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Abstract— The exploitation of vehicles as mobile sensors acts
as a catalyst for novel crowdsensing-based applications such
as intelligent traffic control and distributed weather forecast.
However, the massive increases in Machine-type Communication
(MTC) highly stress the capacities of the network infrastructure.
With the system-immanent limitation of resources in cellular
networks and the resource competition between human cell
users and MTC, more resource-efficient channel access meth-
ods are required in order to improve the coexistence of the
different communicating entities. In this paper, we present a
machine learning-enabled transmission scheme for client-side
opportunistic data transmission. By considering the measured
channel state as well as the predicted future channel behavior,
delay-tolerant MTC is performed with respect to the anticipated
resource-efficiency. The proposed mechanism is evaluated in
comprehensive field evaluations in public Long Term Evolution
(LTE) networks, where it is able to increase the mean data
rate by 194% while simultaneously reducing the average power
consumption by up to 54%.

Index Terms— Context-predictive communication, machine
learning, crowdsensing, intelligent transportation systems, mobile
sensors.

I. INTRODUCTION

WHILE cars were only seen as means for personal trans-
portation in the past, they are currently transcending to

mobile sensor nodes that provide crowdsensing-based services
with highly up-to-date information [1]. Applications range
from predictive maintenance and intelligent traffic control to
road-roughness detection [2] and distributed weather fore-
cast [3]. In addition, small-scale autonomous robots such as
Unmanned Aerial Vehicles (UAVs) are expected to become
native parts of Intelligent Transportation Systems (ITSs) [4].
Since the operation time of these vehicles is highly determined
by the available energy resources, energy-efficient commu-
nication has become one of the major research fields in
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Fig. 1. Challenges and application-specific requirements of ITS-based data
transmission. In the paper, we exploit knowledge about the channel dynamics
for opportunistic data transfer in oder to avoid wastage of cell resource.
Although the empirical evaluation focuses on the vehicle-as-a-sensor use case,
the results are also relevant for smart logistics and aerial sensing.

mobile robotics [5]. Different communication technologies
with characteristic system properties and intended use-cases
are currently being investigated for interconnecting vehicles
and infrastructure. Among others, the framework for the
deployment of ITSs of the European Parliament [6] proposes
the usage IEEE 802.11p-based ad-hoc communication for
safety-related Vehicle-to-vehicle (V2V) data transfer with low
latencies and small data packets. However, this technology
is not able to provide internet-based vehicle-to-cloud connec-
tivity, as there are practically no deployments of Roadside
Units (RSUs), which offer the required gateway functionali-
ties. Therefore, delay-tolerant and data-intense messaging is
intended to be carried out based on existing cellular commu-
nication technologies (e.g., LTE and upcoming 5G networks),
which already offer large-scale coverage. With the expected
massive increase in vehicular MTC [7] and the general growth
of cellular data traffic [8], the network infrastructure is facing
the challenge of resource-competition between human cell
users and Internet of Things (IoT)-related data transmis-
sions [9]. Fig. 1 gives an overview about the requirements of
different vehicular and IoT-based communication systems and
the resulting challenges that arise from the channel dynamics
and the limited cell resources.
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A promising approach to address these issues is the appli-
cation of context-aware communication [10] that exploits
the dynamics of the communication channel to schedule
delay-tolerant transmissions in an opportunistic way for
increasing the transmission efficiency with regard to data
rate, packet loss probability and energy consumption. As a
consequence, communication resources are occupied for
shorter time intervals and can early be used by other cell
users, which enables a better coexistence and overall system
performance [11].

In this paper, we extend and bring together the meth-
ods, results and insights of previous work [12]–[16] on
context-aware car-to-cloud communication and propose a
client-side opportunistic transmission scheme that applies
machine learning-based data rate prediction for scheduling
the transmission times of sensor data transmissions with
respect to the expected resource-efficiency. Moreover, mobility
prediction and connectivity maps are exploited to integrate
the anticipated future channel behavior into the transmission
process. The analysis focuses on resource-aware machine
learning models that allow the online-prediction on off-the-
shelf smartphones and embedded systems without causing
significant additional computation overheads themselves.

The analysis in this work focuses on exploiting vehi-
cles as moving sensor nodes that transmit measured data
to cloud-based services through a cellular network. It is
assumed that the actual data-driven crowdsensing applica-
tions specify soft deadlines, which allow the opportunistic
and delay-tolerant approach of the proposed transmission
scheme. Examples for existing real-world systems with similar
requirements are Sydney Coordinated Adaptive Traffic System
(SCATS)-based ramp metering in ITSs (traffic flow is commu-
nicated every six minutes), real-time traffic optimization [17],
[18] (sensors provide their information once per minute) and
air pollution monitoring [19], which is performed every five
minutes.

The key contributions of this paper are the following:
• A highly configurable probabilistic model for oppor-

tunistic vehicle-to-cloud data transfer with respect to the
channel properties.

• Machine learning-based uplink data rate prediction
based on measured passive downlink indicators, which
is applied as a metric to schedule data transmissions.

• Mobility prediction using navigation system knowl-
edge to forecast the future vehicle position and allow
exploitation of a priori information about the transmission
channel by using multi-layer connectivity maps.

• A closed process for post-processing uplink power
consumption analysis exploiting machine learning-based
transmission power prediction from passive downlink
indicators and device-specific laboratory measurements.

• The developed measurement applications and the raw
measurement results are provided as Open Source.

The remainder of the manuscript is structured as follows.
After discussing relevant state-of-the-art approaches in Sec. II,
the proposed transmission scheme and its individual com-
ponents are presented in Sec. III. Afterwards, a machine

learning-empowered process to assess the uplink power con-
sumption of embedded devices is presented in Sec. V. Sec. IV
gives an overview about the methodological setup for the field
evaluation and finally, the achieved results of the different
models are evaluated and discussed in Sec. VI.

II. RELATED WORK

A detailed evaluation about the complex interdependencies
of Machine-to-machine (M2M) and Human-to-human (H2H)
data traffic as well as their coexistence in the same cellu-
lar network is performed in [11]. The optimization of the
coexistence of these data traffic types is often addressed
on the network infrastructure side, e.g., by cognitive and
channel-dependent scheduling mechanisms [20] that consider
different traffic types and priorities. In [21], the authors
propose a biology-inspired approach that considers M2M
and H2H as populations of predators and prey in order to
achieve a stable equilibrium for both traffic types. Although
these optimizations might have an impact on the design of
future networks, they can often not be applied within existing
networks as the involved changes could lead to incompatibil-
ities. Moreover, the scientific evaluation of infrastructure-side
optimizations is often limited to simulation scenarios due to
lacking access to the required hardware equipment and the
inherent complexity of real-world scenarios.

