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Temporally Consistent Depth Prediction with
Flow-Guided Memory Units

Chanho Eom, Hyunjong Park, and Bumsub Ham, Member, IEEE

Abstract—Predicting depth from a monocular video sequence
is an important task for autonomous driving. Although it has
advanced considerably in the past few years, recent methods
based on convolutional neural networks (CNNs) discard temporal
coherence in the video sequence and estimate depth indepen-
dently for each frame, which often leads to undesired inconsistent
results over time. To address this problem, we propose to mem-
orize temporal consistency in the video sequence, and leverage
it for the task of depth prediction. To this end, we introduce
a two-stream CNN with a flow-guided memory module, where
each stream encodes visual and temporal features, respectively.
The memory module, implemented using convolutional gated
recurrent units (ConvGRUs), inputs visual and temporal features
sequentially together with optical flow tailored to our task.
It memorizes trajectories of individual features selectively and
propagates spatial information over time, enforcing a long-term
temporal consistency to prediction results. We evaluate our
method on the KITTI benchmark dataset in terms of depth
prediction accuracy, temporal consistency and runtime, and
achieve a new state of the art. We also provide an extensive
experimental analysis, clearly demonstrating the effectiveness of
our approach to memorizing temporal consistency for depth
prediction.

Index Terms—Depth video prediction, recurrent neural net-
works, convolutional gated recurrent units

I. INTRODUCTION

DEPTH prediction from images plays a significant role
in autonomous driving and advanced driver assistance

systems, which helps understanding a geometric layout in a
scene, and can be leveraged to solve other tasks, including
vehicle/pedestrian detection [1], [2], traffic scene segmenta-
tion [3], and 3D reconstruction [4]. Stereo matching is a typical
approach to recovering depth that finds dense correspondences
between a pair of stereo images [5], [6], [7]. Stereo matching
methods compute similarities between local patches [8] or op-
timize global objective functions to consider smoothness priors
penalizing large derivatives of depth [9], [10], [11]. These
approaches show state-of-the-art performance, but capturing
pairs of stereo images requires multiple cameras calibrated,
making it difficult to apply them in practice. An alternative is
to predict depth from a monocular video sequence, and it is of
great interests in recent years [12], [13], [14], [15], [16], [17],
[18], [19]. This approach builds upon the insight that human
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can perceive depth using monocular depth cues (e.g., occlu-
sion, perspective, motion parallax) only [20]. Eigen et al. [12]
first propose a supervised learning method for predicting depth
from a single still image using CNNs. Zhou et al. [14] and
Wang et al. [15] recently propose CNN architectures for pre-
dicting depth from a monocular video, where two networks are
trained separately to estimate depth and camera pose. These
methods are limited in that they predict depth independently
for each frame, discarding temporal coherence in the video
sequence. That is, they give temporally inconsistent results,
causing serious temporal flickering artifacts. Recurrent neural
networks (RNNs) have been widely used to model temporal
dependency across sequential data (e.g., video and text), and
they have shown the effectiveness in various applications
including action recognition [21] and machine translation [22].
They, however, still show a limited capability of handing the
flickering artifacts [18], [23].

In this paper, we present a simple yet effective method for
a temporally consistent depth prediction from a monocular
video sequence (Fig. 1). We transfer temporal consistency in
the video to RNNs explicitly, particularly using convolutional
gated recurrent units (ConvGRUs) [24]. To implement this
idea, we propose a flow-guided memory unit using optical
flow specific to our task, maintaining a long-term temporal
consistency in depth prediction results. Our module uses
spatial and temporal features extracted by a two-stream CNN.
We have two main reasons for decoupling these features.
First, it has been proven that learning spatiotemporal features
jointly from a stack of frames does not capture the motion
well [25]. Second, optical flow itself provides an important
clue for motion parallax, which is helpful to infer depth
from a monocular video sequence. For example, objects closer
to a camera move faster than distant ones. We show that
our method outperforms the state of the art in terms of
temporal consistency, and shows a good trade-off between
depth prediction accuracy and runtime. The main contributions
of this paper can be summarized as follows:

• We present an effective ConvGRU encoder-decoder mod-
ule for a temporally consistent depth prediction from a
monocular video sequence. To our knowledge, this is the
first approach based on convolutional/recurrent networks to
considering temporal consistency in depth prediction.

• We propose a flow-guided memory unit that retains a long-
term temporal consistency explicitly for individual pixels.

• We present state-of-the-art results on the KITTI [26] bench-
mark. We additionally provide an extensive experimental
analysis, clearly demonstrating the effectiveness of our
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Fig. 1. Visual comparison of the state of the art and our model on monocular
depth prediction. (a-b) Top to bottom: Video frames, depth maps obtained
by Wang et al. [15], Kuznietsov et al. [17] and our model, and ground-truth
depth at time t and t+ 1, respectively. (c) Absolute differences between the
depth maps at time t and t+ 1. Compared to other methods, our model gives
a temporally consistent result similar to ground truth while providing a sharp
depth transition (yellow: high, blue: low). (Best viewed in color.)

approach to memorizing temporal consistency for depth
prediction.
To encourage comparison and future work, we release

our code and models online: https://cvlab-yonsei.github.io/
projects/FlowGRU/.

II. RELATED WORK

In this section, we briefly review representative works
related to ours.

