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Abstract— Traffic forecasting is a particularly challenging 

application of spatiotemporal forecasting, due to the time-varying 

traffic patterns and the complicated spatial dependencies on road 

networks. To address this challenge, we learn the traffic network 

as a graph and propose a novel deep learning framework, Traffic 

Graph Convolutional Long Short-Term Memory Neural Network 

(TGC-LSTM), to learn the interactions between roadways in the 

traffic network and forecast the network-wide traffic state. We 

define the traffic graph convolution based on the physical network 

topology. The relationship between the proposed traffic graph 

convolution and the spectral graph convolution is also discussed. 

An L1-norm on graph convolution weights and an L2-norm on 

graph convolution features are added to the model’s loss function 

to enhance the interpretability of the proposed model. 

Experimental results show that the proposed model outperforms 

baseline methods on two real-world traffic state datasets. The 

visualization of the graph convolution weights indicates that the 

proposed framework can recognize the most influential road 

segments in real-world traffic networks. 

 

Index Terms— Traffic forecasting, Spatial-temporal, Graph 

convolution, LSTM, Recurrent neural network 

 

I. INTRODUCTION 

RAFFIC forecasting is one of the most challenging 

components of Intelligent Transportation Systems (ITS). 

The goal of traffic forecasting is to predict future traffic states 

in the traffic network given a sequence of historical traffic states 

and the physical roadway network. Since the volume and 

variety of traffic data has been increasing in recent years, data-

driven traffic forecasting methods have shown considerable 

promise in their ability to outperform conventional and 

simulation-based methods [1].  

Previous work [2][3][4][5] on this topic roughly categorizes 

existing models into two categories: classical statistical 

methods and machine learning models. Most of the studies 

focusing on traffic forecasting using statistical methods were 

developed when traffic systems were less complex, and the 

sizes of traffic datasets were relatively small. However, 

statistical models’ capability of handling high dimensional time 

series data is quite limited. With the more recent rapid 
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development in computational power, as well as growth in 

traffic data volume, much of the more recent work on this topic 

focuses on machine learning methods for traffic forecasting.  

Machine learning methods with the capability of capturing 

complex non-linear relationships, like support vector regression 

(SVR) [6], tend to outperform the statistical methods, such as 

autoregressive integrated moving average (ARIMA) [7] and its 

variants, with respect to handling complex traffic forecasting 

problems [8]. However, the full potential of artificial 

intelligence approaches to traffic forecasting was not exploited 

until the rise of deep neural network (NN) models (also referred 

to as deep learning models). Following early works [2], [9] 

applying NNs to the traffic prediction problem, many NN-based 

methods have been adopted for traffic forecasting. 

Deep learning models for traffic forecasting, such as deep 

belief networks (DBN) [10] and stacked auto-encoders [11], 

can effectively learn high dimensional features and achieve 

good forecasting performance. Recurrent neural network 

(RNN) and its variants, including long short-term memory 

(LSTM) [12] and gated recurrent unit (GRU) [13] networks, 

have also shown great potential for solving traffic forecasting 

problems [8], [14], [15], [16]. Although RNN-based methods 

can learn the spatial dependencies, they tend to be over-

complex and inevitably capture a certain amount of noise and 

spurious relationships which likely do not represent the true 

causal structure in a physical traffic network. Moreover, 

interpreting the network parameters in terms of real-world 

spatial dependencies is most often impossible. To address this, 

other works [5], [17], [18] attempt to model spatial 

dependencies with convolutional neural network (CNN). 

However, conventional CNNs are most appropriate for spatial 

relationships in the Euclidean space as represented by two-

dimensional (2D) matrices or images. Thus, spatial features 

learned in CNN are not optimal for representing the traffic 

network structure [19][20]. 

Recently, substantial research has focused on extending the 

convolution operator to more general, graph-structured data, 

which can be applied to capture the spatial relationships present 

in a traffic network. There are two primary ways to conduct 

graph convolution. The first class of methods [21], [22], [23], 
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[24] makes use of spectral graph theory, by designing spectral 

filter/convolutions based on the graph Laplacian matrix. 

Spectral-based graph convolution has been adopted and 

combined with RNN [20] and CNN [1] to forecast traffic states. 

These models successfully apply convolution to graph-

structured data, but they do not fully capture the unique 

properties of graphs [25], like traffic networks. These models 

[23], [26] usually adopt multiple graph convolution layers, and 

thus, their learned spatial dependencies are hard to interpret. 

The other form of graph convolution proposed in several newly-

published studies is conducted on graph data dynamically, for 

example, the dynamic edge-conditioned filters in graph 

convolution [27], the high-order adaptive graph convolutional 

network [25][28]. Still, these methods are not capable of fully 

accommodating the physical specialties of traffic networks. 

One of the deficiencies of the previous graph convolution-

based models is that the receptive field of the convolution 

operators is not confined in the graph according to the real 

structure of the traffic network. The traffic states of two 

locations far apart from each other in the traffic network should 

not be influenced by each other in a short time period. Though 

the spectral graph convolution models [20],[23] can capture 

features from K-localized neighbors of a vertex in the graph, 

how to choose the value of K and whether the localized 

neighbors truly affect the vertex are still questions to be 

answered. Thus, we propose a free-flow reachable matrix based 

on the free-flow speed of the real traffic and apply it on the 

graph convolution operator to learn features from the truly 

influential neighborhood in the traffic network.  

In this study, we learn the traffic network as a graph and 

conduct convolution on the traffic network-based graph. To 

learn localized features and incorporate roadway physical 

characteristics, we proposed a traffic graph convolution 

operator. Base on this operator, we propose a traffic graph 

convolutional LSTM (TGC-LSTM) to model the dynamics of 

the traffic flow and capture the spatial dependencies. Evaluation 

results show that the proposed TGC-LSTM outperforms 

multiple state-of-the-art traffic forecasting baselines. More 

importantly, the proposed model turns out to be capable of 

identifying the most influential roadway segments in the real-

world traffic networks. The main contributions of our work 

include: 

1. A traffic graph convolution operator is proposed to 

accommodate physical specialties of traffic networks 

and extract comprehensive features. 

2. A traffic graph convolutional LSTM neural network is 

proposed to learn the complex spatial and dynamic 

temporal dependencies presented in traffic data. 

3. To make learned localized graph convolution features 

more consistent and interpretable, we proposed two 

regularization terms, including an L1-norm on traffic the 

graph convolution weights and an L2-norm on the traffic 

graph convolution features, that can be optionally added 

to the model’s loss function. 

 
1 https://github.com/zhiyongc/Seattle-Loop-Data 

4. The real-world traffic speed data, including the graph 

structure of the traffic network, used in this study is 

published via a publicly available website1 to facilitate 

further research on this problem. 