Especially for platooning, one way to reduce the
crowdsensing-related cell load is to pre-aggregate the sensor
data in a gateway vehicle [22] before it is actually transmit-
ted in order to avoid the transfer of redundant information.
Alternative approaches are provided by social-based forward-
ing [23] and offloading techniques [24]. Within this paper,
we focus on optimizing the transmission behavior of individual
non-coordinated vehicles.

Anticipatory mobile networking aims to raise the
situation-awareness of the communicating entities by
integrating additional information into the decision processes
in order to optimize different individual Key Performance
Indicators (KPIs) or the overall system performance [25]. The
anticipatory communication paradigm is closely related to
the application of machine learning, which can be exploited
for the prediction of future behaviors and the consideration
of hidden parameters that are not directly accessible within
the complex system [26]. In [27], the authors propose a
data-driven framework for optimizing the resource-efficiency
of the network infrastructure by centralized and distributed
predictions using control channel analysis. Within the case-
study, about 95% of the overall traffic value was precisely
predicted, which enabled the network operators to more
than double the offered data rate using the optimization
framework. While theoretically, the resulting data rate of a
transmission is the result of a deterministic process, predicting
those values proactively within a live-system is a challenging
task due to the large number of involved hidden influences
(e.g., scheduling, packet loss, channel stability, spectrum
sharing and cross-layer interdependencies) [28]. Different
authors have investigated the impact of the channel quality
to the resulting data rate of cellular data transmissions [15],
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Fig. 2. Overall system architecture model for training and application phase of the probabilistic transmission scheme. The dashed components are only
required for the context-predictive pCAT-based transmissions. All modules operate on the application layer.

[29]–[32] in different environments that range from highway
to inner city scenarios. The studies agree that passively
measurable network quality indicators such as Reference
Signal Received Power (RSRP), Reference Signal Received
Quality (RSRQ), Signal-to-interference-plus-noise Ratio
(SINR), and Channel Quality Indicator (CQI) provide
meaningful information, which can be leveraged to estimate
the resulting data rate based on machine learning methods
even in challenging environments. In comparison to time
series-based active data rate prediction (e.g., based on
Kalman filters), passive approaches do not monitor the data
rates of ongoing transmissions and can therefore be applied
without introducing additional traffic themselves. As resource
efficiency is one of the optimization goals of this work,
we focus on passive data rate prediction.

For mobile wireless networks, the dynamics of the
communication channel are highly affected by the mobil-
ity characteristics of the moving vehicle [33]. Therefore,
mobility-awareness allows the explicit consideration of these
impact factors e.g., for handover optimization [34] and
improved routing in vehicular ad-hoc networks [35].

While crowdsensing forms the considered application sce-
nario for this work and provides the reason for the actual
vehicle-to-cloud data transfer, the technique itself can be
exploited in order to optimize the environmental awareness
of the vehicles. In this context, the usage of connectivity
maps for anticipatory communication [36], [37] allows to
exploit a priori information about the channel quality based on
previous measurements in the same geographical area. Radio
Environment Maps (REMs) implement a similar concept,
which enables opportunistic data transfer with Cognitive Radio
(CR) methods [38]. However, those purely spectrum-aware
approaches do not consider the cross-layer interdependencies
within the protocol stack. Moreover, as the resource allocation
in LTE is performed by the scheduling mechanisms of the
evolved NodeB (eNB), those methods have to be imple-
mented by the mobile network operator. In contrast to that,
the proposed machine learning-based approach can easily be

implemented on the client side without requiring modifications
to the network infrastructure.

III. MACHINE LEARNING-ENABLED TRANSMISSION

OF VEHICULAR SENSOR DATA

In this section, the machine learning-based sensor data
transmission schemes and their corresponding components
are presented. In the first step, the legacy Channel-
aware Transmission (CAT) scheme [11] is generalized
and augmented using machine learning-based data rate
prediction. Afterwards, we transit from context-aware to
context-predictive communication with the extended pCAT
that exploits multi-layer connectivity maps and mobility
prediction to consider the anticipated future network state
in the transmission process. Finally, the main contributions
of this paper — the transmission schemes Machine Learning
CAT (ML-CAT) and Machine Learning pCAT (ML-pCAT)
— are derived by bringing the key insights together. The
overall system architecture model of the proposed approach
that operates on the application layer is shown in Fig. 2.
Transmissions are performed probabilistically with respect to
the network quality by exploiting connectivity hotspots that
allow fast and reliable data delivery and avoiding connectivity
valleys that implicate high packet loss probabilities. The
acquired sensor data is stored in a local buffer until a
transmission decision has been made for the whole data
buffer.

The training phase consists of passive probing of the LTE
downlink indicators — which form the channel context C(t)
— as well as of active data transmission with variable payload
sizes using Hypertext Transfer Protocol (HTTP) POST. The
feature set of the data rate prediction is composed of the
network quality indicators, the velocity and the payload size of
the data packet. The resulting data rate of the active transmis-
sion is used as the label for the prediction process, which is
performed with the models Artificial Neural Network (ANN),
Linear Regression (LR), Random Forest (RF), M5 Decision
Tree (M5T) and Support Vector Machine (SVM). Finally,
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Fig. 3. Example temporal behavior of the proposed pCAT transmission
scheme in comparison to periodic data transmissions.

the prediction performance of the different models is evaluated
using 10-fold cross validation. Additionally, the measured
channel context parameters and the position information of
the vehicle are utilized to create a multi-layer connectivity
map that stores the cell-wise average of each indicator from
multiple visits of the same geographical area.

During the application phase, the context information is
leveraged to calculate the channel-aware transmission prob-
ability p�(t). The channel is only probed passively and the
most accurate previously trained prediction model uses mea-
surements for the channel context C(t), the mobility context
M(t) and the application context A(t) to predict the currently
achievable data rate �S(t). The latter forms the metric for the
transmission scheme that is configured with multiple system
parameters (see Sec. III-A). Alternatively, the channel quality
indicators can be used directly to serve as a transmission
metric.

