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Intentions of Vulnerable Road Users — Detection
and Forecasting by Means of Machine Learning

Michael Goldhammer, Sebastian Kohler, Stefan Zernetsch, Konrad Doll, Bernhard Sick, and Klaus Dietmayer

Abstract—Avoiding collisions with vulnerable road users
(VRUs) using sensor-based early recognition of critical situations
is one of the manifold opportunities provided by the current
development in the field of intelligent vehicles. As especially
pedestrians and cyclists are very agile and have a variety of
movement options, modeling their behavior in traffic scenes is
a challenging task. In this article we propose movement models
based on machine learning methods, in particular artificial neural
networks, in order to classify the current motion state and to
predict the future trajectory of VRUs. Both model types are
also combined to enable the application of specifically trained
motion predictors based on a continuously updated pseudo
probabilistic state classification. Furthermore, the architecture
is used to evaluate motion-specific physical models for starting
and stopping and video-based pedestrian motion classification.
A comprehensive dataset consisting of 1068 pedestrian and 494
cyclist scenes acquired at an urban intersection is used for
optimization, training, and evaluation of the different models.
The results show substantial higher classification rates and the
ability to earlier recognize motion state changes with the machine
learning approaches compared to interacting multiple model
(IMM) Kalman Filtering. The trajectory prediction quality is
also improved for all kinds of test scenes, especially when starting
and stopping motions are included. Here, 37% and 41% lower
position errors were achieved on average, respectively.

Index Terms—road safety, vulnerable road users, movement
modeling, intention recognition, motion classification, trajectory
prediction, artificial neural networks

I. INTRODUCTION

Due to the World Health Organization’s status report on road
safety, traffic accidents currently constitute the leading cause
of death for young people aged 15-29 years. Moreover, they
are also one of the most frequent causes among most other
age classes [1]. About half of those cases concern vulnerable
road users (VRU), i. e., pedestrians, cyclists, and motorcyclists.
While the progress of active and passive safety functions in
the last decades has steadily improved the protection of car
passengers, the protection of VRUs still remains a critical
issue. Passive safety concepts such as helmets or energy
absorbing vehicle design play an important role but often
cannot avoid severe injuries, even at relatively low velocities
within urban accident scenarios. A unique opportunity to close
this gap between vehicle and VRU safety is provided by the
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current progress in the fields of advanced driver assistant sys-
tems (ADAS) and autonomous driving: By predicting critical
situations and thus being able to take active countermeasures in
an early state, VRU accidents could be avoided or at least their
consequences could be significantly reduced. A fundamental
task thereby is the creation of suitable VRU movement models.
In particular for pedestrians and cyclists, a behavior prediction
is challenging as they often are not using specific traffic
lanes, can abruptly change their motion state (e.g., starting,
stopping, bending in) and do not actively communicate their
intention by turn indicators or brake lights. Considering future
applications, they also hardly have an option to broadcast their
motion state and intention via vechicle-to-everything (V2X)
communication such as motor vehicles.

Addressing those issues we propose and investigate novel
VRU movement models based on machine learning techniques
in combination with large-scale realistic training data from
public traffic scenes. We use an offline learning approach
meaning that we first train the models and then the model
are evaluated without learning anymore. Our concept includes
the detection of motion state changes in an early phase, the
prediction of the future trajectory and the combination of both
approaches. The models are designed with the goals of having
low demands regarding prior knowledge and a high degree
of independence from general conditions such as traffic and
environment situations. So, only the VRU’s trajectory observed
in any global coordinate system by an appropriate sensor
technique is sufficient as input data. Additional environment
information, e. g., map data, is not required. Based on the same
data, also other state-of-the-art models using video-features
and physical motion parameters are optimized and compared
to the proposed approaches.

The remainder of the article is structured as follows: In
Section an overview over the related work in the areas
of pedestrian and cyclist motion modeling and prediction is
given. Our approach, broken down into the individual main
processing steps is presented afterwards in Section In
Section [LV] the test site and the VRU datasets used for training
and evaluation of the models are described. The performed
experiments and results are discussed in Section [V] while
a final conclusion is drawn and a brief outlook is given in
Section

II. RELATED WORK

Modeling pedestrian and cyclist movement has already been
a task in different areas of research, e.g., biomechanics,
physiotherapy and sports sciences. The main objective of
those models is the analysis of basic movement parame-
ters for understanding and improving motion sequences or



their individual components for certain groups or activities,
e. g., physically restricted persons or athletes in popular and
competitive sports. In contrast, the main purpose of VRU
movement modeling is forecasting the short-term behavior for
a continuous analysis of the traffic surrounding. In this sector
a certain number of studies concerning pedestrians, but hardly
any works on bicyclists were published within the last years.