II. LITERATURE REVIEW 

A. Deep Learning based Traffic Forecasting 

Deep learning models have shown their superior capabilities of 

capturing nonlinear spatiotemporal effects for traffic 

forecasting [29]. Ever since the precursory study [30] using the 

feed-forward NN for vehicle travel time estimation was 

proposed, many other NN-based models, including fuzzy NN 

[31], recurrent NN [9], convolution NN [5][18], deep belief 

networks [10][32], auto-encoders [11][33], generative 

adversarial networks [34][35], and combinations of these 

models have been applied to forecast traffic states. With the 

capability of capturing temporal dependencies, the recurrent 

NN or its variants, like LSTM [12] and GRU [13], was widely 

adopted as a component of a traffic forecasting model to 

forecast traffic speed [8], travel time [36], and traffic flow [37].  

 Further, in most recent years, various novel deep learning-

based traffic forecasting models have been proposed through 

adjusting classical neural network model, combining existing 

methods, and incorporating auxiliary data. Multiple novel 

LSTM based models, such as bidirectional LSTM [14], deep 

LSTM [15], shared hidden LSTM [38], and nested LSTM [39], 

have been designed via reorganizing and combing single LSTM 

models and applied to capture comprehensive temporal 

dependencies for traffic prediction. In addition, sequence-to-

sequence (seq2seq) architecture based models [20],[33] have 

also been used for traffic state sequence forecasting. To deal 

with different types of features, multi-stream deep learning 

models [15][40][41][42] have also been well studied and tested 

for traffic forecasting problems. To improve the prediction 

performance, multiple deep learning based models also 

incorporate various traffic-related auxiliary data, including 

roadway geographical attribute data [33], accident data [15], 

and weather data [43]. 

To capture spatial relationships present in traffic networks, 

many forecasting models [5], [44] incorporating CNNs to 

extract spatial features from 2D spatial-temporal traffic data. 

Due to the traffic structure is hard to be depicted by 2D spatial-

temporal data, studies [18] tried to convert traffic network 

structures to images and use CNNs to learn spatial features. 

However, these converted images have a certain amount of 

noise, inevitably resulting in spurious spatial relationships 

captured by CNNs. Recent studies [42][45][46] also attempted 

to convert traffic state data into three-dimensional (3D) 

matrices and use the 3D convolutional network to extract more 

effective features. However, conventional CNN based methods 

still cannot inherently deal with the topological structure and 

the physical attributes of the traffic network. To solve this 

problem, studies [1], [20] attempted to learn the traffic network 

as a graph and adopt the graph-based convolution operator to 

extract features from the graph-structured traffic network. 



B. Graph Convolution Networks 

Traffic networks have already been analyzed as graphs for 

dynamic shortest path routing [47], traffic congestion analysis 

[48], and dynamic traffic assignment [49]. In the last couple of 

years, many studies attempt to generalize neural networks to 

work on arbitrarily structured graphs by designing graph 

convolutional networks. Generally, the graph convolutional 

networks utilize the adjacency matrix or the Laplacian matrix 

to depict the structure of a graph. The Laplacian matrix based 

graph convolution [22], [26]  are designed based on the spectral 

graph theory [50]. As an extension, a localized spectral graph 

convolution [23] is also proposed to reduce the learning 

complexity. The adjacency matrix based graph convolution 

neural networks [24], [25] incorporate the adjacency matrix and 

their network structures are more flexible. The traffic network 

can be considered as a graph consisting of nodes and edges, and 

thus, several graph convolution neural network based models, 

including the spectral graph convolution [1] and the diffusion 

graph convolution [21], are proposed to fulfill network-wide 

traffic forecasting. Several studies [51][52] also incorporated 

multi-scale graph convolution operations into their proposed 

models to learn traffic features. Although these existing 

methods can extract spatial features from neighborhoods in the 

traffic network, the physical specialties of roadways, like 

length, speed limits, and the number of lanes, are normally 

neglected. 

III.  METHODOLOGY 

A. Notions 

1) Traffic Network based Graph 

Normally, a graph consists of nodes (vertices) and edges. The 

graph representing a traffic network is distinct from social 

network graphs, document citation graphs, or molecule graphs, 

in several respects: 1) there are no isolated nodes/edges in 

traffic network based graphs and the traffic network structure 

seldom changes; 2) the traffic status of each road in a traffic 

network varies over time; and 3) the roads in a traffic network 

have meaningful physical characteristics, such as the length, 

type, speed limit, and lane numbers of a road. Further, traffic 

state data is collected by different types of sensors such that 

some types of data detect location-based traffic states, but 

others may measure road segment based averaged traffic states. 

Due to traffic states vary over time, it is better to let the graph 

nodes possess the varying traffic states and keep the graph 

structure fixed. Thus, to ensure the consistency of the definition 

in a graph, we use nodes to represent the traffic sensing 

locations, which can be sensor stations or road segments. Then, 

the edges in a graph represent the intersections or road 

segments connecting those traffic sensing locations.  

The traffic network and the relationship between traffic 

locations can be represented by an undirected graph 𝒢 where 

𝒢 = (𝒱, ℰ) with 𝑁 nodes 𝑣𝑖 ∈  𝒱 and edges (𝑣𝑖 , 𝑣𝑗) ∈ ℰ. Even 

though some roads are directed in the reality, due to the impact 

of traffic congestions occurring on these roads will be bi-

directionally propagated to upstream and downstream roads 

[14], we take the bidirectional impact into account and thus let  

𝒢 be an undirected graph. 

2) Adjacency Matrix and Neighborhood Matrix 

The connectedness of nodes in 𝒢  is represented by an 

adjacency matrix 𝐴 ∈ ℝ𝑁×𝑁, in which each element 𝐴𝑖,𝑗 = 1 if 

there is an edge connecting node 𝑖  and node 𝑗  and 𝐴𝑖,𝑗 = 0 

otherwise (𝐴𝑖,𝑖 = 0). Based on the adjacency matrix, the degree 

matrix of 𝒢, which measures the number of edges attached to 

each vertex, can be defined as 𝐷 ∈ ℝ𝑁×𝑁  in which 𝐷𝑖𝑖 =

∑ 𝐴𝑖𝑗𝑗 . 𝐷 is a diagonal matrix and all non-diagonal elements are 

zeros. 