A. Monocular depth prediction

The problem of predicting depth from monocular images
or video sequences has significant attention in recent years.
Early works exploit hand-crafted features such as SIFT [27]
and HOG [28] together with graphical models [29], [13] or
nonparametric sampling [30]. Saxena et al. [29] estimate depth
from monocular images using Markov random fields (MRFs)
where they incorporate multi-scale features. Liu et al. [13]
extend this idea by using a discrete-continuous graphic model.
Karsch et al. [30] introduce a nonparametric approach to depth
prediction from monocular images and videos. They transfer
depth labels from a large-scale RGB/D dataset using dense
correspondences established by a SIFT flow method [31].
CNNs have allowed remarkable advances in depth prediction
in the past few years. Eigen et al. [12] first leverage CNNs
to predict depth from monocular images in a coarse-to-fine

manner. In particular, they introduce a scale-invariant loss
function that alleviates ambiguity in scale. Liu et al. [32]
combine CNNs with conditional random fields (CRFs) for
structured prediction. Kuznietsov et al. [17] propose to use
additional stereo images at training time. They predict depth
from left images and synthesize novel views by warping right
ones using estimated depth. The differences between left and
synthesized images are then used as a supervisory signal for
training. Unlike the aforementioned methods using monocular
images, recent works [14], [15], [33] have shown success in
learning depth from a monocular video sequence. Zhou et
al. [14] present an approach to estimating depth and camera
pose simultaneously from a video sequence. Similar to [17],
they synthesize adjacent frames using estimated depth and
camera pose, and use the discrepancy between the synthesized
and original ones as a supervisory signal. This approach,
however, requires ground-truth parameters for camera pose.
Wang et al. [15] propose an unsupervised learning approach
to estimating pose parameters using a differential version of
the direct visual odometry (DVO) method [34], commonly
employed in a SLAM community, and leverage it to depth
prediction from a monocular video. Yin et al. [33] propose
an unsupervised learning framework that learns depth, camera
pose, and optical flow jointly. They first estimate depth and
camera pose to obtain rigid flow, and then use them to compute
optical flow. These approaches using CNNs outperform tradi-
tional methods by large margins, but none of them consider
temporal coherence in a video sequence. They give temporally
inconsistent results, resulting in temporal flickering artifacts.
On the contrary, our method memorizes temporal coherence
in a video sequence, enabling a temporally consistent depth
prediction.

B. Recurrent models

RNNs have been widely used to capture temporal depen-
dency in sequential data [35], [36]. Representative models
include GRUs [37] and long short term memory (LSTM) [38],
and they have been adopted successfully to various tasks such
as video representation [39], image captioning [40] and car-
following modeling [41]. LSTM and GRUs, typically using
fully-connected layers, do not maintain spatial information and
require a lot of network parameters. This is problematic espe-
cially for high-dimensional data (e.g., video sequences). Con-
vLSTM [42] and ConvGRUs [24] replace the fully-connected
layers with convolutional ones, preserving spatial information
while reducing the number of parameters drastically. They
have been widely exploited in computer vision and image
processing tasks including video recognition [43], [24], depth
prediction [44], [18], and precipitation nowcasting [42], [23].
Particularly, Shi et al. [23] introduce a variant of ConvGRUs,
trajectory GRU (TrajGRU), and apply it to predict a future
rainfall intensity. Similar to the deformable convolutional
network [45], TrajGRU learns local offsets (i.e., where to
aggregate) and adds them to a regular grid in a standard
convolution, which has an effect of using spatially-variant
convolutional kernels. In contrast to this, our model memorizes
spatiotemporal features aligned along the path guided by
optical flow. Most similar to ours is a ConvLSTM-based

https://cvlab-yonsei.github.io/projects/FlowGRU/
https://cvlab-yonsei.github.io/projects/FlowGRU/
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Fig. 2. Overview of our framework. Our model inputs a video frame It and optical flow Ot at time t, and extracts spatial and temporal features from each
input, respectively, using a two-stream encoder. A flow-guided memory module takes these features concatenated and memorizes temporal coherence in the
video using trajectories of individual pixels. Specifically, it aligns hidden states over time using a refined flow Rt

3 specific to our task (Fig. 3), while partially
retaining or filtering out the hidden states in the visual memory. A decoder reconstructs a depth map Dt at time t from the output of the memory module
together with spatial and temporal features. For depth prediction, we use scale-invariant and smoothness terms, and train the whole network end-to-end. See
Table I for the detailed description of the network structure. (Best viewed in color.)

framework for depth prediction [18]. It uses ConvLSTMs to
exploit spatiotemporal features from a video sequence, but
does not give temporally coherent results. We also use a
recurrent network to exploit spatiotemporal features, but a
flow-guided memory unit in our model retains a long-term
temporal consistency in a video sequence explicitly. Note that
the ability to capture temporal dependency in ConvLSTMs or
ConvGRUs does not guarantee to obtain temporally consistent
results [23].

