
27 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

FOCUS: Fog Computing in UAS Software-Defined Mesh Networks / Secinti G.; Trotta A.; Mohanti S.; Di
Felice M.; Chowdhury K.R.. - In: IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS. - ISSN
1524-9050. - STAMPA. - 21:6(2020), pp. 8944002.2664-8944002.2674. [10.1109/TITS.2019.2960305]

Published Version:

FOCUS: Fog Computing in UAS Software-Defined Mesh Networks

Published:
DOI: http://doi.org/10.1109/TITS.2019.2960305

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/800980 since: 2021-02-18

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TITS.2019.2960305
https://hdl.handle.net/11585/800980

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

G. Secinti, A. Trotta, S. Mohanti, M. Di Felice and K. R. Chowdhury, "FOCUS: Fog
Computing in UAS Software-Defined Mesh Networks," in IEEE Transactions on
Intelligent Transportation Systems, vol. 21, no. 6, pp. 2664-2674, June 2020.

The final published version is available online at:
https://doi.org/10.1109/TITS.2019.2960305

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's
website.

https://cris.unibo.it/
https://doi.org/10.1109/TITS.2019.2960305

1

FOCUS: Fog Computing in UAS Software-defined
Mesh Networks

Gokhan Secinti, Angelo Trotta, Members, IEEE, Subhramoy Mohanti, Student Member, IEEE,
Marco Di Felice and Kaushik Chowdhury, Senior Members, IEEE

Abstract—Unmanned aerial systems (UASs) allow easy deploy-
ment, three-dimensional maneuverability and high reconfigura-
bility, as they sustain communication network in the absence
of pre-installed infrastructure. The proposed FOg Computing in
UAS Software-defined mesh network (FOCUS) paradigm aims to
realize an implementable network design that considers practical
issues of aerial connectivity and computation. It allocates UASs to
the tasks of data forwarding and in-network fog computing while
maximizing number of ground-users in UAS coverage. FOCUS
improves efficient utilization of network resources by introducing
on-board computation and innovates on top of software-defined
networking stack by integrating the capabilities of network
and ground controllers to enable simultaneous orchestration of
both UASs and communication flows. There are three main
contributions of the paper: First, a SDN-based architecture is
designed enabling autonomous configuration of computation and
communication as well as managing multi-hop aerial links. Sec-
ond, a global optimization problem to achieve optimal forwarding
and computational allocation is formulated using Open Jackson
Network model and solved via a heuristic approach with well
defined complexity. Third, FOCUS framework is implemented
on a small-scale testbed of Intel R© Aero UASs performing image
analysis with a full software stack. Experiments reveal at least
32% latency improvement in computation service time compared
to traditional centralized computation at the end-server or greedy
task allocation schemes within the network.

I. INTRODUCTION
Unmanned aerial system (UAS) applications have grown

exponentially over the last five years, presently driving busi-
ness close to 1 billion USD already within the USA, with an
upwards growth targeted to reach 46 billion USD by 2025 [1].
Thus, it is foreseen that they will be one of the key enablers
toward smart cities with their applications range from con-
struction to communication and to surveillance. However, most
of the existing deployments consider UAS as a mobile wireless
sensor, with data processing offloaded to a computational
cloud. At the same time, the enhancements in UAS control and
communication hardware and mass production at economical
price-points are paving the way towards Unmanned Aerial
Networks (UANs), composed of swarms of UASs connected
to the Internet, capable of limited on-board computation, but
also being integrated with the cloud [1].

Different from traditional ad hoc and mobile networks, the
design of a UAN poses unique challenges, such as highly

G. Secinti, S. Mohanti and K. Chowdhury are with Electrical and Computer
Engineering Department, Northeastern University, Boston, MA, 02115.
E-mail: {g.secinti, s.mohanti, krc}@coe.neu.edu

A. Trotta and M. Di Felice are with Department of Computer Science and
Engineering, University of Bologna, Italy.
Email: {angelo.trotta5, marco.difelice3}@unibo.it

This work was completed when Drs. Trotta and Di Felice were visiting
researchers at the GENESYS Lab at Northeastern University, Boston, USA.

Fig. 1: Network architecture of a UAN connected to compu-
tational cloud and ground units.

dynamic topology, 3D mobility and high energy consumption
per unit time [2]. Piloting commercial off the shelf (COTS)
UASs requires manual skills, but UAN applications that have
rigid objectives and performance constraints amplify the above
challenges when they operate in groups. In this paper, we
envision the UAN as a mixed sensing, information relaying
and computing platform, taking advantage of the entirety of
its on-board capabilities. Towards this goal, we wish to adopt
the flexibility and structured approach of classical software
defined networking (SDN), building on the OpenDayLight [3]
architecture that has proven to be successful in the wired
networking domain. Thus, each UAS within the larger UAN
becomes a network switch that directs data traffic towards the
remote cloud as well as towards peer-nodes for in-network
processing. To our best knowledge, while many works have
pointed towards the trend in COTS UAN to gain increasingly
greater computational power and ability to support popular op-
erating systems and processing packages [4], a transformative
design that allows the UAN to become a fully capable, aerial
SDN has not been implemented in actual systems.
A. Problem and Solution Overview

We consider a scenario where ground sources may generate
rich sensing data (e.g. videos, terrain maps, RF spectrum
surveys) that needs to be transmitted to the cloud for purposes
such as storage, aggregation and analytics as seen in Fig. 1.
This generic environment covers several real-world use-cases
related to post-disaster recovery, rural broadband access and
military operations. In many of these cases, the cloud is not
reachable via a direct link, and hence, instead of a single UAS,
we envision that a UAN is deployed for data forwarding to the
cloud server. We note that several distributed mobility-aware
routing and communication-aware mobility control schemes
for UASs have been proposed in the literature that address
only a subset of factors affecting the UAN deployment [2]

2

[5]. In this paper, we focus on an architecture that leverages
SDN, given that it effectively decouples control and user
data plane, and has shown great potential in management of
wired/wireless networks.

A conceptual view of SDN controllers to compute the UAN
topology and routing based on actual link load estimations
have been proposed in [6] [7]. In addition, given the highly
dynamic network topologies in such networks, there is like-
lihood of a temporal drift between the actual network state
and the virtual state information available at the controller.
In such situations, shifting the entire burden of the scenario
analysis to the cloud becomes risky; few incorrect or outdated
decisions taken by the controller can result in major end-to-
end latencies in the mission [8]. Our approach addresses these
challenges by considering, in a single theoretical formulation,
the optimized assignment of the individual UASs to function
as forwarding nodes that relay data towards the sink or to
alternate intermediate-UASs that may perform computational
tasks closer to the source. This results in significantly lowering
the volume of data to be transmitted through the UAN. We
look at the problem not only from a theoretical viewpoint but
also from that of practical implementation, by (i) implementing
a robust mesh network formation and routing protocol, (ii)
defining and architecting the SDN control interfaces, and (iii)
showing the benefits of intelligently assigning computation
tasks to selected UASs in the network.

B. Main Contributions
We make three main contributions in this paper:

• We present the architecture and design of FOCUS, a
framework for the deployment of a practical UAN. It
autonomously sets up the UAN configuration in terms of
network topology (i.e. routing table), and computation (i.e.
task allocation over cloud or intra-UAN nodes, also called as
fog nodes), based on QoS requirements. This is performed
via an SDN architecture that handles both computation and
communication in multi-hop aerial environments.

