
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1 

Abstract—Automated vehicles can change the society by 

improved safety, mobility and fuel efficiency. However, due to the 

higher cost and change in business model, over the coming 

decades, the highly automated vehicles likely will continue to 

interact with many human-driven vehicles. In the past, the 

control/design of the highly automated (robotic) vehicles mainly 

considers safety and efficiency but failed to address the “driving 

culture” of surrounding human-driven vehicles.  Thus, the robotic 

vehicles may demonstrate behaviors very different from other 

vehicles. We study this “driving etiquette” problem in this paper.  

As the first step, we report the key behavior parameters of human 

driven vehicles derived from a large naturalistic driving database. 

The results can be used to guide future algorithm design of highly 

automated vehicles or to develop realistic human-driven vehicle 

behavior model in simulations. 

 
Index Terms—Automated Vehicles, Human Driving Behavior, 

Naturalistic Driving Data 

 

I. INTRODUCTION 

utomated vehicles can significantly change the future of 

ground mobility by reducing crashes, congestion, and fuel 

consumption. In addition, business model and cost/availability 

of mobility-on-demand service may also change when 

driverless vehicles become available. Mobility may be more 

accessible to the elderly and physically challenged population 

[1]. However, due to the cost differential, it is likely driverless 

vehicles will take a while to reach high market penetration [2]. 

In the next few decades, these robotic vehicles will operate in 

an environment interacting with many human-driven vehicles.  

According to reports from the California Department of Motor 

Vehicles (DMV) regarding autonomous vehicle on-road 

testing, most accidents involving driverless vehicles are caused 

by the surrounding human drivers [3].  After examining the 

crash rate of Waymo and Cruise Automation test fleets released 

by the California DMV, it becomes obvious that these 

driverless vehicles may be partially responsible for these 

crashes, even when the crashes are largely the responsibility of 

the other (human-driven) vehicle.  The crash report of the 

Waymo fleet, for example, shows that they were crashed into 

by other vehicles much more often in 2015-2016 (13), 

compared with the crash rate of 2017 (3) [4], while the mileage 

is 636k miles in 2016 and 352k miles in 2017 in California.  We 

hypothesize that it is not only important these vehicles do not 

crash into other vehicles, it is also important that they “merge 

into the local driving culture”, and do not behave too differently 

from other (human-driven) vehicles, e.g., inappropriate driving 

speed, acceleration/deceleration, time headway, gap acceptance 

during lane change or left turn, etc.   In other words, the robot 

vehicles must learn the “etiquette” of the local driving culture.  

In this paper, we report key parameters of human driving 

behaviors in three scenarios: free-flow driving, car-following, 

and lane-change/cut-in. 

The robotic control of vehicle speed under free flow and car-

following scenarios, e.g., applying to adaptive cruise control 

(ACC), has been studied extensively. Based on the longitudinal 

dynamics of the vehicle, sliding mode control [6], optimal 

dynamic back-stepping control [7] and adaptive control [8] 

have been used to design ACC. Also, car-following range or 

time headway policy and the influence on traffic were studied 

for homogeneous platoons [9][10] and mixed traffic [11].  It 

was found that proper headway policy can guarantee the string 

stability of platoons. Connected vehicle technologies such as 

Dedicated Short Range Communications (DSRC) [12] can be 

used to provide non-line-of-sight information such as platoon 

leader’s acceleration, which enables cooperative adaptive 

cruise control (CACC) [13]. With the knowledge of the motions 

of other vehicles, the CACC can stabilize a platoon which was 

string unstable [14]. However, a substantial portion of the work 

in the literature do not take human behaviors into consideration 

[15].  Related advanced driver assistance system (ADAS) work 

allow the driver to set the desired reference following distance 

and time headway [16] but the feedback control behavior may 

not be “human-like”. 

The lane change behavior has also been studied extensively. 

Hatipoglu et al. [17] designed an automated lane changing 

controller with a two-layer hierarchical architecture. Ammoun 

et al. [18] planned the desired lane changing trajectory with 

speed or acceleration constraints. In [19], Lee et al. proposed an 

integrated lane change driver model to control lane changing 
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and lane following maneuvers. In [20], lane changes on curved 

roads were studied. In [21], lane change control under variable 

speed limits was shown to reduce travel time under various 

traffic density. However, in the literature whether these 

controlled lane change behaviors are compatible with human 

driving behavior were again largely not studied.  