C. Temporal coherency

Recently, several approaches have been introuced to model
temporal coherence in a video sequence. They typically use
optical flow to smooth results along dense trajectories [46],
[47], [48], to construct loss functions penalizing the difference
between current and synthesized frames [1], [49] or to align
features from current and previous ones [1], [50]. Different
from the first and second approaches, we focus on designing
a recurrent model itself that transfers temporal coherence in
the video sequence to depth prediction results, without using
temporal filtering techniques or corresponding loss functions.
Our method is similar to the last approach in that we use
aligned features to obtain temporally consistent results. In
contrast to [1], [50], we use a memory unit that filters
out or retains spatiotemporal features aligned along dense
trajectories. More recently, V. Miclea et al. propose to exploit
temporal cues [10] for depth prediction. They use a previous
frame and corresponding depth and segmentation results to
refine incorrect depth values. Compared to this work, our
method maintains a long-term temporal consistency by using
the memory unit.

III. PROPOSED SOLUTION

In this section, we describe a recurrent model with a flow-
guided memory module for a temporally consistent depth
prediction (Section III-A). We then present loss functions for
learning depth and refined flow (Section III-B). The entire
network is trained end-to-end.

A. Network architecture

Our network mainly consists of three parts (Fig. 2): A
two-stream encoder extracts spatial and temporal features
from a video frame It and optical flow Ot in a backward
direction (i.e, a dense flow field from It to It−1), respectively,
where t represents a time step. A flow-guided memory module
inputs both features, and retains parts of them along trajecto-
ries of individual pixels to memorize temporal coherence in a
video sequence. A decoder takes an output of the flow-guided
memory module and outputs a depth map Dt. In the following,
we present the detailed description of each part.

1) Two-stream encoder : A video sequence allows to
leverage spatial and temporal information for depth prediction.
Motivated by the works [25], [51] for action recognition, we
use a two-stream encoder where each stream has the same
CNN architecture (but different parameters), takes the video
frame It and optical flow Ot, and then extracts spatial and
temporal features, respectively. They are complementary each
other. The spatial features capture appearance of objects and
scene layout within each frame while the temporal ones encode
trajectories of individual pixels (i.e., motion) across frames.
Monocular depth prediction using CNNs typically requires
large receptive fields to extract monocular depth cues including
motion parallax and perspective [12]. We can enlarge the
receptive fields by using convolutions with multiple strides or
pooling methods, but they lead to loss of spatial resolution and
scene details such as small and thin structures [52]. We instead
implement the two-stream encoder using a series of dilated
convolutions [53] with which we can adjust size of receptive
fields by changing a dilation rate without loss of resolution.
Note that the dilated version with rate of 1 corresponds to a
standard convolution.

2) Flow refine network : In addition to the extraction of the
temporal features from the encoder, we also use optical flow to
align video frames and hidden states in a flow-guided memory
module over time. Although CNN-based optical flow methods
give state-of-the-art results, they are still not accurate enough
to propagate fine-grained information across the video frames
or hidden states, especially for motion boundaries. To address
this problem, we use an additional network for refining the pre-
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Fig. 3. Flow refine network. The flow refine network inputs video frames, It−1 and It, and optical flow Ot. Using features extracted from concatenated
inputs, the network estimates residuals with different scales. They are concatenated to the pre-computed optical flow Ot, and then passed on to additional
convolutional layers to obtain the refined ones, Rt

1, Rt
2, and Rt

3. The network maintains the spatial resolution of Rt
1 to be the same as that of optical flow Ot

while reducing Rt
2 and Rt

3 by a factor of 2 and 4 in each dimension, respectively. To compute the refined flows, we use a multi-scale loss using photometric
consistency and smoothness terms. The photometric consistency term computes the differences between video frames and warped ones using the refined flows.
The smoothness term encourages the refined flows to be smooth while preserving flow discontinuities. See Table I for the detailed description of the network
structure. (Best viewed in color.)

computed optical flow (Fig. 3). In particular, we learn residuals
between the pre-computed optical flow and refined one [54],
built upon the assumption that they are similar and the initial
flow does not change drastically. Similar to [50], we use an
early fusion approach, directly concatenating video frames and
optical flow, to transfer the low-level information in the frames
to the initial flow effectively. On the contrary, we compute
the refined flow using a multi-scale architecture (Fig. 3) and
use it to align both video frames and hidden states in the
memory module for the task of depth prediction. Specifi-
cally, the network extracts spatiotemporal features from video
frames, It and It−1, and optical flow Ot, and computes the
residuals through convolutional layers. They are concatenated
to the pre-computed optical flow, and the results are then
passed on to additional convolutional layers, resulting in a
refined flow Rt1 specific to aligning video frames. The spatial
resolution of Rt1 is the same as that of the pre-computed optical
flow Ot. Other refined flow fields, Rt2 and Rt3, are similarly
computed by applying convolutional layers, while reducing
the spatial resolution of the pre-computed optical flow Ot by
factor of 2 and 4 in each dimension, respectively.