• We formulate the problem of joint routing and computation
assignment over UAN via an analytical model. Being NP-
hard, we decompose it into two sequential tasks, with heuris-
tic solutions for each. We also provide rigorous bounds on
the computational complexity.

• We implement the system on a limited testbed of Intel Aero
UASs performing data processing of image-data. We also
validate FOCUS experimentally and through simulation,
starting from the data generation on the ground to the final
logging of processed results in a database.

The rest of the paper is structured as follows. In Section II, we
review the existing literature on the application of SDN and
cloud computing on UAN. Preliminary results supporting the
motivation of our work are provided in III. The joint routing-
computation problem and algorithms are formally described
in IV. FOCUS architecture and implementation details are ex-
plained in V. Experimental and simulation results are reported
in Section VI. Finally, we conclude in Section VII.

II. RELATED WORK
Recent works have attempted to address UAS requirements

of dynamic topology and variable network load [2]. Moving

some of these important problems from the physical device
plane to the controller of an SDN has gained traction [9],
where link status and flight statistics are collected from each
UAS and used to compute the routing tables. The core func-
tionality of packet routing is enhanced in [10] by incorporating
a centralized energy- and load-aware routing scheme. [6] maps
these approaches in context of video-surveillance, while [7]
exploits the closely related Network Function Virtualization
(NFV) functionalities for telemetry monitoring and anomaly
detection. [8] uses SDN controller for motion and location
prediction, by utilizing knowledge of the current physical
position and trajectory of each UAS to envision how the
network may evolve ahead.

Different from these works, FOCUS SDN-enabled archi-
tecture jointly performs network routing to both the end cloud
as well as in-network computational resources while taking the
network topology and the network load requests into consider-
ation. The latter concept, commonly known as fog computing
is still in a nascent stage. Several papers have investigated the
dual problem, i.e., how to offload the computation from the
UASs to an edge-server or to a remote server in the cloud [11].
[12] and [13] describe video-surveillance applications, where
data are gathered by UASs, and processed on edge nodes
through computational expensive vision algorithms. Instead,
in FOCUS, we envision UAS themselves as computationally
capable devices. The Intel Aero drones we use have Intel
Atom R© x7-Z8750 processor, 4 GB LPDDR3-1600 RAM,
Intel R© Dual Band Wireless-AC 8260, 32 GB eMMC, Altera R©

Max R© 10 FPGA and Ubuntu 16.04 LTS.
Similar to the notion of delegating computational workload

to UASs, following studies proposed to utilize vehicles as
computational nodes or relays in vehicular ad-hoc networks
to improve overall performance of cloud systems [14]–[16].
[14] proposed semi-markov decision process based resource
allocation scheme for vehicular clouds, where vehicles in the
network increases cloud resource pool via sharing their own
computational resources. In [15], the authors developed con-
tent dissemination framework by integrating edge computing
with vehicular networks where vehicles act as relays to deliver
contents efficiently. In addition, an approximation scheme
for job completion time in vehicular cloud is proposed in
[16]. However, these studies neither considered UAS-specific
challenges such as limited on-board resources, 3D mobility
and unreliable ad-hoc links while devising their frameworks,
nor provided any real-world implementation.

We describe next the works that come closest towards joint
consideration of UAS capabilities, including computation. [19]
estimates the execution time of different tasks when executed
locally on ground robot units and remotely in the fog/cloud
servers, and defines offloading strategies to optimize the ser-
vice time. [20] approaches the same problem through game
theory. General architectures employing UASs as fog nodes
are proposed in [18] and [17]. In the former case, the UASs
serve as mobile base stations providing connectivity to the
ground units. In the second case, the UASs offer computation
offloading opportunities to mobile ground units. However,
the goal of this work is on enhancing the uplink/downlink
communications and the path planning of the UASs. Table I

3

Study Network Aspect Computational Aspect Target Domain Test-bed
Imp.

U
A

S
ap

p.
w

ith
on

-b
oa

rd
pr

oc
es

si
ng

Motlagh
et al. [12]

Direct link to LTE infrastructure for
communication

Crowd survailence with on-board pro-
cessing with a single drone

IoT Platform 3

Wang et
al. [13]

Adaptive relaying mechanism with
full-duplex radios on UAS

Real-time video streaming via UAS to
a ground server without pre-processing
on-board

Multi-UAV network 3

V
eh

ic
ul

ar
C

lo
ud

Meneguette
et al. [14]

Poisson arrival model for vehicles en-
tering to a cloud without stressing
network or comms. challenges

Formulating semi-markov decision pro-
cess to allocate resources based-on
availability

Vehicular Networks 7

Hui et al.
[15]

Probabilistic V2I and V2V link model
with two-layer relay selection scheme

Content dissemination framework
among edge computation nodes to
increase availability

Content Delivery Networks /
Vehicular Networks

7

Florin et
al. [16]

N/A
Network challenges are not addressed

Approximation of job completion times
on distributed systems

Distributed Systems /
Vehicular Networks

7

U
A

S
in

E
dg

e

Jeong et
al. [17]

Single UAV Moving cloudlet with the goal of en-
ergy optimization

Cellular networks where mo-
bile users demand computation

7

Narang et
al. [18]

Single or multiple UAVs without in-
terconnection among each other

N/A
Comms. challenges are addressed

Challenged Networks (CN) 7

Kattepur
et al [19]

Single hop links to robots/drones Timing-estimation based deployment of
OpenCV applications

Multi-robot environment 3

Messous
et al [20]

Challenges of aerial networks are not
addressed

Game-theory based offloading scheme Multi-UAV system 7

FOCUS Joint formulation and optimization of network and computation re-
sources with two-layer Open Jackson Networks.

Multi-UAV system /
Aerial Mesh Networks

3

TABLE I: Comparison with the literature

showcases the differences of FOCUS with the existing studies
in the literature where these studies are grouped under three
sub-categories based on their scope and are investigated by
four different aspects such as network, computation, target
domain and test-bed implementation. Moreover, the work that
we present in this paper does not explore the limited energy
problem of the UASs that is indeed quite important when
analysing aerial vehicles. However, several work can be found
in literature that proposed solutions for this problem [21] [22]
that can be used to obtain continuous operability. FOCUS
pushes the envelope further by a joint analytical and systems
approach, while opening up for the community the software
tools and code to build and deploy aerial SDNs.

III. PRELIMINARY STUDY ON COMPUTATION ON UASS
We conduct two different sets of experiments motivating the

use of a UAN as an aerial computing platform: the first one
stressing the communication/computing tradeoff on a simple
linear topology, the second one showcasing the impact of
processing on the UAS battery/flight time. To better understand
the advantages of data processing on fog nodes within an
UAN as opposed to centralized cloud, we set up a mesh UAN
in a linear topology consisting of 3 Intel Aero Ready-To-Fly
UASs, as seen in Fig. 2a. Two ground laptops are placed at the
two ends of the mesh, one acting as a ground control station
(GCS) and application server, and the other as the source.
The GCS containing 16GB DDR3 RAM, 7th generation Intel
processor and NVIDIA R© GTX 1060 graphic card doubles as
the centralized cloud entity along with being the controller.
The source generates network data as UDP packets and static
images for processing. The target location for the processing
may vary over time via computational requests. Since, we use
same workload generation and image processing algorithms
during evaluation, further details are explained in Section VI.