The behavior of human drivers has been collected in large-

scale naturalistic field-operational-tests (N-FOTs). Driver 

characteristics such as time headway, range and range rate were  

studied [22], [23] and the behaviors were used to identify driver 

types [24]. Most of the studies in car-following focused on 

characterizing the control reference point of the human drivers, 

i.e. the desired car following distance and range rate, or 

capturing the influence on platoon dynamics [25]. For human 

lane change behavior, models usually are based on 

characteristics such as the range and gap at the initialization of 

a lane change [19]. Those models can be used to guide the 

design of autonomous vehicles. Moreover, in [26][27], the 

lateral acceleration during lane changes is captured. The 

information can guide the design of the lower-level controllers 

to ensure ride comfort. Finally, in [28], the duration of the lane 

change is analyzed. In this paper, we focus on the distribution 

of the initial range, initial Time to Collision (TTC), the 

maximum yaw rate of lane change vehicle, and duration of lane 

changes.  

Considering both human driver behaviors already analyzed 

in the literature, as well as information we can extract from the 

data collected, we defined the key human driver behaviors to be 

analyzed, which are summarized in TABLE  I.  

The rest of this paper is organized as follows: Section 2 

presents the naturalistic driving database used and the query 

criteria. Section 3 presents the results for three key scenarios: 

free-flow, car-following, and lane-changes. Conclusions and 

future work are given in Section 4. 

II.  DATA DESCRIPTION 

A.  Naturalistic Driving Database 

 The data used is from the Safety Pilot Model Deployment 

(SPMD) project lead by the University of Michigan 

Transportation Research Institute (UMTRI). SPMD data is 

collected from 2,800 passenger cars, trucks and buses equipped 

with DSRC devices to enable V2V and V2I communications 

and GPS to track vehicle motions. On the infrastructure side, 

there were 25 roadside equipment (RSE), 21 at signalized 

intersections, the remainder at curves and freeway locations. 

The experiment has been running since August 2012 and has 

collected more than 5.6 TB of recorded Basic Safety Messages 

(BSM) including motion (speed, acceleration) and location 

(longitude, latitude) for all vehicles, Mobileye® and vehicle 

actuation (brake applied, traction control, etc.) information for 

some vehicles [29]. 

There are four types of vehicle equipment configurations, 

referred as Integrated Safety Device (ISD), Aftermarket Safety 

Device (ASD), Retrofit Safety Device (RSD), and Vehicle 

Awareness Device (VAD). The configurations are summarized 

in TABLE II. Among the 300 ASD vehicles, 98 were equipped 

with a Mobileye® camera, which records forward object, range, 

and lane tracking information.   

B. Sampled Dataset 

1) Car-Following 

The key variables for the car-following scenario include the 

range between the host vehicle and the leading vehicle 𝑅𝐿 , 

range rate 𝑅�̇� , speeds of the host vehicle 𝑣  and the leading 

vehicle 𝑣𝐿, longitudinal accelerations of the host vehicle 𝑎 and 

the leading vehicle 𝑎𝐿, lane positions of the host vehicle 𝑌 and 

the leading vehicle 𝑌𝐿. We use data from 98 sedans equipped 

with Mobileye® which provides a) relative position to the 

leading vehicle (range) and b) lane tracking measures compared 

with the lane delineation both from the painted boundary lines 

and the road edge. The range measurements error is up to 10% 

at 90m and 5% at 45m [30]. To ensure consistency of the 

dataset, we apply the following query criteria: 