3) Flow-guided memory : Our memory module exploits
trajectories of individual pixels using the refined optical flow
to align hidden states selectively across frames (Fig. 4). This
allows to transfer a long-term temporal consistency in a
video sequence to depth prediction results. We implement the
memory module with a ConvGRU [24], since it does not suffer
from spatial resolution loss and is more efficient in terms of
memory, compared to vanilla RNNs and ConvLSTMs [55],
respectively. The flow-guided memory module is defined as

follows:

h̄t = M t �W(ht−1;Rt3) (1)
zt = σ(Wxz ∗ xt +Wh̄z ∗ h̄t + bz) (2)
rt = σ(Wxr ∗ xt +Wh̄r ∗ h̄t + br) (3)

h̃t = tanh(Wxh̃ ∗ x
t + rt � (Wh̄h̃ ∗ h̄

t) + bh̃) (4)

ht = (1− zt)� h̄t + zt � h̃t, (5)

where � and ∗ are element-wise multiplication and convolu-
tion, respectively. Here, we denote by W a warping operator
using a flow field, e.g., W(ht−1;Rt3)(p) = ht−1(p + Rt3(p))
at position p. W and b are weight and bias terms, respectively.
σ is the sigmoid function.

The flow-guided memory module inputs the feature xt

obtained from the two-stream encoder and a previous hidden
state h̄t acting as a visual memory, and outputs a new
state ht by combining h̄t and a candidate state h̃t weighted
by an output of an update gate zt. The update and reset
gates, zt and rt, selectively choose and discard information,
respectively, from the input feature xt and the previous hidden
state h̄t. Conventional GRUs aggregate features from the
hidden state ht−1 at time t − 1 directly to compute the
current one ht. This is problematic especially when input
features from previous and current frames, xt−1 and xt, are
not aligned with each other. Examples of this issue are cases
when objects move across video frames or the viewpoint is
changed due to camera motion. Mixing features from different
locations leads to temporally inconsistent results. To address
this problem, we instead use a flow-guided memory h̄t where
the feature from the previous state ht−1 are aligned to the
current input feature xt by warping using the refined flow Rt3.
We implement this with a differential warping operator using
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Fig. 4. Illustration of the flow-guided memory module. It uses the refined
flow Rt

3 to align the hidden state ht−1 at time t − 1 to the input feature
xt at time t, making a new candidate state h̃t. On the contrary, conventional
GRUs compute the candidate state h̃t using ht−1 directly. This is problematic
when the previous hidden state ht−1 and the current input xt are not spatially
aligned, due to e.g., viewpoint changes and moving objects. See Table I for
the detailed description of the network structure. (Best viewed in color.)

bilinear interpolation [55]. We additionally use a matching
confidence M t to consider reliability of the refined optical
flow Rt3 as follows.

M t(p) = exp(−ε‖It3(p)− Īt3(p)‖1), (6)

where Īti =W(It−1
i ;Rti) and ε is a bandwidth parameter. We

denote by Iti a resized video frame at time t that has the same
spatial resolution as Rti . We use the same matching confidence
in each channel of the hidden state ht−1.

Recently, Shi et al. introduce the TrajGRU [23] for precipi-
tation nowcasting. Our model is closely related to the TrajGRU
in that both consider temporally aligned hidden states to com-
pute a new one. The TrajGRU learns offsets for sampling lo-
cations [45], typically defined on a regular grid in the standard
convolution, to fetch information from the previous frame.
Although this can be seen as an implicit feature alignment,
the TrajGRU is not designed to enforce temporal consistency
and does not consider large displacements. It may provide
temporally inconsistent results when the learned offsets are
wrong or displacements between video frames are large. The
TrajGRU is also computationally inefficient, since it applies a
warping operator for each offset. Compared to this work, we
align hidden states in the memory module explicitly using the
refined optical flow together with a matching confidence. This

considers large motion and prevents aggregating the hidden
states for unreliable correspondences, making it possible to
obtain temporally consistent results.

4) Decoder : The decoder inputs the hidden state in the
flow-guided memory module and gives depth maps that have
the same resolution as input images. In order to consider
fine details (e.g., depth boundaries), we use additional low-
level features from spatial and temporal streams by skip
connections (Fig. 2).

B. Training loss

We use three types of losses for training: First, a scale-
invariant term is used to alleviate scale ambiguity in predicted
depth. Second, we use a photometric consistency term to learn
the refined flow, making the pre-computed optical flow specific
to aligning video frames. Finally, smoothness terms regularize
depth and flow fields. Our final loss is a linear combination
of them, balanced by the parameter λ as

L = LD + λ
∑
i

LOi , (7)

where i ∈ {1, 2, 3}. LD and LOi are losses for depth predic-
tion and flow refinement, respectively. In the following, we
describe each term in detail.

1) LD for depth prediction: Motivated by the work [12],
we define the scale-invariant loss as

LSI =
1

N

∑
p

s2(p)− α

N2

∑
p,q

s(p)s(q), (8)

where s(p) = logDt(p)− logGt(p) is the difference between
the predicted depth Dt and ground truth Gt at position p in
log space, and N is the total number of pixels. The first
term encourages predicted depth to be similar to ground truth.
Estimating absolute scale of depth is, however, extremely hard
especially from monocular video sequences. The second term
alleviates this problem by comparing relationships between
pairs of pixels p, q in s. It encourages them to have the same
direction, and gives lower error when both s(p) and s(q) are
positive or negative values. The first and second terms are
balanced by α ∈ [0, 1]. As α approaches to one, predicted
depth becomes robust to scale variations. We also use the
smoothness term that regularizes a prediction result, while
preserving depth discontinuities, defined as

LDS =
1

N

∑
p

‖∇2Dt(p)‖1 e−γ‖∇
2It(p)‖1 , (9)

where ∇2 is a Laplace operator and γ is the smoothness
bandwidth. We compute the second-order derivative of a
predicted depth map weighted using the magnitude of image
discontinuities, with an assumption that depth boundaries are
aligned well to image discontinuities. We define a total loss
for depth prediction as

