, ”

where, L and W represent the length and width of a rectangle
and the subscripts min, max denote the minimum and maxi-
mum lengths allowed in Table |l1I| for ‘Head’. Notice that we
reduced the minimum allowed values in Eq. (9) by half. This
is done to account for occlusions that can often cause the size
of a head in our height image Iy to reduce significantly.

D. Head Proposals Refinement

For the cameras installed on top of pathways, human heads
in video frames rarely overlap in real scenes, as can be
observed in Fig. [8p-b. However, the set £ may contain few
overlapping rectangles (see Fig. [8c), therefore we can further
refine this set by discarding the overlapping rectangles. To do
that, we consider all the groups of overlapped rectangles in
€, and for each group, we store only the rectangle with the
highest seed value and discard the remaining rectangles. We
denote the refined set of rectangles by F g . Fig. |8d illustrates
the result of this refinement.

The rectangles contained in the set JFy are highly likely to
correspond to human heads in I;;, however it is still possible
that some of those rectangles may actually belong to other
objects in the scene. Differentiating between a head and a non-
head rectangle in F g is a non-trivial task because occlusions
and other factors, e.g. presence of high round-shaped objects
like bag-backs, can result in patterns in Iy that are very
similar to human heads. We hypothesize that despite their close
similarity with the human heads, the non-head objects can be
automatically identified by analyzing their relevant features.
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Hence, we design a compound discriminative feature that
accounts for different relevant attributes of objects to classify
them as ‘heads’ and ‘non-heads’. We momentarily defer the
discussion on the proposed feature to the text to follow. We
extract the proposed features for the elements of F ;; and train
an SVM classifier over those features to further discard the
rectangles that bound non-head objects.

For the SVM training, we manually label each extracted
feature for a rectangle as ‘head’ or ‘non-head’. This off-line
training is carried out only once in our approach on the training
data. For the test frames, we similarly extract the features of
head proposals and classify them as ‘heads’ or ‘non-heads’
using the trained SVM. The ‘non-heads’ are discarded in
further processing. Our proposed compound feature vector is
a concatenation of two major types of features that we call
Basic Geometric Features (BGF) and the Nearest Rectangle
Difference Feature (NRDF). The BGF itself is a combination
of four different features explained below:

e Shape Feature (H.,W,, R, P), where H, is the height
of a rectangle, W, is the width of the rectangle, R is the
ratio of W, to H, and, P = H, x W,.

o Symmetry Feature (Sg,Sv), where Sy captures the
horizontal symmetry and Sy represents the vertical sym-
metry. We define Sy and Sy as follows:

e
2 Y X Hnley)—In@tW,—z.y)l
Sy = —u=t ==
. H'V'WT (10)
W, t+ 55
2 2 X Hal@ey)—ln@2t+H-y)
=
Sv = H,W,

where, (I,t) denotes the top-left corner point of the
rectangle. Inclusion of this feature in our compound
feature is motivated by the natural symmetry of human
heads.

e Zero Pixel Feature (Ny, Ry), where Ny denotes the num-
ber of zero pixels appearing in the image area bounded
by a rectangle, and Ry = HNgv is the rate of zero pixel
appearance.

o Expansion Ratio Feature ¥ € R5 contains the ratios of
the area of a rectangle in Fp to five different rectangles
achieved by using different expansion thresholds §; in
Algorithm [T} By varying the values of the expansion
threshold we can expect different rectangles resulting for
different kinds of objects in the scene. Therefore, the
expansion ratio feature provides important clues about
an object being a head or not. In our original algorithm,
we let 0, = 15 to arrive at the set €. To compute the
expansion ratio feature, we select the values of J; from
{20, 25,30, 35,40} to generate five different rectangles
corresponding to each element of Fy and calculate ¥
for each element.

We concatenate the above mentioned four geometric features
into a vector in R'3. Notice that, although we do consider
varied areas of Iy in the above mentioned features, the
compound feature only accounts for the information that is
local to individual rectangles. In the real-world scenarios, the
relative locations of the rectangles (that we suspect to contain

Fig. 9. Illustration of NRDF feature: a) The height image. b) The correspond-
ing color video frame. There is a bag rectangle (yellow) in both images, whose
nearest rectangle is the head (red). The yellow arrow is the NRDF feature of
the bag rectangle and the red arrow is the NRDF feature of the head rectangle.