− 𝑅𝐿(𝑡) ∈ [0.1 m, 90 m]  
− Latitude between 41.0o and 44.5o 

− Longitude between -88.2o and -82.0o 

− No cut-in vehicles between the two vehicles  

TABLE  I KEY BEHAVIOR VARIABLES USEFUL FOR THE DESIGN OF 

AUTOMATED VEHICLES  

Free Flow Speed 

Time Headway in Car-Following  

Range of Longitudinal Acceleration  

Minimum Time Headway and Time to Collision (TTC) in 

Car-Following  

Correlation between Acceleration and Range  

Correlation between Acceleration and Range Rate 

Maximum yaw rate during lane change 

Range at the initiation of a lane change 

Time to Collision (TTC) at the initiation of a lane change 

Duration of lane changes 
 

 
Fig. 2 Sampled car-following data location 
TABLE  II SPMD DSRC DEVICE SUMMARY 

Device Tx Rx Weight Class Quantity Camera 

ISD Y Y Light 67 Y 

VAD Y N Light, Medium, 

Heavy Duty, 

Transit 

2450 N 

ASD 
Y Y Light 202 N 

Y Y Light 98 Y 

RSD Y Y Heavy Duty, 

Transit 

19 Y 
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− No lane change by either vehicle 

− Duration longer than 50s, �̇� ∈ [−10m/s, 10m/s] , 

vehicle speed larger than 10 m/s 

With the defined criteria, 161,009 car-following events were 

identified: 85,656 on local roads and 75,353 on highways. The 

sampled car-following events are shown in Fig. 2. 

 

2) Free-Flow Behavior 

A Gaussian Mixture Model (GMM) based clustering 

algorithm is used to identify the free-flow condition from the 

data. The query criteria used for the trips are as follows: 

− Trip duration longer than 10 minutes 

− Trip length longer than 300 meters 

− Trips inside the Ann Arbor area: latitude between 42.18o 

and 42.34o, and longitude between -83.85o and -83.55o 

The results include 321,945 trips, which cover 3.7 million 

kilometers and more than 93,926 hours from 2,468 drivers. To 

match the trips to links (road sections), an algorithm developed 

by [31] is applied. The data covers 9,745 of the 11,506 road 

links in the Ann Arbor area.  

 

3) Lane-Change 

The lateral position of the POV reported from the 

Mobileye® camera is used to ensure the POV indeed cut-in in 

front of the host vehicle.  As shown in Figure 3, the key lane 

change variables include the initial range to the leading 

vehicle 𝑅𝐿0, initial time-to-collision 𝑇𝑇𝐶0, initial vehicle speed 

of the host vehicle 𝑣0 , the maximum yaw rate 𝑟𝑚𝑎𝑥  during a 

lane change, and the duration of lane change  𝑇 . The query 

criteria used for the lane change scenario are as follows: 

− Host vehicle is not changing lane 

− Leading vehicle’s lateral distance 𝑑𝑙𝑎𝑡 to the host vehicle 

change from 𝑑𝑙𝑎𝑡(𝑡1) > 3𝑚 to 𝑑𝑙𝑎𝑡(𝑡2) < 0.3𝑚 

 

In total, 422,249 cut-in cases were obtained. In 179,401 

(42.5%) cases, the leading vehicle change lane from left to 

right, and in 242,848 (57.5%) of the cases, the leading vehicle 

change lane from right to left.  332,283 (78.7%) cases happen 

on local roads, and 89,966 (21.3%) cases happen on highways. 

III. RESULTS AND DISCUSSION 

A. Control Actions  

1) Longitudinal Acceleration and Deceleration 

Longitudinal acceleration and deceleration characterize how 

decisive a vehicle is, and is an important behavior we study.  On 

local roads, the distribution has a longer tail compared with that 

on highways. The longitudinal acceleration distribution of a 

selected driver is shown in Fig. 4. The distribution is 

asymmetric due to the difference in the powertrain acceleration 

and deceleration capabilities. In the following, we refer to 

deceleration as acceleration with brake applied, and 

acceleration as acceleration with throttle applied.   

For each driver, we define deceleration stronger than 2.5% 

percentile as extreme deceleration and acceleration stronger 

than 97.5% percentile as extreme acceleration. The extreme 

acceleration 𝑎𝑙𝑖𝑚,𝑎  and deceleration 𝑎𝑙𝑖𝑚,𝑑  of all drivers are 

shown in Fig. 5 and Fig. 6, respectively. The distributions are 

fitted with a Generalized Extreme Value (GEV) distribution 

model. The parameters of the GEV distribution include shape 

 
Fig. 3 Key variables extracted during a lane-change (cut-in) case 

 
Fig. 4 Longitudinal Acceleration Distribution for a Single Driver During 

Car-Following for Highway and Local Driving 

 
Fig. 5 Extreme acceleration distribution for all drivers 

 
Fig. 6 Extreme deceleration distribution for all drivers 
TABLE  III  ACCELERATION AND DECELERATION LIMIT GEV 

