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Abstract— Pedestrian detection has attracted more attention in
the fields of computer vision and artificial intelligence. A variety
of real-world applications involving pedestrian detection have
been promoted, such as Advanced Driving Assistant System
(ADAS). Although both two-stage and single-stage deeply learned
object detectors have shown outstanding performance for general
object detection, they are still facing the problem of poor accu-
racy in single-class detection senario because they are designed
to distinguish objects from different categories rather than pay
attention to various appearances of pedestrians. Previous leading
pedestrian detectors F-DNN and F-DNN v2 fuse several neural
networks like SSD, VGG16 and GoogleNet to generate ROIs
and supress false alarms with cascaded structure, resulting in
low miss rate but high complexity. In this paper we propose a
novel framework called Attention-Enhanced Multi-Scale Region
Proposal Network (AEMS-RPN) for ROI generation, which
also acts as first-stage classification. Inspired by the success of
traditional pedestrian detectors, we use soft-cascaded decision
trees instead of cascaded deep neural networks to achieve high
accuracy and fast detection speed simultaneously. The decision
tree classifier is used and enables us to combine features from
different layers with various resolutions for classification and
incorporate effective bootstrapping for mining hard negatives.
We test our method on several pedestrian detection datasets and
the experimental results certify the effectiveness of the proposed
AEMS-RPN. Compared with the state-of-the-art, we obtain the
competitive accuracy with near real-time efficiency.

Index Terms—Pedestrian detection, attention mechanism,
multi-scale, soft-cascade, DNN.

I. INTRODUCTION

EDESTRIAN detection has attracted more and more

attention because of its significant role in real-world arti-
ficial intelligence applications, such as intelligent surveillance,
ADAS and automatic driving. Fig. 1 shows several pedestrian
detection results along with our enhanced features on street
scenes.
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Fig. 1. Examples of Enhanced Features and Pedestrian Detection Results on
Street Scenes.

Typically, a pedestrian detection process consists of three
steps:

Region Proposal Pre-process the input image and select
regions where pedestrians may exists.

Feature Extraction Compute fixed-length features for each
proposed region.

Binary Classification Feed features into a binary classifier
and judge whether a pedestrian exists.

Hand-crafted features appear to have an significant role in
leading pedestrian detectors because of its higher resolution
in contrary to convolutional features. Pedestrian instances in
automatic driving, intelligent surveillance and other typical
scenarios are generally of small sizes (e.g., 28 x 70 for Caltech-
USA [1]), while the computed convolutional feature map in
Faster R-CNN has a stride of 16 pixels [2]. The low resolution
of features limits their discrimination ability, and furthermore
degrades the subsequent classifier.

Reference [3] argues that Multi-Layer Perceptron (MLP)
fails to pay attention to hard negative examples and its
detection accuracy is even worse than initial region proposals.
Cascaded Boosted Forest (BF) [4] attached to Region Proposal
Network(RPN) with bootstrapping strategy achieves a better
performance. However, their detection speed is 500ms per
image, which is too slow for real-world applications. Another
top-performance approach Fused-DNN combines SSD [5],
VGG16 [6], GoogleNet [7] producing models larger than
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700MB for pedestrian detection. The complexity of models
makes their algorithm unrealistic in portable devices and
real-world applications such as intelligent surveillance and
automatic driving.

We focus on to achieve both high accuracy and fast
speed in pedestrian detection within one model. In this paper
we propose a framework of Attention-Enhanced Multi-Scale
RPN (AEMS-RPN) focusing on improved region proposals
to handle large scale variance and low confidence targets
caused by intensity, blurring or occlusion problems. Specif-
ically, we propose multiple region proposal subnetworks to
handle large scale variance of pedestrians. Large separable
convolution [8] is adopted to build thinner and more robust
feature maps. Considering the information loss in deeper
convolution layers, we introduce an attention mechanism to
enhance high-level pedestrian features. We find that an active
path in MLP classifier is equivalent to a decision tree and com-
bining multiple decision trees for inference requires much less
parameters. Experiments on Caltech-USA pedestrian detection
benchmark show that our approach achieves the state-of-the-
art performance with fast speed.