Consider four scenarios where: computational requests are
handled by UAS in inter-mediate hops, i.e., UAS1, UAS2,

UAS3 and when the images reach the GCS/application server.
The network load is gradually increased from 0 to 1Mbps and
finally to the upper limit of 2Mbps. Under non-loaded network
conditions, understandably, it is beneficial to execute the data
processing at the remote GCS, as seen in Fig. 2c. However,
when the network load begins to increase, the amount of time
spent on forwarding information in the network indicates the
benefit of processing the image on a fog entity, i.e., the UAS
as opposed to the GCS, despite having weaker computational
power. As seen for the cases of 1 and 2 Mbps network traffic,
processing images on the UAS improves the response time.

As algorithms may vary in processing requirements (for e.g.,
genetic algorithms and particle swarm optimization run multi-
ple iterations), we define an iteration variable that increases the
effort involved in completing the image processing task. Each
iteration re-analyzes the image, with the goal being to identify
the break-even points for switching the processing from fog
nodes to the GCS. As seen in Fig. 2b for a constant network
load of 1Mbps, algorithms with fewer iterations to completion
are more suited for the fog nodes, though every additional
forwarding hop impacts the difference from the ground server
to a greater extent. These studies indicate practical handover
points that we use in our optimization approach.

Computation and data relaying both incur energy costs. To
study their inter-dependence, we flew a UAS equipped with the
standard 4S, 4500mAh battery, under different CPU utilization
scenarios, as shown in Fig. 2d, recording the flight time for
each setting. These scenarios are defined by the number of
CPU cores fully utilized during the entire flight starting with 0
and continue with 1, 2 and 4 cores. During the flights, we use a
simple workload generator [23] to fully utilize individual CPU
cores on UASs. Increasing CPU utilization drains negligible
battery power when compared to the power drawn by the UAS
propeller motors. This further motivates us to fully leverage
fog nodes for processing within the network. Fig. 2d shows

4

User UAS 1 UAS 2 UAS 3
GCS & App.

Server

802.11 ac adhoc link

(a)

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10

C
o

m
p

u
ta

ti
o

n

R
es

p
o

n
se

T
im

e
(m

s)

Number of Algorithm Iterations

UAS 1

UAS 2

UAS 3

(b)

200

250

300

350

400

450

500

550

600

No Load 1 Mbps 2 Mbps

C
o
m

p
u
ta

ti
o
n
 R

es
p
o
n
se

 T
im

e
(m

s)

Network Load

UAV1 UAV2

UAV3 GCS

(c)

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

F
li

g
h

t
T

im
e

 (
m

in
u

te
s)

CPU Utilization Scenarios

w/o additional load 1 core fully utilized

2 cores fully utilized 4 cores fully utilized

(d)
Fig. 2: (a) Linear UAN topology; computation response time w.r.t. (b) algorithm iteration number, (c) network load and; (d)
UAS flight time w.r.t. processing complexity

Symbol Description
N Number of UASs.
M Number of ground units.
E Adjacency matrix for UAS network.
A Air-to-Ground connection matrix.
µ
(t)
i Service capacity for the traffic type t1at UASi.
γ
(t)
i Bandwidth request of ground unit i belonging the traffic

type t.
Ω

(t)
i Sum of arrival rates from ground units assigned to UASi.
λ
(t)
i Arrival rate for the traffic type t at UASi.

L(t)
i Expected number of packets in the queue at UASi.

W(t)
i Average waiting time of type t packet in the queue at UASi.

γ
(t)
j Bandwidth request of ground unit j.

R(t) Routing matrix.
r
(t)
ij Element of R(t) defining the ratio of the packets routed

from UASi to UASj.
F,C Auxiliary matrices used in the heuristics to hold pointers

to father (F) and child (C) nodes on network flows.
BR,BP Bipartite graphs holding computational requests (R) and

available slots (P)

TABLE II: List of important notations
1 t ∈ {n, c}, where n states non-computation/network and c states

computation traffic. If a symbol does not contain a superscript, it means
there is not any traffic type distinction for that parameter.

high variations in the upper and lower bounds in the flight
time due to uncontrollable flight dynamics (altitude deviation,
pitch, yaw, roll) caused by wind, which again impacts the UAS
battery consumption rate more than internal data processing.
We run the experiment ten times for each scenario with a fully
charged battery, and record the flight time until its remaining
battery capacity hits a critical level (which is 15%).

IV. PROBLEM FORMULATION AND OPTIMIZATION
FRAMEWORK

In the following, we formulate the problem of joint assign-
ment of network flows and computational tasks by modeling
UAN as a network of queues. Then we describe two-phase so-
lution to this problem, where network flow and computational
flow optimizations are solved consecutively. Table II defines
the variables and symbols used in the process.

A. System Model
We assume a scenario with N flying UASs, M ground

units and one ground control server (GCS). The ground units
produce two classes of network traffic: (i) generic network
traffic (denoted by the n apex), i.e. sensor data that must be

delivered to the GCS, and (ii) computational traffic (denoted
by the c apex), i.e. data that must be processed on the cloud
or on fog nodes. We introduce the following variables:
• U = {u1, u2, . . . , uN} is the set of available UASs;
• G = {g1, g2, . . . , gM} is the set of the ground units;
• Υ(c) = {µ(c)

1 , µ
(c)
2 , . . . , µ

(c)
N , µ

(c)
N+1} is the computational

capacity (in Kbps) for each UAS ui ∈U and for the GCS
(defined by µ(c)

N+1);
• Γ = γ1, γ2, . . . , γM is the set of bandwidth requests (in

Kbps) for each ground unit gj ∈G, where γi = γ
(n)
i + γ

(c)
i ,

i.e. it includes both generic and computational data;
• EN×(N+1) is UAN adjacency matrix, where ei,j → {0, 1}

indicates whether there is an active link between the UASs
ui, uj ∈U , where also index N+1 represents the GCS;

• AN×M is Air-to-Ground (A2G) connection matrix, where
ai,k → {0, 1} indicates whether there is an active connection
between UAS ui∈U and ground unit gk∈G.
EN×(N+1) and AN×M matrices are assumed to be pre-

computed based on the position of the ground units. The UAN
is modeled as an Open Jackson Network [24], and each UAS
node is represented with two consecutive M/M/1 queues as
shown in Fig. 3. On the left, we depict the network queues
used for both traffic types (n and c). On the right, we depict the
process queue corresponding to the computational traffic (c),
for both the UASs and the GCS. The output of the queues are
determined by the routing policies. These latter are formally
modeled via the matrices R(n)

N×(N+2) and R(c)
N×(N+2), respectively

for the n, c traffic classes; r(t)
i,j indicates the ratio of traffic of

ui routed to uj for traffic type t ∈ {n, c}. In addition, r(n)
i,0 and

r
(c)
i,0 denotes ratio of the packets left the network and, ratio of

packets processed locally at ui. Similarly, let r(c)
i,(N+1) be the

ratio of the computational packets that ui forwards to GCS, to
be processed on the cloud. The overall packet arrival rate (λi)
to ui is defined as λi = λ

(n)
i +λ

(c)
i . Assuming that, the ground

units generate requests with the average 1/γ time difference,
we use Markovian queues to obtain closed-form equations for
the upper-bounds of the response times in the model.