Based on the adjacency matrix, an edge counting function 

𝑑(𝑣𝑖 , 𝑣𝑗) can be defined as counting the minimum number of 

edges traversed from node 𝑖 to node 𝑗. Then, the set of 𝑘-hop 

(𝑘-th order) neighborhood of each node 𝑖 , including node 𝑖 

itself, can be defined as {𝑣𝑗 ∈  𝒱|𝑑(𝑣𝑖 , 𝑣𝑗) ≤ 𝑘} . However, 

since the traffic states are time series data and the current traffic 

state on a road will definitely influence the future state, we 

consider the all roads are self-influenced. Thus, we consider the 

neighborhood of a node contains the node itself and a 

neighborhood matrix to characterize the one-hop neighborhood 

relationship of the whole graph, denoted as  

𝐴̃ = 𝐴 + 𝐼 (1) 

where 𝐼 is the identity matrix. Then, the 𝑘-hop neighborhood 

relationship of the graph nodes can be characterized by 

(𝐴 + 𝐼)𝑘. However, some elements in (𝐴 + 𝐼)𝑘 will inevitably 

exceed one. Owing to the 𝑘-hop neighborhood of a node is only 

used for describing the existence of all the 𝑘-hop neighbors, it 

is not necessary to make a node’s 𝑘-hop neighbors weighted by 

the number of hops. Thus, we clip the values of all elements in 

(𝐴 + 𝐼)𝑘 to be in {0,1} and define a new 𝑘-hop neighborhood 

matrix 𝐴̃𝑘, in which each element 𝐴̃𝑖,𝑗
𝑘  satisfies  

𝐴̃𝑖,𝑗
𝑘 = min((𝐴 + 𝐼)𝑖,𝑗

𝑘 , 1) (2) 

where min refers to minimum. In this case, 𝐴̃1 = 𝐴1 = 𝐴. An 

intuitive example of 𝑘-hop neighborhood with respect to a node 

(a red star) is illustrated by blue points on the left side of Fig. 1. 

3) Free-Flow Reachable Matrix 

Based on the length of each road in the traffic network, we 

define a distance matrix 𝐷𝑖𝑠𝑡 ∈ ℝ𝑁×𝑁 , where each element 

𝐷𝑖𝑠𝑡𝑖,𝑗  represents the real roadway distance from node 𝑖  to 𝑗 

(𝐷𝑖𝑠𝑡𝑖,𝑖 = 0). When taking the underlying physics of vehicle 

traffic on a road network into consideration, we need to 

understand that the impact of a roadway segment on adjacent 

segments is transmitted in two primary ways: 1) slowdowns 

and/or blockages propagating upstream; and 2) driver behavior 

and vehicle characteristics associated with a particular group of 

vehicles traveling downstream. Thus, for a traffic network-

based graph or other similar graphs, the traffic impact 

transmission between non-adjacent nodes cannot bypass the 

intermediate node/nodes, and thus, we need to consider the 

reachability of the impact between adjacent and nearby node 



pairs. To ensure the traffic impact transmission between k-hop 

adjacent nodes follow the established traffic flow theory [53], 

we define a free-flow reachable matrix, ℱℱ𝑅 ∈ ℝ𝑁×𝑁, that 

ℱℱ𝑅𝑖,𝑗 = {
1, 𝑆𝑖,𝑗

ℱℱ𝑚∆𝑡 − 𝐷𝑖𝑠𝑡𝑖,𝑗 ≥ 0

0,             otherwise          
, ∀ 𝑣𝑖 , 𝑣𝑗 ∈  𝒱    (3)  

where 𝑆𝑖,𝑗
ℱℱ  is the free-flow speed between node 𝑖  and 𝑗, and 

free-flow speed [54] refers to the average speed that a motorist 

would travel if there were no congestion or other adverse 

conditions (such as severe weather). ∆𝑡 is the duration of time 

quantum and 𝑚 is a number counting how many time intervals 

are considered to calculate the distance travelled under free-

flow speed. Thus, 𝑚  determines the temporal influence of 

formulating the ℱℱ𝑅 . Each element ℱℱ𝑅𝑖,𝑗  equals one if 

vehicles can traverse from node 𝑖 to 𝑗 in 𝑚 time-step, 𝑚 ∙ ∆𝑡, 

with free-flow speed, and ℱℱ𝑅𝑖,𝑗 = 0  otherwise. Intuitively, 

the ℱℱ𝑅𝑖,𝑗 measures whether a vehicle can travel from node 𝑖 

to node 𝑗 with the free-flow speed under a specific time interval. 

We consider each road is self-reachable, and thus, all diagonal 

values of ℱℱ𝑅 are set as one. An example ℱℱ𝑅 with respect to 

a node (a red star) is shown by green lines on the left side of 

Fig. 1.  

B. Traffic Forecasting Problem 

Traffic forecasting refers to predicting future traffic states, 

such as traffic speed, travel time, or volume, given previously 

observed traffic states from a road network. In this study, the 

traffic network is converted into a graph consisting of all 𝑁 

nodes, representing 𝑁  traffic sensing locations, and a set of 

edges. During a period of time 𝑡, the signals of these nodes 

representing the collected traffic states, can be denoted as 𝑥𝑡 ∈
ℝ𝑁. 

To formulate the traffic forecasting problem, the main 

aforementioned notations are summarized in the following list: 

 

𝒢  Traffic network-based graph 𝒢 = (𝒱, ℰ)  

𝒱  Set of vertices in 𝒢 with the size of |𝒱| = 𝑁 

ℰ  Set of edges in 𝒢 with the size of |ℰ| 
𝐴 ∈ ℝ𝑁×𝑁  Adjacency matrix of 𝒢 

𝐷 ∈ ℝ𝑁×𝑁  Degree matrix of 𝒢 

𝐴̃ ∈ ℝ𝑁×𝑁  Neighborhood matrix defined by (1) 

𝐴̃𝑘 ∈ ℝ𝑁×𝑁  𝑘-hop neighborhood matrix defined by (2) 

𝐷𝑖𝑠𝑡 ∈ ℝ𝑁×𝑁  Distance matrix  

ℱℱ𝑅 ∈ ℝ𝑁×𝑁  Free-flow reachable matrix by (3) 

𝑥𝑡 ∈ ℝ𝑁  Vector of speed of all graph nodes at time 𝑡 

 

The short-term traffic forecasting problem aims to learn a 

function 𝐹(∙) to map 𝑇 time steps of historical graph signals, 

i.e. 𝑿𝑇 = [𝑥1, … , 𝑥𝑡 , … , 𝑥𝑇] , to the graph signals in the 

subsequent one or multiple time steps. In this study, the 

function attempts to forecast the graph signals in the subsequent 

one step, i.e. 𝑥𝑇+1, and the formulation of 𝐹(∙) is defined as  

𝐹 ([𝑥1, … , 𝑥𝑡 , … , 𝑥𝑇]; 𝐺(𝒱 , ℰ , 𝐴̃𝑘 , ℱℱ𝑅)) = 𝑥𝑇+1 (4) 

Further, another goal of this study is to learn the traffic 

impact transmission between adjacent and neighboring nodes in 

a traffic network-based graph by learning the weight parameters 

in the function 𝐹(∙).   

C. Traffic Graph Convolution 

Previous work [24][25][28] has defined the graph 

convolution based the adjacency matrix. The core idea of a 

convolution layer in a neural network is to extract localized 

features from input data in a 2D or 3D matrices structure. The 

localized region of the input space which affects the 

convolution operation results is called receptive field. 

Analogously, the core idea of a graph convolution layer is to 

extract localized features from input data in a graph structure. 