A frequently used technique for trajectory prediction in
many applications is Kalman Filtering (KF), where physical
state variables are assumed as constant whenever the state
information cannot be updated by observation [2]. Published
approaches addressing pedestrians use constant velocity (CV),
constant acceleration (CA), and constant turn rate (CT) mod-
els, or even combinations of these by interacting multiple
model (IMM) filters [3]-[6]. Kalman Filtering offers the
advantage of low demands on prior knowledge and, therefore,
it is suitable in many cases, e. g., small time horizons or walk-
ing/cycling with steady state velocity. However, as a matter
of principle, it results in larger prediction errors whenever
motion state changes appear and, thus, the basic assumption
is violated, e.g., during starting and stopping. Furthermore,
the detection of motion transitions can also be performed
with Kalman Filtering [2]], which is an important aspect of
VRU intention recognition, and can serve as basis to classify
critical situations (e.g., a person suddenly steps on the road)
or to choose suitable movement models. A common approach
is the usage of the model probability of an IMM-KF with
constant position (CP) and CV model to distinguish standing
from walking motion [7]]. Another trajectory-based approach
is presented by Wakim et al., where the four classes standing
still, walking, jogging, and running are modeled by Hidden
Markov Models (HMM) and updated based on the measured
absolute and angular velocity [8].

Besides this exclusively trajectory-based approaches, addi-
tional sensor specific information, e. g., gathered from monoc-
ular cameras, stereo cameras, or LiDAR systems is used
in other publications. Keller and Gavrila compare stopping
motion detection by KF approaches to stereo-vision based
methods using dense optical flow [9]. They also perform
a trajectory prediction and show that the KF methods are
outperformed in this case. Quintero et al. determine the joint
positions of pedestrians on data acquired by a high-resolution
stereo camera and a LiDAR system and characterize the
movement via Gaussian Process Dynamical Models (GPDM)
[10], [11]. They perform a state classification within the
classes standing, starting, walking, and stopping as well as
a trajectory prediction for a time horizon of one second. The
head pose and the associated direction of view are detected
and tracked in camera images by Schulz and Stiefelhagen [[12]].
They use this feature among others to recognize the intention
of pedestrians to cross the road with different models, primary
IMM filters, and Latent-dynamic Conditional Random Fields
(LDCRF) [13]], [14]]. Kooij et al. use camera-based context
information of the scene environment such as the distance of
the pedestrian to the curb and his head pose (line of sight)
in order to rate the criticality of situations. Using a novel
Dynamic Bayesian Network, they perform an early recognition
of motion state transitions [[15]].

In the present article, the work listed in this paragraph is
extended, combined and extensively evaluated. A trajectory
prediction method based on two physical models of the
pedestrian starting motion is published in [16]], corresponding
analyses for stopping motions in [17]. A machine learning
model using the time series of the pedestrian’s ego velocity
as input pattern for Multi Layer Perceptrons (MLP) is pre-
sented in [[18]]. This concept is extended with a polynomial
representation by least-squares approximation of the input and
output time series, leading to a reduction of the feature space
dimensionality and an increase of generalisability [[19]. In [20],
a modification of this model is used for the early recognition
of the starting movement intention of pedestrians. A transfer
of the approaches with physical and MLP models to cyclists is
published in [21]]. Video-based methods for motion classifica-
tion and early recognition of state changes of pedestrians are
presented in [22] and [23]]. A Motion History Image (MHI)
based histogram feature vector (MCHOG) approach is used
as input for the classification of monocular images of a static
camera [22[] and of stereo images from a moving vehicle [23|]
by Support Vector Machines (SVM).

III. METHODOLOGY

For the recognition of the motion state we expand the
method of polynomial approximation of time series and recog-
nition of the starting movement (‘“PolyMLP”) presented in
[20] to a general classifier for the motion state. As input, we
use the observed trajectory in a world coordinate system. As
target output, a pseudo class posterior probability of the four
states Waiting, Starting, Moving, and Stopping is provided.
The method is compared to CP/CV-IMM-KF classification
as baseline and to the MCHOG/SVM approach as solely
video based classifier. The PolyMLP method is also used for
trajectory prediction. An overview of the input/output behavior
is given in Fig. [1| The resulting position accuracy is compared
to CV-KF as baseline method and to physical models for
starting and stopping optimized on the same training data.
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Fig. 1. Overview of the basic processing steps of the method PolyMLP.

In a final step, we combine the methods of motion state
recognition and trajectory prediction to use motion state de-
pendent optimized movement prediction models (e.g. specific
PolyMLP only trained with starting movements) and evaluate
their benefits compared to the single-stage (“monolithic’)
PolyMLP.

Within this section, the successive steps of extracting char-
acteristic time series (Sec. [[II-A), their representation by poly-
nomial least-squares approximation (Sec. [[lI-B), the prediction
by MLP (Sec. as well as the target outputs of the motion
state (Sec. [[lI-D) and the future trajectory (Sec. [[II-E)) are
described. Afterwards, in Sec. the motion state specific
trajectory prediction model using multiple specifically trained
MLP is presented.



A. Time Series Extraction

The PolyMLP method solely uses the information within
the observed VRU trajectory in a static world coordinate
system for the prediction of the motion state and/or the future
trajectory. Therefore, it is very flexible with regard to the
applied sensor system, but also allows for an easy extention
of the input space with additional information.