For the context-predictive pCAT transmission scheme (see
Sec. III-B2), mobility prediction is applied to estimate the
future position �P(t + τ ) for a defined prediction horizon τ .�P(t + τ ) is then used to access the corresponding cell entry
in the connectivity map in order to obtain an estimation for
the future channel context �C(t +τ ). This knowledge about the
anticipated channel behavior enables the calculation of the
forecasted data rate �S(t+τ ) that is integrated into the transmis-
sion process of the proposed pCAT. An example comparison of
the temporal behavior of context-predictive data transmission
using SINR-based pCAT and straightforward fixed-interval
data transfer is shown in Fig. 3. Since the periodic approach
does not consider the network quality within the transmission
decision, the SINR at the begin of the transmission is uni-
formly distributed over the whole value range of the SINR
and multiple transmissions are performed during low network
quality periods. Contrastingly, the proposed context-predictive
approach is able to avoid those resource-inefficient transmis-
sions by exploiting connectivity hotspots.

A. Context-Aware Data Transmission With CAT

The proposed model is based on a probabilistic process
with the aim to calculate the transmission probability p�(t)
with a fixed channel assessment interval tp based on the
measured network quality indicators. While the groundwork
for this idea that is presented in [11] was purely focused on the
SINR for assessing the channel quality, current off-the-shelf

Fig. 4. Analytic behavior of the channel-dependent transmission probability
for CAT with different values of the weighting exponent α.

LTE modems and smartphones provide additional indicators,
that allow a finer-grained analysis of the current connectivity
situation. Therefore, an abstract metric � is introduced, which
is described by its assumed minimum value �min and its max-
imum value �max that implicitly define the operation range
�max −�min. Each indicator contained in the channel context
C(t) can be mapped to a corresponding metric �i (t). In order
to allow the comparison of multiple metrics that are related to
different value ranges (e.g., RSRP and RSRQ), the measured
metric value �(t) is transformed into the normed current
metric value �(t) with Eq. 1. This approach also enables the
joint consideration of multiple different metrics [15].

�(t) = �(t) − �min

�max − �min
(1)

The resulting transmission probability is then computed with
Eq. 2. With �t being the elapsed time since the last performed
transmission, p�(t) is computed based on the measured chan-
nel quality, if the time interval condition tmin < �t < tmax
is fulfilled. tmin guarantees a minimum packet size and tmax
specifies a maximum buffering delay that corresponds to the
actual application requirements.

p�(t) =

⎧⎪⎨⎪⎩
0 : �t ≤ tmin

�(t)α : tmin < �t < tmax

1 : �t > tmax

(2)

The formula allows to control to which extend a metric should
prefer values that are close to �max by the weighting exponent
α. Fig. 4 shows the resulting analytical temporal behavior for
different values of α. If the time interval condition is fulfilled
and �(t) exceeds �max, the transmission probability is 1 and
the transmission is performed in any case.

B. Context-Predictive Data Transmission Exploiting
Multi-Layer Connectivity Maps With pCAT

In the following, the previously presented CAT scheme is
extended to the context-predictive pCAT that leverages a priori
information about the channel quality along the anticipated
trajectory. The aim is to optimize the data transmission
scheduling further by integrating knowledge about the future
network state into the transmission process. As the basic
requirement to predict the future channel context �C(t + τ )
is the availability of a position forecast �P(t + τ ) for a
defined prediction horizon τ , pCAT is divided into a mobility
prediction component and the actual transmission process.
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1) Mobility Prediction: In the following, multiple prediction
approaches, that exploit different sensors and information
types and differ in the implementation complexity are dis-
cussed. Since Global Positioning System (GPS) coordinates
and the World Geodetic System 1984 (WGS84) reference
frame are used in the live-system, all calculations have to
be performed in the orthodromic domain [39]. Nevertheless,
the formulas are presented in a cartesian coordinate system
for better understanding here. The proposed scheme focuses
on the use of generic approaches that can be efficiently
used in a live-system without involving a high computation
overhead. More complicated approaches based on maneuver
detection [40] have been proposed in literature and will be
considered for future extensions.

a) GPS-Based Extrapolation: The most straightforward
approach is to extrapolate the future position by using the
location, direction and velocity information provided by the
GPS receiver. With the north-aligned angular direction λ and
the current vehicle velocity v, the future position is estimated
with Eq. 3.

�P(t + τ ) = P(t) +
�

sin(�
2 ) · cos

�
λ·�
180◦

	
sin(�

2 ) · sin
�

λ·�
180◦

	



· τ · v (3)

The advantage of using extrapolation is that it can be imple-
mented in a very simple manner by using only the currently
measured GPS information. However, it assumes the direction
λ and the velocity v to be constant for the duration of τ .
Therefore, the resulting prediction accuracy is highly reduced
— especially for larger values of τ — if the vehicle turns,
encounters stop-and-go traffic or is influenced by traffic signals
and other traffic participants.

b) Leveraging Trajectory-Knowledge From the Naviga-
tion System: For overcoming the limitations of the previous
approach, mobility prediction based on trajectory information
is now discussed. While planned trajectories might be acces-
sible through a direct interface to the navigation system —
which will likely be the case for upcoming automated vehicles
— this type of information could also be derived by exploiting
the regularities in human behavior itself. In fact, the analysis
in [41] points out that 95% of human mobility can be predicted
by exploiting people’s regular movement on the same paths
(e.g., the way to work or to grocery stores).

With the assumption of having data for the same track from
multiple trips available, the segment-wise mean trajectory is
calculated in a preprocessing step with the approach presented
in [42]. During the online mobility prediction, the current
trip is detected by the highest matching of the measured
position and direction values to all locally stored trips. �P(t+τ )
is then derived by virtually moving the vehicle along the
anticipated path for a duration of τ in an iterative process.
For each prediction, the movement potential �D = v · τ
is computed and the traveled distance D is initialized with
D = 0. In each iteration i , D is incremented by the distance
di, j = ||W j −Wi || between the consecutive waypoints Wi and
W j=i+1. When D exceeds �D, the final position is obtained

from interpolation using Eq. 4.

�P(t + τ ) = Wi + W j − Wi

||W j − Wi || · �D − �D − di, j
	

(4)

c) Lightweight Trajectory-Aware Approach - Prediction
Based on a Reference Trace: A lightweight alternative, that
requires less data than the previous approach is to utilize the
last measurements of the same track as a reference trace.
The mobility prediction process itself is then equal to the
one presented in Sec. III-B1.b, but the preprocessing stage is
omitted as only a single track is utilized for the computation
of the future position. Analogously, the connectivity map
only contains the values of a single measurement drive per
distinct track. The price to pay for the increased resource
efficiency is the loss of the aggregation gain that is obtained
by cell-wise averaging, which reduces the impact of outlier
measurements, especially for highly dynamic metrics as the
SINR. In Sec. VI-C, the resulting error for the network quality
prediction is discussed for the considered mobility prediction
methods.