LD = LSI + λDL
DS , (10)

where λD balances the scale-invariant and smoothness terms.
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2) LOi for flow refinement : We use the photometric consis-
tency loss to refine the pre-computed optical flow. This term
encourages the refined flow to be specific to aligning video
frames over time. Motivated by the works [56], [16], we define
the consistency term but in a multi-scale manner as

(11)
LPHi =

1

Ni

∑
p

(
β

1− SSIM(Iti (p), Ī
t
i (p))

2

+ (1− β)‖Iti (p)− Īti (p)‖1

)
,

where Ni is the total number of pixels in the image Iti . The
first and second terms, balanced by β ∈ [0, 1], compute the
differences and structural similarity (SSIM) between original
images Iti and synthesized ones Īti from It−1

i using the
corresponding refined flow Rti , respectively. Similar to depth
prediction, we define the smoothness term for the refined flow
as

LOSi =
1

Ni

∑
p

‖∇2Rti(p)‖1 e−γ‖∇
2Iti (p)‖1 , (12)

and use a sum of photometric consistency and smoothness
terms, balanced by a regularization parameter λO, as a total
loss:

LOi = LPHi + λOLOSi . (13)

IV. EXPERIMENTAL RESULTS

In this section we present a detailed analysis and evalua-
tion of our approach. Our code and more results including
depth videos are available at our project webpage: https:
//cvlab-yonsei.github.io/projects/FlowGRU/

A. Training

We train our model from scratch with the KITTI raw
dataset [26] that provides pairs of stereo images for 61 scenes
together with 3D points and camera parameters. In particular,
we use the split provided by [12], where it contains 35,600
and 697 images for training and test, respectively. We consider
each view in stereo image pairs as an individual monocu-
lar sequence. We also train our model with the Cityscapes
dataset [58] that consists of 89k, 15k and 45k images for
training, validation and test, respectively. We split the training
sets into a chunk of frames, each of which contains 50 and
30 successive frames for the KITTI and Cityscapes datasets,
respectively. We choose 20 and 5 nearby frames randomly for
the KITTI and Cityscapes dataset, respectively, and augment
the datasets by randomly cropping training samples to the size
of 960×320. We use a batch size of 16 for 200 epochs which
corresponds to about 450k iterations for the KITTI dataset.
For the Cityscapes dataset, the same batch size of 16 is used
with 200 epochs (about 600k iterations), and the trained model
is then fine-tuned with additional 100 epochs with the train
split provided by [12]. We use the Adam optimizer [59] with
β1 = 0.9 and β2 = 0.999. As learning rate, we use 1e-4 at
first 100 epochs and gradually reduce it during training. We
use a grid search to set the balance parameters, λD, λO and λ,
to 0.1, 0.1 and 0.05, respectively. We follow the experimental
setting in [12], [16], [49], [60] to set other parameters, and

TABLE I
NETWORK ARCHITECTURE DETAILS.

Layer Type K S I/O ch I/O rs Input
Encoder (Spatial & temporal)

Econv1a c 3 2 3/32 1/2 It or Ot

Econv1b c 3 1 32/32 2/2 Econv1a
Econv2a c 3 2 32/64 2/4 Econv1b
Econv2b c 3 1 64/64 4/4 Econv2a
Econv3a d 3 2 64/64 4/4 Econv2b
Econv3b c 3 1 64/64 4/4 Econv3a
Econv4a d 3 4 64/64 4/4 Econv3b
Econv4b c 3 1 64/64 4/4 Econv4a
Econv5a d 3 8 64/128 4/4 Econv4b
Econv5b c 3 1 128/128 4/4 Econv5a
Econv6a d 3 16 128/128 4/4 Econv5b
Econv6b c 3 1 128/128 4/4 Econv6a
Econv7a d 3 16 128/256 4/4 Econv6b
Econv7b c 3 1 256/256 4/4 Econv7a
Econv8a d 3 1 256/256 4/4 Econv7b
Econv8b d 3 1 256/64 4/4 Econv8a

Flow-guided memory
Gxz c 5 1 128/64 4/4 Econv8b (It) + Econv8b (Ot)
Ghz c 5 1 64/64 4/4 h̄t

Gz s - - 64/64 4/4 Gxz + Ghz
Gxr c 5 1 128/64 4/4 Econv8b (It) + Econv8b (Ot)
Ghr c 5 1 64/64 4/4 h̄t

Gr s - - 64/64 4/4 Gxr + Ghr
Gxh c 5 1 128/64 4/4 Econv8b (It) + Econv8b (Ot)
Ghh c 5 1 64/64 4/4 Gr � h̄t

Gh t - - 64/64 4/4 Gxh + Ghh
ht - - - 64/64 4/4 (1−Gz) � h̄t−1 + Gz � Gh
h̄t+1 - - - 64/64 4/4 Mt+1 �W(ht, Rt+1

3 )

Decoder
Dconv1a u 5 2 64/32 4/2 ht

Dconv1b c 5 1 96/32 2/2
Dconv1a + Econv1b (It)