Thus, the product of the neighborhood matrix 𝐴̃, the input data 

𝑥𝑡 , and a trainable weight matrix 𝑊 , i.e. 𝐴̃𝑥𝑡𝑊 , can be 

considered as a graph convolution operation to extract features 

from one-hop neighborhood [24][25]. Then, the receptive field 

of the graph convolution operation on a node is the one-hop 

neighborhood. 

However, in this way, the receptive field is confined, and it 

only concentrates on one-hop neighboring nodes. To overcome 

this shortcoming, we extend the receptive field of graph 

convolution by replacing the one-hop neighborhood matrix 𝐴̃ 

with the 𝑘-hop neighborhood matrix 𝐴̃𝑘. Meanwhile, existing 

studies either neglect the properties of the edges in a graph, such 

as the distances between different sensing locations (the lengths 

of the graph edges) and the free-flow reachability defined in (3), 

or fail to consider high-order neighborhood of nodes in the 

graph. Hence, to comprehensively solve the network-wide 

forecasting problem, we consider both graph edge properties 

and high-order neighborhood in the traffic network-based graph. 

Hence, we define the 𝑘 -order ( 𝑘 -hop) Traffic Graph 

Convolution (TGC) operation as 

𝐺𝐶𝑡
𝑘 = (𝑊𝑔𝑐𝑘

⨀𝐴̃𝑘⨀ℱℱ𝑅)𝑥𝑡 (5) 

where ⨀ is the Hadamard product operator, i.e. the element-

wise matrix multiplication operator, and 𝑥𝑡 ∈ ℝ𝑁 is the vector 

of traffic states (speed) of all nodes at time 𝑡 . The 𝑊𝑔𝑐_𝑘 ∈

ℝ𝑁×𝑁 is a trainable weight matrix for the 𝑘-order traffic graph 

convolution and the 𝐺𝐶𝑘 ∈ ℝ𝑁 is the extracted 𝑘-order traffic 

graph convolution feature. Due to 𝐴̃𝑘 and  ℱℱ𝑅 are both sparse 

matrices only containing 0 and 1 elements, the result of 

𝑊𝑔𝑐𝑘
⨀𝐴̃𝑘⨀ℱℱ𝑅   is also sparse. Further, the trained weight 

𝑊𝑔𝑐_𝑘  has the potential to measure the interactive influence 

between graph nodes, and thus, enhance the interpretability of 

the model. 

In Equation (5), 𝑘 should be a positive integer. The larger the 

order 𝑘 is, the larger the size of the receptive field of the TGC 

is, and then the more neighborhood-based features can be 

extracted from the graph. However, 𝑘 is not infinite, and it can 

be easily proved that, for a specific graph, when increasing the 

value of 𝑘 , 𝐴̃𝑘⨀ℱℱ𝑅  will eventually converge to ℱℱ𝑅  such 

that  𝑘 = 𝐾𝑚𝑎𝑥  and 𝐴̃𝐾𝑚𝑎𝑥⨀ℱℱ𝑅 = ℱℱ𝑅. It should be noted 

that, while extracting traffic graph convolution features to solve 

real traffic prediction problems, it is not necessary to set 𝑘 as 

the max value 𝐾𝑚𝑎𝑥 . The trade-off between the prediction 



accuracy and the feature richness, which is directly related to 

the computational cost, should be considered and balanced. 

Let 𝐾 ≤ 𝐾𝑚𝑎𝑥  denote the largest hop for traffic graph 

convolution in this study, and the corresponding traffic graph 

convolution feature is 𝐺𝐶𝑡
𝐾 with respect to input data 𝑥𝑡 . 

Different hops of neighborhood in TGC will result in different 

extracted features. To enrich the feature space, the features 

extracted from different orders (from 1 to 𝐾) of traffic graph 

convolution with respect to 𝑋𝑡 are concatenated together as a 

vector defined as follows 

𝑮𝑪𝑡
{𝐾}

= [𝐺𝐶𝑡
1, 𝐺𝐶𝑡

2, … , 𝐺𝐶𝑡
𝐾] (6) 

The 𝑮𝑪𝑡
{𝐾}

∈ ℝ𝑁×𝐾 contains all the 𝐾 orders of traffic graph 

convolutional features, as intuitively shown in the left part of 

Fig. 1. In this study, after operating the TGC on input data 𝑥𝑡, 

the generated 𝑮𝑪𝑡
{𝐾}

 will be fed into the following layer in the 

proposed neural network structure described in the following 

section.  

D. Comparing TGC with Spectral Graph Convolution 

The proposed traffic graph convolution is based on adjacency 

matrix 𝐴, but the spectral graph convolution (SGC) is defined 

in the Fourier domain [50] based on the Laplacian matrix 𝐿, 

which equals  

𝐿 = 𝐷 − 𝐴 (7) 

where 𝐷 is the degree matrix as introduced in Section III.A.2. 

The Laplacian matrix 𝐿  is symmetric positive semi-definite 

such that it can be diagonalized via eigen-decomposition as  

𝐿 = 𝑈Λ𝑈𝑇 (8) 

 

where Λ  is a diagonal matrix containing the eigenvalues, 𝑈 

consists of the eigenvectors, and 𝑈𝑇  is the transpose of 𝑈.  

The spectral convolution on graph is defined as the 

multiplication of a signal 𝑥𝑡 ∈ ℝ𝑁 with a filter ℎ𝜃 = diag(𝜃) 

parameterized by 𝜃 ∈ ℝ𝑁[24]. The diag(𝜃) is the diagonalized 

matrix given 𝜃. The spectral graph convolution operation can 

be described as 

ℎ𝜃 ∗𝒢 𝑥𝑡 = 𝑈ℎ𝜃𝑈𝑇𝑥𝑡 = 𝑈diag(𝜃)𝑈𝑇𝑥𝑡  (9) 

where ∗𝒢 is the spectral graph convolution operator. The filter 

ℎ𝜃 that can be considered as a learnable convolutional kernel 

weight.  

Further, for saving computational cost, the localized spectral 

graph convolution (LSGC) is proposed by employing a 

polynomial filter ℎ𝜃′ = ∑ 𝜃𝑗
′𝑘−1

𝑗=0 Λ𝑗  [23] and the learnable 

parameter 𝜃′ ∈ ℝ𝐾 . Then 𝐾 -hop localized spectral graph 

convolution can be formulated as: 

ℎ𝜃′ ∗𝒢 𝑥𝑡 = 𝑈 ∑ 𝜃𝑗
′

𝐾−1

𝑗=0

Λ𝑗𝑈𝑇𝑥𝑡 = ∑ 𝜃𝑗
′

𝐾−1

𝑗=0

𝐿𝑗𝑥𝑡 (10) 

The advantages of the LSGC is that it only has 𝐾 parameters 

and does not need eigen-decomposition. It is well spatial 

localized and each convolution operation on a centered vertex 

extracts the summed weighted feature of the vertex’s 𝐾-hop 

neighbors. The details of SGC and LSGC can be found in the 

literature [22][23][24]. 