human heads) can provide useful information about a bounded
object being a human head or not. Therefore, we further
define NRDF to account for this additional information. For
each rectangle in F 5, we compute NRDF as a vector in the
3D-space that is directed towards the center of the rectangle
from the center of its nearest rectangle in our current set of
head proposals. This feature is further illustrated in Fig. [9]
The resulting NRDF € R? is concatenated with the above
mentioned feature vector to finally arrive at our compound
feature vector in RS,

E. Tracking and Counting

Using the compound features introduced above, we refine
the head proposals in F . Notice that, this set is computed
for a single depth frame in our approach. To eventually count
the people passing through a scene, we must also track the
trajectory of individual heads (i.e. people) in a continuous
video stream. For that purpose, we exploit F ; in maintaining
a record of head trajectories in the incoming video stream. We
count the number of people passing by the camera by counting
the number of trajectories disappearing in our records. We
use the direction of movement to determine if the person has
entered or exited the bus. Concrete technical details of this
procedure are provided below.

To track individuals in the scene, we maintain a set of
trajectories 7 for the continuous video stream. The set is
initialized as ‘empty’ when the stream starts. With each frame
the set gets updated by adding, removing or updating its
elements. An element of this set is given by {F%;, P'}, where
‘4’ indicates the ™ element, and P’ is the probability of that
element bounding a human head. This probability is available
to us from the SVM classifier trained to arrive at the refined
set Fg. In the text to follow, we refer to an element of 7 as
a node for brevity.

To update nodes with each coming frame, we first match
the potential nodes of the new frame with the current nodes
in 7. To that end, we compute n = ||(zo, — Zpn), (Yo —
Yn), (So — Sn)||2, Where (x,,y,) indicates the center of the
rectangle represented by a node in T, (z,,y,) is the center
of a rectangle in the new frame, and s, and s,, are the seed
values for the respective rectangles. We consider two nodes to
be matched if n < d,,,, where we empirically fix the value of
Om - If a new node does not match any existing node, it is added
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to 7 as a new element. If an existing node in 7 is not updated
for ) consecutive frames, we remove that node from our set.
The removed node increments our count of a person passing
by the camera. When a node is removed, we determine the
direction of the movement performed by the individual (i.e.
‘enter’ or ‘exit’) by analyzing the centers of the first and the
last rectangle for that node. The information on the centers
of rectangles (and their seeds), number of updates for each
node, and the time stamp of the last update for each node are
maintained in our approach by book-keeping.

Using the simple strategy explained above, we can track
the trajectories of individual objects in the scene. However,
tracking of ‘human-heads’ in the above method completely
relies on the accuracy of F . If a non-head object still eludes
our refinement process discussed in the preceding Section, the
approach may count extra individuals in the scene. To cir-
cumvent this problem we exploit the observation that human-
heads generally follow similar trajectories in path-ways, which
can be differentiated from the trajectories of non-head objects.
Thus, we train binary SVM classifiers (one each for ‘entering’
and ‘exiting’ directions) to identify a given trajectory in T as
‘head’ or ‘non-head’. We propose another feature for training
the classifiers that is formed by concatenating a) the mean
and variance of all nodes involved in a trajectory, b) the
total number of updates for the trajectory, c) velocity of
the trajectory computed as the rate of change in the center
locations of the bounding rectangles, and d) the difference
between the maximum and the minimum seed values for the
trajectory. We use the SVMs trained over these features to
refine our final count of the people entering or exiting the bus
doors/path-ways.

V. EXPERIMENT

We evaluate the proposed method using our proposed
dataset, PCDS, that contains a large number of pedestrians
entering/exiting bus doors imaged by a Kinect camera installed
on top of the door. The dataset provides the opportunity to
thoroughly evaluate the major components of our approach
individually as well as analyze its performance for the over-
all task of people counting. We first analyze the efficacy
of our background subtraction procedure and compare its
performance with the popular MOG [59] and KNN-based
methods [64]]. Then, we separately analyze the performance of
our method for the tasks of human head identification, human
head tracking and finally, people counting as a whole.

A. Background Removal

Background removal is a major task in many surveil-
lance related problems. For our approach, reliable background
subtraction is necessary for the success of subsequent pro-
cessing of video frames. Therefore, we separately analyze
the performance of our method for this task. We use the
popular Gaussian mixture-based background segmentation
method (MOG) [39] and the K-nearest neighbors (KNN) based
method [64] to benchmark our technique. We note that other
approaches for background subtraction also exist, however the
selected baseline methods are chosen for their well-established

Depth image

KNN-based method[60]
| G GECATEEES ..

