
2906 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 7, JULY 2020

Denoising Recurrent Neural Networks for
Classifying Crash-Related Events

Sungjoon Park , Member, IEEE, Yeon Seonwoo, Member, IEEE, Jiseon Kim, Member, IEEE,
Jooyeon Kim, Member, IEEE, and Alice Oh, Member, IEEE

Abstract— With detailed sensor and visual data from
automobiles, a data-driven model can learn to classify
crash-related events during a drive. We propose a neural
network model accepting time-series vehicle sensor data and
forward-facing videos as input for learning classification of
crash-related events and varying types of such events. To elab-
orate, a novel recurrent neural network structure is introduced,
namely, denoising gated recurrent unit with decay, in order to
deal with time-series automobile sensor data with missing value
and noises. Our model detects crash and near-crash events based
on a large set of time-series data collected from naturalistic
driving behavior. Furthermore, the model classifies those events
involving pedestrians, a vehicle in front, or a vehicle on either
side. The effectiveness of our model is evaluated with more
than two thousand 30-s clips from naturalistic driving behavior
data. The results show that the model, including sensory encoder
with denoising gated recurrent unit with decay, visual encoder,
and attention mechanism, outperforms gated recurrent unit
with decay, gated CNN, and other baselines not only in event
classification and but also in event-type classification.

Index Terms— Recurrent neural networks, missing data impu-
tation, denoising sensor inputs, driving events.

I. INTRODUCTION

ROAD traffic crash is still one of the main cause for death,
injury and disability. World Health Organization predicts

that road traffic injuries will be the fifth leading cause of
death by 2030 [1]. In this context, one way to reduce death
from such tragedy is to report an accident as soon as possible.
If there is a real-time automatic collision detection algorithm,
this could be linked to an automatic reporting system to call
the police and emergency rescue in urgent situation to save
valuable human lives.

Most automobiles are equipped with sensors capturing var-
ious states including velocity, longitude, latitude, accelerator
and brake pedal states. If these sensor measurements are to be
recorded with timestamp in real-time, the collected data could
be a good source to detect critical and potentially dangerous

Manuscript received December 22, 2017; revised July 6, 2018,
December 17, 2018, and April 29, 2019; accepted May 17, 2019. Date of
publication June 18, 2019; date of current version June 29, 2020. This work
was supported in part by the National Research Foundation of Korea (NRF)
Grant funded by the Korean Government [MSIP; Ministry of Science, ICT
(Information and Communication Technology) and Future Planning] under
Grant 2016R1A2B4016048 and in part by the Next-Generation Information
Computing Development Program through the National Research Foundation
of Korea (NRF) funded by the Korean Government [MSIP; Ministry of
Science, ICT (Information and Communication Technology) and Future
Planning] under Grant 2017M3C4A7065962. The Associate Editor for this
paper was D. Fernandez-Llorca. (Corresponding author: Alice Oh.)

The authors are with the School of Computing, Korea Advanced Institute
of Science and Technology, Daejeon 305-701, South Korea (e-mail: sungjoon.
park@kaist.ac.kr; yeon.seonwoo@kaist.ac.kr; jiseon_kim@kaist.ac.kr;
jooyeon.kim@kaist.ac.kr; alice.oh@kaist.edu).

Digital Object Identifier 10.1109/TITS.2019.2921722

driving events. Recent developments in machine learning can
help analyzing these time-series sensor recordings. We present
a novel Recurrent Neural Network (RNN) model to detect
dangerous driving events from automobile sensor data and
front-facing video data.

Previous approaches for detecting prominent events from
driving data include smartphone sensor data with a threshold-
ing classifier [2] or decision trees [3]. Other approach uses
visual data collected from surveillance video cameras [4].
However, there has been little research of detecting dangerous
driving events from a combination of time-series data from
multiple sensors installed in cars and videos from in-vehicle
forward-facing cameras. In this paper, a neural network archi-
tecture which leverages both sources of time-series data to
classify crash-related events is proposed.

Recent advances in neural network models have led a wide
application of the RNN for modeling sequential data [5]–[10].
RNN has been applied in the field of driving behavior studies
for detection of driver confusion status with Long Short
Term Memory (LSTM), a variant of the RNN [11], and
prediction of driver action with the bidirectional recurrent
neural network [12]. However, RNN and its variants including
LSTM [13] and the Gated Recurrent Unit (GRU) [14] do
not consider missing values nor intrinsic noise in the data
which are unavoidable in data from sensors in noisy, nat-
uralistic driving situations. Thus we design a novel variant
of the recurrent neural network cell to handle such data
characteristics. In previous research in the health care domain,
the Gated Recurrent Unit with Decay (GRUD) was proposed
to handle missing data [15]. We improve upon the GRUD by
integrating the denoising process into the model to construct
the Denoising Gated Recurrent Unit with Decay (DGRUD).

In this paper, our model, DGRUD, is shown to be effective
for classifying driving events with evaluation from naturalistic
driving data (details of the data are described in Section IV).
To show the improved accuracy of classification, we compare
our model with basic GRU, GRUD and other comparison
models in evaluating the accuracy of types of crash classifica-
tion and near-crash involving a front vehicle, a side vehicle,
or a pedestrian. DGRUD outperforms both RNN (GRU and
GRUD) and CNN based models in classification tasks.

Our main contributions are as follows:
• Proposing a neural network architecture that accepts input

of time-series vehicle sensor data and visual features col-
lected from forward-facing videos for learning to classify
crash-related events and their types.

• Developing a novel recurrent neural network model to
effectively cope with noisy time-series data with missing

1524-9050 © 2019 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but
republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-4014-619X

PARK et al.: DENOISING RNNs FOR CLASSIFYING CRASH-RELATED EVENTS 2907

values, in order to build an end-to-end model that reduces
heavy pre-processing steps.

Our paper is organized as follows. Section II describes pre-
vious work on learning driving events and data pre-processing
techniques of missing data imputation and denoising method.
Section III describes the overall design of our neural net-
work model, and introduces a novel RNN cell structure for
time-series data. Section IV reports the classification perfor-
mance of our model. Section V analyzes the evaluation results
based on the outcomes of experiments. Finally, Section VI
presents future directions of this research.

II. RELATED WORK

In this section, previous work in two related categories is
described. One is discussion on research of learning driving
events and the other is description for methods of missing data
imputation and denoising techniques.

1) Driving Event Detection: Previous research deal the
detection driving events with machine learning algorithms
based on various data sources such as video, audio, and event
relevant features.

Vehicle forward-facing video is a good source for detecting
driving events. Lane changes can be captured by a visual
rhythm method which records the pixel data along the scan
line in every video frame to capture the temporal information
change [16]. Furthermore, the overall driving environment can
be detected as well through a neural network based sensory,
perceptual, and conceptual analyzer [17]. Surveillance video
can be another data source of event detection. Abnormal vehi-
cle events can be automatically captured by a semi-supervised
mixture of a Gaussian Hidden Markov Model [18], or unsuper-
vised learning method [19]. Furthermore, an abnormal event
such as speed violation can be detected in real-time monitoring
of those videos [20].