DISTRIBUTION PARAMETERS FOR HIGHWAY AND LOCAL CAR-FOLLOWING 

Scenario 𝑘 𝜎 𝜇 

Highway 
𝑎𝑙𝑖𝑚,𝑎 0.3711 0.1628 0.5314 

−𝑎𝑙𝑖𝑚,𝑑 0.1669 0.4722 2.4461 

Local 
𝑎𝑙𝑖𝑚,𝑎 0.1426 0.1930 1.0457 

−𝑎𝑙𝑖𝑚,𝑑 0.1649 0.3289 2.3865 
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parameter 𝑘, scale parameter 𝜎 and location parameter 𝜇, the 

probability function is shown below 

𝑓(𝑥|𝑘, 𝜇, 𝜎) = 

{
 
 

 
 1

𝜎
exp(−(1 +

𝑘(𝑥 − 𝜇)

𝜎
)

−
1
𝑘

)(1 +
𝑘(𝑥 − 𝜇)

𝜎
)

−1−
1
𝑘

𝑘 ≠ 0

1

𝜎
exp (−𝑒𝑥𝑝 (−

𝑥 − 𝜇

𝜎
) −

𝑥 − 𝜇

𝜎
) 𝑘 = 0

 

(1) 
The parameters are summarized in TABLE  III.  Human 

drivers have higher acceleration levels on local roads than on 

highways, with average acceleration limit 0.72 m/s2 for 

highway and 1.19 m/s2 for local roads. The mean deceleration 

limit for highway and local car-following are close, with -2.81 

m/s2 for highway and -2.64 m/s2 for local roads. However, the 

tail for highway deceleration is longer than local driving. 

 

2) Maximum Yaw rate During Lane Changes 

To prevent a robotic vehicle executing a lane change too 

aggressively, it is important to learn human lane change 

maximum yaw rate 𝑟𝑚𝑎𝑥 . In this section, the distributions of  

𝑟𝑚𝑎𝑥 of local roads and highway are analyzed. The yaw rate of 

lane change vehicle is calculated from a Kalman Filter using the 

time series of lateral distance of the lane change vehicle. 

Assuming the initial yaw rate of each lane chage is zero, 

calculate the yaw rate time series using Kalman Filter 

derivation described in [32] with state variance matrix used in 

[33]. As can be seen from Fig. 7, the average maximum yaw 

rate of the local lane change (1.4 deg/s) is much higher than the 

highway lane change (0.6 deg/s) and the local lane change 

maximum yaw rate has a longer tail.  This is due to the lower 

driving speeds on local roads.  

B. Free Flow Behavior 

 The free flow driving behavior was studied extensively in 

the literature [34].  Measurement data from roadside sensors 

show that the traffic flow demonstrates a multimodal behavior, 

which was commonly described by a three-phase traffic theory: 

free flow, synchronized flow, and wide-moving jam. The latter 

two phases are associated with congested traffic. Based on this 

theory, we use the Gaussian Mixture Model (GMM) [35] with 

3 components to identify the free flow and congested behaviors. 

𝑓(𝑥|𝜋1,…,𝑘, 𝜃1,…,𝑘) =∑ 𝜋𝑘𝑓𝑘(𝑥|𝜃𝑘)
3

𝑘=1
(2)  

where 𝜋𝑘  is weighting parameters, and 𝑓𝑘(𝑥|𝜃𝑘)  is the 

multivariate normal probability density function of each 

component, 𝜃𝑘  is the collection of model parameter of each 

component, which includes mean and covariance matrix.  The 

model assumes that the congestion status can be viewed as a 

 
Fig. 7 Lane Change Maximum Yaw Rate Distribution  

TABLE  IV   MAXIMUM YAW RATE GEV DISTRIBUTION PARAMETERS FOR 

HIGHWAY AND LOCAL LANE CHANGE 

Scenario 𝑘 𝜎 𝜇 

Highway 𝑟𝑚𝑎𝑥 -0.0083 0.2325 0.5900 

Local 𝑟𝑚𝑎𝑥 0.1525 0.7381 1.3953 
 

 
Fig. 8 Speed histogram and GMM fitting for one local road section with a 
speed limit at 17.88 m/s (40 mph) 

 
Fig. 9 Speed histogram and GMM fitting for one highway road section with 

a speed limit 31.29 m/s (70 mph) 

 
Fig. 10 Free Flow Speed vs. Posted Speed Limit for Highways 

 
Fig. 11 Free Flow Speed vs. Posted Speed Limit for Local Roads 
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discrete random variable, and the vehicle speed is a random 

variable conditional on the congestion status. Samples of local 

and highway speed models for one road section are shown in 

Fig. 8 and Fig. 9.   