For the acquisition of the trajectories evaluated within this
study, an infrastructure based wide-angle stereo camera system
and, alternatively, an array of multilayer laser scanners is
used (see Sec. [[V). As anchor point for tracking in 3D world
space serves the VRUs’ centers of gravity (COG) determined
from the laser scanner generated point cloud, or the center
of the head detected from video data (see [18]]), respectively.
As changes of the motion state, especially the begin of the
pedestrian starting motion, are initialized by a slight upper
body bending leading to a shift of the COG into the direction
of movement [24], the head movement can serve as an early
indicator for the intention.

To extract a time series representing the VRU motion
independent from the absolute position and direction, several
approaches were implemented and compared, e.g., the two-
dimensional trajectory or velocity in the pedestrians ego coor-
dinate system or the combination of the absolute and angular
velocity. The finally applied configuration uses the velocity
Vlon, Viet @S numerical differentiation of the position X at
the discrete time steps k, k — 1, k — 2, etc. in the VRU’s ego
coordinate system jo,, ¢ (see Fig. E] a, b). Both dimensions
of the time series are additionally processed with a first order
exponential smoothing filter

Sk =ayr + (1 — a)Sk—1, 9]

where S; is the current element of the time series, y; the
current observation, Sy_; the previous filtered element and «
the smoothing factor. The values of « for both dimensions
are part of the parameter set varied to optimize the overall
prediction quality.

B. Representation with Approximating Polynomials

As shown in [18]], the time series extracted within a certain
time window can directly serve as input pattern of a machine
learning predictor. However, we proceed to a further level of
abstraction by using the coefficients of an orthogonal expan-
sion of an approximating polynomial as presented in [20].
The advantages of this step are a high grade of independence
of the input data cycle time and a significant reduction of
the dimensionality of the feature space. Dependent on the
polynomial degree and the length of the time window, the
approximation also reduces the influence of measurement
noise. As the coefficients of the orthogonal expansion are
optimal estimates for the average values of the time series’
derivations, they can be interpreted as mean position, velocity,
acceleration, etc. during the considered time window. Using
the polynomials and update algorithms for sliding window
processing of time series presented by Fuchs et al. [25]], the
approximation can be performed very efficiently. In order to
allow the machine learning prediction algorithm for weighting

different time periods separately as it is possible with direct
input of the time series elements, we make use of multiple
polynomials per dimension fitted in sequential temporal sub
windows. Their number, temporal position, length and poly-
nomial degree are model parameters and varied within the
optimization. A schematic example with three sub windows is
shown in Fig. [2| b (green, orange and blue polynomials).
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Fig. 2. Overview of the proposed path prediction method.

C. Multilayer Perceptron for Prediction

We apply an MLP to predict the motion state and/or the
future trajectory of the VRU based on the extracted patterns
(see Fig.[2|c). The MLP provides high flexibility and efficiency
for the given application as it allows predicting multiple
output dimensions at the same time. The applied artificial
neural network consists of neurons with sigmoid activation
functions, whereas other configurations (identity, Gaussian)
were evaluated, too. After normalizing the input patterns using
a z-transformation, a training is performed with the Resilient
Backpropagation (RPROP) algorithm [26]]. The number and
sizes of the hidden layers are variable and also part of the
optimization process.

D. Recognition of Motion State

For the recognition of the motion state, a model of the
four states Waiting, Starting, Moving, and Stopping is used.
This basically allows the 8 (out of a possible basic quantity
of 12) state transitions depicted in Fig. [3] as the transitions
between Waiting and Moving are always separated by one
of the transition states Starting or Stopping. For the online
classification, an MLP output layer with 4 neurons, one
representing each state, is configured. The trajectories used
for training are labeled with a distinct class label for every



Yy

Stopping

==

Fig. 3. Modeled motion states and physically possible state transitions.

element, generating output training patterns with a one at the
element representing the current ground truth class and zeros
at all others. No further measures are taken to define physically
meaningful transitions or transition probabilities explicitly, as
the neural network should be given the possibility to learn
these aspects from scratch without further conditions. With this
approach, the trained classifier provides a pseudo-probabilistic
rating for each state. As the four output neurons have no direct
interconnection the cumulative probability is not explicitly
specified to 100%, so an additional scaling step has to be
applied if this output information is needed by the subsequent
application.

E. Prediction of Trajectory

To predict the VRU trajectory, we use a representation
according to the one of the input patterns. To train the
predictor, again characteristic time series are extracted from
the ground truth trajectory within a certain time window (cf.
Section and the time series are approximated using
orthogonal basis polynomials to get a low-dimensional repre-
sentation independent of the cycle time (cf. Section [[TI-B). The
choice of the MLP output pattern is completely independent
of the one of the input pattern, what allows different time
series and polynomial degrees. Each polynomial coefficient
is estimated by a separate MLP output neuron, where also
a z-transformation is used for normalization. During online
application, the process is performed vice versa: The output
pattern predicted by the MLP is transformed back and the time
series is evaluated at the requested discrete points of time. It
is then transformed to an estimation of the future trajectory in
the original global coordinate system using the current VRU
position and movement direction (see Fig. 2] d).