The main contribution of this work can be summarized
as: (I) We propose a framework Attention-Enhanced Multi-
Scale RPN to handle large-scale variance of pedestrians and
suppress false positives including double detections, body parts
and background clutters. (II) Large separable convolution
is introduced to provide rich context and a novel atten-
tion mechanism is incorporated to overcome the drawbacks
of large receptive field, requiring no additional annotations
(e.g. segmentation, optical flow). (III) Using soft-cascaded
decision trees instead of a multi-layer perceptron (MLP), our
method achieves the state-of-the-art accuracy with a compact
model and near real-time inference speed.

II. RELATED WORKS
A. Region Proposal

The simplest and most effective method of region proposal
is sliding window, which resizes the input image to different
scales and applies a fixed-size sliding window to each scale
generating candidate regions. With the development of neural
network-based object detection algorithms, Faster R-CNN
with RPN [2] becomes the leading two-stage, proposal-driven
detection mechanism. RPN is actually a sliding window
method built on convolutional features with a cascaded binary
classifier.

B. Feature Extraction

Hand-crafted features for pedestrian detection have been
studied for more than a decade. Viola and Jones proposed
the first practical pedestrian feature representation in 2005 [9]
and their contribution has become a fundamental algorithm
in OpenCV, a famous computer vision toolkit, now. Driven
by the hypothesis that the diversity of features drawn from
the input image can improve detection quality, researchers
have explored numerous feature categories since then: edge
information [10]-[13], color information [11], texture infor-
mation [14], local shape information [15], amongst others.
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Fig. 2. Our Proposed Pipeline: The convolutional features are shared by the
RPN and the downstream classifier.

With the aid of forward-backward propagation algorithm,
we are now able to learn deep convolutional features for pedes-
trian representation via deep neural networks [6], [16]-[18].
Due to the low resolution of deep convolutional features,
some leading pedestrian detectors (e.g., [17]-[19]) combine
traditional hand-crafted features and prevalent convolutional
features hoping to achieve a balance between resolution and
discrimination.

C. Classifier

In traditional pedestrian detection approaches, most
hand-crafted features are classified by Support Vector
Machines(SVMs) or Decision Trees. Rodrigo Benenson and
Mohamed Omran et al. argue that it is not sufficient to
draw conclusion whether SVMs or Decision Trees are bet-
ter classifiers for pedestrian detection tasks [20]. With the
quick development of deep learning, a typical neural net-
work for pedestrian detection includes convolution layers
followed by fully-connected layers. Fully-connected layers
forms a MLP that can solve non-linear classification problems.
Fully-connected layers will slow down the detection speed due
to the huge quantities of parameters and, even worse, degrade
region proposal results as suggested in [3].

In summary, the major obstacle for deploy existing object
detection approaches in pedestrian detection application is
their poor representation of feature maps for pedestrian-
specific region proposal. For inference accuracy and time effi-
ciency, soft-cascaded decision trees are needed to be adopted
as classifier. In this paper, we design a better region pro-
posal structure called Attention-Enhanced Multi-Scale RPN
(AEMS-RPN), attached with soft-cascaded decision trees for
classification.

III. OUR APPROACH

The proposed approach consists of three components
(illustrated in Fig. 2): the ConvNet for convolutional
features, the RPN for candidate proposals, and the soft-
cascaded decision trees that classify these proposals based on
convolutional features.

A. Region Proposal

RPN in Faster R-CNN [2] originally acts as a fore-
ground/background single-class detector in the first-stage of
a two-stage multi-class detector. For single-class task like
pedestrian detection, two-stage detectors are less efficient since
RPN itself is actually a high-efficiency one-stage detector.