Meanwhile, driver features, vehicle characteristics, and envi-
ronmental features such as time, weather, light and surface
conditions are used to predict driving events in intersections
with multilayer perceptrons (MLP) [21]. Also, driving patterns
in highways through similar features including road, vehi-
cle, weather condition, and traffic attributes through artificial
neural networks [22]. Some studies focus on detecting audio
events in public transport vehicles by using Gaussian mixture
models and support vector machines (SVM) [23].

Since this paper is focusing on the automatic detec-
tion of crash-related events, vehicle collision detection is
reviewed in detail. Several previous approaches applied
machine learning algorithms and data mining techniques to
detect collisions [24].

MLP is a basic form of the neural network which is
frequently used to classify road accident patterns based on rel-
evant features including driver attributes (gender, age, location,
and region) [25] or traffic-related features [26]. Decision trees
are another widely used method for the classification prob-
lem. Accident, road, and environmental features are used as
inputs for these tree algorithms to predict collisions [27]–[29].
Other classification algorithms such as K-nearest neigh-
bors (KNN) are also used to classify accidents [30], [31].

On the other hand, unsupervised techniques such as k-means
clustering algorithm and autoregressive models (ARM) are
used to discover an association rule between input variables
and accidents as outcomes [32].

In brief, most previous work in collision detection used
relevant features of the events including vehicle, road, driver,
and other environmental features as training data. This class
of approaches is not easily applicable to immediate collision
detection because these features can only be collected after
determining the event is a collision. To detect collisions in
real-time, the detection algorithm should rely on time-series
naturalistic driving data including sensors and video streams
collected in real-time.

Recently, a large dataset of time-series naturalistic driving
data allowed researchers to develop algorithms that can be
employed in a real-time classification of driving events or
collisions. Time-series vehicle sensor data and visual features
are used to find what visual-cognitive functional factors of
elderly drivers affect crash events by employing a Poisson
regression model [33].

Specifically, smartphone sensors are used as an alternative to
vehicle sensors to collect real-world driving data. A rule-based
pattern matching method is applied to those data for detect-
ing the events [2]. Furthermore, MLP is employed to detect
driving events from time-series sensor data. The ‘attribute
vector’ is constructed from the raw sensor inputs to contain
statistics of the inputs, and MLP is applied over the vector
and trained to classify the events, which outperforms other
baseline models [34].

Also, video streams are used for event detection. To build
an end-to-end model for detection, pre-trained Convolutional
Neural Networks (CNN) applied with RNN was used. The
network showed improved performance over the traditional
methods including steps of (1) extraction, (2) representation,
and (3) classification [35].

Compared to these studies, our model integrates these
previous approaches of capturing events from time-series
sensor data and video streams for collision detection and
build an end-to-end model that accepts both types of
data.

2) Missing Data Imputation: Missing data imputation has
been widely applied to various application fields: predict-
ing air quality [36], climate [37], wireless sensor data [38],
cancer [39], and satellite images [40]. When missing data is
observed, one of the most straightforward approaches is an
available-case analysis, which is discarding data with missing
values [41]. However, this may result in leaving biased sam-
ples if there are systematic patterns in missing values, so filling
in missing data is preferred.

The simplest way to impute missing values is to replace
them with the last observed values or to constant values such
as means. However, this approach might cause a problem in
case there is more than a trivial fraction of data missing, where
one can use regression models to predict missing values based
on the other available features [42]. A more complex approach
uses machine learning techniques. Sequential regression trees
for implementing multiple imputations via chained equations
produces more plausible imputations, and hence more reliable

2908 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 7, JULY 2020

Fig. 1. Proposed neural network architecture (b) and our proposed recurrent neural network cell structure (a), DGRUD. Our neural network consists of two
parts: 1) processing time-series vehicle sensor measurements and 2) processing video frames. Two parts are combined at the top of the attention layer, and
then a softmax layer is added to classify driving events. Our cell has a denoising mechanism that smooths time-series input by using a weighted mean filter
scheme. The weights for each time step are jointly trained with the networks.

inferences than the standard sequential regression imputa-
tion techniques [43]. Another approach is handling missing
value by SVM. This SVM regression based algorithm for
filling in missing data predicts the input attribute values [44].
Also, there is a non-parametric perspective considering the
uncertainty of the predicted outputs when missing values are
contained [45]. As for neural networks, an ensemble of the
networks for incomplete data classification is proposed [46].
The dataset containing missing value is divided into a group
of complete sub-datasets for training the neural network. The
proposed model can handle all the information with missing
values and maintain maximum consistency of incomplete
data compared with other models in classification. These
approaches mainly focus on imputing missing values precisely,
regardless of the task or machine learning model which should
learn over the dataset with missing values.

Recently, imputation mechanism is integrated into
GRU-based recurrent neural networks and performs better
over comparison models which do not have the mechanism
in it [15]. Based on the previous work, our model integrates
missing value imputation to downstream tasks as well,
in order to jointly learn the patterns for the tasks as well as
how to replace missing values. This enables us to build an
end-to-end model which reduces the pre-processing step of
imputation.

3) Denoising Techniques: Image denoising techniques can
be divided into a spatial domain (linear or non-linear fil-
ters) and transform domain (data adaptive or non-data adap-
tive) approach [47]. In signal processing, moving averaging,
wavelet transform, fuzzy logic, and various methods are
developed [48], [49]. For denoising vehicle sensor signals,
wavelet transformation is used [50], [51].

As with missing data imputation techniques, denoising
methods also concentrate on removing noise itself, not consid-
ering downstream tasks. Our approach combines dealing with
missing and noisy data with the prediction task using DGRUD.
For the denoising method, different from previous approaches,
our model employs weighted mean filter smoothing over the
time domain because it is simple yet effective for joint training

with neural networks. Integration of denoising and missing
data imputation allows reducing complicated pre-processing
steps and improving the performance of downstream tasks
since the parameters in the model are jointly optimized for
the tasks.

III. MODEL

In this section, our neural network architecture for event
classification is illustrated. Next, our novel RNN structure is
introduced, which is effective for learning useful information
from time-series vehicle sensor data.

A. Model Overview

The model consists of two parts as shown in Fig. 1(b). The
left part of the subfigure (b) starts from the sensory encoder
which accepts time-series vehicle sensor data with missing
values. Specifically, Fig 1(a) shows the sensory encoder struc-
ture of the overall model (DGRUD) which imputes missing
values and denoises inputs. On the other hand, the right part
has a visual encoder that processes visual features of the
forward-facing videos. Each part has an attention layer that
improves performance of encoders as well as detection for
part of the video or time-series data relevant to certain driving
event. Finally, attention layer’s outputs are concatenated, and
used as inputs to the last softmax layer to compute the
probability for classification.