FE. State Specific Trajectory Prediction

After training, the weights of the MLP implicitly contain
the knowledge of the trained movements (starting, stopping,
etc.) within a single model. Besides this monolithic approach,
a second approach combining state classification with several
specifically trained models for trajectory prediction is im-
plemented and evaluated. The architecture of the prediction
system using the PolyMLP method is shown in Fig.

The measured trajectory is fed into a classifier module that
predicts the current motion state as described in Sec.
(Recognition of Movement State). In parallel, the trajectory is
fed into several (here: four) PolyMLP modules for trajectory
prediction. Each predictor is specifically trained with scenes
containing movements according to one output of the classifier
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Fig. 4. Motion state specific trajectory prediction.

model, i.e. motion state. As the prediction modules can use
the same configuration for preprocessing the trajectory and
polynomial approximation, only the output of the specifically
trained MLPs has to be processed separately. The predicted
polynomial coefficients are fed into a gating module and added
as weighted sum based on the class posterior probabilities. Fi-
nally, the resulting fused coefficient set is used to generate the
final trajectory prediction. This method of explicit separation
of classification and trajectory prediction has the advantage
that the classification as well as the prediction modules can
be replaced by other approaches. For our evaluation we are
thus able to use the MCHOG/SVM approach within the
classification module or physical starting and stopping models
in the prediction module as comparison techniques.

IV. TEST SITES AND DATA SETS

For training, optimization, and evaluation of the models,
appropriate databases containing realistic VRU data play an
essential role. We use an urban traffic intersection in order
to gain measurements of realistic, unaffected pedestrian and
cyclist behavior under real conditions. The observed area
includes two sidewalks, two crosswalks and a bicycle lane
which is separated from the motor vehicle lanes by road
markings (see Fig. [5). The intersection is equipped with

Fig. 5. Map of the public intersection used to acquire VRU behavior data. The
area highlighted in green represents the observed sidewalk, the yellow areas
the crosswalks. The bicycle lane is highlighted in blue. The area of overlapping
fields of view of the high resolution cameras allowing high-precision 3D
position measurements is marked by the red circle.

eight low-resolution (640x480px) and two high-resolution
(1920x 1080 px) grayscale cameras, as well as 14 eight-layer
laser scanners. All sensors are mounted on infrastructure



elements, e. g., street lamps and traffic light posts, in heights
between 4 and 11 meters in order to reduce the risk of
occlusions. The sensor system is described in detail in [27].
The high-resolution cameras are pointing towards a part of
the intersection where two crosswalks meet and therefore
a high quantity of pedestrians is expected (Fig. [5] dashed
red circle). They form a wide angle stereo system allowing
precise 3D measurements with an accuracy better than 3 cm
for corresponding image points. The laser scanners cover the
central intersection and the area of three approaching roads
up to 100 m. They provide object point clouds and are used
to track cyclists in a larger area beyond the stereo range of
the camera system. The low resolution cameras are currently
only used for manual scene observation and the labeling of
movement phases.

Fig. [ shows the framework for the extraction of pedestrian
and cyclist head trajectories from stereo video data. At the
first stage, both synchronous camera frames are individually
scanned by a sliding-window histogram of oriented gradients
(HOG) pedestrian detector [28|]. The upper half of the de-
tection rectangles serve as region of interest (ROI) for the
head detectors , which are based on Haar [29] and local
binary pattern (LBP) features [30]. In the next step, the
most likely head position in pixel coordinates is determined
fusing HOG, Haar, and LBP detections. If the head position
is already tracked, template matching is used as a fourth
measurement value that is fed into the fusion module. The
tracked head positions from both cameras are merged to 3D
world coordinate positions via triangulation. In a final step,
valid positions are connected to 3D trajectories and stored.
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Fig. 6. Framework for extraction of trajectories.

A. Full Pedestrian Dataset

The Full Pedestrian Dataset contains 1068 scenes of pedes-
trians with 4 to 10 seconds length recorded by the high
resolution stereo system with a sample rate of 50Hz. The
scenes are categorized with one of the following scene labels
(the number in brackets indicates the number of scenes):

o Moving scenes (288) contains pedestrians crossing the ob-
served area without stopping or significant deceleration,
including scenes of walking along the sidewalk, crossing
one of the roads, walking straight ahead or making a turn.

o Waiting scenes (259) contains pedestrians standing at the
sidewalk, mostly waiting for a green pedestrian light
signal (head velocity lower than 0.3 m/s).

e Starting scenes (336) contains pedestrians accelerating
from standing position. These scenes also contain up to
3 seconds before and after the actual acceleration phase
if available within the data.

o Stopping scenes (185) contains scenes where moving
pedestrians decelerate to standstill. These scenes also
contain up to 3 seconds before and after the actual
deceleration phase.