For each traffic type (∀t ∈ {c, n}), the λ
(t)
i term can be

modeled as λ
(t)
i = Ω

(t)
i +

∑N
j=1 r

(t)
j,i · λ

(t)
j , where Ω

(t)
i =∑M

k=1 ai,k · γ
(t)
k and the variable γ(t)

k is the arrival rate of the

5

UAS1

Communication

GCS

Computation

UASi

UASN

Ω1

Ωi

ΩN

r
c
10

r
c
i0

r
c
N0

∑∑λ
t
j r

t
jN

R
n

,R
c

∑ λ
c
j r

c
j, N+1

∑∑λ
t
j r

t
ji

∑∑λ
t
j r

t
j1 R

n
,R

c

R
n

,R
c

Fig. 3: Two-layer Open Jackson Network

c and n traffic from the kth ground unit and Ω
(t)
i is the sum

of the arrival rates over all ground units assigned to UAS i.
By Little’s Law, the average response time for packets

belonging to traffic type c (W(c)) is defined as follows:

W(c) =

∑N
i=1 L

(n)
i +

∑N+1
i=1 L

(c)
i∑M

k=1 γ
(c)
k

(1)

where L(n)
i and L(c)

i indicate the expected number of
computational packets in the network queue and in the
computational queue of UAS i respectively. Let Υ(n) =

{µ(n)
1 , µ

(n)
2 , . . . , µ

(n)
N } be the average service rate for each

UAS ui ∈ U , with µ
(n)
i expressed again in Kb/s. Hence,

the average number of computational (c-type) packets at the
first queue is L(n)

i = λ
(c)
i /
(
µ

(n)
i − λi

)
. On the other hand,

the number of the packets in the second queue is defined
as follows L(c)

i = λ
(c)
i r

(c)
i,0/
(
µ

(c)
i − λ

(c)
i r

(c)
i,0

)
. We can hence

rewrite W(c) as follows:

W(c) =

∑N
i=1

λ
(c)
i

µ
(n)
i −λi

+
∑N+1
i=1

λ
(c)
i ·r

(c)
i,0

µ
(c)
i −λ

(c)
i ·r

(c)
i,0∑M

k=1 γ
(c)
k

(2)

Similarly, we compute the average response time for the
generic network traffic as follows:

W(n) =

∑N
i=1

λ
(n)
i

µ
(n)
i −λi∑M

k=1 γ
(n)
k

(3)

The proposed system assumes to have the knowledge of the
all data load requests Γ and the network links quality Υ(n).
Consequently, also the AN×M and the EN×(N+1) matrices are
assumed to be known. These indexes represent the ground user
bandwidth requests and the network links quality, respectively.
These two indexes can be known in advances for static sce-
narios and with full knowledge, but this case is very rare. On
the other side, for evolving and/or unknown scenarios, these
indexes can be dynamically estimated by the system using link
quality estimation within the SDN networks [25] in order to
estimate Υ(n) and EN×(N+1) and continuous monitoring of
the ground user requests to estimate Γ and EN×(N+1). The

effects of the convergence of the index estimations and their
change over time will be analysed in future works.
B. Problem Formulation

Based on this system model, we formally define the joint
routing and computation assignment (RC) problem as follows:

min
R(t)

W(c) (4)

subject to:
∑
ui∈U

ai,j = 1 ∀gj ∈ G (5)

dim kernel(Laplacian(E)) = 1 (6)

λi < µ
(n)
i ∀ui ∈ U (7)

λ
(c)
i · r

(c)
i,0 < µ

(c)
i ∀ui ∈ U (8)

N+1∑
j=0

r
(t)
i,j = 1 ∀ui ∈ U, t ∈ {n, c} (9)

r
(t)
i,0 +

N+1∑
j=1

(r
(t)
i,j · ei,j) = 1 ∀ui ∈ U, t ∈ {n, c} (10)

W(n) ≤ ρ(n) (11)

r
(t)
i,j , λ

(t)
i , µ

(t)
i , γ

(t)
i ≥ 0

∀ui ∈ U, t ∈ {n, c},
j ∈ [0,N + 1]

(12)

The goal of the optimization problem, defined by (4), is to
minimize the average response time of computational traffic,
by determining the optimal routing matrices R(t), meeting
the following constraints: (5) states that each ground unit
must be connected to a single UAS; (6) ensures the aerial
mesh is connected by analysing dimension of the kernel of
the adjacency matrix’s Laplacian; (7) and (8) guarantee the
validity of Open Jackson Network model; (9) and (10) state
that all the packets leaving a network queue will flow to
another network queue or to a computation queue, but only
using active links; finally, (11) ensures the service time for
type n traffic does not exceed a user-defined threshold ρ(n).

FOCUS Optimization Framework

Network Flow

Optimization (NFO)

Computation Flow

Optimization (CFO)

U, E, A, Г,ϓ

Rn

Rc

Fig. 4: FOCUS optimization framework
RC multi-objective optimization problem is NP-hard since

it is a generalization of the well-known splittable flow prob-
lem [26]. Therefore, we divide the original problem into
two phases: first, we compute the routes for traffic type n
toward the GCS. Then, based on such allocation, and the
estimated network traffic congestion, we compute the routes
for the computational data flows (type c). Fig. 4 shows the
modules implementing each phase. The first module, namely
Network Flow Optimization (NFO), generates the entries of
the R(n) matrix as output. These values are taken as input by
Computation Flow Optimization (CFO) module producing as
output the final R(c) matrix.

6

C. Network Flow Optimization (NFO)
NFO algorithm determines the proper values of r(n)

i,j , with
i, j≤N , i.e. the routing entries for the class n traffic directed
to the GCS. Given the complexity of the original problem,
we relax the constraint of (11), i.e. we determine the routing
entries minimizing the average response timeW(n). Formally:

Definition 1. Given the set of available UASs (U), the con-
nection matrix (EN×N), the air-to-ground active links matrix
(AN×M) and the network requests set (Γ), the goal is to
compute the network routing matrix R(n)

N×(N+2) such that the
average response time for class n traffic W(n) is minimized.

Algorithm 1: NFO algorithm
1: NFO (U,EN×N ,AN×M ,Γ,Υ)
2: init FN+1×N+2 with fi,j =−1 {fi,j≥0 is the cost of j being father of i}
3: init CN+1×N+2 with ci,j = 0 {ci,j = 1 if j is a child for i}
4: init vi = false, λ(n)

i = Ω
(n)
i , r(n)

i,j = 0, 1 ≤ i, j ≤ N
5: set fN+1,N+2 = 0 {N+1 is the GCS and N+2 is a dummy node}
6: while ∃uk s.t. (vk =false)∧(∃j s.t. fk,j≥ 0)∧(arg mink ξ

(n)(uk)) do
7: vk = true
8: call updateLambdas(uN+1)
9: call updateFathersCost(N+2, uN+1, 0)

10: call updateChildren(uk)
11: return R(n)

12: function updateLambdas (uk)
13: λk ← Ωk

14: for all ui s.t. ck,i = 1 do
15: if vi = true then
16: λk ← λk + (r

(n)
i,k · updateLambdas(ui))

17: return λk

18: function updateFathersCost (j, uk, fullcost)
19: fk,j ← fullcost
20: for all ui s.t. ck,i = 1 do
21: updateFathersCost(k, ui, ξ

(n)(uk))

22: function updateChildren (uk)
23: for all ui such that ek,i = 1 with ek,i ∈ E do
24: if vi = false then
25: ck,i = 1
26: for all ui s.t. ck,i = 1 do
27: fk,i ← ξ(n)(uk)

28: r
(n)
i,j ←

∏
(m:fi,m≥0,m 6=j)ξ

(n)(um)∑
(m:fi,m≥0)

∏
(w:fi,w≥0,w 6=m) ξ

(n)(uw)
, ∀j: fi,j ≥ 0

We address the problem by using a modified version of the
Dijkstra algorithm for the Shortest Path Problem (SPP) over
acyclic weighted graphs. To this purpose, we define the cost
function for node ui (ξ(n)(ui)) as a proxy of the average delay
toward the GCS, computed as follows:

ξ(n)(ui) =
1

µ
(n)
i − λ(n)

i

+
∑

1≤j≤(N+2)

fi,j · r(n)
i,j (13)

Here, the first fraction represents the average queuing delay
at node ui, while the second one is the average delay of the
path toward the GCS. We recall that the Dijkstra algorithm
computes the shortest path between a source (or multiple
sources) to a single destination. Unfortunately, the original
algorithm does not fit our problem because: (i) the weight of
the nodes/arcs is not static, since it may change over time as a
specific node is included in the routing path of a flow toward
the GCS; (ii) each node can have multiple paths towards
the GCS, and exploit all of them concurrently. The proposed
solution is described by Alg.1. As in Dijkstra’s algorithm, we
start building the shortest paths from the destination (the GCS
in our case). In addition, we keep two auxiliary matrices as:

updateLambdas u4

Dummy u6 GCS

u5

u2

u3

u1

λ6

λ4 λ2

λ5 λ3

updateFathersCost u4

Dummy u6 GCS

u5

u2

u3

u1
f6,7

updateChildren u4

Dummy u6 GCS

u5

u2

u3

u1

f4,6

f5,6

f2,4

f3,5

r1,2

r1,3

Fig. 5: A schematic view for a single step execution of Alg.
1 (lines 8 - 10). Here N=5 and active node in the step is u2.

1) F matrix keeps track of the network flows costs. It includes
the forward pointers from one node to its fathers, i.e. fi,j ∈
F is greater then zero if uj is a father for ui towards the
GCS and defines the path cost from uj ;

2) C matrix keeps track of the incoming network flows. It
includes the reverse pointers from one node to its subtree,
i.e. ci,j = 1 if node uj is a child of node ui, 0 otherwise.

These two matrices are initialized at the beginning of Alg. 1:
line 3 for the C matrix and line 2 for the F matrix; here, as
starting point we defined a father connection from the GCS
to a dummy node (having index N + 2) whose cost is set
to zero (line 5).At each iteration, the algorithm performs a
greedy selection over the nodes, by adding the one having the
minimum cost towards the GCS to the solution set (line 6).
Then, it updates the λ(n)

i and the matrices F (lines 8 and 9)
and C (lines 26-28). Finally, the algorithm updates R(n) by
balancing the outgoing traffic towards all the paths to minimize
the total cost (line 28) equalizing (r

(n)
i,j ·ξ(n)(uj)) values, ∀j:

fi,j ≥ 0.For space reason, here we omit the check if r(n)
i,j >1

in cases, which cost cannot be balanced over all the fathers.
In Fig. 5, we depicted one step execution of Alg. 1.

We visualize the three main functions updateLambdas,
updateFathersCost and updateChildren in a case
where the active node is u2 and u1 is not yet visited. During
updateLambdas method, the flows goes from the leaves to
the root (GCS) and all the λi are updated accordingly with
the tree connections. Then, updateFathersCost function
updates the links’ cost of each connection starting from
Dummy-GCS connection (having fN+1,N+2 = 0) and going
down towards the leaves. Finally, the updateChildren
function updates the routing values r(n) for all the children
belonging to node u2. Since each node can have multiple paths
towards the destination, the output of the proposed algorithm
is a destination oriented directed acyclic graph rooted at the
GCS, formally represented by R(n) matrix.

D. Computation Flow Optimization (CFO)
CFO algorithm allocates tasks to computational resources,

represented by the cloud or by UAS fog nodes. Based on the
model in Section IV-A, this translates into determining the des-
tination and path for class c packets. We model the problem as

7

a weighted bipartite graph where (i) BR = {bR1 , bR2 , . . . } is the
set of computational requests (per unit of time) to be executed,
with |BR| =

∑
γi∈Γ γ

(c)
i , and (ii) BP = {bP1 , bP2 , . . . } is the

set of computational slots (again, per unit of time) available
on the fog either on the cloud (|BP | =

∑
µ
(c)
i ∈Υ(c) µ

(c)
i). Let

ζ :BR×BP→R be the weight function, representing the benefit
of assigning a request in BR to a computational slot in BP .
We consider an asymmetric assignment problem where the
computational resources are strictly greater than the requests
(satisfying the requirement of Equation 8), i.e. |BR|< |BP |.
Let req(bRk) = ui be the mapping function that returns the
UAS generating the request bRk ; similarly, let pow(bPl) = uj
be the function which returns to UAS providing computational
slot bPl . The aim of the assignment problem is to determine an
optimal assignment set S = {

〈
bRi , b

P
j

〉
: bRi ∈ BR, bPj ∈ BP },

such that the total benefit
∑
〈bRi ,bPj 〉∈S ζ(bRi , b

P
j) is maximized,

clearly subject to the constraints that each request must be
assigned to a single slot and each slot can host at most one
computational request.

Algorithm 2: CFO algorithm
1: CFO U, p,EN×N ,AN×M ,Γ,Υ(n),Υ(c),BR,BP

2: for all ui ∈ U do
3: if Ω

(n)
i > 0 then

4: calculate Dijkstra(ui, GCS)
5: update r(n)

j,k , ∀uk ∈ U and ∀uj in the calculated path

6: update λ(n)
j , ∀uj in the calculated path

7: PL(bRi)← {}, ∀bRi ∈ B
R

8: while S doesn’t contains all the assignment for ∀bRi ∈ B
R do

9: calculate Dijkstra(ui, uj), ∀ui, uj ∈ U
10: update ζ(bRi , b

P
j), ∀bRi ∈ B

R, bPj ∈ B
P based on

Dijkstra(req(bRi), pow(bPj))
11: execute one forward/reverse step of the auction algorithm
12: if

〈
bRi , b

P
j

〉
is a new assignment then

13: PL(bRi)← Dijkstra(req(bRk), pow(bPl))
14: else if

〈
bRi , b

P
j

〉
is removed as an assignment then

15: PL(bRi)← {}
16: update all λ(c)

i and r(c)i,j based on the path lists PL(bRi), ∀bRi ∈ B
R

The proposed solution (given in Alg. 2) enhances the basic
forward/reverse auction scheme described in [27] for the case
of weights dynamically changing over time. Indeed, each
assignment causes the modification of ζ function due to the
alteration of λ(c)

i values for UASs residing on the chosen
path (line 10). Hence, the algorithm implements a sequence of
forward/reverse iterations, where at each iteration a request-
slot assignment can be added/removed from the final result.
Let PL(bRi) denote the list (line 7, 13, 15) containing the
calculated path for each bRi , the benefit function ζ(bRi , b

P
j) of

assigning request bRi to slot bPj is modeled as follows:

ζ(bRi , b
P
j) =

1

1 + cost(bRi , b
P
j)

(14)

where cost(bRi , b
P
j) is a proxy for the delay of traffic class

c from UAS req(bRi) to pow(bPj), and can be calculated
by considering the Dijkstra(req(bRi), pow(bPj)) shortest path
having the edge (ui → uj) weight defined as: 1

µ
(n)
i −λi

. More

precisely, let PL(bRi) = {req(bRi), . . . , pow(bPj)} be the path
used to reach pow(bPj), then:

FOCUS Controller Software

OpenFlow

Service Abstraction Layer (SAL)

OpenDaylight APIs

Flow Generation Module

Network Flow

Optimization

DronecodeSDK

Computation Flow

Optimization

Micro Air Vehicle Link

DronecodeSDK API

network

service

functions

platform

services

other

extensions

O
p
e
n

D
ay

li
g
h

t
(O

D
L

)