1) Processing Sensor Data: The left part of the model
in Fig. 1 (b) takes time-series vehicle sensor data as input
features. Since the data contains missing values, sensory
encoder should be able to deal with the missing values.
The proposed DGRUD allows imputing missing values to
smooth away noise in the sensor data. Our model, DGRUD,
is appropriate for learning useful information from time-series
naturalistic driving data. Details are introduced in the next
subsection.

2) Processing Visual Features: Next, as shown in the right
half of Fig. 1 (b), visual features are also used to detect driving
events because some events require information collected

PARK et al.: DENOISING RNNs FOR CLASSIFYING CRASH-RELATED EVENTS 2909

Fig. 2. Visualization of (a) GRU, (b) GRUD, (c) DGRUD. GRU has two gating mechanisms to store information while processing sequential inputs. GRUD
is an extended version of GRU, capable of imputing missing values in input with decay. Our model, DGRUD, has denoising filter with trainable weights.

from the forward-facing video camera. Every image of the
video frames is compressed by the pre-trained ResNet50 [52].
By feeding the re-sized frames to the network, each input
frame is compressed to a 2,048 dimensional feature vector.
Each feature vector is then used as an input to a vanilla GRU
cell [14].

3) Attention Layer: Attention mechanism is widely used
with recurrent neural networks. In general, this allows models
to focus more on a specific part of the sequence which
helps the model to better learn the objective. This mechanism
not only enhances the performance of the model, but also
provides cues of network’s prediction [53]–[55]. Then, atten-
tion mechanism [55] is added which computes the attention
weights for every input time step as in Eq. 2-3:

ut = tanh(Wsht + bs) (1)

at = ex p(u�t cs)

�t ex p(u�tcs)
(2)

v = �t at ht (3)

The hidden state for every time step is projected into ut

(Eq. 2), then the degree of focusing on the timestep across the
sequence is measured by multiplying context vector cs and ut ,
and it is normalized through the softmax function (Eq. 3).
These normalized weights are known as attention weights. The
weights are applied to the input sequence of this layer, ht ,
to compute the output of the layer v as a weighted sum of the
sequence (Eq. 3). The layer is attached to the sensory encoder
and the visual encoder.

4) Softmax Layer: A softmax layer is stacked to classify
events based on the concatenated outputs of each attention
layer vsv .

p = ex p(Wcvsv + bc)

�ex p(Wcvsv + bc)
(4)

Wc and bc are trainable parameters of the softmax layer, and
p includes probabilities of belonging to each class. To train
the model, negative log-likelihood of the correct labels is
minimized.

B. Denoising Gated Recurrent Unit With Decay (DGRUD)

We propose a novel RNN structure, Denoising GRUD
(DGRUD), which is appropriate for learning useful informa-
tion from the time-series sensor data containing noisy features.
In addition, the cell handles missing values that occur in cases
of malfunctioning of the sensor or systematic missing during

the data collection. We introduce our model by highlighting
the difference from the baseline models. As shown in Fig. 2,
DGRUD first replaces missing values by gate m, then smooths
inputs by computing the weighted mean, x̄ . This processed
input is fed as input to GRU operations.

1) Gated Recurrent Unit With Decay (GRU): GRU is a
widely used RNN structure [14] that is simpler than LSTM
cell [13] and yet shows comparable performance. GRU has
two gating mechanisms:

zt = sigm(Wz xt +Uzht−1 + bz) (5)

rt = sigm(Wr xt +Ur ht−1 + br) (6)

h̃t = tanh(Wh xt +Uh(rt ◦ ht−1)+ bh)

ht = zt ◦ ht−1 + (1− zt) ◦ h̃t (7)

The reset gate rt decides the extent of previous hidden state
ht -1 during computation of the candidate state h̃t . The update
gate zt controls the ratio between the previous hidden state
and the candidate state to determine the current state ht .

2) Gated Recurrent Unit With Decay (GRUD): GRUD [15]
imputes missing values while the parameters of the cells are
trained. Decay rates are added to the vanilla GRU that reflects
inputs reliable only for a while. The rate is defined as follows:

γt = ex p(−max(0, Wγ δt + bγ)) (8)

where Wγ and bγ are trainable parameters and δt is the amount
of time passed from the most recent value observed for each
features. Based on the rate, the cell imputes missing values as
below:

xd
t ← md

t xd
t + (1− md

t)γ d
xt

xd
t � + (1− md

t)(1− γ d
xt

)x̄ d (9)

where the gate md
t controls whether the value is imputed

through the cell, containing binary values which indicates
whether the input feature d is observed at current timestep t .
γ d

xt
denotes the decay rate of feature d in input x at timestep t .

This regulates the ratio between 1) the last observed value
xd

t � and 2) the global mean over the entire sequence of input
features x̄ d . The decay rate is applied to the inputs and to the
hidden states as well. The other part of the cell is the same
as vanilla GRU. The parameters are jointly trained with the
other GRU parameters. Intuitively, when the elapsed time of
the input missing is increasing, the last observed value should
be decayed toward to the global mean as a default setting.
Assuming the global mean as default is reasonable since the
cell is designed to learn tasks for health care domain [15].

2910 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 7, JULY 2020

3) Denoising Gated Recurrent Unit With Decay (DGRUD):
In order to effectively deal with the time-series vehicle sensor
data with missing values and noise, a trainable denoising filter
is added to GRUD. The main difference between GRUD and
DGRUD is that DGRUD has denoising function which adapts
to the downstream task. The noise can be removed by applying
the mean filter, which is widely used as a linear filtering
scheme [56]. Our model relies on the scheme. The reason
choosing such a simple approach is to 1) keep the complexity
of the cell as simple as possible, and 2) make the gradients
easily computed through backpropagation.

In this cell, x̄ d
t is computed, which is smoothed version of

xd
t and xd

t � in GRUD, by applying weighted mean filter scheme
as follows:

xd
t ← md

t xd
t + (1− md

t)xd
t � (10)

x̄ d
t = 1

k �t
i=t -kw

d
i xd

i (11)

where k is a hyperparameter that indicates how many timesteps
should be considered to evaluate the mean. To clarify the
difference between x̄d in GRUD and x̄ d

t in our cell, x̄d is
global mean of the feature d over full sequence always
resulting in the same value regardless of time t . On the other
hand, x̄ d

t depends on time t because it is moving (weighted)
average with window size k from t − k to t . First, assuming
k is given, missing values are imputed in time t with the
most recent observations as Eq. 10. Note that the weight
wd

i can vary by feature d as well as a timestep t . Then,
a smoothed input through weighted average x̃ d

t is computed
as Eq. 11. Followings are applying decay rates as in GRUD
with smoothed inputs:

x̃ d
t ← md

t x̄d
t + (1− md

t)γ d
xt

x̄ d
t (12)

Assuming that the default state of the vehicle is zero-state
which means a vehicle will eventually stop running. Based on
the assumption, x̄d is replaced to a zero vector so that the
last term in Eq. 9 disappears. The other part of the cell is
the same as GRUD, applying GRU operation with x̃ d

t . Note
that the filter weights w with size k, indicating weights for
each input in timestep t are jointly trained while learning from
downstream tasks.