The comparison between TGC, SGC, and LSGC in terms of 

the number of parameters, computational time, and localized 

feature extraction, is shown in TABLE I. Comparing to SGC 

and LSGC, the TGC is better in terms of spatial localization 

because it can extract local features based on physical 

properties of roadways by incorporating the ℱℱ𝑅. TGC with 

more parameters has better capabilities of representing the 

relationships between connected nodes in the graph. Further, 

SGC and LSGC normally need multiple convolutional layers, 

which leads the SGC and LSGC to lose their interpretability. 

However, TGC only needs one convolution layer and its 

parameters can be better interpreted. 

E. Traffic Graph Convolutional LSTM 

We propose a Traffic Graph Convolutional LSTM (TGC-

LSTM) recurrent neural network, as shown on the right side of 

the Fig. 1, which learns both the complex spatial dependencies 

and the dynamic temporal dependencies presented in traffic 

data. In this model, the gates structure in the vanilla LSTM [12] 

and the hidden state are unchanged, but the input is replaced by 

the graph convolution features, which are reshaped into a vector 

𝑮𝑪{𝐾} ∈ ℝ𝐾𝑁. The forget gate f𝑡, the input gate i𝑡, the output 

gate o𝑡, and the input cell state 𝐶̃𝑡 in terms of time step 𝑡 are 

defined as follows 

f𝑡 = 𝜎𝑔(𝑊𝑓 ∙ 𝑮𝑪𝑡
{𝐾}

+ 𝑈𝑓 ∙ ℎ𝑡−1 + 𝑏𝑓)                (11) 

 
TABLE I 

COMPARISON BETWEEN TGC, SGC, AND LSGC 

Graph convolution definition 𝐾-hop TGC SGC 𝐾-hop LSGC 

Graph convolution on signal 𝑥𝑡  (𝑊𝑔𝑐𝑘
⨀𝐴̃𝐾⨀ℱℱ𝑅)  𝑈diag(𝜃)𝑈𝑇   ∑ 𝜃𝑗

′𝐿𝑗𝐾−1
𝑗=0  

Weight parameters 𝑊𝑔𝑐𝑘
∈ ℝ𝑁×𝑁  𝜃 ∈ ℝ𝑁  𝜃′ ∈ ℝ𝐾   

Computational time complexity O(𝑁2) O(𝑁2) [23] O(𝐾|ℰ|) [23] 

Extract Localized features 

Yes. It is 𝑘-localized 

incorporating roadway 

physical properties. 

No Yes. It is exactly 𝑘-localized. 

 



i𝑡 = 𝜎𝑔(𝑊𝑖 ∙ 𝑮𝑪𝑡
{𝐾}

+ 𝑈𝑖 ∙ ℎ𝑡−1 + 𝑏𝑖)                 (12) 

o𝑡 = 𝜎𝑔(𝑊𝑜 ∙ 𝑮𝑪𝑡
{𝐾}

+ 𝑈𝑜 ∙ ℎ𝑡−1 + 𝑏𝑜)               (13) 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ 𝑮𝑪𝑡
{𝐾}

+ 𝑈𝐶 ∙ ℎ𝑡−1 + 𝑏𝐶)          (14) 

where ∙ is the matrix multiplication operator. 𝑊𝑓, 𝑊𝑖, 𝑊𝑜, and 

𝑊𝐶 ∈ ℝ𝑁×𝐾𝑁 are the weight matrices, mapping the input to the 

three gates and the input cell state, while 𝑈𝑓, 𝑈𝑖, 𝑈𝑜, and  𝑈𝐶 ∈

ℝ𝑁×𝑁  are the weight matrices for the preceding hidden state. 

𝑏𝑓, 𝑏𝑖, 𝑏𝑜, and  𝑏𝐶 ∈ ℝ𝑁 are four bias vectors. The 𝜎𝑔 is the gate 

activation function, which typically is the sigmoid function, and 

tanh is the hyperbolic tangent function.  

Due to each node in a traffic network graph is influenced by 

the preceding states of itself and its neighboring nodes, the 

LSTM cell state of each node in the graph should also be 

affected by neighboring cell states. Thus, a cell state gate is 

designed and added in the LSTM cell. The cell state gate, as 

shown in Fig. 1, is defined as follows  

𝐶𝑡−1
∗ = 𝑊𝒩⨀(𝐴̃𝐾⨀ℱℱ𝑅) ∙ 𝐶𝑡−1 (15) 

where 𝑊𝒩 is a weight matrix to measure the contributions of 

neighboring cell states. To correctly reflect the traffic network 

structure, the 𝑊𝒩  is constrained by multiplying a ℱℱ𝑅 based 

𝐾 -hop adjacency matrix, 𝐴̃𝐾⨀ℱℱ𝑅 . With this gate, the 

influence of neighboring cell states will be considered when the 

cell state is recurrently input to the subsequent time step. Then, 

the final cell state and the hidden state are calculated as follows 

𝐶𝑡 = f𝑡⨀𝐶𝑡−1
∗ + i𝑡⨀𝐶̃𝑡 (16) 

ℎ𝑡 = o𝑡⨀ tanh(𝐶𝑡) (17) 

At the final time step 𝑇, the hidden state ℎ𝑇 is the output of 

TGC-LSTM, namely the predicted value 𝑦̂𝑇 = ℎ𝑇 . Let 𝑦𝑇 ∈
ℝ𝑁  denote the label of the input data 𝑿𝑇 ∈ ℝ𝑁×𝑁 . For the 

sequence prediction problem in this study, the label of time step 

𝑇 is the input of the next time step (𝑇 + 1) such that 𝑦𝑇 = 𝑥𝑇+1. 

Then the loss during the training process is defined as  

𝐿𝑜𝑠𝑠 = L(𝑦𝑇 , 𝑦̂𝑇) = L(𝑥𝑇+1, ℎ𝑇) (18) 

where L(∙) is a function to calculate the residual between the 

predicted value 𝑦̂𝑇  and the true value 𝑦𝑇 . Normally, the L(∙) 

function is a Mean Squared Error (MSE) function for predicting 

continuous values. 

To explain the proposed method in a clearer way, a pseudo-

code of the TGC-LSTM algorithm is presented in Algorithm 1. 

Given the traffic state data 𝑿𝑇  and the graph related matrices as 

input, the pseudo-code mainly describes the process of 

generating the final output ℎ𝑇  after 𝑇  steps of iteration. For 

simplicity, the pseudo-code does not include the mini-batch 

gradient descent process and the backpropagation-based 

parameter updating process. In Algorithm 1, Eq. is short for 

Equation and the function TGC-LSTM(⋅) refers to the whole 

calculation process described in Equation (11-17) in this 

section.  