2) Context-Predictive Transmission Process: With the pre-
dicted position �P(t + τ ) being available after the mobility
prediction step, the future channel context �C(t + τ ) is looked
up from the connectivity map as illustrated in Fig. 5. The cell
index m for the corresponding entry is obtained with Eq. 5
for a defined cell size c.

m =
��P(t + τ )

c

�
(5)

The predicted metric value ��(t+τ ) is extracted from �C(t+τ )
and the anticipated gain ��(t) is computed using Eq. 6.

��(t) = ��(t + τ ) − �(t) (6)

Analogously to CAT, the transmission probability p�(t) is
then computed with respect to the defined timeouts using
Eq. 7. For the consideration of the channel quality devel-
opment, the pCAT-specific exponent β is introduced, which
controls the impact of the context prediction within Eq. 8.

p�(t) =

⎧⎪⎨⎪⎩
0 : �t ≤ tmin

�(t)α·z : tmin < �t < tmax

1 : �t > tmax

(7)

z =


max (|��(t) · (1 − �(t)) · β| , 1) : ��(t) > 0

(max (|��(t) · �(t) · β| , 1))−1 : ��(t) ≤ 0

(8)

Fig. 6 shows the resulting analytical behavior of the transmis-
sion probability for different values of ��. While the scheme
behaves equal to CAT for �� = 0, pCAT sends earlier if it
expects the channel quality to decrease in the future (�� < 0)
and schedules the transmission to a later point of time if it
anticipates an improvement for the network quality (�� > 0).
Although pCAT only considers two discrete points of time t
and t + τ for its decision, it in fact behaves like a moving
window as the vehicle moves forward on the track and the
transmission decision is calculated frequently with respect to
the channel assessment interval tp. If any of the prediction
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Fig. 5. Multi-layer connectivity maps as an enabler for anticipatory
communication. With the help of mobility prediction, the current measured
channel quality can be compared to its predicted future state.

Fig. 6. Analytical behavior of the resulting transmission probability for pCAT
(α = 4) with respect to the current metric value �(t) for different values of
the expected channel development ��(t).

steps fails (e.g., due to missing GPS signal or if the map
does not contain data for the predicted cell), pCAT performs a
context-aware fallback by switching to the purely probabilistic
CAT model. Although the necessary data collection highly
benefits from the mutual synergies of a crowdsensing-based
approach, the whole proposed scheme can also be imple-
mented in a local sandbox for dealing with any privacy-related
concerns.

C. Machine Learning-Based Data Rate Prediction

Predicting the data rate is a supervised learning task. Given
the features X of the measurements, a prediction model M that
predicts the data rate S is applied. Different model classes
M are possible, each representing a different function class
f : X → S and pertaining a different list of parameters ψ .
Due to the supervised learning task, arg min fψ∈M l( fψ (X), S),
labeled data is available as ground truth for the data rate. The

error of a particular model function f may thus be assessed
by comparison of the predicted data rate to the known data
rate. Possible loss functions l are the Mean Absolute Error
(MAE), which is a measure for the absolute distance among
prediction and the true label, and the Root Mean Square Error
(RMSE) measuring the Euclidean error.

MAE( f (X), S) = 1

N

N�
i=1

���S(i) − f (X(i))
��� (9)

RMSE( f (X), S) =
���� 1

N

N�
i=1

�
S(i) − f (X(i))

	2 (10)

Several model classes are possible. In order to decide on a
model class, not only the performance on training instances
is important but also the validation of novel, yet unseen,
examples. Otherwise it could possibly happen that a model
learns all examples ‘by heart’ and has perfect prediction
performance on training instances but does not generalize
at all - this phenomenon is defined as overfitting. Possible
countermeasures against overfitting exist, e.g., recording a
larger more diverse data set or choosing a model with less
capacity, or including the capacity of the model in the objective
function via a regularization term. The details on regularization
are beyond the scope of this paper and can be found in [43].
The model selection is performed with the tool WEKA [44]
and different model classes are tested. In this paper, the applied
models are regression tree (in particular, the M5T [45]),
RF [46], LR, ANN, and SVM [47]. All methods are discussed
in [43], thus a brief overview of selected methods is provided
here.

The simplest model is LR which fits a linear combination
of the input features X to the output label S. A more
sophisticated way is the split of the data set into regions
and application of different linear models within different
regions. The regression tree performs exactly these splits
using axis parallel hyperplanes by comparison of each feature
with a threshold. This distinction of feature vectors based on
thresholds of its features is captured in a tree structure. In its
leafs, different linear models are applied. The RF trains not one
regression tree but multiple and learns a linear combination of
their predictions. The theoretical aspects of artificial neural
networks and support vector machines are out of scope of
this paper, additional information can be found in [43]. The
evaluation of the prediction methods is performed based on
more than 2500 real-world measurements of periodic and
CAT-based transmissions that were performed in the context
of earlier work in [15] on two different tracks (details about
the measurement setup are provided in Sec. IV). The feature
set is formed by RSRP, RSRQ, SINR, CQI and velocity
measurements in combination with the payload size of the
data packets. The label is defined as the measured data rate of
the active transmissions. Tab. I shows the resulting prediction
performance for the considered models and evaluation metrics.
Although the absolute highest accuracy is achieved with the
RF model, it only performs slightly better than the M5T
approach.
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TABLE I

PERFORMANCE OF REGRESSION MODELS: ARTIFICIAL NEURAL
NETWORK (ANN), LINEAR REGRESSION (LR), M5 DECISION

TREE (M5T), RANDOM FOREST (RF) AND SUPPORT VECTOR

MACHINE (SVM) ARE COMPARED IN TERMS OF

CORRELATION, MEAN ABSOLUTE ERROR (MAE)
AND ROOT MEAN SQUARED ERROR (RMSE)

TABLE II

CORRELATION RESULTS FOR DATA RATE PREDICTION OF MACHINE

LEARNING MODELS DIVIDED BY SUBURBAN TRACK (S)
AND HIGHWAY TRACK (H)

In order to evaluate the generalizability of the learned
relationship between context parameters and data rate which
mirrors the dependency of the models of the tracks themselves,
a cross-check with separated data sets — suburban (S) and
highway (H) — is performed. Tab. II shows the resulting
correlation between predicted and measured data rate for the
different models. S and H show the 10-fold cross validation
for each of the tracks. For S→H and H→S, the trained model
is tested on the measurement data of the other track. It can
be seen that the behaviors differ significantly for the different
models. While ANN, M5T and RF show a similar behavior for
all of the variants, the SVM accuracy is significantly reduced
for S→H and H→S. The LR model does not work well on
the suburban data set.