C
o

n
tr

o
ll

e
r

D
ro

n
e
c
o

d
eS

D
K

G
ro

u
n

d
C

o
n

tr
o

ll
e
r

C
o
n

tr
o
l

P
la

n
e

D
a
ta

 P
la

n
e

Ubuntu Linux

Open vSwitch

Bridge

PX4 OpenSource Auto Pilot

MAVLink Router

Intel Aero Linux Kernel

Batman-adv

Telemetry Adapter

Rn

RnRc
U

Optimization

 Modules

E,A,

Γ,ϓ

Docker

OpenCV

Container

B.A.T.M.A.N.

 mesh network protocol

Fig. 6: FOCUS Software Architecture

cost(bRi , b
P
j) =

 ∑
uk∈PL(bRi)

1

µ
(n)
k − λk


+

1

µ
(c)

pow(bPj)
−
(
λ

(c)

pow(bPj)
· r(c)

pow(bPj),0

) (15)

E. Computational Complexity
We now analyze Computational Complexity (CC) of FO-

CUS where NFO algorithm is followed by CFO algorithm.
NFO algorithm is based on the Dijkstra algorithm whose
complexity is O(N2) in its basic form. We see this complexity
in the main while loop in line 6 of Algorithm 1 where the
loop is executed N times and the argmin operator is O(N).
Inside the loop, the computation is dominated by the functions
updateLambdas and updateFathersCost that visit the whole
graph to update the lambdas and cost variables. In conclusion,
the CC of the NFO algorithm is O(N3).
CFO algorithm copes with the asymmetric bipartite graph
problem between two asymmetric sets: the computational
requests set having cardinality |BR| and the computational
slots set having cardinality |BP |. The auction algorithm solves
a generic asymmetric bipartite graph problem in O(|BR||BP | ·
log(n)), where n is a parametric value [27]. However, in our
implementation, we add an extra execution time for updating
the cost matrix defined by the function ζ(bRi , b

P
j) (lines 4 and 5

in Alg. 2). Dijkstra’s algorithm has a complexity of O(N2) and
the matrix update has complexity O(|BR||BP |). This brings
the total CC to O(|BR||BP | · log(n) · (|BR||BP |+N2)).

V. FOCUS SYSTEMS-LEVEL IMPLEMENTATION

One of the main contributions within FOCUS is the devel-
opment of the middleware platform transforming the classical
UAN into a joint sensing, forwarding and fog computing

8

architecture. This middleware interacts with existing software
blocks, such as those related to coordinating with the ground
controller and SDN controller simultaneously. It receives both
network and UAS information, and implements the necessary
control directives originated from heuristic algorithms that
centrally solve RC problem. As shown in Fig. 6, FOCUS
is built on top of the OpenDayLight (ODL) SDN controller
and DronecodeSDK [28]. The former orchestrates flows in the
UAN being controlled by a REST application programming
interface (API) and the latter aggregates location information
of the UASs and makes this information available to the
controller via the telemetry adapter. Through these tightly
coupled APIs, the network information required by the FO-
CUS is aggregated and forwarded to the sub-modules (NFO,
CFO). These modules, residing in the offsite controller, in turn
calculate the optimal allocation of network and computational
flows in the UAN and define routing matrices (R(n) and R(c)).
They then initiate control feedback flows via HTTP requests
through REST API back to the UAN.

In addition to the control plane design, we also utilize
Docker [29] and OpenVswitch [30] (OVS) on UASs at the
data plane. Docker hosts a container with OpenCV library
to run image processing as computational load (this can
be swapped for other applications), while OVS connects to
ODL as a traditional Openflow switch. SDNs are classically
installed on reliable (often wired) network connections where
the control/data planes are not easily impaired. To bring more
robustness to the UAN, we utilize a distributed 2nd-layer rout-
ing, called ‘Better Approach To Mobile Ad-hoc Networking’
(BATMAN) [31]. It allows control directives and data to flow
over through multiple different pathways to target UAS, even
when direct link to the controller is impaired, albeit with an
increased latency. Furthermore, it statistically determines the
wireless link quality among the nodes and generates numerical
values, which are aggregated at the software controller to
estimate the throughput capacity on the links. This information
is forwarded to FOCUS Optimization framework as seen in
Fig. 6, for to be used in constructing of queue-based network
model and in solving the optimization problem.

VI. PERFORMANCE EVALUATION

In this section, we validate the performance of FOCUS
in terms of overall network traffic and computational response
time, in two separate approaches. We conduct our experiments
on a small scale UAN testbed, which consists of 4 UASs. The
key insights from these experiments then are extended with
large-scale simulations consisting of 40 UASs written in C.

A. Results on small-scale testbed implementation
We use two laptops as ground units and a high performance

server as the control station, on where SDN controller (ODL),
docker image with OpenCV libraries and dronecode flight
controller run. 4 Intel Aero UASs create a mesh network with
4 hops between the ground units and the server, as shown
in Fig. 8a. The general hardware specifications are similar
to Section III. During the experiment, UASs are positioned
in hovering motion at 3-meter above the ground separated
by 10-meter distances from each other and from the ground
entities in the outdoor drone testing facility at Northeastern

Fig. 7: Intel Aero Ready-to-Fly drone as an aerial OF switch

University. In our testbed, each UAS is equipped with three
wireless interface cards (two RALINK WiFi dongles and one
on-board Intel WiFi interface) as seen in Fig. 7, where each
interface uses a non overlapping WiFi channel for different
tasks. One of them is dedicated to the BATMAN protocol,
another is used to create link between UASs and the last one
is utilized for the link between ground units and UAS, on
channels 1, 6, and 11, respectively. The UASs are positioned
in such a way that Ground Unit 1 can only connect with UAS
1 and Ground Unit 2 can connect with UAS 2, creating a
separate data path for each ground unit to reach the server. A
780x480 pixels picture of file size 1024 Kilobits is used as
payload for image processing. These payloads are created and
forwarded with 200 msec average inter-generation time at each
ground unit. We used Binary Robust Independent Elementary
Features (BRIEF) [32] algorithm as a feature point descriptor
on these images. The network load is emulated by creating
UDP flows from each ground unit to the server as shown in
Fig. 7. We stress the network by gradually increasing the UDP
data rate on both flows from 0 to 2Mbps. For comparison, we
run other task allocation methods on the central controller:
• Nearest first, where the computation is allocated to the

nearest neighbor node initially. Based on the load conditions
on the nearest neighbor, the task may be allocated to the
next-nearest neighbor, and so on.

• Local-only, where the computation task is sent only to the
UAS, with which the ground unit has an active link.