The Starting scenes include time labels of the start, and if
existent within the scene, also of the end of the acceleration
phase. The start is determined as the time where the ground
truth head velocity exceeds 0.2m/s, its end is labeled at the
first local maximum after the velocity exceeds 80% of their
steady state value. The labeling of Stopping is done vice versa.
Table |l] gives an overview over the training and test scenes and
extracted patterns (combination of predictor in- and output,
generated for each time cycle with complete in- and output
time window around).

TABLE I
TRAINING- AND TEST DATA IN THE FULL PEDESTRIAN DATASET. THE
TABLE SHOWS THE NUMBER OF SCENES USED AND OF THE ACCORDING
EXTRACTED PATTERNS IN BRACKETS.

Waiting Starting Moving Stopping
Train 177 (54.6k) | 239 (66.5k) | 201 (45.2k) 130 (42.6k)
Test 82 (25.3k) 97 (25.1k) 87 (20.1k) 55 (17.7k)
Total 259 (79.8k) | 336 (91.6k) | 288 (65.3k) | 185 (60.3k)

B. Detailed Pedestrian Dataset

The Detailed Pedestrian Dataset is an extended subset
of 136 Starting, 107 Stopping, and 69 Moving scenes from
the full set with finer differentiated ground truth motion
states. It contains manually determined labels by video data
observation, e. g., the state, the timestamps of heel-off, the first
and second heel-down, the entering of the roadway and partial
occlusions.

C. Cyclist Dataset

The Cyclist Dataset contains 494 trajectories of bicyclists
including 86 Moving, 133 Waiting, 197 Starting and 78
Stopping scenes. As the cyclists’ phases of acceleration and
deceleration typically take more time and distance as those of
pedestrians, the laser scanner system was used to capture also
tracks leaving the more limited common field of view of the
high resolution stereo cameras. In return, a lower spatial and
temporal resolution was accepted for those tracks.

As well the pedestrian as the cyclist dataset with labeled
head trajectories is available to the scientific community [31]].

V. EXPERIMENTS AND RESULTS
A. Training and Optimization

The training and optimization of the pedestrian models is
performed using the training split (747 scenes) of the Full



Pedestrian Database. The training scenes are split again into
70% for the MLP training with RPROP and 30% as validation
set for the optimization of the meta parameters (pre-filtering
parameters, sliding window positions and sizes, polynomial
representation). The target function of the MLP training is
a minimization of the mean squared error (MSE) of the z-
normalized output, while the meta parameters are optimized
regarding a maximum accuracy (state classification) and a
minimum average specific average Euclidean error (ASAEE,
see Sec. [V-D). For the selection of the input time series
representation (Sec. a five-fold cross validation within
the training set is applied.

The results show that the time series of the 2D velocity in
the pedestrians ego system perform best as basis for the input
patterns of both state classification and trajectory prediction,
while only decent differences to other tested representations
(see Sec. were observed (0% —3% for state clas., 3% —
9% for traj. pred.). The representation with polynomials shows
slight advantages compared to the direct input of each time
series (0% —5%). The final outcome of the optimization of
the sliding window and polynomial configuration are two
consecutive time windows of 800ms and 200 ms length with
polynomial degrees of 3. For the output pattern of the trajec-
tory prediction, the time series of the 2D position in the ego
system with five consecutive sliding windows (500 ms each,
polynomial degree 2) is used, leading to an overall prediction
time horizon of 2.5s.

B. Motion State Classification

In the first experiment, the quality of the proposed method
for motion state classification is evaluated. For comparison, an
IMM-KF using CP/CV models and the directly video-based
method MCHOG/SVM [23]] are applied to the same scenes.
As the evaluation requires the additional labels of the Detailed
Pedestrian Dataset (i.e. the time of heel-off to distinguish
between standing and starting phase), the following tests are
performed using these patterns. In the experiment, the overall
quality of the different motion state classifiers is evaluated by
means of the accuracy (ACC) and the F; score.

As the quality measures and both comparison methods only
support binary classification, the ground truth label Waiting
is assigned to timestamps before and the label Moving to
those during and after the manually determined heel-off within
the 40 Starting scenes. Two PolyMLP predictors are trained:
The first uses a four-classes output and a binarization after
the prediction step by thresholding the sum probability Psyp,
of the three estimates for Starting, Moving and Stopping:
Psym = P(Start) + P(Mov) 4+ P(Stop). The second is directly
trained with this two-class split and uses a single output neuron
to predict Psyn while the class Waiting is defined by the
complement probability 1 — Ps,y,. The 35 Stopping scenes
are also tested with a four-class model, where a threshold on
Psym = P(Stop) + P(Wait) is used for binarization. The two-
class model is again trained directly with this split and predicts
the output with a single neuron. As the classifier quality
measures are depending on the binarization threshold, the op-
timal value is chosen by maximization of the accuracy on the

TABLE 11
ACCURACY (ACC) AND F; SCORE OF THE CLASSIFIERS FOR THE 40
STARTING AND 35 STOPPING TEST SCENES OF THE DETAILED PEDESTRIAN

DATABASE.
Start Stop
ACC F ACC F;