Based on the prediction results, the M5T model is chosen
as the applied prediction model within the application phase.
It achieves a good overall performance, allows a very light-
weight implementation and can be used for online data rate
prediction without causing significant computation overhead.
For simplicity, in the following, the usage of the �M5T metric
for sensor data transmissions will be referred to as ML-CAT,
respectively ML-pCAT.

Fig. 7 shows the resulting prediction accuracy using M5T.
The left upper triangle shows the underestimation area and the
lower right triangle represents the overestimation area. From
the application-centric perspective, underestimations are not
considered harmful, as the transmission even achieves a higher
data rate than expected.

IV. METHODOLOGICAL SETUP OF THE EMPIRICAL

PERFORMANCE EVALUATION

In this section, the methodological aspects of the real
world evaluation and the considered KPIs for the performance
evaluation are introduced.

Fig. 7. Achieved accuracy of the M5T data rate prediction scheme. Blue
markers illustrate transmissions on the suburban track, red markers show
the performance on the highway track. The overlay shows the measured
computation time per prediction on the Android device.

TABLE III

PARAMETERS OF THE REFERENCE SCENARIO

A. Real World Evaluation Scenario

In order to evaluate the properties of the proposed transmis-
sion schemes in a realistic scenario, a comprehensive empirical
performance evaluation is performed in the public cellular LTE
network and within a vehicular context. Tab. III provides a
summary of the application-related key parameters.

Channel sensing and data transmission are handled by an
Android-based application (executed on a Samsung Galaxy
S5 Neo - Model SM-G903F), which is provided in an Open
Source way1. Sensor packets of size ssensor are generated by
a virtual sensor application with a sensor frequency fsensor
and stored in a local buffer until a transmission decision is
made for the whole data buffer. For each tp, the channel is
sensed and the transmission probability is computed. All data
transmissions are performed in the LTE uplink to a cloud
server using HTTP POST. The different considered metrics
and their respective parameterizations are shown in Tab. IV.
CAT with the �SINR metric is equal to the legacy version
presented in [11], analogously, pCAT with �SINR has the same
behavior as [12]. The values for the weighting factor β have
to be chosen with respect to the metric’s value range and its
granularity. In order to allow a fair comparison among the

1Available at https://github.com/BenSliwa/MTCApp
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TABLE IV

PARAMETERS FOR THE CONSIDERED METRICS

Fig. 8. Street map and network infrastructure of the evaluation scenario con-
sisting of suburban and highway tracks. (Map: ©OpenStreetMap contributors,
CC BY-SA.)

different metrics, β is chosen with respect to the definition of
�SINR metric and its respective value range with Eq. 11.

�i,β = �SINR,β · �SINR,max − �SINR,min

�i,max − �i,min
(11)

For the context-predictive pCAT, the connectivity map and
the trajectory prediction utilize the acquired data of the CAT
evaluation phase.

The raw data of the experimental evaluation of the different
transmission schemes is provided at [48] and the measure-
ment software as well as the obtained data samples for the
transmission power estimation can be accessed via [49].

Fig. 8 shows the street map with the different tracks used
for the experimental performance evaluation.

• Track 1: Suburban roads with upper speed limits in the
range of 50-70 km h−1 (14 km)

• Track 2: Highway traffic with upper speed limits of
130 km h−1 (9 km)

Each parameterization of the transmission schemes has been
evaluated five times on each of the tracks. Overall, more than
7500 data transmissions were performed within a total driven
distance of more than 2000 km. On the application layer, all
data transmissions were performed successfully.

B. Key Performance Indicators
In the result section of this paper, the performance of dif-

ferent transmission schemes is compared in three dimensions.

1) End-to-End Data Rate: The data rate evaluations are
performed on the application level and are considered as a
measurement for the transmission-efficiency of data packets.
Moreover, since high data rates indicate short transmission
durations, data rate optimization is also related to early release
of occupied spectrum resources. The potentials for improving
the coexistence of different resource-consuming cell users are
further investigated in [11].

2) Age of Information (AoI): Age of Information (AoI) is
a metric for the freshness of information of delay-tolerant
applications such as crowdsensing and data analytics. There-
fore, it provides a better match with the considered crowd-
sensing use-case than delay measurements. In the considered
definition AoI = tapp − tgen, it covers the time from the
data generation tgen (e.g., the actual measurement report of a
physical sensor) to the reception time tapp of the information
by the processing application and also includes the delays
caused by buffering and transmission. From an application
point of view, information is considered useless if a certain
AoI value is exceeded. For the proposed transmission scheme,
the resulting AoI is mainly impacted by the buffering delay
and can be controlled with the timeouts tmin and tmax. Since all
transmitted data packets contain multiple measurement values
that have individual times of generation, the AoI of a data
packet is defined as the mean age of all contained sensor
measurements.

3) Energy-Efficiency: Although the real world evaluations
are carried out with a ground-based vehicular setup, where
the energy consumption of the communication system is
negligible, the achieved results and methods are relevant to
related research fields. The integration of small-scale UAVs
into upcoming ITSs – e.g., for near field delivery and aerial
sensing – is currently receiving great attention within the
scientific community [4]. As these vehicles are severely con-
strained by the available energy resources, the improvement
of the overall power consumption is of great importance
for optimizing the total operation time [5]. In the context
of IoT-enabled logistics [9], smart containers, which are
equipped with battery powered communication systems, report
status information and sensor measurements (e.g., temper-
ature values) to enable continuous tracking and monitor-
ing. In addition, autonomous systems within the car itself
are powered by dedicated batteries (e.g., anti-theft systems).
The results in Sec. VI show that the proposed transmis-
sion scheme has a severe impact on the overall power con-
sumption of the mobile device. Therefore, we consider the
energy-efficiency as one of the KPIs, as it allows us to
point out improvement potentials for the related application
fields, which typically implement periodic data transmission
mechanisms.