In summary, DGRUD consists of three steps: (1) denoising
inputs by using trainable weighted mean filters, (2) imputing
missing data with exponential decay, and (3) performing GRU
operations. The step (1) alleviates noise in inputs through
computing weighted mean of the inputs with trainable weights.
Then the step (2) replaces missing values to the last smoothed
observed value. The value will be decayed toward to zero
if the missing value continues. Lastly, (3) GRU operation
is performed after the missing values are replaced and the
smoothing process is done. Fig. 1(a) depicts this process: raw
inputs pass gate m to smooth raw inputs, and smoothed input
x̄ is passing the gate m again to impute missing values, and the
imputed value will decay with the rate γx . Then the imputed
input x̃ will be used to perform GRU operations. Note that
another difference from the GRUD is that the decay for hidden
state of GRU h is removed.

Lastly, DGRUD is applied bi-directionally in the overall
model, which means one DGRUD scans sensor inputs forward

and another DGRUD scans the inputs in backward. Each
DGRUD generate hidden state h and they are concatenated
to deliver information of time t to the attention layer stacked
above.

IV. EMPIRICAL EXPERIMENTS

A. Dataset

We obtain time-series sensor data and forward videos of
driving events in SHRP2 (The second Strategic Highway
Research Program) NDS (Naturalistic Driving Study) dataset.
The database has information of drivers (demographic back-
ground, physical, psychological, and medical condition, etc.)
vehicles (types, condition, etc.) that consented to participate in
the research program. Qualified researchers can access to the
participants’ trips (summary, time-series records) and events
records with personally identifiable information removed by
the database.

The dataset includes 9,574 forward videos including
crash-related events and normal driving situations aligned with
time-series vehicle sensor data collected in 2014. Data contains
various driving conditions (day/night, sunny/cloudy/rainy,
etc.). Each data are a trip segment of about 30 seconds. The
events are collected from about 1,500 drivers. Type of the
sensors includes vehicle speed, acceleration in x/y-direction,
gyroscope in z-direction, acceleration pedal position, steering
wheel position, and GPS measurements, radar measurements
recorded for every 100ms. Forward videos are stack of images
recorded 14 frames per second. In addition, meta-data of
events (event type, event type, narrative of events, etc.) is
available. This meta-data is used as labels for supervised
learning.

Note that our data contain significant amount of missing val-
ues. The proportion of the timesteps in a data which contains
at least one missing observation of a sensor is 10.9% in event
classification task, and 36.9% for event type classification task.

B. Tasks

Two classification tasks are performed: 1) Event classifica-
tion and 2) Event type classification to learn driving events
and their nature. Evaluation of performance of our neural
network architecture and DGRUD is conducted through these
two tasks.

1) Event Classification: The first task is classifying whether
there exists an event (crash/near-crash) or not (no conflict) at
any timestep in given sequential sensor and visual data. The
task includes 3 classes as follows:

• Crash: includes explicit impact with other vehicles or
obstacles. Since the moment of the accident is included
in the middle of the video and sensor records, they usually
fluctuate and the vehicle stops after the accident.

• Near-crash: includes sudden stop or turn to avoid conflict
with other vehicles or obstacles. Similar to the Crash, but
vehicle immediately recovers to normal driving state after
the event.

• No crash: includes normal driving situations. There are
various normal driving situations, such as going straight,

PARK et al.: DENOISING RNNs FOR CLASSIFYING CRASH-RELATED EVENTS 2911

turning on intersection, highway driving, and waiting at
a red light.

2) Event Type Classification: The second task is classifying
events by their type. Like the first task, the model should detect
the event type at any timestep in the given sequential sensor
and visual data. The following are the five classes in the task,
and large fluctuations in the observed sensor data is expected
except the last No conflict class:
• Conflict with a lead vehicle: includes crash or near-crash

with the vehicle ahead. The other vehicle involved in the
event is clearly recorded in the center of the forward
video.

• Conflict with vehicle in adjacent lane: includes crash or
near-crash with a vehicle in the left/right lane. The other
vehicle involved in the event is recorded in the right/left
side of the forward video, but sometimes the vehicle
cannot be observed in the video.

• Single vehicle conflict: includes conflicts without any
other vehicle, such as crash/near-crash with non-vehicle
objects including lane dividers and trees.

• Conflict with animal/pedestrian: includes crashes and
near-crashes with animals or pedestrians.

• No conflict: includes normal driving situations. There are
various normal driving situations, such as going straight,
turning on intersection, highway driving, and waiting at
a red light.

C. Pre-Processing

To train the models for each task, events with data from
a set of sensors, such that at least one value is observed in
a time-series instance, are included. For event classification,
included events have following features: 1) vehicle speed,
2) acceleration in x/y-direction, 3) gyroscope in z-direction,
4) acceleration pedal position, 5) steering wheel position. For
event type classification task, events have a smaller number of
features, selecting them with the following features: 1) vehi-
cle speed, 2) acceleration in x/y-direction, 3) gyroscope in
z-direction. In order to obtain sufficient number of examples
for every event types in both tasks, it was inevitable to drop
2 features in the event type classification task which has
larger number of classes than that of event classification task.
Specifically, there were only a few examples of “Conflict with
animal/pedestrian” cases having all 5 features recorded.

Then time-series sensor data and visual features are aligned
with respect to the timestep. First, the starting points of the
two input sources are matched, then 10 frames are sampled out
of 14 frames per second based on the frame-sensor aligning
index information in the dataset, since sensor measurements
are recorded every 100ms.

Lastly, the visual features from sampled video frames are
extracted by using pre-trained neural networks for image
recognition. ResNet50 [52] was used to compress a raw image
that has approximately 360,000 features to a 2,048 feature
vector, referring the vector as visual features. To compute the
features, the top softmax layer is removed, and the input image
is fed into the network to obtain the vector. By employing
this approach, sufficient size of a mini-batch and reasonable
training time could be obtained.

After pre-processing, 2,298 trip segments are selected
for event classification. Each class consists of 1,766,
176, 356 events, respectively. For event type classification,
1,794 events are retained. Each class consists of 609, 188,
513, 128, 356 events.

D. Experimental Settings

The total number of events are split into train, validation,
and test sets with the ratio 6:2:2 while preserving the ratio
between classes. Hyperparameters are tuned on validation set,
and 5-fold cross validation results are reported. All models
are trained until F1 score of the validation set does not
increase significantly. To decide the number of hidden units
in GRU, GRUD, DGRUD, and attention layer, we try 16, 32,
64, 128 hidden units, and choose the appropriate number of
hidden units based on the performance over the validation set,
as well as considering the memory limits of GPUs used in
experiments. The size of the hidden units of GRU processing
visual features is set to 64, and that of GRUD or DGRUD in
sensory part to 64 as well. Also, the attention vector size is
set to 64. We also explored the size of trainable filter weights
in DGRUD, 2, 5, 10, 20, and choose the number to 10. The
weights in are initialized to a zero vector.