IMM-KF 0.9803 0.9565 0.9248 0.9548
PolyMLP (4 Cl.) | 0.9819 0.9601 0.9381 0.9644
PolyMLP (2 Cl.) | 0.9824 0.9612 0.9363 0.9636
MCHOG 0.9844 0.9659 0.9141 0.9503

TABLE III

CONFUSION MATRIX FOR THE CLASSIFICATION OF THE MOTION STATE.
THE ROWS CONTAIN THE SPECIFIC GROUND TRUTH LABEL. THE
COLUMNS CONTAIN THE PERCENTAGE OF DETECTIONS WITH REGARD TO
THE TOTAL NUMBER OF PATTERNS OF THE GROUND TRUTH LABEL (SUM
OF EVERY ROW EQUALS 100%).

Waiting | Starting | Walking | Stopping
Waiting 98.6% 0.7% 0.0% 0.7%
Starting 11.8% 77.1% 8.8% 2.3%
Walking 2.0% 4.8% 88.1% 5.0%
Stopping 2.1% 2.2% 34.8% 60.9%

training data (an optimization of the F;-score leads to the same
operating point). The resulting quality measures of both test
scene types using optimal bias values are shown in Table
For the regarded Starting scenes, the quality measures show
only minor differences with slight advantages for MCHOG and
slight disadvantages for the IMM-KF compared to PolyMLP.
Clearer differences can be observed for the Stopping scenes:
Here, PolyMLP performs best, while IMM-KF outperforms
MCHOG. The optimization thereby results in a relatively high
threshold for the CV model probability FPcy of the IMM-KF
of 98.9%, which means that stopping can be recognized in an
early state.

As the PolyMLP method performs a multi-class prediction
of all four motion states, it is additionally evaluated using
the 321 test tracks of the Full Pedestrian Dataset. The result
shows an accuracy of 88.6%, which is lower than the one
of the Detailed Pedestrian Dataset as the classifier has now
to distinguish between Starting, Walking, and Stopping, too.
More detailed results are set out in the confusion matrix in
Table [[II] which shows an obvious substantial asymmetry of the
classification rates of the four types of movement. The state
Waiting can be separated best from the three others, leading
to a correct classification rate of 98,6%. Most challenging is
the transition from Walking to Stopping: Here, especially the
begin of the stopping phase is difficult to distinguish from
velocity variations during walking, crossing one of the roads,
or bending in.

C. Early Recognition of State Transitions

For an evaluation of the prediction model ability to early
recognize state transitions, the temporal development of the
classification quality depending on the binarization threshold is
analyzed. Here, the trade-off between the classifier’s sensitivity
leading to short reaction times on movement transitions on the
one hand and low false alarm rates on the other hand should be
examined. For this purpose, the Detailed Pedestrian Dataset
is evaluated scene-wise on false positives under variation of



the chosen threshold value. A scene is already considered
as false positive if the classifier produces one false positive
output at any single time step. Under that condition, the quality
measures of the precision and the F; score can be evaluated
depending on the threshold. The additional determination of
the accuracy does not make sense here as the number of true
negatives is zero for most of the possible values (The state
transition is detected earlier or later in any case.). Furthermore,
the mean time for the correct classification of the movement
transition relative to the according manually labeled point in
time is determined. For this evaluation, only scenes without
false positives for the regarded threshold value are considered.
Fig. [/| shows the four quality measures evaluated on the
Starting scenes dependent on the chosen threshold for the
PolyMLP and the MCHOG/SVM classifier. The results show
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Fig. 7. Evaluation of the recognition of starting movements using 40 scenes
of the Detailed Pedestrian Dataset for PolyMLP (upper plot) and MCHOG
(lower plot). The plots show the precision (orange), the Fy-score (blue) and
the mean time needed for detection of the starting motion relative to the
manually labeled time of the heel-off (green). The chosen threshold on the
pseudo probabilistic classifier output is drawn on the horizontal axis.

that an F; score of 95% and a precision of 90% are reached
130 ms after the labeled heel-off. The MCHOG classifier is
about 3 frames faster at the same operating point, and thus able
to detect the starting motion about 70 ms earlier. In contrast,
the IMM-EKF needs 160 ms (plot not shown).

Fig. [8] shows the plots for the same kind of evaluation
regarding the recognition of stopping motion. Here, the de-
tection time is measured in relation to the heel-down of the
last step. In this case, the PolyMLP method performs best,
reaching an F; score of 95% and a precision of 90% already
1.4 s before the heel-down (on average). Both other classifiers,
MCHOG/SVM and IMM-KF, reach this quality level only
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Fig. 8. Evaluation of the recognition of stopping movements using 35 test
scenes of the Detailed Pedestrian Dataset for PolyMLP (upper plot) and
MCHOG (lower plot). The axes and plot configuration correspond to Fig. m

400 ms later, which is a large time span in the field of active
accident prevention.