Fig. 10. Background subtract analysis. Top-left: Original depth frame. Top-
right: Background identified by [64]. Bottom-left: Background identified by
[S9]. Bottom-left: Proposed method.

effectiveness for the depth videos. We carefully optimized
parameter values of the baseline methods on our dataset using
cross validation. For the proposed method, we empirically
chose n, = 150 and no. = 500 in all our experiments.

Fig. shows a typical mask image generated by
MOG [59], KNN-based method [64]], and the proposed back-
ground subtraction procedure. As can be seen, the mask
images generated by both KNN and MOG methods contain
significant amount of noise which can be detrimental for the
subsequent processing in our approach. On the other hand, the
proposed method is able to preserve the masks of individual
humans very well, with negligible noise. For further qualitative
analysis of background subtraction, we also provide videos
comparing our method with the existing approaches on the
following URL: https://youtu.be/oiuY q_Pfx6c.

Whereas our method achieves reliable background subtrac-
tion, it is also required to obtain those results efficiently
for the overall task of real-time people counting. We show
the computational time (in ms) for processing each frame
of a typical frame sequence in our dataset for the proposed
approach and the baseline methods in Fig [II] The time is
computed on a 1.7GHz processor with 2GB RAM for the
task of background subtraction. The proposed method averages
around 1.0 ms/frame in comparison to 2.1 ms/frame and 4.5
ms/frame of MOG and KNN-based method respectively. High
quality background subtraction with a small time required to
process each frame makes our background subtraction highly
desirable for the broader problem of real-time people counting.

B. Human Head Identification

An essential component of counting people in our approach
is to accurately identify human heads in the scene. We identify
human heads by first generating candidate head proposals and
then refining them. In our approach, the process of generating
the candidate proposals is intentionally kept relaxed, and it
also results in identifying multiple non-head objects in the
scene (e.g. shoulders, bag-packs) to be considered as potential
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—— KNN based method [60]
—— MOG [55]
—— Our Method
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Fig. 11. Computational time for background subtraction for each frame.
Timings for a sequence of 2,263 frames are shown.

TABLE IV
SUMMARY OF THE LABELED HEAD PROPOSALS USED
train test total
entering head 3123 2058 5181
non-head 4165 2802 6967
exiting head 3409 2172 5581
non-head 2872 1655 4527

human heads. The refinement process (in Section [V-D) then
discards the non-head objects to identify the human heads.

To analyze the performance of our method for human
head identification, we first manually labeled 12,148 rectangle
proposals in height images for people entering the buses
as ‘heads’ and ‘non-heads’. These proposals were generated
automatically by the method in Section [[V-C| We then trained
and tested the SVM classifier employed in our approach using
these proposals. We also performed the same routine for
10,108 candidate head proposals for the people exiting the
buses. The details of the train-test distributions and the labels
of proposals used in this analysis are provided in Table[[V] In
Fig. [I2] we show the ROC curves for the classifiers trained for
the refinement of head proposals. The curves show results of
our three-fold experiments, with corresponding AUC values.

From Fig.[I2] we can argue that the employed classifiers are
able to identify human heads in the proposals successfully. We
note that the classification performance depicted by Fig. [I2]is
better for the people exiting buses than for the people entering
buses. The reason behind this phenomenon is that while
providing the ground truth we only labeled those proposal
rectangles as ‘heads’ that bounded complete human heads.
For the case of people entering the buses, many half-heads
appeared in the frames due to queuing of people on bus doors.
On scrutiny, we found that most of those heads resulted in false
positive identifications in our experiment. However, this is not
problematic for the overall approach because the final results
rely more strongly on tracking of heads on multiple frames,
and the half-heads eventually transform into complete heads
in the subsequent video frames. We also provide the details of
precision, recall and the fl-scores for our head identification
experiment in Table [V]

C. Tracking

Our overall approach relies strongly on the tracking method
introduced in Section [V-El Similar to the head identification
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Fig. 12. The ROC curves of classifiers for head identification. a) People
entering the buses: SVM parameters v = 20.2 and C' = 16. b) People
exiting the buses: SVM parameters v = 3.4 and C' = 520.

TABLE V
EVALUATION OF HEAD IDENTIFICATION

precision  recall  fl-score  sample
entering head 0.92 0.92 0.92 2058
non-head 0.94 0.94 0.94 2802
exiting head 0.95 0.92 0.93 2172
non-head 0.97 0.98 0.98 1655

method, we separately analyzed the tracking procedure by
evaluating the performance of the classifier employed for
tracking. For that, we manually labeled 1,332 tracks in our
dataset as ‘head’ and ‘non-head’ for people entering the buses.
Among the labeled tracks, we used around 30% samples for
testing and the remaining samples were used for training the
classifier. We also followed the same routine for 1,330 tracks
for people exiting the buses. The information on the test-train
distribution and the labels of the tracks used in our analysis
is summarized in Table [VI We empirically selected §,, = 15
and () = 8 in our experiments.