We modify the original RPN to be better fit for pedestrian
detection tasks. Following [3], we employ anchors of 0.41
aspect ratio (an average aspect ratio of pedestrian targets)
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Fig. 3. Multi-Scale Region Proposal.

rather than three aspect ratios {0.5, 1,2} suggested in [2].
In addition, we use 9 anchors with a scaling stride of 1.3x,
starting from 40px height.

Duplicate detections and body parts are the most common
false positives in pedestrian detection and are more difficult to
suppress comparing with other non-human targets. The feature
activations relating to body parts are consistent with our
learning objective and a larger context will help the network
produce full-body pedestrian targets rather than separate parts.
In a convolution layer, kernel size k determines the receptive
field of a neuron and increasing k is the easiest way to provide
a larger context. k x k convolution with large k is time-
consuming and we adopt large separable convolution [8] to
convert it into one k x 1 convolution follow by 1 xk convolution
and one 1 x k convolution followed by k x 1 convolution. The
numbers of output channels are denoted as c¢id, Cous-

Another major difficulty of pedestrian detection is large
scale variance. The original work believes that pooling features
of each ROI into the same size can eliminate the necessity
of feature pyramid. Unfortunately, the process can also cause
information loss for large-scale targets and produce insufficient
features for small-scale ones. In this paper, we suggest two
region proposal units working on different convolution layers,
dealing with small and large pedestrian targets, respectively
(Fig. 3). Two units regress boxes with different strides and
meanwhile their classification layers provide confidence scores
of the predicted boxes, which are mapped to a larger range and
function as the initial scores of the soft-cascaded structure.

B. Attention and Feature Fusion

It is a common knowledge that deeper convolution layers
lead to lower resolution while shallower ones lead to weaker
representation. In multi-scale RPN, proposals are generated
from convolution layers with different strides and also different
representation ability. Detecting smaller targets require feature
maps with higher resolution and equivalent feature represen-
tation, which can be achieved by directly fuse feature maps
of two different layers with up-sample and sum operations as
shown in Fig. 4 (except the dashed box).
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Visual attention mechanism is always effective in object
detection methods, in that it could suppress the confusion by
negative targets. Since our receptive field has been enlarged
through large separable convolution, more background infor-
mation is incorporated into the feature maps. The direct fusion
without attention mechanism means that each pixel in high-
level feature map has equal contribution to low-level features
and the background clutters brought to low-level feature map
have severer influence on smaller targets. Improvement can
be made by introducing attention mechanism and emphasizing
on features related to pedestrian targets. Without segmentation
annotations, we generate human masks in our network struc-
ture with two convolution layers and one exponential operation
layer. Feature map fj,(x) from higher level is firstly up-
sampled to match the shape of lower layer’s output, then two
3 x 3 convolution layers are applied to generate an exponential
mask o ( f:p (x)). The mask is later applied to f(x) and the
final feature map is computed according to Eq. 1, where fj(x)
denotes feature map from the lower layer (the dashed box
in Fig. 4).

S () = filx) + f;" () -exp (o (f;," (1)) e

The exponential mask has a similar function during back-
propagation (Eq. 2) which provides a positive feedback on
pixels related to human targets in the attention mask. This
mask maps zeros to ones and enlarges non-zero values and will
highlight feature activations related to true pedestrian targets
when multiplied to feature maps according to Equation 1.

oL _ oL ofm _ OL " up up
oo Ofm ao_(f;:l’) - Ofm (fh eXp (O-(fh ))) 2

C. Feature Extraction

Extracting accurate features for small-scale targets is
important in pedestrian detection. The original Faster R-CNN
quantize the location of ROIs into integers on feature maps,
causing a misalignment up to 30 pixels on input images. This
has a significant negative influence on pedestrian detection.
We use ROI-Align [21] with bilinear interpolation to draw
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Fig. 5. Decision Tree VS. MLP Classifier.

features of fixed length from each region. These features
will be used to train decision trees as introduced in the next
section.