We compare the classification performance of the following
three conditions in terms of data source accepted by each
model:
• Processing Sensor Data Time-series sensor data are used

to classify events. GRUD [15] is used as a baseline
model, and compare performance with DGRUD. To the
best of our knowledge, GRUD is state-of-the-art among
models that integrate missing value imputation in the net-
work. It showed better performance over vanilla recurrent
neural networks since it effectively deals with missing
values in input times-series data. Also, CNN is frequently
used to capture patterns from time-series data, so vanilla
CNN and Gated CNN is added with 2 convolution and
max pooling layers as a comparison model. Lastly, since
the missing values can be easily replaced by constant
default values, such as the mean of each features or zero,
our model is also compared with this method.

• Processing Visual Features Visual features are used to
classify events. Since it is unlikely to occur missing
values in video frames, i.e., in feature vectors computed
from ResNet50 [52], a vanilla GRU is used for visual
encoders to process visual features. To the best of our
knowledge, applying recurrent neural network above the
pre-trained convolutional neural network is state-of-the-
art for event detection from video streams [35]. It showed
better performance over traditional approaches.

• Processing both Sensor Data and Visual Features Models
which use both sensor data and visual features to classify
events. GRU is used in visual encoder part, and GRUD
or DGRUD is used in sensory encoder part.

In addition, attention layers are attached to each model,
and performance of models with and without the layers are
compared to systematically evaluate the attention layer.

All models are trained by the Adam [57] optimizer. Learn-
ing rate is set to.001, and batch size 128. Our neural network

2912 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 7, JULY 2020

Fig. 3. Four time-series sensor data of conflict with lead vehicle event. These sensor data are used for event type classification task. X-axis indicates time,
and Y-axis represents (smoothed) sensor data. Compared to the top row (raw data), bottom row is smoothed through the learned filter.

is implemented through TensorFlow, and we publicly open our
implementation of DGRUD on GitHub.1

Both precision and recall are considered as an evaluation
metric for the performance of models, so F1 score is reported
as follows:

F1 = 2× r × p

r + p
(13)

where r is recall and p is precision. Overall macro F1 score
and the score for each class are reported in detail.

V. RESULTS

A. Event Classification

Event classification results of the models are shown
in Table I. Model 1-7 have only sensory encoder which takes
time-series sensor inputs. Specifically, Model 2, 3, 6, and 7 are
capable of handling missing data (GRUD, DGRUD) whereas
Model 1, 4, and 5 are not, so that missing data is replaced by
a constant value. GRUD shows higher macro F1 score over
the vanilla GRU (+.006), and it is improved when an attention
layer is attached (+.039). Our model, DGRUD, outperforms
GRUD with attention (+.128) that shows better performance
compared to the GRUD, CNN, and gated CNN [58].

Model 8 and 9 accept only visual features to classify events
through the GRU. As in the sensory encoders, these visual
encoders show better performance with attention (+.037),
which is similar to that of gated CNN. Note that DGRUD
with attention outperforms visual encoders (+.080).

Overall, performance enhanced when the models (Model
10-13) have both sensory encoder and visual encoder. Model
10-11 use GRUD as sensory encoder, and the others use our
model. Model 13 shows the highest F1 score (.799) across the
competing models. The tendency that DGRUD outperforms
GRUD is consistent when visual features are added as inputs
to the neural networks. Except the Crash class, F1 score is
highest on the No Crash (.808) and Near-Crash (.603) classes,
resulting in higher macro F1 score of Model 13. In addition,
the attention layer is helpful in improving the classification
performance.

1https://github.com/SungjoonPark/DenoisingRNN

In general, Crash events are most accurately classified, with
No Conflict and Near-Crash following because a crash event
is obvious for the most part, but Near-Crash and No Conflict
events are indistinguishable in some cases. As shown in Fig. 4,
Near-Crash events could be predicted as Crash or No Conflict
events.

B. Event Type Classification

Next, The results of event type classification are presented
in Table II. The pattern of higher f1 scores when GRUD is
replaced with DGRUD is similar to the event classification
task. Comparing sensory encoder models, GRUD shows better
F1 scores than GRU (+.042), and even better with attention
(+.023). DGRUD with attention outperforms GRUD with
attention (+.034). Also, the gated CNN and the visual encoders
record similar level of macro F1 score of GRUD.

Models that accept sensor data and visual data show better
scores in event classification task. Also, DGRUD outperforms
GRUD without attention (+.084) and with attention (+.070).
The F1 score of the dual encoder model (Model 13) which uses
DGRUD as the sensory encoder achieves the highest macro
F1 score (.621) as well as for the classes of Conflict with
Animal/Pedestrians (.382). In case of the other classes, the dual
encoder using DGRUD without attention shows the highest
F1 scores.

Among the five classes, No conflict is most accurately
classified, followed by Single Vehicle Conflict and Conflict
with Lead Vehicle with a high accuracy as well. The other
classes do not show high F1 scores, partially due to the small
size of the training data. Note that the F1 score of Conflict with
Animal/Pedestrian is highly improved with visual encoders
since it is very difficult to classify correctly without visual
data. Conflict with vehicle in adjacent lane is even harder to
classify since it might not be captured by the forward videos,
and the time-series sensor data can be difficult to distinguish
from Single Vehicle Conflict and Conflict with Lead Vehicle
classes.

Specifically, as shown in Fig. 4, about half of the Conflict
with vehicle in adjacent lane events are classified by the
model as Conflict with Lead Vehicle. Also, Conflict with

PARK et al.: DENOISING RNNs FOR CLASSIFYING CRASH-RELATED EVENTS 2913

TABLE I

F1 SCORES FOR EACH CLASS OF EVENT CLASSIFICATION

Fig. 4. Confusion matrix of DGRUD (Sensory encoder) and GRU (Visual
encoder) for the event classification task (top) and the event type classification
task (bottom).

Animal/Pedestrian events are predicted to be other conflict
events.

C. Denoising Effects

DGRUD effectively learns a linear filter to smooth away
the noise in time-series input. To show the effect, the amount
of noise in sensor data is empirically estimated through
beta-sigma procedure [59], since the time-series data was

provided by SHRP2 without information of the vehicle sen-
sors. The beta-sigma procedure analyze the distribution of
derivatives, to look at contribution of noise terms to the value
of them. The procedure assumes Gaussian noise and the degree
of the noise is represented as a standard deviation of the
distribution. In order to compute the effect of noise reduction
in our model, estimated the noise of the raw sensor input
(Eq. 10), i.e., denoising layer input is compared to the noise
of the output of the denoising layer (Eq. 11).

In event classification task, estimated amount of noise
in 6 raw sensor data on average was 0.2212. After training
the weighted mean filter, estimated noise was reduced to
0.0594. In case of the event type classification task, the esti-
mated noise of 4 raw sensor signal was 0.1587, which was
reduced to 0.0447. Thus we observed our model reducing
73.1%, 71.8% of the noise in the raw data in each task,
respectively.