The uplink power consumption PUL is mainly depend-
ing on the actual transmission power PTX of the User
Equipment (UE) and related to the different amplification
states of the power amplifiers [50]. Since PTX is usu-
ally not reported by embedded devices and smartphones,
a mechanism for accessing this hidden parameter using
machine learning and direct modem interfacing is presented
in Sec. V.
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V. MACHINE LEARNING-ENABLED POST-PROCESSING

UPLINK POWER CONSUMPTION ANALYSIS

Performing communication-related power consumption
measurements of an embedded device is a non-trivial task
that requires precise isolation of physical components and
involved software. As numerous components of the system,
such as modem and processor, are highly integrated into a
single System on a Chip (SoC), it is not possible to measure
the modem’s power consumption isolatedly. On the other
hand, measurements of the whole system’s power consumption
are superimposed by any other system activities, e.g. GPS,
IO operations, and background services. Consequently, such
measurements are rather performed within a laboratory setup
and not with a highly integrated mobile system. In order
to allow the evaluation of the energy-efficiency of CAT
on (mobile) embedded platforms, a closed process for isolated
uplink power consumption analysis is derived in the following
that combines existing models and approaches [16], [51],
[52]. Fig. 9 shows the overall architecture model. Accurate
laboratory measurements are used to obtain the device-specific
behavior characteristics of power consumption with regard to
the applied transmission power.

The Context-aware Power Consumption Model
(CoPoMo) [51] is a validated model, which uses
device-specific characteristics obtained from laboratory
evaluations to estimate the power consumption for uplink
transmissions as a function of the transmission power
within a state machine. Fig. 9 includes the characteristic
curve of the Galaxy S5 Neo smartphone operating in two
different frequency bands for a transmission power range
of −10 dBm to 23 dBm [52]. For a single frequency band,
e.g., the blue curve, the characteristics can be approximated
by two linear functions of different slope, which are
separated by a device-specific break point γ . This behavior
is caused by switching between two different internal power
amplifiers. CoPoMo further reduces the characteristics to a
probabilistic four-state power model with negligible loss of
accuracy. Depending on the radio conditions, a UE uploads
its data with Low, High, or Max power and enters Idle
mode afterwards. The state transitions are modeled by the
transition probabilities λ and μ that are obtained from the
corresponding data set. Calculating the equilibrium state of
the Markovian chain finally provides an estimate for the UE
power consumption in the given scenario.

Unfortunately, in the context of this paper, the model cannot
directly be applied as embedded operating systems (e.g.,
Android) do not provide information about the currently used
transmission power and therefore circumvent the determina-
tion of the current power state. As a consequence, this paper
applies a novel machine learning-based approach for power
estimation [16], which is based on the available LTE downlink
indicators. According to the LTE standard [53], UEs choose
their transmission power PTX based on Eq. 12:

PTX = min

�
Pmax,
P0+10 log10(M)+α · P L + �MCS + δ

�
. (12)

P0 is broadcasted by the eNB and depicts the target SINR
per Physical Resource Block (PRB) of the received signal

at the eNB. Thus, the UE at least has to compensate the
estimated path loss P L, which is derived from RSRP and
the actual transmission power of the eNB. It is weighed by a
Fractional Path Loss Compensation (FPC) α, which is also
configured by the base station. An additional offset �MCS
ensures a sufficient SINR for the selected Modulation and
Coding Scheme (MCS). Finally, the transmission power needs
to be increased according to the number of emitted PRBs M
in order to keep the received SINR constant regardless of the
number of allocated resources.

The closed-loop component δ is an absolute or accumulated
offset, which is transmitted in Transmission Power Control
(TPC) commands by the base station in Physical Downlink
Control Channel (PDCCH) together with the resource alloca-
tions. By this approach, the eNB can increase or turn down the
output power of the UE in a feedback loop. However, the eNB
never transmits an absolute PTX value to the UE.

Since Pmax, P0, and α can be seen as network constants and
δ should average to 0 for a well-configured network, only M ,
P L, and �MCS have to be obtained in order to estimate the
transmission power �PTX at application layer. Although these
remaining variables are not accessible as well, they are tightly
related to observable indicators. The path loss P L is internally
calculated from the RSRP. However, the eNB’s reference
signal transmit power still remains unknown to the application
layer. The number of allocated PRBs M corresponds to the
resulting data rate at a given MCS. Unfortunately, in case of
a prediction, the data rate is not available as an indicator.
However, assuming a non-congested network, the data rate
follows the Transmission Control Protocol (TCP) slow start
mechanism during the transmission, which depends on the
upload size and the maximum achievable rate. The latter
is related to P L, since M and �MCS are capped by Pmax
for large P L. For �MCS, the lookup table provides MCS-
dependent power offsets to ensure a proper SINR for a correct
demodulation and decoding at the base station. Interference
and mobility (fast fading) adversely affect the MCS, which
can be indicated by RSRQ and the UE’s velocity. According
to the UE’s power headroom, the eNB may select the highest
possible MCS to maximize throughput and spectral efficiency.
Hence, this value is also related to P L and M .

However, the exact relationship of these variables is blurred
by case differentiation and operator-specific configurations
of their base stations, which makes analytical approaches
complex and impractical. Therefore, a data-driven approach
leverages machine learning to obtain a prediction model for�PTX, which is presented in [16]. The work analyzes the usage
of different indicators and machine learning techniques for the
estimation of �PTX in detail. It also provides different prediction
models for simulations, practical applications and detailed
analysis, which differ in the number of available indicators for
this task. The data is obtained in excessive field measurements
of drive tests in public cellular networks. An overview of
the covered trajectory is shown in Fig. 9 and covers urban,
suburban, and rural environments. The measurements were
performed using an embedded Vehicle-to-everything (V2X)
platform with a direct modem interface, which allows to
access the current transmission power in order to obtain the
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Fig. 9. Overall architecture model for the closed process for power consumption analysis with missing information. The device-specific characteristics are
captured by laboratory measurements and the relationship between transmission power and channel indicators is learned using the field evaluation setup of [16]
(Map: ©OpenStreetMap contributors, CC BY-SA.).

ground truth label for the prediction. The device was placed
in the rear trunk of a car and periodically uploaded files of
1MB to 5MB to a HTTP server. The integrated LTE modem
provides 31 network indicators including the current trans-
mission power. From the three considered machine learning
models, Ridge Regression (RR), Deep Learning (DL), and
RF, the latter achieved the lowest RMSE of 5dB to 6dB,
depending on the feature set. In addition, the absolute sum
of errors shrinks as the number of predictions grows and
falls below 1dB after 28 predictions. Hence, this approach
is well-suited for long-term applications and post-processing
analysis of large data sets.

In this paper, the RF-based approach for practical applica-
tions is applied to predict the �PTX for transmissions based
on the indicators RSRP, RSRQ, SINR, upload size, and
the vehicle’s velocity. Finally, the dwell times of CoPoMo’s
four-state model are computed by mapping the �PTX predictions
into the corresponding power states, which in turn enables an
estimation of the average power consumption of the UE.