Actually, we want to reach 100% F; score and preci-
sion, but there is a tradeoff between F;/precision and mean
detection time and sometimes we are not able to get at
100% F;/precision. Therefore, we choose the 95% F; and
90% precision levels for comparison of the PolyMLP and
the MCHOG/SVM classifier on starting motions (Fig. [7) and
stopping motions (Fig. [8). When analyzing accidents it was
shown that an initiation of an emergency break 160 ms earlier
at a Time-to-Collision of 660 ms and a vehicle speed of
50 km/h reduces the probability of an injury resulting in a
hospital stay from 50% to 35% [7|]. This underlines the need
for detecting basic movements as early as possible and that
some milliseconds can make the difference. Fig. [7] shows that
for an F; score/prediction of 100% some starting motions can
only be detected 0.4 sec or later after heel off. This indicates
that there is still research to be done.

D. Generally Applicable Methods of Trajectory Prediction

In this section, the generally applicable methods of tra-
jectory prediction, the monolithic and the two-stage specific
PolyMLP, are evaluated and compared to CV Kalman filtering
as baseline. As performance measure, the average specific
average Euclidean error
1 EN: AEE(tyreq(i))

ASAEE = — -
tm’ed(l)

¥ @)

i=1



TABLE IV
ASAEE (IN CM/S) OF UNIVERSALLY APPLICABLE PREDICTION METHODS
FOR THE FOUR SCENE CLASSES IN COMPARISON. THE TABLE SHOWS THE
RESULTS FOR CV KALMAN FILTERING (CV-KF), THE SINGLE STAGE
(MONOLOTHIC) MLP MODEL (POLYMLP), THE TWO-STAGE MLP MODEL
(POLYMLP (2 ST.)) AND THE COMBINATION OF THE GROUND TRUTH
CLASS LABELS WITH THE SPECIFICALLY TRAINED POLYMLP MODELS

(GT+POLYMLP).
Waiting | Starting | Walking | Stopping| Mean
CV-KF 7.8 442 27.6 335 28.3
PolyMLP 6.9 33.6 25.5 227 22.2
PolyMLP (2St.) 4.7 34.4 234 25.2 21.9
GT+PolyMLP 3.9 323 22.8 225 20.4

with the AEE being the average Euclidean position error for
a specific time span t,,.4(¢), the index ¢ and the total number
N of discrete time spans predicted into the future (see [20]).
In our case, N =125 steps with ?,,,.4=0.02..2.50 s are used.
The ASAEE is evaluated separately for the methods and the
four scene types within the Full Pedestrian Dataset, leading
to the results shown in Table [Vl

The results of the Kalman Filter already show the varying
degrees of difficulty of the single scene types: As expected,
Waiting generates the lowest errors (7.8 cm/s). The ASAEE
rises with increasing presence of velocity changes resulting
in the further order Walking, Stopping, and Starting. Starting
includes the most abrupt velocity changes in combination with
the absence of a defined direction regarding the trajectory at
the beginning of the movement. For Waiting and Walking, the
monolithic PolyMLP shows moderate improvements of 12%
and 8% to the Kalman Filter. The improvement for scenes
including movement transitions is substantially larger: Starting
scenes improve by 24%, Stopping scenes even by 32%. Con-
sidering only the predictions directly within the labeled actual
transition phase, an improvement of 42% (Starting) resp. 43%
(Stopping) can be observed.

In comparison to the monolithic PolyMLP, the two-stage
approach shows a slight further improvement of 1-2cm/s
on Waiting and Walking scenes while the error for Starting
and Stopping increases by approximately the same values.
This means that the additional classification error outweighs
the improvement of the specific trajectory prediction models
for the transition scenes. Overall, the two-stage model leads
to slightly lower errors, whereas the difference is only 1%
considering the average of the four scene class results and 3%
considering the ASAEE evaluated over all test patterns.

In order to examine the maximum potential of the two-
stage approach, the classification stage is replaced by the
ground truth class labels. Thus, the trajectory prediction stage
is always able to choose the optimal model. The experimental
results show a potential limit at a 7% lower average scene
class error. Considering the separate scene types, especially
the Starting and Stopping prediction of the monolithic model
already performs very close to the optimum.

E. Two-stage Trajectory Prediction

In this test series, the quality of the motion specific two-
stage trajectory prediction methods for Starting and Stopping
scenes are evaluated and compared to the generally applicable

methods tested in the previous section using the Detailed
Pedestrian Database. We evaluate the predictions only during
the labeled movement transition, as the dataset contains longer
phases of waiting resp. walking before the starting resp. the
stopping movement. The third scene class Moving is included
in order to evaluate the sensitivity for false alarm stopping
classifications.