• App-Server only, where the all computation tasks should be
done at the server.
From Fig. 8b, we infer that the performance of FOCUS

is better than the others under low to medium network load
conditions, at around 150ms. It slowly begins to approach the
computational response time of Nearest first as the network
load increases to 2Mbps. This happens because with increasing
network load, it becomes more beneficial for FOCUS to
allocate computational tasks on the nodes nearest to the ground
station (UAS 1 and 2) to mitigate the negative effects of
forwarding delay on highly saturated links (e.g., the path from
UAS 3 to 4). The Local-only approach performs worse because
the task allocation is done to only those nodes that are within 1
hop from the ground station. This approach is quite immune
to the increase in network load. However, the computation
response time is higher than FOCUS because the task is not

9

UAS 1

UAS 2

UAS 4 GCS &

 App. Server

WiFi Channel 11

UAS 3

Ground Unit 2

Ground Unit 1

WiFi Channel 6

Identical UDP
flows

WiFi Channel 1

B.A.T.M.A.N.

mesh network

(a)

0

100

200

300

400

500

600

700

800

900

0

0
,1

0
,2

0
,3

0
,4

0
,5

0
,6

0
,7

0
,8

0
,9 1

1
,1

1
,2

1
,3

1
,4

1
,5

1
,6

1
,7

1
,8

1
,9 2

A
v

er
ag

e
C

o
m

p
u

ta
ti

o
n

 R
es

p
o

n
se

T
im

e
(m

s)

UDP Flow Size (Mbps)

Local-only App. Server-only
FOCUS Nearest-first

(b)

0

100

200

300

400

500

600

0 0,5 1 1,5

M
ax

.
n

u
m

b
er

 o
f

C
o
m

p
u

ta
ti

o
n

R
eq

u
es

t
h

an
d

le
d
 p

er
 m

in
u

te

UDP Flow Size (Mbps)

Nearest-first FOCUS

App.Server-only Local-only

(c)

Fig. 8: (a)Testbed with 4 UASs, (b)Average computation time w.r.t. network load, (c)Max. computation capacity of the network
allocated to the optimal UAS, based on the global network
knowledge. Doing the computing task on the server in the App-
Server only approach is not scalable, since the computation
response time increases exponentially with the network load.

The maximum number of computational tasks that are
handled per minute in the network under increasing network
load is shown in Fig. 8c. FOCUS and Nearest first provide
higher capacity running the most number of computations per
minute. Local-only and App-server only approaches result in
much less capacity in terms of computations per minute, since
they are localized to certain specific nodes in the network.

From these experimental results, we see that FOCUS incurs
the minimum computation response time while having the
capability to run the highest number of computations per
minute, when compared to other classical methods.

B. Simulation results
Next, we evaluate the performance of FOCUS through

a numerical simulation to study large scale scenarios. We
consider a grid topology in which the UASs are placed at equal
distances and are connected in a ‘cross formation’, where each
UAS can have at most four neighbors. We then place the GCS
at one corner of the grid using the model described in Section
IV. We define Pc and Pn as the probability that each UAS
will receive Ω

(c)
i and Ω

(n)
i from the ground units, respectively.

There are 40 UASs and we fix the value for the sets Υ(c) and
Υ(n). Unless specified otherwise, we use these values for the
model parameters: µ(c)

N+1 = 100, µ(c)
i = 5, µ(n)

i = 125, Ω
(c)
i = 2,

Ω
(n)
i =3 (in Mbps) and, Pn =0.75, Pc =0.8 .
Fig. 9a shows W(c) value generally increases with the

only-network traffic. Here, we also show the Distance-based
method that corresponds to a greedy algorithm in which a
node sends its computation requests to the GCS only if its
distance to the latter is less then half of the network graph
diameter. Else, it shares the requests among its neighbors.
The Local-only method is not affected by the network traffic;
the App-Server only method works well with low traffic load
but it is the worst when the traffic load become high. The
Distance-based method combines both cloud computation and
fog computation but as soon as the network become congested
close to the GCS, the performance drops. Finally, FOCUS is
able to cope with different traffic loads, striking a balance
between fog and cloud computation.

In Fig. 9b, we show how FOCUS distributes the computa-
tion requests along the UAN. Here we plot two values for Pn:
0.25 and 0.75. We see when network traffic is high, the cloud
(point 0 in x-axis) is not preferred. However, with lower Pn
some computation occurs in the cloud. With low network load,

100

150

200

250

300

350

400

450

500

0

2
0

4
0

6
0

8
0

1
0

0

W
c

Pn

Local-only
App.Server-only
FOCUS
Distance-based

(a)

0

0,05

0,1

0,15

0,2

0,25

0,3

0 1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

C
o

m
p

u
ta

ti
o

n
 P

er
ce

n
ta

g
e

Distance from GSC (hop count)

Pn = 0.25

Pn = 0.75

(b)
Fig. 9: (a) W(c) varying network-only traffic Pn, (b) Percent-
age of computation executed w.r.t. the distance from the GCS.

the computation is largely contained in the middle section of
the UAN (as the GCS is at one corner of the grid). At the same
time, we have few UASs that are part of the only-network
path towards the GCS while some others have their network
queue empty. If we increase the Pn, we see the computation
is spread uniformly around the network. This is because of a
more uniform distribution of the intra-network bound packets.
Thus, FOCUS dynamically distributes fog computation tasks
around the network based on the traffic conditions.

VII. CONCLUSION AND FUTURE WORK
We proposed a fog computing architecture, called FOCUS,

for UAS software-defined mesh networks. We first showed
that increasing CPU utilization of UAS has negligible effect
on flight time, and characterized the trade-off between compu-
tation time/location under different network and computation
loads. Then, we formulated the joint problem of network and
computation flow optimization, with heuristics having well
defined complexity, along with a systems-level implemen-
tation. Experiments and simulations validated the approach
of allocating computational tasks in a principled manner,
revealing over 32% latency improvement compared to greedy
or end-server only allocation methods. Finally, we are planing
to enhance our framework by including another module, which
orchestrates the positioning of UASs optimizing the overall
coverage for ground units while sustaining feasible mesh
connectivity. Furthermore, we are also going to evaluate the

10

performance of existing low-power radio technologies (such as
NB-IoT and LoRa) and analyze the trade-off between energy
consumption and the delay in control traffic traffic.

ACKNOWLEDGEMENT
This work is in support of ONR-Code 30 OTA #N00014-

18-9-0001.
REFERENCES

[1] McKinsey&Company, “Commercial drones are here: The future of
unmanned aerial systems,” Technical Report, 2017.

[2] L. Gupta, J. Rain, and G. Vaszkun, “Survey of important issues in uav
communication networks,” IEEE Commun. Surv. and Tut., vol. 18, no. 2,
pp. 1123–1152, 2005.

[3] “OpenDayLight - Software Defined Network and Network Function
Virtualization,” https://www.opendaylight.org/, accessed on April, 2018.

[4] H. Genc, Y. Zu, T. W. Chin, M. Halpern, and V. J. Reddi, “Flying IoT:
Toward Low-Power Vision in the Sky,” IEEE Micro, vol. 37, no. 6, pp.
40–51, November 2017.

[5] I. Bekmezci, O. Koray Sahingoz, and S. Temel, “Flying ad-hoc networks
(fanets): A survey,” Ad Hoc Netw. (Elsevier), vol. 11, no. 3, pp. 1254–
1270, 2013.

[6] C. Rametta and G. Schembra, “Designing a softwarized network de-
ployed on a fleet of drones for rural zone monitoring,” Future Internet,
vol. 9, no. 1, pp. 1–21, 2017.

[7] K. J. S. White, E. Denney, M. D. Knudson, A. K. Mamerides, and
D. P. Pezaros, “A programmable SDN+NFV-based architecture for UAV
telemetry monitoring,” in 14th IEEE Annu. Consum. Commun. Netw.
Conf. (CCNC), Jan 2017, pp. 522–527.

[8] B. Barritt, T. Kichkaylo, K. Mandke, A. Zalcman, and V. Lin, “Operating
a uav mesh internet backhaul network using temporospatial sdn,” in 2017
IEEE Aerosp. Conf., March 2017, pp. 1–7.

[9] Z. Yuan, X. Huang, L. Sun, and J. Jin, “Software defined mobile sensor
network for micro uav swarm,” IEEE Int.Conf. on Control and Robot.
Eng. (ICCRE), 2016.