F. Traffic Graph Convolution Regularization 

Since the proposed model contains a traffic graph 

convolution operation, the generated set of TGC features 𝑮𝑪𝑡
{𝐾}

 

and the learned TGC weights {𝑊𝑔𝑐1
, … , 𝑊𝑔𝑐𝐾

}  provide an 

opportunity to make the proposed model interpretable via 

analyzing the learned TGC weights. To confine the graph 

convolution features within a reasonable scale and make the 

learned weights more stable and interpretable, we propose two 

Fig. 1. The architecture of the proposed Traffic Graph Convolution LSTM is shown on the right side. The traffic graph convolution (TGC) as a component of the 

proposed model is shown on the left side in detail by unfolding the traffic graph convolution at time 𝒕, in which 𝑨෩𝒌s and 𝓕𝓕𝑹 with respect to a red star node are 

demonstrated. 

 

Algorithm 1 Calculation the output of the TGC-LSTM layer 

Inputs: 𝑿𝑻 = [𝑥1, … , 𝑥𝑇], {𝐴̃1, … , 𝐴̃𝐾}, ℱℱ𝑅 

Parameters: {𝑊𝑔𝑐1
, … , 𝑊𝑔𝑐𝐾

}, 𝑊s, 𝑈s, and 𝑏s in Eq. (11-14) 

      𝑊𝒩  in Eq. (15) 

Initialize: ℎ0 = 𝟎 ∈ ℝ𝑁, 𝐶0 = 𝟎 ∈ ℝ𝑁 

 for 𝑡 = 1 to 𝑇 do 

   for 𝑘 = 1 to 𝐾 do 

    𝐺𝐶𝑡
𝑘 ← (𝑊𝑔𝑐𝑘

⨀𝐴̃𝑘⨀ℱℱ𝑅)𝑥𝑡    

   end for 

   𝑮𝑪𝑡
{𝐾}

← [𝐺𝐶𝑡
1, 𝐺𝐶𝑡

2, … , 𝐺𝐶𝑡
𝐾] 

   ℎ𝑡, 𝐶𝑡 = TGC-LSTM( 𝑥𝑡, 𝑮𝑪𝑡
{𝐾}

, ℎ𝑡−1, 𝐶𝑡−1 )  

 end for 

Return: ℎ𝑇 

 



optional regularization terms that can be added to the loss 

function described in Equation (18). 

1) Regularization on Graph Convolution weights 

Because the graph convolution weights are not confined to be 

positive and each node’s extracted features are influenced by 

multiple neighboring nodes, the graph convolution weights can 

vary a lot while training. Ideally, the convolution weights would 

be themselves informative, so that the relationships between 

different nodes in the network could be interpreted and 

visualized by plotting the convolution weights. This is not 

likely to be possible without regularization, because very high 

or low weights tend to appear somewhat randomly, with the 

result that high/low weights tend to cancel each other out. In 

combination, such weights can still represent informative 

features for the network, but they cannot reflect the true 

relationship between nodes in the graph. Thus, we add L1-norm 

of the graph convolution weight matrices to the loss function as 

a regularization term to make these weight matrices as sparse 

as possible. The L1 regularization term is defined as follows 

𝑅{1} = ‖𝑾𝑔𝑐‖
1

= ∑ |𝑊𝑔𝑐𝑖
|

𝐾

𝑖=1
(19) 

In this way, the trained graph convolution weight can be 

sparse and stable, and thus, it will be more intuitive to 

distinguish which neighboring node or group of nodes 

contribute most. 

2) Regularization on Graph Convolution features 

Considering that the impact of neighboring nodes with respect 

to a specific node must be transmitted through all nodes 

between the node of interest and the influencing node, features 

extracted from different hops in the graph convolution should 

not vary dramatically. Thus, to restrict the difference between 

features extracted from adjacent hops of graph convolution, an 

L2-norm based TGC feature regularization term is added on the 

loss function at each time step. The regularization term is 

defined as follows 

 
2 https://github.com/zhiyongc/Seattle-Loop-Data 

𝑅{2} = ‖𝑮𝑪𝑻
{𝐾}

‖
2

= √∑ (𝐺𝐶𝑇
𝑖 − 𝐺𝐶𝑇

𝑖+1)
2𝐾−1

𝑖=1
(20) 

In this way, the features extracted from adjacent hops of 

graph convolution should not differ dramatically, and thus, the 

graph convolution operator should be more in keeping with the 

physical realities of the relationships present in a traffic 

network. 

Then, the total loss function at time 𝑡 can be defined as 

follows 

𝐿𝑜𝑠𝑠 = L(ℎ𝑇 − 𝑥𝑇+1) +   𝜆1𝑅{1} + 𝜆2𝑅{2} (21) 

where 𝜆1  and 𝜆2  are penalty terms to control the weight 

magnitude of the regularization terms on graph convolution 

weights and features. 

IV. EXPERIMENTS 

A. Dataset Description 

In this study, two real-world network-scale traffic speed 

datasets are utilized. The first contains data collected from 

inductive loop detectors deployed on four connected freeways 

(I-5, I-405, I-90, and SR-520) in the Greater Seattle Area, 

shown in Fig. 2 (a). This dataset, which is publicly accessible2, 

contains traffic state data from 323 sensor stations over the 

entirety of 2015 at 5-minute intervals. The second contains road 

link-level traffic speeds aggregated from GPS probe data 

collected by commercial vehicle fleets and mobile apps 

provided by the company INRIX. The INRIX traffic network 

covers the Seattle downtown area, shown in Fig. 2 (b). This 

dataset describes the traffic state at 5-minute intervals for 1014 

road segments and covers the entire year of 2012. We use 

LOOP data and INRIX data to denote these two datasets, 

respectively, in this study. 

We adopt the speed limit as the free-flow speed, which for 

the segments in the LOOP traffic network is 60mph in all cases. 

The INRIX traffic network contains freeways, ramps, arterials, 

and urban corridors, and so the free-flow speeds of INRIX 

traffic network range from 20mph to 60mph. The distance 

adjacency matrices 𝐷𝑖𝑠𝑡  and free-flow reachable matrices 

ℱℱ𝑅  for both datasets are calculated based on the roadway 

characteristics and topology. 

B. Experimental Settings 

1) Baselines 

We compare TGC-LSTM with the following baseline models: 

(1) ARIMA: Auto-Regressive Integrated Moving Average 

model [7]; (2) SVR: Support Vector Regression [6]; (3) FNN: 

Feed forward neural network with two hidden layers, i.e. the 

multilayer perceptron, whose hidden layer size is N; (4) LSTM: 

Long Short-Term Memory recurrent neural network [12]; (5) 

DiffGRU [20]: an adjusted version of  diffusion convolutional 

gated recurrent network [20] whose gate units are defined based 

on diffusion convolution. Since the graph is undirected in this 

study, we replace the diffusion convolution with spectral graph 

convolution in DiffGRU; (6) Conv+LSTM: a one-dimensional 

(1D) convolution layer with two channels followed by an 

Fig. 2. (a) LOOP dataset covering the freeway network in Seattle area; (b) 

INRIX dataset covering the downtown Seattle area, where traffic segments are 
plotted with colors. 