+ Econv1b (Ot)
Dconv2a u 5 2 32/16 2/1 Dconv1b
Dconv2b c 5 1 16/16 1/1 Dconv2a
Output c 5 1 16/1 1/1 Dconv2b

Flow refine network
Fconv1a c 3 1 8/32 1/1 It + It−1 +Ot

Fconv1b c 3 1 32/2 1/1 Fconv1a
Rt

1 c 3 1 4/2 1/1 Fconv1b + Ot

Fconv2a c 3 2 32/32 1/2 Fconv1a
Fconv2b c 3 1 34/2 2/2 Fconv2a + D(Rt

1)

Rt
2 c 3 1 4/2 2/2 Fconv2b + D(Ot)

Fconv3a c 3 2 32/32 2/4 Fconv1a
Fconv3b c 3 1 34/2 4/4 Fconv3a + D(Rt

2)

Rt
3 c 3 1 4/2 4/4 Fconv3b + D(D(Ot))

Type: A type of operations; K: Kernel size; S: Strides; I/O ch: The number of channels
for the input/output; I/O rs: A downsampling factor for the input/output relative to the
input image. c: Convolution; d: Dilated convolution; u: Up-convolution; s: Sigmoid; t:
Hyperbolic tangent.

fix them in all experiment: α = 0.5, β = 0.85, γ = 10,
and ε = 1. We compute optical flow using the DIS-Flow
method [61] that offers a good compromise in terms of runtime
and accuracy. For example, it requires 0.1 seconds for images
of size 1392×512 with an Intel i5 3.3Ghz CPU. All networks
are trained end-to-end using TensorFlow [62]. With two
Nvidia GTX Titan Xs, training our model takes about 10 and
15 days for the KITTI and Cityscapes datasets, respectively,
including fine-tuning.
B. Network architecture details

We show a detailed description of the network architecture
in Table I. We denote by “+”, “�”, and “D(·)” concate-

https://cvlab-yonsei.github.io/projects/FlowGRU/
https://cvlab-yonsei.github.io/projects/FlowGRU/
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TABLE II
QUANTITIVE COMPARISON WITH THE STATE OF THE ART ON MONOCULAR DEPTH PREDICTION WITH THE TEST SPLIT PROVIDED BY [12].

lower is better higher is better

Method Dataset Supervision cap Abs Rel Sq Rel RMSE RMSE (log) δ < 1.25 δ < 1.252 δ < 1.253 Runtime(s)
Eigen et al. [12] K D 0-80m 0.215 1.515 7.156 0.270 0.692 0.899 0.967 -
Liu et al. [13] K D 0-80m 0.217 1.841 6.986 0.289 0.647 0.882 0.961 -
Godard et al. [16] K S 0-80m 0.148 1.344 5.927 0.247 0.803 0.922 0.964 0.04
Zhou et al. [14] K M 0-80m 0.208 1.768 6.856 0.283 0.678 0.885 0.957 0.03
Wang et al. [15] K M 0-80m 0.151 1.257 5.583 0.228 0.810 0.936 0.974 0.03
Yin et al. [33] K M 0-80m 0.155 1.296 5.857 0.233 0.793 0.931 0.973 0.04
Kuznietsov et al. [17] I+K D+S 0-80m 0.113 0.741 4.621 0.189 0.862 0.960 0.986 0.06
Kumar et al. [18] K D+M 0-80m 0.137 1.019 5.187 0.218 0.809 0.928 0.971 -
Fu et al. [19] I+K D+M 0-80m 0.102 0.617 3.859 0.165 0.890 0.964 0.985 1.08
Ours K D+M 0-80m 0.117 0.726 4.537 0.192 0.865 0.958 0.983 0.13
Ours-CS+ft-K CS+K D+M 0-80m 0.112 0.700 4.260 0.184 0.881 0.962 0.983 0.13

Kuznietsov et al. [17] I+K D+S 1-50m 0.108 0.595 3.518 0.179 0.875 0.964 0.988 0.06
Garg et al. [57] K S 1-50m 0.169 1.080 5.104 0.273 0.740 0.904 0.962 0.04
Godard et al. [16] K S 1-50m 0.108 0.657 3.729 0.194 0.873 0.954 0.979 0.04
Ours K D+M 1-50m 0.113 0.580 3.493 0.181 0.877 0.963 0.985 0.13
Ours-CS+ft-K CS+K D+M 1-50m 0.109 0.580 3.359 0.176 0.891 0.965 0.985 0.13

Abs Rel: Absolute relative difference; Sq Rel: Square relative difference; RMSE: Root Mean Square Error; RMSE (log): RMSE in log scale; δ < τ : The percentage of
pixels where the ratio of estimated depth and ground truth is within a range in the threshold τ . D: Ground-truth depth; S: Rectified stereo pairs; M: Monocular video
sequences.