We use the component with the highest mean value for each 

link to estimate the free flow behavior. The measured free-flow 

speed compared with the posted speed limits are shown in Fig. 

10 and Fig. 11, where the observed free flow speed of the road 

links vs. speed limits shown in a box plot and posted speed limit 

shown in a solid line. As shown in the figures, the observed 

free-flow speed is significantly higher than the posted speed 

limits on the highways. According to the Highway Capacity 

Manual [36], the base free-flow speed is estimated to be 2.2 m/s 

(5 mph) above the posted speed limit. However, as shown in 

Fig. 10, for highway links with lower speed limits, the HCM 

estimated base free-flow speeds are much lower than the 

measured values.  This could pose a dilemma for robot 

drivers—if the robots are programmed to follow the speed limit, 

they will drive much slower than human driven vehicles, 

especially on highways with slower posted speed limit (e.g., 45 

mph).  For local roads, the mean free-flow speeds are very close 

to the posted speed limits, with a correlation coefficient of 0.99.   

C.  Car-following Behavior 

1) Distance to the Lead Vehicle 

The relative position from a host vehicle to the lead vehicle 

can be defined by the time headway, which is range divided by 

the speed of the host vehicle. The constant time headway policy 

is frequently used as a safe driving practice for human drivers 

and for Adaptive Cruise Control designs. Two key statistic 

parameters are the average time headway and minimum time 

headway. For human drivers, the lognormal function was found 

to fit their time headway distribution well [37]. The sample time 

headway distribution of a single driver for both highway and 

local car-following events are shown in Fig. 12. As shown in 

the histograms, the sampled driver tends to keep a longer time 

headway on local roads, and the variance is larger, compared 

with the behavior on highways.  

  To model the time headway distribution for the entire driver 

population, the mean time headway for each driver is calculated 

and plotted in Fig. 13. The distribution is fitted using a 

lognormal distribution function, and the parameters are 

summarized in TABLE V. The mean car-following time 

headway for highway driving is 1.42 s. Our highway results 

agree with previous studies such as [38] which concluded that 

car-following time headway for highway is between 1.3 s and 

1.6 s, which correspond to 25% and 75% percentiles of our 

model. The 25% and 75% percentiles of local road sections are 

1.77 s and 2.33 s. From the histograms, time headway for local 

roads is longer than that of highways, which has a median of 

2.03 s and an average of 2.07 s.  

 
Fig. 12 Time Headway Distribution and Lognormal Model for Single 
Driver in Car-Following Scenario for Highway and Local Driving 

 
Fig. 13 Mean time headway distribution of all drivers for highway and 

local car-following events 
TABLE V MEAN CAR-FOLLOWING TIME HEADWAY LOGNORMAL 

DISTRIBUTION PARAMETERS AND PERCENTILE 

Scenario 
Mean 

[𝑠] 
Variance 

[𝑠2] 

Percentile [𝑠] 
25% 50% 75% 

Highway 1.42 0.08 1.21 1.39  1.60 

Local 2.07 0.18 1.77 2.03 2.33 
 

 
Fig. 14 Extreme time headway distribution for all drivers 
TABLE  VI TIME HEADWAY LIMIT GEV DISTRIBUTION PARAMETER FOR 

HIGHWAY AND LOCAL CAR-FOLLOWING 

Scenario 𝑘 𝜎 𝜇 

Highway 𝑇ℎ𝑙𝑖𝑚 0.0415 0.1058 0.3720 

Local 𝑇ℎ𝑙𝑖𝑚 -0.0737 0.2267 0.6880 
 

 
Fig. 15 Starting-to-brake TTC of highway and local car-following events 
TABLE  VII START-TO-BRAKE TTC GEV DISTRIBUTION PARAMETER FOR 

HIGHWAY AND LOCAL CAR-FOLLOWING 

Scenario 𝑘 𝜎 𝜇 

Highway |𝑇𝑇𝐶𝑙𝑖𝑚| 0.4006 7.1869 13.1760 

Local |𝑇𝑇𝐶𝑙𝑖𝑚| 0.3989 7.6780 13.2650 
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The minimum car-following distance is also calculated for 

all drivers. For each driver, the extreme time headway is defined 

as 2.5% percentile of the distribution of that driver. The extreme 

time headway of all drivers are shown in Fig. 14. The random 

variables are characterized with GEV distributions, and the 

parameters are summarized in TABLE  VI.  The extreme time 

headway on highways is 0.44 s, shorter than the 0.80 s for local 

roads. The standard deviation is 0.021 s on highways, lower 

than that that of the for local roads (0.071 s). 

