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Abstract— Large scale 3D maps constructed via LiDAR sensor
are widely used on intelligent vehicles for localization in outdoor
scenes. However, loading, communication and processing of the
original dense maps are time consuming for onboard computing
platform, which calls for a more concise representation of
maps to reduce the complexity but keep the performance of
localization. In this paper, we propose a teacher-student learning
paradigm to compress the 3D point cloud map. Specifically,
we first find a subset of LiDAR points with high number of
observations to preserve the localization performance, which
is regarded as the teacher of map compression. An efficient
optimization strategy is proposed to deal with the massive data
in original map. With the supervision of compressed map,
a student model is built by training a random forest model
fed with geometric feature descriptors of each point. As a
result, the student model is able to compress the map without
referring to the expensive numerical optimization. Additionally,
by incorporating the features, the innovative student model can
be generalized to other new maps while no re-training is required.
We conduct thorough experiments on multi-session dataset and
KITTI dataset to demonstrate the effectiveness and efficiency
of the proposed learning paradigm, and the comparison with
other map compression methods. The final results show that the
learned student model can achieve efficient map compression
with comparable LiDAR based localization performance to the
original map at the same time.

Index Terms—LiDAR based localization, map compression,
teacher-student learning paradigm.

I. INTRODUCTION

AP is a critical component for autonomous vehicles
in applications. Especially for localization task, high
precision maps with millions of points have been constructed
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via onboard sensors as an assistance. However, due to the
limited computing and memory resources of the mobile
computing platform, these maps bring significant burden to
real-time processing and offline management. Therefore, map
compression is one of the desired techniques to save the
processing power and storage space, and expected to preserve
the accuracy of localization at the same time.

Three-dimensional (3D) light detection and ranging
(LiDAR) scanner is widely used for building 3D dense point
cloud maps, as well as real-time localization for vehicles.
A popular method to compress the point cloud map and
accelerate the localization is to define the map with semantic
objects, such as trees, light poles and traffic signs, which
are lightweight for loading, communication and processing,
thus becoming the main trend for representing on-the-road
maps [1]-[4]. However, when the technique is applied to
off-the-road area, the main concern is that the pre-defined
object classes may rarely occur, leading to a very sparse
semantic map providing insufficient cues for localization.
If the object classes are re-defined to adapt to new environ-
ments, large amount of labeled data is required to re-train the
classifiers, limiting the generalization of the method.

To enhance the generalization, we consider that the
3D LiDAR map compression should focus on the low level
geometric property of point clouds, just as JPEG [5] does
for image compression, which focuses on the high frequency
components, like edges and corners. The main difference of the
map compression is that when the size of the map is reduced,
the localization is still required to be reliable. In computer
vision community, there are several works proposing visual
map compression methods based on observation count [6], [7]
through optimization techniques [8], [9]. However, direct
extension of these methods to LiDAR map is not possi-
ble, since the number of points in the laser map is much
larger, causing significantly growing computation complex-
ity. In addition, the observation count is not the low level
geometric feature of point clouds, but highly dependents on
the motion trajectories of mobile vehicles, which means that
for each large map, expensive data preparation phase and
optimization process are unavoidable.

It is summarized that a desirable map compression system
for LiDAR map should be generalized to new environments
with high efficiency, while localization performance on the
compressed maps is preserved, at least decreases slightly.
To achieve this goal, we set to raise two hypotheses as follows.
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Firstly, in computer vision community, many works score
the map points by observation count to achieve localization
oriented map compression [6]-[9], and this indicates that the
observation count is correlated with the localization perfor-
mance. So we propose the first hypothesis: the observation
count is correlated with localization performance. In this
paper, the idea is extended to the LiDAR maps by propos-
ing an optimization strategy to approximate the solution of
original programming problem within tractable time. In many
other papers, geometric features or semantics can also be
extracted for robust localization [3], [10], [11], so we think
the geometric properties might also be correlated with the
localization performance. Combing with these existing works,
the second hypothesis is raised that the observation count is
correlated to the geometric property of point cloud map, which
makes the method possible to adapt to the new environments.
To verify the second hypothesis, we propose a teacher-student
learning model in this paper. The teacher model generates
the compressed map by solving the programming problem as
supervision, while the student model learns the compression
using the geometric feature descriptor of point clouds. In this
context, the student model is encouraged to be innovative as
the similar compression result is desired with different input.
We conduct thorough experiments to verify the hypotheses and
demonstrate the localization on the compressed maps. Overall,
the contributions of this paper are as follows:

o A learning paradigm is proposed with teacher-student
model for 3D LiDAR map compression, which encour-
ages the student model to learn the compressed
results using geometric features, thus achieving fast
generalization.

o An optimization strategy is proposed to approximate the
full size linear programming problem to achieve the map
compression, which is regarded as the teacher model in
the learning paradigm.

o From the compressed maps provided by teacher model,
we train a random forest model as student model, which
incorporates the geometric property of environments into
the map compression.

o Evaluation and analyses are performed to verify the
hypotheses, and demonstrate the effectiveness and effi-
ciency of the proposed paradigm for 3D LiDAR map
compression.

The rest of this paper is organized as follows: Section II
reviews the related works of map compression in recent years.
The whole teacher-student learning paradigm is introduced
in Section III. In Section IV, we present the details of weighted
integer linear programming (ILP) for map compression and
data annotation. Learning based student model is presented
in Section V including feature extraction and random forest.
Section VI reports the experimental results using two datasets.
We conclude a brief overview on our system and a future
outlook in Section VII.