Fig. 5. Examples of TDT variations over time on the KITTI dataset [26]. Compared to the state of the art [16], [14], [15], [33], [17], [19], our models give
lower errors during whole frames and show analogous patterns with ground truth. (Best viewed in color.)

nation, element-wise multiplication, and 2× downsampling,
respectively. We use the ReLU [63] as an activation function
except for the last layer. Each sub-network in the encoder
consists of 9 convolutional and 7 dilated convolutional layers.
A dilated convolution [53] enables covering large receptive
fields using small-size convolutions and maintaining the spa-
tial resolution of feature maps, but it typically causes grid
artifacts [52]. To alleviate this problem, we add a convolutional
layer followed by the dilated one, except the last two layers.
The flow-guided memory module has an architecture similar
to the ConvGRU [24] consisting of reset and update gates.
Differently, we align the previous hidden state w.r.t. the current
input feature using the refined flow. The decoder has 2 up-
convolutional and 3 convolutional layers. Following [64], we
add a convolutional layer after applying an up-convolutional
operator, which gives smooth prediction results. We use skip
connections from the encoder to leverage low-level but fine-
grained features for depth prediction. The spatial resolution
of predicted depth is the same as that of an input frame. The
flow refine network computes three residuals with different
scales. The residual for each scale is computed through 3
convolutional layers. We use the ReLU [63] as an activation
function except for the last layer.

C. Evaluation

Depth predicted by our model is defined up to a scale
factor. Following the experimental protocol in [14], [15], we
multiply a predicted depth map by a constant in order to make

median values of predicted depth and ground truth the same.
To evaluate our model in terms of temporal consistency, we
measure temporal differences along dense trajectories. To this
end, we synthesize a depth map D̄t at time t by warping Dt−1

using optical flow. For fair comparison, we use an optical
flow method [65] different from the one [61] used in our
model. We then compute the differences between D̄t and Dt

over time. That is, we compute temporal differences along
trajectories (TDT) as follows.

TDT(t) =
1

N

∑
p

Ct(p)‖Dt(p)− D̄t(p)‖1, (14)

where a binary confidence map Ct represents reliability of
optical flow, defined as

Ct(p) =

{
1, if exp(−ε1‖It(p)− Īt(p)‖1) > th.

0, otherwise.
(15)

We set ε1 and th to 0.5 and 0.05, respectively. We also
compute the percentage of erroneous pixels, denoted by TDT
< 1, TDT < 2, and TDT < 3, where a point is considered to
be erroneous when the differences are more than 1, 2, and 3,
respectively.

1) Comparison with the state of the art: We compare in
Table II our models with the state of the art on the test split
of [12] in terms of prediction accuracy and runtime. We denote
by “K”, “CS”, and “I” the KITTI [26], [12], Cityscapes [58]
and ImageNet [66] datasets, respectively. Numbers in bold
indicate the best performance and underscored ones are the
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Godard et al.

Zhou et al.

Wang et al.

Yin et al.

Kuznietsov et al.

Fu et al.

Ours

Ours-CS+ft-K

Ground truth

Fig. 6. Visual comparison of predicted depth on the KITTI dataset [26]. Top to bottom: Video frames, depth images predicted by Godard et al. [16], Zhou et
al. [14], Wang et al. [15], Yin et al. [33], Kuznietsov et al. [17], Fu et al. [19] and our models (Ours and Ours-CS+ft-K), and ground truth. We interpolate
sparse ground-truth depth maps for the purpose of visualization only. Our method predicts depth for small-size or occluded objects (e.g., thin poles and
occluded cars on the bottom left of images) and provides a sharp depth transition without artifacts. (Best viewed in color.)

second best among monocular depth prediction methods. Fol-
lowing the experimental protocol in [12], we use standard
metrics to measure depth prediction accuracy. The results for
the comparison, except [12], [13], [18], have been obtained
from models provided by the authors. The runtime is measured
with a Nvidia GTX Titan X. From this table, we observe three
things: (1) Our model trained on the KITTI dataset (“Ours”)
achieves comparable or better performance than others in
terms of depth prediction accuracy. In particular, it gives
results comparable to [17], [19], even without using ResNet
features [54] trained for ImageNet classification [17], [19], and
exploiting stereo images for training [17]; (2) Our method
benefits from using additional training samples. We fine-
tune our model trained with the Cityscapes [58] using the
KITTI dataset (“Ours-CS+ft-K”), boosting the performance
and outperforming the state of the art; (3) Our models show a
good trade-off between runtime and depth prediction accuracy.
They outperform other state-of-the-art methods, expect [19],
in terms of accuracy with a small loss of speed. Our models
are slightly outperformed by Fu et al. [19] in terms of

TABLE III
QUANTITIVE COMPARISON WITH THE STATE OF THE ART ON THE TEST

SPLIT PROVIDED BY [12] IN TERMS OF THE AVERAGE TDT.

lower is better higher is better

Method TDT TDT < 1 TDT < 2 TDT < 3
Godard et al. [16] 2.964 0.759 0.856 0.898
Zhou et al. [14] 1.578 0.786 0.893 0.935
Wang et al. [15] 1.251 0.809 0.914 0.951
Yin et al. [33] 1.651 0.791 0.894 0.932
Kuznietsov et al. [17] 1.335 0.805 0.907 0.947
Fu et al. [19] 1.049 0.827 0.932 0.966
Ours 0.940 0.835 0.951 0.979
Ours-CS+ft-K 0.896 0.848 0.952 0.979
Ground truth 0.712 0.924 0.982 0.989

accuracy, but with significantly faster overall speed (0.13 vs
1.08 seconds).