 



LSTM layer, the 1D CNN is conducted on 𝑥𝑡 with two output 

channels (kernel size=5 and stride=2); (7) SGC+LSTM: 

stacking a one-layer spectral graph convolution layer [26] with 

an LSTM layer; (8) LSGC+LSTM: stacking a one-layer 

localized spectral graph convolution layer [23] whose 𝐾=3 and 

an LSTM layer. All the LSTM/GRU layers have the same 

weight dimensions. The baseline models do not include auto-

encoder based models and pure CNN based models, due to the 

core ideas of these methodologies are totally different from the 

tested baseline models which are mostly single RNN layer-

based models. All the neural networks are implemented based 

on PyTorch 1.0.1 and they are trained and evaluated on a single 

NVIDIA GeForce GTX 1080 Ti with 11GB memory.  

2) TGC-LSTM Model 

For both datasets, the dimensions of the hidden states of the 

TGC-LSTM are set as the amount of the nodes in the traffic 

network graphs. The size of hops in the graph convolution can 

vary, but we set it as 3, 𝐾 = 3, for the model evaluation and 

comparison in this experiment. In this case, the ℱℱ𝑅  is 

calculated based on three time steps. The two regularization 

terms (𝑅{1}  and 𝑅{2} ) can not only confine the learnt graph 

convolution weights, they also can avoid overfitting causing the 

decrease of the prediction accuracy. Thus, there is a trade-off 

between the prediction accuracy and the scale of the penalty 

terms ( 𝜆1  and 𝜆2 ). Based on empirically adjusting the 

regularization rates, the values of the 𝜆1 and 𝜆2 are both set as 

0.01. We train our model by minimizing the mean square error 

with the batch size of 10 and the initial learning rate of 10−5. 

Since the RMSProp [55] can solve the gradient exploding and 

vanishing problems, it is used as the gradient descent optimizer 

whose alpha (smoothing constant) is set as 0.99 and epsilon (the 

term added to the denominator to improve numerical stability) 

is set as 10−8. 

3) Evaluation 

In this study, the samples of the input are traffic time series data 

with 10 time steps. The output/label is the next subsequent data 

of the input sequence. The performance of the proposed and the 

compared models are evaluated by three commonly used 

metrics in traffic forecasting, including 1) Mean Absolute Error 

(MAE), 2) Mean Absolute Percentage Error (MAPE), and 3) 

Root Mean Squared Error (RMSE).  

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑇 − 𝑦̂𝑇|

𝑛

𝑖=1
(23) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑦𝑇 − 𝑦̂𝑇

𝑌𝑇

| ∗ 100%
𝑛

𝑖=1
(24) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑇 − 𝑦̂𝑇)2

𝑛

𝑖=1
(25) 

 

C. Experimental Results 

TABLE II demonstrates the results of the TGC-LSTM and 

other baseline models on the two datasets. The proposed 

method outperforms other models with all the three metrics on 

the two datasets. The ARIMA and SVR cannot compete with 

other methods, which suggest that non-neural-network 

approaches are less appropriate for this network-wide 

prediction task, due to the complex spatiotemporal 

dependencies and the high dimension features in the datasets. 

The basic FNN does not perform well on predicting spatial-

temporal sequence. The DiffGRU performs nearly the same as 

TABLE II 

PERFORMANCE COMPARISON OF DIFFERENT APPROACHES. (THE NUMBER OF HOPS K IS SET AS 3 IN THE GRAPH CONVOLUTION RELATED MODEL) 

Model 

LOOPf Data INRIX Data 

MAE 

(mph)±STD 
MAPE RMSE 

MAE 

(mph)±STD 
MAPE RMSE 

ARIMA 6.10± 1.09 13.85% 10.65 4.80 ± 0.32 13.51% 10.85 

SVR 6.85± 1.17 14.39% 11.12 4.78 ± 0.37 13.37% 10.44 

FNN 4.45± 0.81 10.19% 7.83 2.31 ± 0.17 8.35% 5.92 

LSTM 2.70± 0.18 6.83% 4.97 1.14 ± 0.09  3.88% 2.43 

DiffGRU 4.64±0.38 11.18% 8.22 2.44 ± 0.09 8.91% 6.34 

Conv+LSTM 2.71±0.12 6.79% 5.02 1.13 ± 0.08 3.80% 2.37 

LSGC+LSTM 3.16± 0.23 7.51% 6.18 1.38 ± 0.12 4.54% 2.82 

SGC+LSTM 2.64± 0.12 6.52% 4.80 1.07 ± 0.08  3.74% 2.28 

TGC-LSTM 2.57± 0.10 6.01% 4.63 1.02 ± 0.07  3.28% 2.18 

 

Fig. 3. Histogram of performance comparison for the influence of orders 

(hops) of graph convolution in the TGC-LSTM on INRIX and LOOP datasets. 

 



the FNN. The reason might be that GRU has the no cell state to 

store historical information in its gate units comparing to 

LSTM. This can reduce the prediction capability of DiffGRU. 

Both LSTM and Conv+LSTM work well and they have similar 

performance. The SGC+LSTM performs better than vanilla 

LSTM, which demonstrates the feature extraction by using 

spectral graph convolution is beneficial for traffic forecasting. 

However, the LSGC+LSTM does not outperform LSTM 

resulting from utilizing one-layer LSGC, whose parameters is 

not enough for representing the network features. The proposed 

TGC-LSTM, which capture graph-based features while 

accommodating the physical specialties of traffic networks, 

performs better than all other approaches. It should be noted 

that, for the INRIX data, during the nighttime or off-peak hours 

when there are no observed speed values on specific roads, the 

missing speed values are comprehensively imputed by the data 

provider. Thus, there are few variations at the non-peak hours 

in the INRIX data. Further, the speed values in the INRIX data 

are all integers. Therefore, the calculated errors of the INRIX 

data is less than that of the LOOP data and the evaluated 

performance on INRIX data is inflated somewhat.  

 Fig. 3 shows a histogram of performance comparison on the 

effects of orders (hops) of the graph convolution in the TGC-

LSTM. The model performance is improved when the value of 

𝐾  increases. For the LOOP data, the performance improves 

slightly when 𝐾 is gradually increased.  But for the INRIX data, 

there is a big improvement in when 𝐾 increases to two from one. 

The complex structure and the various road types in the INRIX 

traffic network could be the main reason for this performing 

difference. Further, when 𝐾  is larger than two, the 

improvement of the prediction is quite limited. This is also the 

reason why we choose 𝐾=3 in the model comparison part, as 

shown in TABLE II.  