Since decision tree classifier essentially minimizing the
loss by greedy search, its input dimension can be arbitrary.
We make full use of the features extracted from ROIs on
different convolution layers. We pool these features into a
fixed resolution and simply concatenate the features without
normalization. In contrast, a delicate feature normalization is
needed when concatenating features for MLP classifiers [22].

The feature of small-scale pedestrians may become trivial if
their size is close to or even smaller than original convolution
strides. In this case, we use atrous trick [23] to dilate con-
volution kernels, generating feature maps of higher resolution
given the fine-tuned layers from Attention-Enhanced Multi-
Scale RPN. For example, considering a group of convolution
layers, we shrink the window size of the previous pooling
operation by 2 firstly and then dilate all convolution kernels
in the group by 2. In this way, the stride of output feature map
is reduced by half.

D. Soft-Cascaded Decision Trees

While the leading detection algorithms use fully-connected
layers for classification [2], [8], we argue that decision trees
have the same classification ability as MLP classifier com-
posed with fully-connected layers. As Fig. 5 shows, an activate
path in MLP classifier involving three L1-hidden neurons and
one L2-hidden neuron is equivalent to a path in decision tree.
The decision tree consists of three decision nodes and one
prediction node where decision nodes act as ReLLU activation
in MLP and prediction nodes act as Soft-Max classification.
Combining multiple decision trees with effective bootstrapping
method can achieve stronger classification ability than MLP.
Another advantage of decision trees is that only log, N
parameters are used during inference in contrast with N
parameters in MLP. In our soft-cascaded structure, if some
decision trees are firmly convinced that an ROI is negative,
the rests are not likely to classify the same ROI as positive.
If an ROI scoring lower than a threshold, for example -1, it can
be pruned in advance to further improve the inference speed
and interests some recent works [24], [25].

Attention-Enhanced Multi-Scale RPN generates the region
proposals, confidence scores and features required for training
soft-cascaded decision trees by RealBoost algorithm [26].
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All positive examples from annotations and a similar quantity
of randomly sampled negatives constitute the training set. The
training process is bootstrapped by several times and some
extra top-rated hard negative examples (10% of the positive
number) are attached to the training set after each stage.
Decision trees in the final stage are used for inference in a
soft-cascaded structure.

The confidence scores given by Attention-Enhanced Multi-
Scale RPN is in the range of [0, 1], while those of decision
trees are much larger. In order to accumulate scores from
different sources, we map the score s given by RPN to fy
using:

L s 3
fO—E Og(l—s) 3)

fo and scores f;,i = 1,2,---,2048 given by each decision
trees add up together to give the final assessment for predicting
whether a targeted region is a pedestrian.

E. Implementation Details

We use VGG16 [6] as the backbone of our Attention-
Enhanced Multi-Scale RPN. Large separable convolution units
with kernel size k = 7, medium output channel c¢,;;q = 256,
final output channel ¢,,; = 128 and kernel size k = 5, medium
output channel ¢;,;g = 256, final output channel c,,; = 128
are attached to layer Conv4_3 and layer Conv5_3 separately,
and followed by two region proposal units. Each unit contains
a 3 x 3 convolution layer and two parallel 1 x 1 convolution
layers for classification and bounding box regression. Other
hyper-parameters of Attention-Enhanced Multi-Scale RPN are
the same as in [2]. With proposed regions, convolutional fea-
tures are extracted from different combinations of convolution
layers and pooled into a fixed-size of 7 x 7.

We employ image-centric training and testing as in [2].
An input image is resized and its shorter edge has 720.
For the training of Attention-Enhanced Multi-Scale RPN,
anchor boxes with an Intersection-over-Union (IoU) ratio
larger than 0.5 with ground-truth are considered positive and
the rest are negative. Each mini-batch for computing the
loss consists of 1 image and 120 randomly sampled anchors.
As addressed in [3], cross-boundary negative anchors are
preserved to improve accuracy on Caltech-USA dataset.