Fig. 3 illustrates an example of the smoothed inputs of four
time-series sensor features in the event of the conflict with
the lead vehicle. These inputs are extracted during the event
type classification task. For each subfigure, X-axis indicates
time and Y-axis represents each sensor values. Compared to
the raw data in the top row, bottom row shows smoothed data
by the trained denoising layer (Eq. 11).

D. Attention Mechanism

As shown in Table I and II, attention mechanism helps
to learn events and event types more precisely. In general,
the overall macro F1 score is increased when the attention
layer is attached. This tendency is shown not only in the sen-
sory encoder or the visual encoder but also in dual encoders.

Also, Fig. 5 presents exemplar sensory attention outputs
trained on the event classification task, to explore the role
of attention layer qualitatively. In the top half of the figure,
the graph represents near-crash events when the car suddenly
stops to avoid collision with the vehicle ahead stopping at the
intersection. Then the driver succeeds in avoiding a conflict,
turning right after the lead vehicle starts moving. In this case,
the attention weights slightly increase when the near-crash
event starts, and then the level of attention is maintained.

2914 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 7, JULY 2020

TABLE II

F1 SCORES FOR EACH CLASS OF EVENT TYPE CLASSIFICATION

Fig. 5. Examples of sensory attention weights of near-crash event (top) and crash event (bottom). The weights show that in both cases, they start to rise
as the event occurs, even increasing after the end of the event. This implies that the network monitors not only the immediate impact of the event but also
post-event data to classify the events precisely.

On the other hand, the bottom half of figure 5 repre-
sents a crash event due to the distraction of the driver in
the intersection. Driver fails to recognize that there was a
car ahead so the car crashed into the vehicle ahead without
reducing velocity. In this case, the attention weights tend to
slightly fluctuate at impact, and if deceleration lasts after
the crash, attention weights sharply increase. This can be
interpreted to mean that crash-involved vehicles are likely
to stop to clear up the accident. That is, stopping after the
impact is an obvious pattern for the crash event, which helps
the classifier to accurately distinguish crash events among
near-crash and no crash events. The sudden fluctuation of the
sensor values at impact are also observed in cases of near-
crash, thus the attention weights might increase sharply after
the impact if the vehicle is still decelerating after the event.

Meanwhile, attention weights in visual encoders tend to
increase when the driver is getting closer to the vehicle ahead,
regardless of occurrence of crash or near-crash events.

VI. DISCUSSION

In this paper, we develop a neural network model to classify
driving events and type of the events. The network accepts
time-series sensor inputs and visual features as inputs, and
these inputs are encoded by DGRUD and GRU respectively.
Each attention layer give weights across time domain, and
softmax layer is attached on top of that layer to compute
probability for each class. Specifically, we propose a novel
RNN cell structure, DGRUD, which can impute missing data
and smooth noise away in input time-series data as well. The
filter weights are trainable parameters that are jointly trained

PARK et al.: DENOISING RNNs FOR CLASSIFYING CRASH-RELATED EVENTS 2915

with the others in the cell which is flexible enough to be
optimized in task-specific way. The weights are also viewed
as a single set of layers that consists of one convolution filter
across time domain and average-pooling layer with stride k
over convolutions.

Our results show that by adding small number of parameters
of filter weights in DGRUD, driving events and their types
can be classified more accurately. Specifically, the model
requires (Number of sensors × Window size k) of addi-
tional parameters over GRUD, to reduce noise in the input
sensor data. In this study, only 60 (6×10) and 40 (4×10)
trainable parameters are added for each of the event classi-
fication and the event type classification task, respectively.
This means that removing noise helps distinguishing events
because appropriate smoothing can prevent no crash events to
be classified as crash events due to high level of noise while
preserving the peaks generated by sudden change of vehicle
status during events. Furthermore, when extracted features
from images comprising forward videos are added to the
network, additional performance improvement is observed.
It is obvious that some events only can be recognized with
time-series sensors, and others only with forward visual
features.

Our model shows reasonable performance when considering
the accessibility of the data in practice because smartphones
and black-box video-recorders can easily collect basic sensor
data and forward-facing videos. With these devices, our model
can be implemented in driver assistance systems to provide
automatic emergency calls with more important and detailed
information immediately after crash events are detected and
save lives. Also, accurate crash detection would provide auto-
matic claim processing. For insurers, detecting crash event
accurately can greatly reduce opportunities for fraud claims.
Moreover, detecting the type of crash event can provide further
information about the event, helping assessment for cause of a
crash event. Insurers also can collect and analyze crash data to
enable identifying better driving behaviors for novel insurance
policies lowering costs.

In fact, precision and recall of a crash detection algo-
rithm are crucial to achieve these positive outcomes. How-
ever, despite using sensor and visual inputs simultaneously,
F1 scores of our model in near-crash detection, conflict with
adjacent lane vehicle, and with animal or pedestrian reach
only moderate level of precision and recall. As for future
work, there are two ways to improve the performance on these
classes. First, improvement is expected if different types of
time-series information are to be added to our model, such
as backward/left-side/right-side videos or additional sensor
signals such as radars measuring distance to the adjacent
vehicles. Second, our model could be improved by employing
advanced RNN architectures. By adding a denoising layer
to Factorized Recurrent Networks [60], the network would
memorize long-term dependencies better on video frames
and irregularly observed sensor data. Another candidate is
full-capacity unitary RNNs [61] which shows better perfor-
mance over LSTMs. These networks could be trained better
by applying auxiliary loss functions [62].

Lastly, our model could assist safety driving when applied
to driving related tasks that require time-series sensor data and
forward video.

REFERENCES

[1] W. H. O. Violence, I. Prevention, and W. H. Organization, Global Status
Report on Road Safety: Time for Action. Geneva, Switzerland: World
Health Organization, 2009.

[2] C. Saiprasert, T. Pholprasit, and S. Thajchayapong, “Detection of driving
events using sensory data on smartphone,” Int. J. Intell. Transp. Syst.
Res., vol. 15, no. 1, pp. 17–28, Jul. 2015.

[3] N. Kalra and D. Bansal, “Detecting and characterizing driving
events using smartphone,” in Proc. Int. Sci. Technol. Congr., 2014,
pp. 1462–1468.

[4] H. Guan, R. Kasahara, and H. Kasahara, “Traffic light recognition and
dangerous driving events detection from surveillance video of vehicle
camera,” Electron. Imaging, vol. 4, pp. 3–10, Jan. 2017.

[5] M. Fathollahi and R. Kasturi, “Autonomous driving challenge: To infer
the property of a dynamic object based on its motion pattern,” in Com-
puter Vision–ECCV. New York, NY, USA: Springer, 2016, pp. 40–46.

[6] J. Zhang et al., “Chemical substance classification using long short-
term memory recurrent neural network,” in Proc. IEEE 17th Int. Conf.
Commun. Technol. (ICCT), Oct. 2017, pp. 1994–1997.

[7] E. Choi, A. Schuetz, W. F. Stewart, and J. Sun, “Using recurrent neural
network models for early detection of heart failure onset,” J. Amer. Med.
Inform. Assoc., vol. 24, no. 2, pp. 361–370, Aug. 2016.