D. Training Efficiency 

In this subsection, we compare the training efficiency of the 

proposed model and other LSTM-based models. Fig. 4 (a) 

shows the validation loss curves versus the training epoch. Due 

to the early stopping mechanism is used in the training process, 

the numbers of training epochs are different. The TGC-LSTM 

needs less epochs to converge than the SGC+LSTM and the 

LSGC+LSTM. In addition, the loss of the TGC-LSTM 

decreases fastest among the compared models. Fig. 4 (b) shows 

the comparison of the training time per epoch of different 

models. The training cost of Conv+LSTM is between that of 

LSTM and SGC+LSTM. TGC-LSTM costs twice as much as 

LSTM does. The time required for SGC+LSTM is less than that 

for TGC-LSTM, while LSGC+LSTM costs slightly more than 

TGC-LSTM. Fig. 4 (c) shows the training losses of TGC-LSTM 

with different hops of graph convolution components. The rate 

of convergence increases when increasing the number of hops, 

𝑘. In our experiments, when 𝑘 is larger than 3, the training and 

validation results improve only marginally for both INRIX and 

LOOP datasets. 

E. Effect of Regularization 

The model’s loss function can add regularization terms to avoid 

overfitting. The proposed L1-norm on the graph convolution 

weights and L2-norm on the graph convolutional features can 

further help the model to confine the learned weights and 

features. However, there is a trade-off between the prediction 

accuracy and the scale of the penalty terms (𝜆1  and 𝜆2). As 

tested, by adding the regularization terms to the loss function 

with the penalty rates setting as 0.01, the MAEs of the proposed 

model tested on the two datasets increase around 0.02, which 

are still superior to baseline models. Meanwhile, the TGC 

weight sparsity is increased and the value of the feature 

regularization 𝑅{2}  is lower than that of the proposed model 

without regularization terms in the loss function, which means 

the TGC features’ consistency is enhanced. Thus, it is worth 

adding these regularization terms to the loss function to help the 

trained model to be more interpretable. Fig. 5 (a) and (b) show 

portions of the averaged graph convolution weight matrices for 

the INRIX data and the LOOP data, respectively, where 𝐾 = 3 

and the average weight is calculated by 
1

𝐾
∑ 𝑊𝑖⨀𝐴̃𝑖⨀ℱℱ𝑅𝐾

𝑖=1 . 

The road segment names, which are not displayed, are aligned 

on the vertical and horizontal axes with the same order in each 

figure. The colored dots in the matrices in Fig. 5 (a) and (b) 

illustrate the weight of the contribution of a single node to its 

neighboring nodes. Since we align the traffic states of roadway 

segments based on their interconnectedness in the training data, 

most of the weights are distributed around the diagonal line of 

the weight matrix. The INRIX network is more complex and 

Fig. 4. (a) Validation loss versus training epoch (batch size = 40 and early stopping patience = 10 epochs). (b) Histogram of model’s training time per epochs. (c) 

Compare training efficiency with different 𝐾 hops of TGC: training loss versus training iteration (batch size = 40).  (The figures are generated based on the LOOP 

data.) 



the average degree of nodes in the INRIX graph is higher than 

that in the LOOP graph. Hence, the dots in the average weight 

matrix of the INRIX graph convolution are more scattered. But 

these dots still form multiple clusters demonstrating the weights 

of several nearby or connected road segments. Considering 

roadway segments are influenced by their neighboring or 

nearby connected segments, the nodes with the large absolute 

weight in a cluster are very likely to be key road segments in 

the local traffic network. In this way, we can infer the 

bottlenecks of the traffic network from the traffic graph 

convolution weight matrices.  

F. Model Interpretation and Visualization 

To better understand the contribution of the graph convolution 

weight, we mark seven groups of representative weights in Fig. 

5 (a) and (b) and visualize their physical locations on the real 

map in Fig. 5 (c) and (d), by highlighting them with Roman 

numerals and red boxes. The influence of these marked weights 

on neighboring nodes in the INRIX and LOOP data are 

visualized by lines and circles, respectively, considering the 

INRIX traffic network is too dense to use circles. The darkness 

of the green and pink colors and the sizes of the circles represent 

the magnitude of influence. It should be noted that the darkness 

of colors on lines on the INRIX map and the size of the circles 

on the LOOP map will change when the model is trained with 

different scales of regularization terms (𝜆1 and 𝜆2). 

From Fig. 5 (c), we can find the marked areas with dark 

colors in the INRIX GC weight matrix, (I), (II), and (III), are all 

located at very busy and congested freeway entrance and exit 

ramps in Seattle downtown area. In Fig. 5 (d), the area tagged 

with (IV) is quite representative because the two groups of 

circles are located at the intersections between freeways and 

two main corridors that represent the entrances to an island 

(Mercer Island). Areas (V) and (VI) are the intersections 

between I-90 and I-405 and between I-5 and SR-520, 

respectively. The VII area located on SR-520 contains a 

frequent-congested ramp connecting to the city of Bellevue, the 

location of which is highlighted by the biggest green circle. 

Additionally, there are many other representative areas in the 

graph convolution weight matrix, but we cannot show all of 

them due to space limits. By comparing the weight matrix with 

Fig. 5. (a) Visualization of a proportion of the INRIX GC weight matrix, in which three representative weight areas are tagged. (b) Visualization of a proportion 

of the LOOP GC weight matrix, in which four representative weight areas are tagged. (c) Visualization of the INRIX graph convolution weight on the real traffic 

network using colored lines. (d) Visualization of the four tagged weight areas in the LOOP graph convolution weight on the Seattle freeway network using colorful 
circles. 

 



the physical realities of the traffic network, it can be shown that 

the proposed method effectively captures spatial dependencies 

and helps to identify the most influential points/segments in the 

traffic network. 

Fig. 6 visualizes the predicted traffic speed sequences and the 

ground truth of two locations selected from the LOOP and 

INRIX dataset. Though the traffic networks of the two datasets 

are very different, the curves demonstrate that the trends of the 

traffic speed are predicted well at both peak traffic and off-peak 

hours.  

V. CONCLUSION 

In this paper, we learn the traffic network as a graph and 

define a traffic graph convolution operation to capture spatial 

features from the traffic network. The traffic graph convolution 

incorporates the adjacency matrix and the proposed free-flow 

reachable matrix to extract localized features from the graph. 

We propose a traffic graph convolutional LSTM neural network 

to forecast network-wide traffic states. We also design two 

regularization terms on the TGC weights and TGC features, 

respectively, that can be added to the model’s loss function to 

help the learned TGC weight to be more stable and 

interpretable. By evaluating on two real-world traffic datasets, 

our approach is proved to be superior to the compared baseline 

models. In addition, the learned TGC weight can help to 

identify the most influential roadways, and thus, enhance the 

interpretability of the proposed model.  

For future work, we will move forward to improve the 

model’s prediction performance in terms of accuracy and 

robustness, and further investigate how to conduct the 

convolution on both spatial and temporal dimensions to make 

the neural network more interpretable. 
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