With the fine-tuned Attention-Enhanced Multi-Scale RPN,
the proposal regions are filtered by Non-Maximum Suppres-
sion (NMS) with a threshold 0.7 and then ranked by their
scores. The following classifier is composed of decision trees
with depth 5. While training the decision trees, we accumulate
1000 top-rated proposals of each image into the training
set. While performing inference, we only keep 100 top-rated
proposals to enhance detection speed.

IV. EXPERIMENTS AND ANALYSIS
A. Dataset

We evaluate our approach on Caltech-USA [1] and by
default an IoU threshold 0.5 is used. Following [19], we aug-
ment the training data by 10 folds (resulting in 42782 images
in total) and evaluate our proposed approach on the standard
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Fig. 6. Visualization of Attention-Enhanced Multi-Scale RPN.

test set under the reasonable settings (pedestrian targets lower  B. Attention-Enhanced Multi-Scale RPN

than 50 px or less than 65% visible are dropped). We report

log-average Miss Rate on False Positive Per Image (FPPI) in Firstly, we conduct an experiment to compare the proposal
the range of [1072, 100] (denoted as MR in short) as evalua- quality of different region proposal methods. Feed an input
tion metric. Further experiments are conducted on CityPersons image into Attention-Enhanced Multi-Scale RPN, and the
[27], a new pedestrian detection dataset based on the semantic  outputs of each major layer are visualized in Fig. 6. The
segmentation dataset CityScapes [28]. first group of convolution layers act as area segmentation,
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TABLE I
COMPARISON OF DIFFERENT REGION PROPOSAL METHODS ON CALTECH-USA
Method Multi-Scale  Large Separable Convolution  Feature Fusion  Attention =~ MR(%)
RPN([3] 14.90
RPN+ v 14.07
RPN+ v v 13.23
RPN+ v v Vv 12.68
RPN+ v v v 12.71
AEMS-RPN v v v Vv 12.17
the second group as edge extraction and the third as corner TABLE TI
and vertical structure detection. In the fourth and fifth group PEDESTRIAN DETECTION RESULTS WITH DIFFERENT
of convolution layers which serve as feature maps for clas- FEATURES ON CALTECH-USA
sification in many other pedestrian detectors [3], [29], [30],
. . . Method Features MR(%)
locations where pedestrians appear are activated. However,
we argue that these feature maps contain too many channels ggg"i—; 13;?
. . . v4_ .
and zero values for following classifier. To solve this, a large Convs 3 9.07
. . AEMS-RPN ~ '
separable convolution [8] can not only reduce computation + Decision Trees Conv3_3, Conv4_3 10.70
but also make features more powerful due to larger valid Conv3_3, Conv5_3 11.22
. . Conv3_3, Conv4_3, Conv5_3 10.46
receptive field caused by large kernel. Our experiment shows Conv3_3. Conv4_3 with 4 trous 7.04
that LC4 and LCS5 outputs by large separable convolution Conv3_3, Conv5_3 with 4 trous 10.48

units have fewer channels but more non-zero values and
the locations of each pedestrian targets are clearly visible.
Attention mask LC5_Mask is generated from LC5 and later
applied to LC5 to form LC5_Up with more details. LC4 and
LC5_Up are added together generating FM4. Two region
proposal subnets are attached to FM4 and LC5 (shown in
orange dashed boxes) and the discriminative feature maps
guarantee satisfactory results.