In conclusion, the presented process allows to analyze
the energy-efficiency of the considered transmission schemes
without the requirement for dedicated measurement equipment
and explicitly without knowledge of the applied transmission
power. Although this approach is utilized for offline result
analysis in the next section, it can also be applied for online
prediction directly on the embedded device.

VI. EMPIRICAL RESULTS OF VEHICULAR

SENSOR DATA TRANSFER

In this section, the results of the empirical performance
evaluation are presented and discussed. At first, the impact of
the different considered context information on the resulting
uplink data rate is evaluated. Afterwards, results for data
rate, age of information and uplink power consumption are

presented for the context-aware transmission scheme using
CAT with different single downlink indicators as transmis-
sion metrics. Then, the accuracy of the mobility predic-
tion schemes and their impact on the predictability of the
future context information is discussed and the results for
the context-predictive scheme pCAT are presented. Finally,
detailed measurements for the machine learning-enabled trans-
mission methods ML-CAT and ML-pCAT are provided.

A. Correlation of Downlink Indicators and Data Rate

The correlation of RSRP, RSRQ, SINR, CQI, velocity
and payload size with the resulting data rate is shown in
Fig. 10. Since these indicators also are the features of the
data rate prediction, the analysis gives an impression about the
importance of the different features for the overall prediction
behavior. The plots contain the individual transmissions of the
whole data set, consisting of periodic, CAT and pCAT data
transfer.

It should be denoted that the resulting value range of the
data rate exceeds the limits given by the data rate predic-
tion shown in Fig. 7. The reason for this behavior is that
the pCAT-based and the machine learning-enabled schemes,
which mainly achieve these high values, were not part of
the used training set (see Sec. III-C). Furthermore, the plots
contain multiple forced transmissions, which are triggered for
all CAT-based approaches, if �(t) ≥ �max. As expected,
the data points for the periodic transmission scheme are
uniformly distributed among the value ranges of the respective
metrics as the transmissions are performed regardless of the
channel quality. The characteristics of the RSRP can be
divided into two distinct areas that are divided by a breakpoint
at −85dBm, that allows a division into cell edge- and cell
center-behavior. In the cell edge area, the RSRP is a dominant
factor for the achievable data rate, which is increased with
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Fig. 10. Correlation of different indicators with the resulting end-to-end data rate. The black curve shows the 0.95 confidence interval of the overall mean
value. The plots consist of data from periodic (black), CAT and pCAT (red) and ML-CAT and ML-pCAT (blue) transmissions. Forced transmissions are
caused for all CAT-based approaches if the measured metric value �(t) exceeds the maximum defined metric value �max.

higher RSRP values. Within the cell center, the dependency
is decoupled since other effects (e.g. interference) have a
more dominant influence on the behavior. The behavior of
the CQI shows a peak for CQI=2. During the drive tests,
those values occured frequently on both tracks and without any
obvious correlation to the other indicators. For LTE, the actual
calculation of this indicator is not standardized and depends on
the modem manufacturer. It can be concluded that the reported
CQI is limited for being used as a CAT-metric, which is also
confirmed by the evaluations in the following sections.

Although the drive tests were performed within a velocity
range of 0 km/h to 140 km/h„ the observed dependency of the
data rate to the velocity is very low.

For the payload size, multiple lobes can be identified that
separate periodic transmissions, CAT, pCAT, ML-CAT and
ML-pCAT. Another region mainly consists of outliers that
are related to forced transmissions either caused by �max
or tmax as well as inaccurate measurements and high chan-
nel variances. It can be observed that the machine learning
approaches are systematically able to achieve higher data
rates for the same payload size. Especially the introduced
look-ahead of ML-pCAT approaches is able to proactively
avoid transmissions during low channel quality periods. This
fact is underlined by the correlation analysis in [15], that
is based on an earlier version of the data set and does not
contain the pCAT- and ML-pCAT-specific lobes. The value
range for the payload size is limited to 6 MB as tmax is
defined as 120s and the sensor application generates 50 kB
of data per second. The overall behavior can be characterized
by two areas that have different grades of dependencies to the

channel coherence time. Up to 4 MB, the data rate highly
benefits from increased payload sizes as the slow start of
TCP is less dominant for the overall transmission duration
and a better payload-overhead-ratio is achieved. After the
breakpoint, the probability for low data rate transmissions is
highly increased as the channel is more likely changing its
characteristics during active transmissions due to the longer
transmission duration.

The correlation analysis shows that no single indicator is
able to provide a robust measurement for the channel quality
in all considered situations.

B. Single-Metric Context-Aware Transmission

The results for the context-aware transmission are shown
in Fig. 11. Multiple variants of CAT are configured with
each of the passive downlink indicators as a metric accord-
ing to Tab. IV. The results for periodic transmission with
a fixed interval of 30 s are shown as reference. Using the
context-aware approach, an average data rate gain of 55%
is achieved for CAT-based metrics with �SINR and �CQI
having the highest variance during the different evaluation
tests. Although the results for the data rate are similar for all
CAT-based metrics, the AoI behavior shows significant differ-
ences, which are related to the dynamics of the corresponding
network quality indicator during the drive tests. Here, high
AoI values are an indicator for longer periods of low channel
quality that prevent the vehicle from transmitting its data.
In the suburban scenario, the SINR values are rarely close
to �max and even multiple transmissions are forced by the
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Fig. 11. Performance comparison for the context-aware transmission scheme CAT with different single-indicator metrics �. The results for periodic
transmission with fixed interval of 30s are shown as reference.

maximum buffering delay tmax, resulting in a very high AoI.
All schemes highly exceed the baseline defined by the periodic
transmission approach. Yet, the up-to-dateness of sensor mea-
surements is still sufficient for the considered crowdsensing
scenario (see Sec. I). On the highway track, the average AoI
is reduced, as the measurement channel behavior is frequently
changing due to the high velocity of the vehicle, resulting
in a higher transmission frequency. These aspects are further
confirmed by analyzing the uplink power consumption. It can
be seen that transmissions during low quality periods — here
most clearly illustrated by the tmax-related forced transmissions
for the SINR-metric — severely increase the average power
consumption and reduce the energy-efficiency.