[8] H. Hayashi, K. Shima, T. Shibanoki, Y. Kurita, and T. Tsuji, “Bioelectric
signal classification using a recurrent probabilistic neural network with
time-series discriminant component analysis,” in Proc. 35th Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2013, pp. 5394–5397.

[9] J. Wang and J. Wang, “Forecasting energy market indices with recurrent
neural networks: Case study of crude oil price fluctuations,” Energy,
vol. 102, pp. 365–374, May 2016.

[10] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl, “Time-series extreme
event forecasting with neural networks at Uber,” in Proc. Int. Conf.
Mach. Learn., 2017, pp. 1–5.

[11] C. Hori et al., “Driver confusion status detection using recurrent neural
networks,” in Proc. IEEE Int. Conf. Multimedia Expo (ICME), Jul. 2016,
pp. 1–6.

[12] J. Morton, T. A. Wheeler, and M. J. Kochenderfer, “Analysis of
recurrent neural networks for probabilistic modeling of driver behav-
ior,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 5, pp. 1289–1298,
May 2017.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[14] K. Cho et al., “Learning phrase representations using RNN encoder–
decoder for statistical machine translation,” in Proc. EMNLP, 2014,
pp. 1724–1734.

[15] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent
neural networks for multivariate time series with missing values,” Sci.
Rep., vol. 8, no. 1, p. 6085, 2018. doi: 10.1038/s41598-018-24271-9.

[16] C.-H. Yeh, J.-C. Bai, S.-C. Wang, P.-Y. Sung, R.-N. Yeh, and M. Shih,
“Vision-based vehicle event detection through visual rhythm analysis,”
in Proc. IEEE Int. Conf. Multimedia Expo, Apr. 2008, pp. 309–312.

[17] C.-Y. Fang, S.-W. Chen, and C.-S. Fuh, “Automatic change detection of
driving environments in a vision-based driver assistance system,” IEEE
Trans. Neural Netw., vol. 14, no. 3, pp. 646–657, May 2003.

[18] H. Sheng, C. Li, Q. Wei, and Z. Xiong, “Real-time detection of abnormal
vehicle events with multi-feature over highway surveillance video,” in
Proc. 11th Int. IEEE Conf. Intell. Transp. Syst., Oct. 2008, pp. 550–556.

[19] Q. Chen, Q. Qiu, Q. Wu, M. Bishop, and M. Barnell, “A con-
fabulation model for abnormal vehicle events detection in wide-area
traffic monitoring,” in Proc. IEEE Int. Inter-Disciplinary Conf. Cogn.
Methods Situation Awareness Decis. Support (CogSIMA), Mar. 2014,
pp. 216–222.

[20] S. T. Rakkesh, A. R. Weerasinghe, and R. A. C. Ranasinghe, “Sim-
ulation of real-time vehicle speed violation detection using complex
event processing,” in Proc. IEEE Int. Conf. Inf. Automat. Sustainability
(ICIAfS), Dec. 2016, pp. 1–6.

[21] D. Akin and B. Akba, “A neural network (NN) model to predict
intersection crashes based upon driver, vehicle and roadway surface
characteristics,” Sci. Res. Essays, vol. 5, no. 19, pp. 2837–2847, 2010.

[22] F. R. Moghaddam, S. Afandizadeh, and M. Ziyadi, “Prediction of
accident severity using artificial neural networks,” Int. J. Civil Eng.,
vol. 9, no. 1, p. 41, Mar. 2011.

http://dx.doi.org/10.1038/s41598-018-24271-9

2916 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 21, NO. 7, JULY 2020

[23] J.-L. Rouas, J. Louradour, and S. Ambellouis, “Audio events detection
in public transport vehicle,” in Proc. IEEE Intell. Transp. Syst. Conf.,
Sep. 2006, pp. 733–738.

[24] M. Gupta, V. K. Solanki, and V. K. Singh, “Analysis of datamining
technique for traffic accident severity problem: A review,” in Proc. 2nd
Int. Conf. Res. Intell. Comput. Eng., 2017, pp. 197–199.

[25] P. Baluni and Y. Raiwani, “Vehicular accident analysis using neural
network,” Int. J. Emerg. Technol. Adv. Eng., vol. 4, no. 9, pp. 161–164,
2014.

[26] Y. Lv, Z. Haixia, Z. Xing-lin, L. Ming, and L. Jie, “Research on accident
prediction of intersection and identification method of prominent acci-
dent form based on back propagation neural network,” in Proc. ICCASM,
Oct. 2010, pp. 434–438.

[27] M. Sowmya and D. P. Ponmuthuramalingam, “Analyzing the road traffic
and accidents with classification techniques,” Int. J. Comput. Trends
Technol., vol. 5, pp. 183–188, Nov. 2013.

[28] N. Mahajan and B. P. Kaur, “Analysis of factors of road traffic accidents
using enhanced decision tree algorithm,” Int. J. Comput. Appl., vol. 135,
no. 6, pp. 1–3, 2016.

[29] S. Shanthi and R. G. Ramani, “Classification of vehicle collision patterns
in road accidents using data mining algorithms,” Int. J. Comput. Appl.,
vol. 35, no. 12, pp. 30–37, 2011.

[30] E. Suganya and S. Vijayarani, “Analysis of road accidents in India
using data mining classification algorithms,” in Proc. Int. Conf. Inventive
Comput. Inform. (ICICI), Nov. 2017, pp. 1122–1126.

[31] J. R. Asor, G. M. B. Catedrilla, and J. E. Estrada, “A study on
the road accidents using data investigation and visualization in Los
Baños, Laguna, Philippines,” in Proc. Int. Conf. Inf. Commun. Technol.
(ICOIACT), Mar. 2018, pp. 96–101.

[32] S. Kumar and D. Toshniwal, “A data mining approach to characterize
road accident locations,” J. Modern Transp., vol. 24, no. 1, pp. 62–72,
Mar. 2016.

[33] C. Huisingh, E. B. Levitan, M. R. Irvin, P. MacLennan, V. Wadley,
and C. Owsley, “Visual sensory and visual-cognitive function and
rate of crash and near-crash involvement among older drivers using
naturalistic driving data,” Investigative Ophthalmol. Vis. Sci., vol. 58,
no. 7, pp. 2959–2967, 2017.

[34] J. F. Jünior et al., “Driver behavior profiling: An investigation with
different smartphone sensors and machine learning,” Plos One, vol. 12,
no. 4, 2017, Art. no. e0174959.

[35] L. Ding, W. Fang, H. Luo, L. Peter, B. Zhong, and X. Ouyang,
“A deep hybrid learning model to detect unsafe behavior: Integrating
convolution neural networks and long short-term memory,” Autom.
Construct., vol. 86, pp. 118–124, Feb. 2018.

[36] W. Junger and A. P. de Leon, “Imputation of missing data in time series
for air pollutants,” Epidemiology, vol. 20, no. 6, pp. 96–104, 2015.