In order to assess the contribution of each modules, we add
one module a time to original VGG16-based RPN. The pro-
posal miss rates (MR) are listed in Table I for comparison.
The original VGG16-based RPN achieve an MR of 14.9%
on Caltech-USA and each component we proposed shows
steady reduction in MR. Multi-scale RPN is capable of dealing
with large scale variance; large separable convolution provides
more context information to prevent double detections and
body part detections; feature fusion ensures that feature maps
associated to different scales have equivalent representation
ability; attention mechanism overcomes the drawbacks of large
receptive fields and brings a significant improvement. Our
proposed attention-enhanced multi-scale RPN achieves an MR
of 12.17%.

C. Features

Decision tree classifier is flexible and has no need of feature
normalization, so the features for classification can be drawn
from an arbitrary combination of convolution layers with no
extra cost. Table II shows the results with different features
fed to soft-cascaded decision trees in our method.

The decision trees are trained with bootstrapping
strategy and each  stage has a  forest of
{64, 128,256,512, 1024, 1536, 2048} trees. The bootstrapping
strategy brings remarkable improvement in every situations
and proven effective in pedestrian detection. We evaluate our
proposed approach under reasonable settings in Caltech-USA
benchmark and achieve 7.94% MR with original annotations
and 6.02% MR with refined annotations by [25] (Fig. 7).

93% W)
= = =8&5%HOG
45% ACF
28% DeepCascade
26% DeepCascade+
15% ACF++
14% Checkerboards
14% Checkerboards +
7% RPN+BF
&% F-DNN
&% SDS-RCNN
= = = §% F-DNM+8S

miss rate

10 107 107 10% 10 10° 10°
false positives per image

Fig. 7. Log-Average Miss-Rate on Caltech-USA with Refined Annotations.

D. Comparison

We achieve the state-of-the-art performance of 6.02% MR
on Caltech-USA with refined annotations and the size of
our model is only 103.4MB. RPN-BF [3] only achieves an
MR of 6.81% due to the lack of multi-scale region proposal
and attention mechanism. F-DNN-SS [31] has a similar MR
comparing with our work but it requires a model > 700MB.
Our approach runs at 10FPS on 720p input video stream with
one NVIDIA TITAN X (Maxwell) GPU, which is near real-
time. In contrast, most top-performance pedestrian detection
methods run slower than 1FPS and limits their deployment in
real-world applications.

We also evaluate our proposed framework on new CityPer-
sons dataset in terms of reasonable evaluation setup. All
models are trained on the train set and tested on the vali-
dation set and the results are shown in Table IV. Scaling-up
1.3x shows an immediate gain in the enhancement of small-
scale pedestrian detection in the baseline method [28]. Large
receptive fields cooperating with attention mechanism in our
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TABLE III

COMPARISON WITH PREVIOUSLY LEADING DETECTORS
ON CALTECH-USA

Detectors Model Size (MB)  MR(%)
RPN+BF[3] 87.6 6.81
F-DNN[31] 241.8 6.31
F-DNN-SS[31] 769.8 6.04
Ours 103.4 6.02

TABLE IV
PEDESTRIAN DETECTION RESULTS ON CITYPERSONS

Method Scale  MR(%)
Zhang, et al.[28] x1 15.4
Zhang, et al.[28] x1.3 12.8
Ours x1 13.7
Ours x1.3 12.2

work maintain a gap of 0.4% in MR with scaling-up, and a
larger gap of 1.7% without scaling-up.

V. CONCLUSION

In this paper, we present a high-efficiency pedestrian
detection method combining Attention-Enhanced Multi-Scale
RPN (AEMS-RPN) and Soft-Cascaded Decision Trees. The
former fuses features from different layers with the help of
attention mechanism and makes region proposals of different
scales. On top of region proposals and features pooled by
ROI-Align, the soft-cascaded decision tree classifier is intro-
duced to classify features of arbitrary resolutions and mine
hard negatives through bootstrapping. These trees are soft-
cascaded for pruning. This framework overcomes the defects
of directly using Faster R-CNN systems for pedestrian detec-
tion and achieves the state-of-the-art accuracy with a compact
model and near real-time inference speed.
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