[10] Z. Zhang, H. Wang, and H. Zhao, “An sdn framework for uav backbone
network towards knowledge centric networking,” in IEEE Conf. on
Comput. Commun. Workshops (INFOCOM WKSHPS): Knowl. Centric
Netw., 2018, pp. 456–461.

[11] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Utilizing fog comput. for
multi-robot syst.” in 2018 2nd IEEE Int. Conf. on Robotic Computing
(IRC), Jan 2018, pp. 102–105.

[12] N. H. Motlagh, M. Bagaa, and T. Taleb, “UAV-Based IoT Platform: A
Crowd Surveillance Use Case,” IEEE Commun. Mag., vol. 55, no. 2,
pp. 128–134, February 2017.

[13] X. Wang, A. Chowdhery, and M. Chiang, “Networked drone cameras
for sports streaming,” in 2017 IEEE 37th Int. Conf. on Distrib. Comput.
Syst. (ICDCS), June 2017, pp. 308–318.

[14] R. I. Meneguette, A. Boukerche, and A. H. M. Pimenta, “Avarac: An
availability-based resource allocation scheme for vehicular cloud,” IEEE
Trans. on Intell. Transp. Sys., pp. 1–12, 2018.

[15] Y. Hui, Z. Su, T. H. Luan, and J. Cai, “Content in motion: An
edge computing based relay scheme for content dissemination in urban
vehicular networks,” IEEE Trans. on Intell. Transp. Sys., pp. 1–14, 2018.

[16] R. Florin and S. Olariu, “Toward approximating job completion time in
vehicular clouds,” IEEE Trans. on Intell. Transp. Sys., pp. 1–10, 2018.

[17] S. Jeong, O. Simeone, and J. Kang, “Mobile Edge Computing via a UAV-
Mounted Cloudlet: Optimization of Bit Allocation and Path Planning,”
IEEE Trans. on Veh. Technol., vol. 67, no. 3, pp. 2049–2063, 2018.

[18] M. Narang, S. Xiang, W. Liu, J. Gutierrez, L. Chiaraviglio, A. Sathiasee-
lan, and A. Merwaday, “UAV-assisted edge infrastructure for challenged
networks,” in 2017 IEEE Conf. on Comput. Commun. Workshops (IN-
FOCOM WKSHPS), May 2017, pp. 60–65.

[19] A. Kattepur, H. K. Rath, and A. Simha, “A-Priori Estimation of
Computation Times in Fog Networked Robotics,” in 2017 IEEE Int.
Conf. on Edge Computing (EDGE), June 2017, pp. 9–16.

[20] M. A. Messous, H. Sedjelmaci, N. Houari, and S. M. Senouci, “Compu-
tation offloading game for an UAV network in mobile edge computing,”
in IEEE ICC, May 2017, pp. 1–6.

[21] H. Shakhatreh, A. Khreishah, J. Chakareski, H. B. Salameh, and
I. Khalil, “On the continuous coverage problem for a swarm of uavs,”
in 2016 IEEE 37th Sarnoff Symp., Sep. 2016, pp. 130–135.

[22] A. Trotta, M. D. Felice, F. Montori, K. R. Chowdhury, and L. Bononi,
“Joint coverage, connectivity, and charging strategies for distributed uav
networks,” IEEE Trans. on Robot., vol. 34, no. 4, pp. 883–900, 2018.

[23] “Stress - Simple workload generator for POSIX systems,”
http://people.seas.harvard.edu/ apw/stress/, accessed on May, 2018.

[24] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris, Fundamentals
of Queueing Theory, 4th ed. New York, USA: Wiley-Interscience, 2008.

[25] E. Bonfoh, S. Medjiah, and C. Chassot, “A parsimonious monitoring
approach for link bandwidth estimation within sdn-based networks,” in
4th IEEE Conf. on Netw. Softwarization and Workshops (NetSoft), 2018.

[26] G. Baier, E. Köhler, and M. Skutella, “The k-splittable flow problem,”
Algorithmica, vol. 42, no. 3, pp. 231–248, Jul 2005.

[27] D. P. Bertsekas and D. A. Castañon, “A forward/reverse auction algo-
rithm for asymmetric assignment problems,” Comput. Optim. and Appl.,
vol. 1, no. 3, pp. 277–297, Dec 1992.

[28] “DroneCodeSDK - MAVLink API library for the dronecode platform,”
https://www.dronecode.org/sdk/, accessed on March, 2018.

[29] “Docker - Docker, Inc. - Operating System Level Virtualization,”
https://www.docker.com, accessed on May, 2018.

[30] “OpenvSwitch - Linux Foundation, Collaborative Projects - Open-
vSwitch,” https://www.openvswitch.org/, accessed on Feb., 2018.

[31] “B.A.T.M.A.N - Better Approach To Mobile Ad-hoc Networking,”
https://www.open-mesh.org/, accessed on Feb., 2018.

[32] C. M, L. V, S. C, and F. P., “Binary robust independent elementary
features,” Eur. Conf. on comput. vision, pp. 778–792, 2010.

Gokhan Secinti [S’13, M’18] is Postdoctoral Re-
search Associate in Northeastern University. He
serves as a reviewer in IEEE Communications Mag-
azine, IEEE Transactions on Vehicular Technology,
IEEE Transactions in Wireless Communications and
The International Journal of Communication Sys-
tems. He is the recipient of IEEE INFOCOM Best
Poster Paper Award (2015) and IEEE CAMAD Best
Paper Award (2016). His current research includes
Aerial Networks, Software-Defined Networking.

Angelo Trotta is a Postdoc Research Fellow with
the Department of Computer Science and Engi-
neering, University of Bologna. He received his
PhD. degree in computer science and engineering
in 2017 from University of Bologna, Bologna, Italy.
He was a Visiting Researcher with the Heudiasyc
Laboratory, Sorbonne Universities, UTC, Compigne,
France, and with Genesys-Laboratory, Northeast-
ern University, Boston, MA, USA. His current re-
search includes nature inspired algorithms for self-
organizing multirobots wireless systems.

Subhramoy Mohanti is a PhD candidate at the
Department of Electrical and Computer Engineering
in Northeastern University. He is the recipient of
the IEEE INFOCOM Best Paper Award (2018) and
the Northeastern University Graduate Dissertation
Research Grant (2015). His current research areas in-
clude UAV networking and communication, wireless
protocols and networks, scheduling and optimization
techniques.

Marco Di Felice is an Associate Professor of
computer science with University of Bologna. He
received the Laurea (summa cum laude) and Ph.D.
degrees in computer science from University of
Bologna, Bologna, Italy, in 2004 and 2008, respec-
tively. He was a Visiting Researcher with Geor-
gia Institute of Technology, Atlanta, GA, and with
Northeastern University, Boston, MA, USA. His
research interests include self-organizing wireless
networks, unmanned aerial systems, IoT, and mobile
applications.

Kaushik R. Chowdhury [M’09, SM’15] is an
Associate Professor in the Electrical and Computer
Engineering Department at Northeastern University.
He was awarded the Presidential Early Career Award
for Scientists and Engineers (PECASE) in Jan. 2017,
the DARPA Young Faculty Award (2017), the Office
of Naval Research Director of Research Early Career
Award (2016), and the NSF CAREER award in
(2015). His current research areas include networked
robotics, dynamic spectrum access, RF energy har-
vesting sensors, intra-body implant communication.

	Copertina_postprint_IRIS_UNIBO(2)
	FOCUS_IEEE_ITS