 In addition to time headway, another variable commonly 

used to characterize driving is time to collision (TTC), which is 

defined as the ratio between range and the absolute value of 

range rate. Since the closing-in process is of interest, we only 

analysis the cases when range rate is negative. The “starting-to-

brake TTC” is the TCC when the human drivers started to apply 

the brake, for both highway and local car-following events, are 

shown in Fig. 15.  The distributions are again characterized with 

a GEV distribution. The model parameters are obtained from 

maximum likelihood estimation and are summarized in TABLE  

VII. The results indicate that the starting-to-brake TTC for 

highway and local car-following cases are similar, with the 

average value at around 22 s, while the mode is at 12 seconds. 

 

2) Dynamic Response to the Lead Vehicle 

The dynamic response of human drivers to the lead vehicle 

can be understood by the correlation between acceleration (the 

control action) to the range and range rate (the vehicle states), 

e.g., following the driver model proposed by [37]. In this model, 

both correlations are modeled as a function of range 𝑅𝐿. The 

acceleration can be expressed as  

𝑎𝑑 = 𝐾𝐷(𝑅𝐿)�̇�𝐿 + 𝐾𝑃(𝑅𝐿)(𝑅𝐿 − 𝑇ℎ𝑑 ⋅ 𝑣) (3) 
where 𝐾𝐷 is the control gain for the range rate, and 𝐾𝑃 is the 

control gain for the range, 𝑇ℎ𝑑 is the desired time headway to 

the lead vehicle. The sample joint distributions for range, range 

rate and acceleration of a single driver are shown in Fig. 16 and 

Fig. 17. At longer range, the variance of acceleration decreases, 

indicating human drivers are less sensitive. The correlations are 

modeled as a 3rd order polynomials in range. The parameters 

 
Fig. 16 Joint distribution of acceleration and range of a single driver 
highway car-following scenario 

 
Fig. 17 Joint distribution of acceleration and range rate of a single driver 
highway car-following scenario 

  
(a) (b) 

  
(c) (d) 

Fig. 18 Joint distribution of correlation and range for different scenarios: (a) 

𝐾𝐷 for highway; (b) 𝐾𝑃 for highway; (c) 𝐾𝐷 for local; (d) 𝐾𝐷 for local 

 
Fig. 19  Distribution of 𝐾𝐷  from 5 m to 20 m in highway car-following 

 
Fig. 20 Distribution of 𝐾𝑃  from 5 m to 20 m in highway car-following 

 
Fig. 21 Mean correlation between acceleration and range rate at different 
ranges for highway and local car-following scenarios 

 
Fig. 22 Mean correlation between acceleration and range error at different 

ranges for highway and local car-following scenarios 
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are estimated using robust least square with a bisquare function 

as regularization weights. [39] With this algorithm, the 

parameter estimation is more robust against outliers. For each 

driver, the correlation polynomials are estimated, and then the 

results for all drivers are used to construct the model of 

correlation parameters. The joint distribution for the 

correlations and range are shown in Fig. 18. It can be seen that 

the drivers use higher feedback gains when they are closer to 

the lead vehicle. The GEV distribution is used to model the 

random variable to capture the asymmetricity. The distribution 

from 5 m to 20 m for highways are shown in Fig. 19 and Fig. 

20 as an example.  

With distribution parameters estimated for all car-following 

cases, the population mean of the correlation function and the 

percentiles are computed. The mean correlation and 25% and 

75% percentiles at different car-following ranges are shown in 

Fig. 21 and Fig. 22.  

D. Lane-Change Behavior 

1) Range at Initiation of a Lane Change 

The initial range of a lane change maneuver is an important 

parameter to characterize cut-in behaviors. Human drivers 

examine the available adjacent gaps to decide whether to 

change lane [40]. Therefore, it is crucial to understand how 

human drivers accept the gap for lane changes.  As shown in 

[41], the initial range reciprocal is usually used in the models. 