The results presented in Table [V| show the superiority of
the machine learning models compared to the prediction of
the (generally optimized) CV Kalman Filter. The application
of the monolithic PolyMLP model leads to a reduction of
the prediction error by 36.5% for Starting and 40.7% for
Stopping scenes. As shown in the last row of the table by
combining the ground truth classification with the specifically
trained PolyMLP prediction, the potential for improvement
by two-stage modeling is only 4.9% for Starting, but 11.0%
for Stopping scenes. As classification stage we evaluated
the four-class PolyMLP classifier already tested on the Full
Pedestrian Dataset (PolyMLP) and the image-based two-
class MCHOG/SVM classifiers (MCHOG). For trajectory pre-
diction, specifically trained PolyMLP models and physically
based models for starting and stopping (PhysMod) are evalu-
ated. In the case of Starting, the specific PolyMLP models
outperform the physical model by 9% while they perform
almost equal on Stopping motions. A distinct disadvantage of
the physical Stopping model thereby is its sensitivity on false
alarms of the classifier stage, leading to a particularly high
prediction error on Moving scenes. Considering the machine
learning models, it is remarkable that no two-stage approach
is able to outperform the single-stage PolyMLP. While with
Starting scenes no substantial differences between the single-
stage PolyMLP and the two-stage models with PolyMLP- and
MCHOG classification are measured, the monolithic approach
slightly outperforms both at Stopping by 6.4% resp. 3.7%.

TABLE V

ASAEE (IN CM/S) OF THE DIFFERENT OPTIMIZED TRAJECTORY
PREDICTION METHODS FOR THE THREE SCENE CLASSES IN COMPARISON.

Starting | Stopping | Moving
KF 49.94 36.04 23.35
PolyMLP 31.71 21.37 22.41
PolyMLP+PhysMod 35.23 21.75 41.97
PolyMLP+PolyMLP 31.54 22.84 23.10
MCHOG+PolyMLP 31.85 22.20 22.72
GT+PolyMLP 30.17 19.01 21.43
F. Cyclists

For the Cyclist Dataset, the applicability of the PolyMLP
concept to this VRU type could also be shown. As typical
cyclist velocities at the test intersection are 2—3 times higher
than those of pedestrians, their reach within the prediction
horizon is much larger. Thus, the position prediction errors
rise, here by 51% for Starting and for 79% on Stopping scenes
compared to the Full Pedestrian Database. The fundamental
insights to those gained for pedestrians: Especially regarding
Starting scenes, the PolyMLP model could outperform an
optimized CV-KF by 46%. Here, also physical modeling
already leads to an improvement of 27% compared to CV-KF.
A significant advantage (34%) of PolyMLP is also observed
on stopping scenes, while the Kalman Filter prediction was



not improved on Waiting (£0%) and Moving scenes (-11%).
For a more detailed evaluation on the cyclist dataset, see [21]].

G. Processing Time

Another important aspect is the computational time for
training and for the online application of the predictor. As
the dimensionality of the in- and output features is relatively
low due to the polynomial representation, the training time of
the MLP also remains short. Using a current desktop PC (Intel
Core i7-3770, 4 x 3.4 GHz, 8 GB RAM), 12 min are needed
for the single stage PolyMLP model, while 97% of the final
prediction quality is already reached after approx. 1 min.

For the two-stage approach, the preprocessing and the
polynomial approximation step have only to be performed
once as long as the same polynomial configuration is used for
all models included. With regard to the one-stage approach,
the computation time rises by only 35% to 70 us. Altogether
the algorithms perform very efficient with computational times
several orders of magnitude lower than, e. g., most techniques
of pedestrian or cyclist detection. The used algorithms of
video-based head detection and tracking, e.g., are processed
within less than 40ms on the test system. Therefore, a
HOG/SVM pedestrian detector processing full-frames on the
GPU in order to deliver ROIs for the head detection is the
limiting factor.

VI. CONCLUSION AND FUTURE WORK

In this article we proposed VRU movement models based
on machine learning methods. The presented approach uses
the measured VRU trajectory to predict the current motion
state and the future trajectory. It is compared to CV- and
IMM-Kalman-Filtering, physically based models for start-
ing and stopping and video-based motion classification with
a MCHOG descriptor and SVMs. The results show that
PolyMLP clearly outperforms Kalman Filtering for classifi-
cation and trajectory prediction, in particular in the cases of
starting and stopping motions. Physical models perform also
better than KF, but are outperformed by PolyMLP too, espe-
cially considering the handling of false positive classifications.
MCHOG/SVM uses additional image-based information as
input and thus shows slightly more reliable early detection
of starting motion (70ms faster on avrg.), but is approx.
400ms slower at the classification of stopping. The two-
stage approach of motion state classification and trajectory
prediction did not lead to a significant further improvement
of the prediction quality in our case, but reveals the potential
to include other classification of prediction models, perhaps
basing on complementary sensors. Altogether, PolyMLP rep-
resents a promising method for intention recognition of VRUs
with state-of-the-art prediction quality and a high degree of
flexibility with regard to VRU type, used sensor system,
predicted time horizon and the concrete field of ADAS ap-
plication.

Our future work comprises the further evaluation of the
techniques using on-board sensors in a moving vehicle under
various traffic conditions. Here, especially the handling of
measurement noise and the vehicle’s ego motion represent
additional challenges. Another promising approach is the

inclusion of additional information, e.g. from high-precision
maps, other on-board sensors, infrastructure knots or vehicles
via V2I or V2V communication.
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