In Fig. [13] we show the ROC curves of the classifiers used
for head tracking in our approach. The figure also reports
the AUC values for our three-fold experiments. It is easy to
observe that our method is able to classify (i.e. track) the
trajectories of human heads very accurately for both ‘entering’
and ‘exiting’ scenarios. Notice that no significant performance
degradation is visible in Fig. [T3a for the ‘entering’ scenario,
which was the case in Fig. [[2p. This is because tracking
is performed over a sequence of frames and the incomplete
heads (due to people queues) at the start of tracking even-
tually become irrelevant for the problem at hands. We also
provide summary of the precision, recall and fl-scores of the
tracking results in Table The table indicates successful
classification by the employed classifier.

D. People Counting

The main objective of our approach is to perform people
counting in real-time. We evaluated the people counting per-
formance of our approach using 2,000 test videos from PCDS.
We used detection rate ‘A’ as the metric for evaluations, which
is defined as follows.

NV .
> i — il
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TABLE VI
SUMMARY OF THE LABELED TRACKS USED
train  test  total
entering head track 442 183 625
non-head track 509 198 707
.. head track 544 226 770
exiting

non-head track 406 154 560
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Fig. 13. The ROC curve of classifiers for tracking head trajectories. a) People
entering the buses: SVM parameters v = 0.111 and C' = 368. b) People
exiting the buses: SVM parameters v = 0.05882 and C' = 896.

where Ny is the total number of videos in the test data, n; is
the number of people passing in the i video, and 72; denotes
the estimated number of people in the i" video.

In Table we report the detection rates of our method
for the four different categories of videos introduced in Sec-
tion We separately report the results for the ‘entering’
and ‘exiting’ scenarios. Based on these results, we can argue
that the performance of our approach is acceptable for both
scenarios. In PCDS, most of the people entering the buses use
the front door. It was observed that due to significant glare
from the glass of the front doors, the videos often contained
large amount of noise. This generally made people counting at
the front doors in the dataset more challenging. Nevertheless,
the approach shows reasonable overall performance given the
practical real-world conditions of the dataset.

Considering the potential low on-board computational ca-
pacity available for our method in the real-world deployment,
we used a less powerful 1.7GHz Intel processor with 2GB
RAM for evaluating our approach. Figure [14] shows the dis-
tribution of the average computational time taken by different
components of our method on the used processor for a single
frame. The overall average time for processing a single frame
is about 22.1ms, amounting to approximately 45 frames per
second, which can be considered as real-time performance.

VI. CONCLUSION

This article makes two important contributions to the prob-
lem of ‘people counting’ in real-world scenarios. Firstly, it
presents the first large-scale benchmark public dataset for the
problem. This dataset contains recorded depth videos, color
videos and CSV format files with the labels containing the
number of people passing through different scenes of bus
doors. The videos account for a large variability in scene
illumination, clutter, noise and other factors in the real-world
environment, which makes the dataset particularly challenging.
Secondly, the article presents a method for real-time people
counting in cluttered scenes and evaluates the performance

TABLE VII
EVALUATION OF TRACKING PERFORMANCE
precision  recall  fl-score  sample
enterin head track 0.92 0.97 0.94 183
€ non-head track 0.97 0.92 0.95 198
exitin head track 0.98 0.97 0.98 226
g non-head track 0.96 0.97 0.97 154
TABLE VIII
PEOPLE COUNTING ACCURACY ON PCDS
N-C- N-CF NFC—- NTCT
entering  85.40%  8325%  77.54%  75.32%
exiting  93.04%  92.66%  93.71%  91.30%

on the proposed dataset. The proposed method utilizes the
depth video stream and computes a normalized height image
of the scene after removing the background. The height image
is essentially a projection of the scene depth directly below
the camera, which helps in a clear segmentation of individual
objects in the scene. This projection is used to identify heads
of individuals in the scene. We utilize a 3D human model and
adapt a seed fill method to reliably detect human heads. We
also propose a compound feature for height images, that is
utilized in our approach for head identification. Once reliably
detected, individual human heads are tracked to compute their
trajectory which is eventually utilized for people counting. We
ascertain the effectiveness of our method by applying it to the
proposed dataset. Our benchmark dataset will play a major role
in advancing research in the areas of RGB-video, Depth-video
and RGBD-video based people counting.
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