C. Impact of Mobility Prediction on the Network
Quality Indicators

Before the measurement results of the context-predictive
transmission schemes are presented, the accuracy of the mobil-
ity prediction mechanisms and the impact of prediction errors
on the channel context estimation is discussed. An evaluation
of the velocity-dependent mobility prediction accuracy as well
as the implications for error-effected forecasts on the network
quality assessment is provided in Fig. 12. The accuracy of
the GPS extrapolation approach is significantly influenced by
the probability of direction changes during the prediction hori-
zon τ . With regard to the speed-dependency of the prediction
error, three characteristical regions can be identified. Up to
70 km h−1 (urban/suburban roads), the error dimension is
proportional to the velocity. For higher velocities, the vehicle is
more likely moving on a highway track with a low probability
for direction changes. However, above 90 km h−1 the higher
prediction distance becomes the dominant error source again.
For the trajectory-aware approaches, the resulting distance
error is much lower. Moreover, due to the consideration of the
vehicle’s turn behavior, the dependency between prediction
accuracy and velocity is decoupled, allowing robust predic-
tions even for higher values of τ . The future position �P(t + τ )
is used to look up the future channel context C(t +τ ) from the
connectivity map. Therefore, inaccurate forecasts may lead to
situations where the connectivity map does not contain data for
the (falsely) predicted cell, which is statistically captured by
the Prediction Failure Ratio (PFR) metric. For the pCAT-based

schemes, prediction failures trigger the CAT-fallback, where
the respective transmission scheme behaves equally to a pure
probabilistic CAT scheme with the same metric properties. As
a consequence, only the trajectory-based prediction methods
are further considered in the following as the PFR is unac-
ceptably low for the extrapolation approach. For assessing
the added information by predicting the passive downlink
indicators, the resulting error has to be set into relation to the
value range �max−�min of the corresponding metric � and is
severely influenced by the accuracy of the position prediction.
While for RSRP and RSRQ only slight differences between
the two prediction approaches can be observed, SINR and
CQI achieve an aggregation gain by the cell-wise averaging
within the connectivity maps. As both indicators are affected
by short-term fading, the single reference trace is not able to
provide an accurate estimation.

D. Single-Metric Context-Predictive Transmission

As a consequence of the prediction accuracy analysis,
the context-predictive pCAT scheme uses the trajectory-based
mobility prediction with connectivity maps. Fig. 13 shows the
results for the considered KPIs with prediction horizon τ =
30 s. By consideration of the future channel behavior, pCAT
adds another dimension that is sensitive to the dynamics of
the channel quality and significantly changes the transmission
behavior. With the vehicle proceeding on its route, the channel
context is considered with a moving window with the range
[t, t + τ ]. As a consequence, the transmission scheme is much
more influenced by the probability of the vehicle encountering
the anticipated context within the remaining time interval to
tmax than on having a perfect prediction for a discrete point in
time. Additionally, transmissions are performed more often,
resulting in a reduced AoI, which is even falling below the
baseline of the periodic approach on the highway track.

In contrast to CAT, the resulting data rate is significantly
different for the considered metrics as it is now also depending
on the predictability of the metrics themselves. The highest
gains are achieved with the SINR- and the RSRP-metrics
(up to 95% on the suburban track and up to 77% on the
highway track). Due to the doubled dependency to the channel
dynamics by consideration of C(t) and �C(t + τ ) and the
proactive detection of connectivity valleys, transmissions are
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Fig. 12. Prediction accuracy for the vehicle’s mobility and the passive downlink indicators of the LTE signal for the considered prediction methods with
different predictions horizons in relationship to the vehicle’s velocity. All curves show the 0.95 confidence interval of the mean value.

Fig. 13. Performance comparison for the context-predictive transmission scheme pCAT with τ = 30 s and different single-indicator metrics �.

less likely forced by tmax. As a consequence, the power
consumption behavior of pCAT significantly outperforms the
CAT-based approach.

E. Machine Learning-Enabled Transmission

Finally, the results for ML-CAT and ML-pCAT are shown
in Fig. 14. The machine learning-enabled schemes exploit
the correlation of the individual features with the resulting
data rate as shown in Fig. 10 with the aim of data rate
optimization. Both variants are able to achieve massive boosts
in the resulting data rate. The best overall performance is
achieved for ML-pCAT with τ = 30 s on the highway track,
where it is able to achieve a data rate gain of 194% while
simultaneously reducing the average uplink power consump-
tion by 54%. In comparison to the previously discussed results
for single-metric pCAT, the AoI is increased as ML-CAT and

ML-pCAT highly exploit the correlation between payload size
and data rate. Therefore, these approaches actively introduce
additional buffering delays to achieve higher packet sizes. This
relationship is also illustrated in Fig. 15, which shows an
example trace of the temporal behavior of the M5T-based data
rate prediction during a drive test. The dependency of the data
rate to the payload size can be observed by the step-wise linear
component of the curve that is caused by the payload increase
due to the addition of further sensor data packets with respect
to the increased time.

In comparison to the single-metric transmission schemes
and with regard to the complex interdependencies of context
parameters and data rate, it can be concluded that the data rate
prediction provides a much better metric for channel quality
assessment than the measured value of a single indicator.
Machine learning enables the implicit consideration of hidden
effects such as TCP slow start, channel coherence time and
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Fig. 14. Performance comparison of the machine learning-enabled transmission schemes ML-CAT (τ = 0s) and ML-pCAT (τ = {10, 30, 60}s) using the
�M5T metric.

Fig. 15. Example temporal behavior of the M5T-based data rate prediction
during a drive test. The dashed red lines mark performed data transmissions.

interdependencies between the downlink indicators into the
transmission process itself.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented the machine learning-enabled
transmission schemes ML-CAT and ML-pCAT for client-side
context-aware transmission of vehicular sensor data. Machine
learning-based data rate prediction is used as a meaningful
metric for scheduling the transmission time of delay-tolerant
sensor data transmissions. By implicit consideration of hidden
effects such as interdependency of payload size and chan-
nel coherence time, the resulting data rate can highly be
improved while simultaneously reducing the required uplink
transmission power of the embedded device. The latter is a
crucial factor for data sensing by energy-constraint vehicles
(e.g., UAVs) and embedded systems. The trade-off between
achieved benefits and introduced delay due to local packet
buffering can be controlled by different parameters and vari-
ants of the proposed probabilistic transmission scheme. All
measurement tools and raw results of the experiments are
provided in an Open Access manner in order to achieve
a high level of transparency and reproducibility. In future
work, we will investigate the cross-layer interdependencies
of the proposed transmission scheme. Furthermore, we aim
to improve the data rate prediction by integrating knowledge
about the active cell users obtained from control channel
analysis. Moreover, the proposed approach will be brought
together with methods for coordinated pre-aggregation of the
data in vehicular crowds. Additionally, the mobility prediction
algorithms will be evaluated in their potentials for predictive

steering of millimeter wave (mmWave) pencil beams in a
vehicular context.
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