In this section, the distribution of initial range reciprocal is 

fitted using GEV (see Eq.(1)). All the fitted parameters are 

shown in TABLE VIII. As shown in Fig. 23, the mean initial 

range of lane change on the highways (75.8m) is longer than the 

initial range of lane change on local roads (60.2m).  Other 

percentile of range at initiation is also shown in TABLE VIII.  

An important observation is that if robot drivers are designed to 

be no more aggressive than the 90% lane change conducted by 

human drivers, then the shortest range at the initiation of lane 

changes is 17 meters on the highways and 22 meters for local 

roads.   

 

2) Initial Time to Collision (TTC) of Lane Change 

As in [41], the initial TTC reciprocal is analyzed. Positive 

TTC represents cases when the following vehicle is catching up 

to the leading lane change vehicle. The higher initial TTC 

reciprocal, the more risky the lane change is. We use double 

exponential distribution to capture both negative and positive 

TTC, with the probability density function described as:  

𝑓(𝑥) =
𝜆

2
exp (−𝜆|𝑥 − 𝜇|) (4) 

where 𝜆 is shape parameter, and 𝜇 is location parameter which 

indicate the mean value of dataset. And for positive initial TTC 

(dangerous) cases, the distribution is fitted by exponential 

distribution, with the probability density function described as: 

𝑓(𝑥) =
1

𝜇
exp (−𝑥/𝜇) (5) 

where 𝜇 is the mean parameter.  

 The distribution is shown in Fig. 24 and Fig. 25 and model 

parameters are shown in TABLE IX and TABLE X for initial 

TTC and positive initial TTC respectively. The positive TTC 

percentile is also shown in TABLE X.  

 

Fig. 23 Lane Change Initial Range Reciprocal Distribution  

TABLE  VIII   INITIAL RANGE RECIPROCAL GEV DISTRIBUTION 

PARAMETERS FOR HIGHWAY AND LOCAL LANE CHANGE 

Scenario 𝑘 𝜎 𝜇 

Highway 𝑅𝐿0
−1 0.8429 0.0049 0.0132 

Local 𝑅𝐿0
−1 0.4495 0.0069 0.0166 

Percentile 10% 30% 70% 90% 

Highway 1/ 96.2 1/82.3 1/44.8 1/17.0 

Local 1/85.7 1/66.5 1/36.8 1/ 21.8 
 

Fig. 24 Lane Change Initial TTC Reciprocal Distribution  

TABLE  IX   INITIAL TTC RECIPROCAL  DOUBLE EXPONENTIAL 

DISTRIBUTION PARAMETERS FOR HIGHWAY AND LOCAL LANE CHANGE 

Scenario 𝜆 𝜇 

Highway 𝑇𝑇𝐶0
−1 16.5370 -0.0120 

Local 𝑇𝑇𝐶0
−1 14.0112 -0.0185 

 

 
Fig. 25 Positive Initial TTC Reciprocal Distribution 

TABLE  X  POSITIVE INITIAL TTC RECIPROCAL DOUBLE EXPONENTIAL 

DISTRIBUTION PARAMETERS FOR HIGHWAY AND LOCAL LANE CHANGE 

Scenario 𝜇 

Highway +𝑇𝑇𝐶0
−1 0.0376 

Local +𝑇𝑇𝐶0
−1 0.0619 

Percentile 10% 30% 70% 90% 

Highway 1/219.7 1/68.0 1/22.5 1/12.1 

Local 1/148.5 1/45.0 1/13.4 1/6.95 
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3) Duration of Lane Change 

In this section, the distribution of lane change duration 𝑇 is 

fitted by GEV. As shown in Fig. 26, the mean duration of lane 

change in highway (4.3s) is longer than the duration of lane 

change in local road (2.0s). The distribution parameters and 

duration percentile is shown in TABLE XI. 

IV. CONCLUSION AND FUTURE WORK 

In this paper we present the key parameters of human driver 

behaviors in three driving scenarios: free-flow, car-following 

and lane-change, obtained from a naturalistic driving database.  

Our results can be used to design control algorithm of 

automated vehicle so that it is compatible to local driving 

culture. The results can also be used to develop driving 

simulation software to simulate human-driven vehicles. Our 

next step includes developing automated vehicle based on the 

parameters and validate the functions in testing facilities such 

as Mcity [42]. 
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