[37] G. T. Ferrari and V. Ozaki, “Missing data imputation of climate datasets:
Implications to modeling extreme drought events,” Revista Brasileira de
Meteorologia, vol. 29, no. 1, pp. 21–28, Mar. 2014.

[38] L. Pan and J. Li, “K-nearest neighbor based missing data estimation
algorithm in wireless sensor networks,” Wireless Sensor Netw., vol. 2,
no. 2, p. 115, 2010.

[39] N. Eisemann, A. Waldmann, and A. Katalinic, “Imputation of missing
values of Tumour stage in population-based cancer registration,” BMC
Med. Res. Methodol., vol. 11, no. 1, p. 129, Dec. 2011.

[40] F. Gerber, R. Furrer, G. Schaepman-Strub, R. de Jong, and
M. Schaepman, “Predicting missing values in spatio-temporal
satellite data,” 2016, arXiv:1605.01038. [Online]. Available:
https://arxiv.org/abs/1605.01038s

[41] C. K. Enders, Applied Missing Data Analysis. New York, NY, USA:
Guilford Press, 2010.

[42] B. K. Vaughn, “Data analysis using regression and multi-
level/hierarchical models,” J. Educ. Meas., vol. 45, no. 1, pp. 94–97,
2008.

[43] L. F. Burgette and P. R. Hahn, “Symmetric Bayesian multinomial probit
models,” Dept. Stat. Sci., Duke Univ. Durham, Durham, NC, USA,
Tech. Rep. 1–20, 2010.

[44] F. Honghai, C. Guoshun, Y. Cheng, Y. Bingru, and C. Yumei, “A SVM
regression based approach to filling in missing values,” in Proc. KES,
2005, pp. 581–587.

[45] K. Pelckmans, J. D. Brabanter, J. A. Suykens, and B. De Moor,
“Handling missing values in support vector machine classifiers,” Neural
Netw., vol. 18, nos. 5–6, pp. 684–692, Aug. 2005.

[46] K. Jiang, H. Chen, and S. Yuan, “Classification for incomplete data using
classifier ensembles,” in Proc. Int. Conf. Neural Netw. Brain, Oct. 2005,
pp. 559–563.

[47] M. C. Motwani, M. C. Gadiya, R. C. Motwani, and F. C. Harris, “Survey
of image denoising techniques,” in Proc. GSPX, Sep. 2004, pp. 27–30.

[48] M. Alfaouri and K. Daqrouq, “ECG signal denoising by wavelet
transform thresholding,” Amer. J. Appl. Sci., vol. 5, no. 3, pp. 276–281,
2008.

[49] S. Joshi, R. A. Vatti, and R. V. Tornekar, “A survey on ECG signal
denoising techniques,” in Proc. CSNT, Apr. 2013, pp. 60–64.

[50] Y. Wang, W. Zhang, and H. Wang, “Application of wavelet method with
nonlinear threshold control in vehicle wheel force signal denoising,” in
Proc. 4th Int. Conf. Intell. Comput. Technol. Automat., vol. 2, Mar. 2011,
pp. 957–960.

[51] H. Wang and W. Zhang, “Application of wavelet transform in vehicle
wheel speed signal denoising,” in Proc. Int. Conf. Measuring Technol.
Mechtron. Autom., vol. 3, Apr. 2009, pp. 191–194.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, Jun. 2016, pp. 770–778.

[53] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proc. EMNLP, 2015,
pp. 5998–6008.

[54] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

[55] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical
attention networks for document classification,” in Proc. NAACL, 2016,
pp. 1480–1489.

[56] V. Govindaraj and G. Sengottaiyan, “Survey of image denoising
using different filters,” Int. J. Sci., Eng. Technol. Res., vol. 2, no. 2,
pp. 344–351, Feb. 2013.

[57] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2014, arXiv:1412.6980. [Online]. Available:
https://arxiv.org/abs/1412.6980

[58] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling
with gated convolutional networks,” 2016, arXiv:1612.08083. [Online].
Available: https://arxiv.org/abs/1612.08083

[59] S. Czesla, T. Molle, and J. H. M. M. Schmitt, “A posteriori noise
estimation in variable data sets - with applications to spectra and light
curves,” Astron. Astrophys., vol. 609, p. A39, Jan. 2018.

[60] S. Wisdom, T. Powers, J. Hershey, J. Le Roux, and L. Atlas, “Full-
capacity unitary recurrent neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2016, pp. 4880–4888.

[61] F. Belletti, A. Beutel, S. Jain, and E. Chi, “Factorized recurrent neural
architectures for longer range dependence,” in Proc. Int. Conf. Artif.
Intell. Statist., 2018, pp. 1522–1530.

[62] T. H. Trinh, A. M. Dai, M.-T. Luong, and Q. V. Le, “Learn-
ing longer-term dependencies in RNNS with auxiliary losses,” 2018,
arXiv:1803.00144. [Online]. Available: https://arxiv.org/abs/1803.00144

Sungjoon Park received the B.A. and M.A.
degrees in psychology from Seoul National Uni-
versity, Seoul, South Korea, in 2012 and 2014,
respectively. He is currently pursuing the Ph.D.
degree in machine learning and natural language
processing with the Users and Information Labo-
ratory, Department of Computing, Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, South Korea. His research interests include
time-series data analysis, representation learning,
natural language processing, and computational
psychology.

Yeon Seonwoo received the B.S. degree in computer
science and engineering from Sungkyunkwan Uni-
versity, South Korea, in 2016, and the M.S. degree
in machine learning from the Korea Advanced Insti-
tute of Science and Technology (KAIST), South
Korea, in 2017, where he is currently pursu-
ing the Ph.D. degree in machine learning. His
research interests include machine learning, stochas-
tic process, time-series data analysis, and represen-
tation learning.

PARK et al.: DENOISING RNNs FOR CLASSIFYING CRASH-RELATED EVENTS 2917

Jiseon Kim received the B.S. degree from the Divi-
sion of Computer Science, Sookmyung Women’s
University, South Korea, in 2017. She is currently
pursuing the M.S. degree in computer science with
the Korea Advanced Institute of Science and Tech-
nology (KAIST). Her research interests include nat-
ural language processing and computational social
science.

Jooyeon Kim received the B.E. degree in systems
innovation from the University of Tokyo in 2014,
and the M.S. degree in computer science from the
Korea Advanced Institute of Science and Technol-
ogy (KAIST) in 2016, where he is currently pursuing
the Ph.D. degree in computer science. His research
interests include Bayesian machine learning, text and
network analysis, and game analytics.

Alice Oh received the master’s degree in language
and information technologies from CMU, and the
Ph.D. degree in computer science from MIT. She is
currently an Associate Professor in computer sci-
ence with KAIST. Her research interest includes
developing and applying machine learning models
for human social behavior data. She has served
on various technical committees, including ACL,
EMNLP, ACM CHI, ACM WSDM, ACM KDD, and
AAAI.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