We show in Fig. 5 an example of the TDT comparison of
the state of the art and our models in the KITTI dataset [26].
Although Zhou et al. [14] and Wang et al. [15] use a
video sequence as a supervisory signal similar to ours, they
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Godard et al. [16] Zhou et al. [14] Wang et al. [15] Yin et al. [33]

Kuznietsov et al. [17] Fu et al. [19] Ours-CS+ft-K Ground truth
Fig. 7. Visual comparison of pixel-wise TDT scores. Two examples are shown for each method. The TDT scores are color-coded (blue: low, yellow: high).
Our model shows lower TDT scores than the state of the art [16], [14], [15], [33], [17], [19], especially for the regions near objects, demonstrating that it
gives temporally consistent results. (Best viewed in color.)

(a) (b) (c) (d)
Fig. 8. Examples of a refined flow field and warping results. (a) Top to bottom: A refined flow and its difference from the input optical flow. (b-c) Top to
bottom: Video frames and hidden states at time t − 1 and t, respectively. (d) A video frame and a hidden state aligned w.r.t. time t by warping using the
refined flow. The refined flow captures structure details, particularly around moving objects, allowing to provide a sharp depth transition. It also aligns both
video frames and hidden states well, making it possible for our model to give temporally consistent results without flickering artifacts. (Best viewed in color.)

(a) Cityscapes dataset

(b) NYU dataset

Fig. 9. Examples of predicted depth by our model on (b)the Cityscapes [58]
and (b)the NYU datasets [67]. We apply our model trained with the
KITTI [12]. The examples demonstrate that our model performs well on other
images outside the training dataset.

do not consider temporal coherence in the video, producing
temporally inconsistent results. Kuznietsov et al. [17] and
Fu et al. [19] give results comparable to ours in terms of

depth prediction accuracy as shown in Table II, but their
TDT scores are far from the ground truth. On the contrary,
our models produce temporally stable and consistent results,
with lower errors than the state of the art. In Table III,
we show the average TDT scores on the test split of [12]
and compare our models with the state of the art in terms
of temporal consistency. Numbers in bold indicate the best
performance and underscored ones are the second best. Our
method outperforms the state of the art including [17], [19]
by a significant margin. For comparison, the scores computed
with ground-truth depth are 0.712 for TDT, and 0.924, 0.982,
0.989 for TDT< 1, TDT< 2, TDT< 3, respectively. To this
end, we interpolate sparse ground-truth depth maps and discard
values at highly sparse regions (e.g., upper parts of images)
using masks provided by [57]. Note that the better ability to
give temporally consistent results by our method does not
come from the use of ground-truth depth. The supervised
learning approach [17] shows much worse results than the
unsupervised one [15], indicating that using ground truth does
not always give temporally consistent results.

2) Qualitative results: We show in Fig. 6 a visual compar-
ison of depth prediction results on the KITTI dataset [12]. We
can see that our models predict a fine-grained depth (e.g., for
distant objects and poles) and provide a sharp depth transition
without artifacts. For comparison, Fu et al. [19] shows grid
artifacts often caused by dilated convolutions [52]. We can also
see that our models are highly robust to occlusion compared to
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other methods. For example, they predict depth from occluded
cars on the bottom left of images while others are limited
to handle such objects. Figure 7 visualizes pixel-wise TDT
scores. We show temporal differences ‖Dt(p) − D̄t(p)‖1,
weighted by the confidence map Ct(p), between predicted
depth maps. It shows that our model gives temporally con-
sistent results, especially for regions having large displace-
ments (e.g., traffic signs), resulting in less flickering artifacts.

3) Refined optical flow: In Fig. 8(a), we show an example
of the refined flow field and its difference from the input flow.
We can see that the flow refine network modifies the input
flow, particularly around moving objects, making it possible
to capture fine details while preserving edges and object
boundaries. Our model uses the refined flow to align video
frames and hidden states in the visual memory. We show video
frames and hidden states at time t − 1 and t in Figs. 8(b-c),
respectively. Warping results w.r.t. time t using the refined flow
are shown in Fig. 8(d). By comparing Figs. 8(c) and (d), we
can see that the refined flow aligns both the video frame and
the hidden state well, which enables our model to aggregate
temporally aligned features and to prevent flickering artifacts.

4) Generalization to other dataset: We test our model
trained with the KITTI [12] on the Cityscapes [58] and the
NYU [67] datasets to demonstrate its generalization ability.
Examples shown in Fig. 9 demonstrate that our model gen-
eralizes well to other images outside the training dataset.
Particularly, it infers both a geometric layout in a scene and
object instances (e.g., cars and trees in Fig. 9(a) and a bed in
Fig. 9(b)) well. Note that, for the Cityscapes and the NYU
datasets, all previous works we are aware of (e.g., [14], [15],
[16], [17], [19], [33]) offer qualitative results only.

V. CONCLUSION

We have presented a recurrent network for monocular
depth prediction that gives temporally consistent results while
preserving depth boundaries. Particularly, we have introduced
a flow-guided memory module that selectively retains hidden
states aligned along motion trajectories, enforcing a long-
term temporal consistency to prediction results. We have also
presented a flow refine network that outputs dense flow fields
specific to our task. We have shown that the refined flow aligns
both video frames and hidden states, preventing flickering
artifacts. We have demonstrated that our method outperforms
the state of the art by a large margin in terms of temporal
consistency, shows a good trade-off between depth prediction
accuracy and runtime, and performs well on other images
outside training datasets.
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