II. RELATED WORK

Essentially, the objective of map compression or summariza-
tion in this paper is to select a subset of critical representations
in the map database, which is a popular topic in vision
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community recently. The number of times that a visual land-
mark has been observed by mobile platforms can be used as
a scoring function for selection [7], and landmarks with high
score are considered as informative observations for localiza-
tion. Dymczyk et al. [6] presented novel scoring functions and
sampling policies for multi-dataset landmark simplification
to achieve place recognition, combined with overlapping tra-
jectories. Specifically, map compression for localization task
requires that the map points or landmarks cover the most of
robot poses or keyframes using the minimum amount, which
is a maximum coverage problem or K-over problem and also
an NP-complete problem. Li et al. [12] proposed a greedy
heuristic based approach to select points from large amount
of Internet photo collections, which predicts the most reliable
points for point-to-feature matching to estimate the camera
pose. Cheng et al. [9] presented a framework to predict K value
by evaluating the matching potential of 3D visual points and
also an adaptive weighting scheme for greedy process. These
algorithms have no guarantee on solution for map compression
problem optimally but approximately solve the problem.

One popular visual map compression method is based on
optimization approach, formulating the selection problem as
a programming problem. For computer vision tasks, location
recognition is similar with the localization, and ILP was used
in data database to select the most compact subset of images
to achieve recognition [13]. Park er al. [8] proposed the
quadratic programming (QP) method to solve the visual map
compression, which is a baseline for further 3D point cloud
reduction. Dymczyk et al. [14] split the entire optimization
into sub-sections by defining the pose graph, which can
accelerate the compression process. They also integrated the
compressed map into other works for long autonomy, such as
map maintenance [15] and map management [16]. Besides,
they summarized the map on the agent-side using a regression
model and defined ranking features [17]. The training set is
annotated based on the observation counts in multiple datasets
covering the same trajectory. Similar work was presented by
Merzi¢ et al. [18] to predict the quality of visual map for
localization and path planning. Van Opdenbosch et al. [19]
proposed an ILP based method with minimum spanning tree.
The tree combined all the features to get the dependency
correspondences, which generate an optimal coding order for
weighted programming approach.

As for map compression problem in 3D LiDAR, less
researches focus on map reduction, but tried to solve the data
compression by other measures in the following. In this paper,
the proposed lossy map compression aims at reducing the
map size by permanently eliminating useless points, which is
different from lossless compression methods. Researchers in
remote sensing area proposed encoder based representations
to compress the LiDAR points [20], [21], thus achieving
lossless compression in another perspective. For lossy meth-
ods, some researchers downsampled the 3D point clouds by
clustering, which is not localization task oriented. Naturally
salient regions are extracted from 3D LiDAR data in [22]
for scan matching. Similarly, Lee ef al. [23] introduced rota-
tion invariant descriptors from salient regions in laser map.
These methods are mainly based on geometric features and
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The framework of the proposed teacher-student learning paradigm for map compression. Blocks are colored to difference teacher and student. Scoring

and programming steps aim at annotating the original full map as the supervision. With the extracted features and labels from teacher, we train a random

forest model as student for generalization in new environments.

dependent on some pre-defined descriptors heavily. Addition-
ally, in the area of simultaneous localization and mapping
(SLAM), if the mobile platforms revisit the same places,
the repeated map information or pose graphs can be merged
for sparsification. Many related works [24], [25] proposed
information theoretic compression of pose graphs, which is
also effective for map database reduction, but relies on the
graph form of mapping heavily. In this paper, the appearance
features of point clouds are used for map summarization
without complex organization form of maps, thus simplifying
the compression process possibly.

III. TEACHER-STUDENT PARADIGM

The framework of the proposed teacher-student paradigm
is presented in Fig. 1. There are two main components to
achieve learning map compression: programming based map
compression for annotating map points, which is the teacher
in the paradigm; random forest model for map compression
in new environments, regarded as the student learning from
the optimized results. The programming is time consuming in
very large maps, and the learned student, trained model from
the teacher, can be generalized for map compression in new
environments without much complexity.

In the programming phase of the teacher, we use two
original materials from mapping process: vehicle poses
P = {pi} and one-to-one corresponding laser scans & =
{s;} = {{l;}}, where [; represents the i;;, laser point in a current
scan s;. Firstly, original full map M, = {m;} can be scored by
observation count, where m; represents one laser point in the
map. The score function is defined by the observation counts of

map points using sequent scan alignments. From the proposed
scoring process, visibility matrix A and weight vector q are
generated, which demonstrate the visibility and importance of
every map point. Then a weighted ILP method is then applied
to annotate the original full map. After the programming step,
each map point is marked in binary vector x as whether to be
eliminated for summarization. To accelerate the whole process,
a problem partitioning and merging strategy is used to solve
the complex optimization, and the final result approximates to
the global minimum iteratively.

In the learning phase of the student, we extract representa-
tive features F = {f;} from the original full map considering
the informative geometric property of 3D point clouds. Then
a random forest model is trained using these features F and
compressed results x. With the trained forest model T, other
new maps can be fed into the learning model to generate
compressed maps. The learning stage or the student can
compress the original map easily without complex scoring and
optimization steps.

IV. APPROXIMATION OF PROGRAMMING FOR LARGE M AP

In this section, we introduce the map compression method
of the teacher model in Fig. 1, which relies on the first
proposed hypothesis: the observation count is correlated with
localization on the map. The whole process includes two parts:
scoring by alignments and the formulation of ILP problem.
The scoring process gives different weights and describes
the visibility of map points. Thus ILP can achieve the point
selection for map compression. We also propose a novel
problem partitioning method to simplify the optimization step
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and achieve the approximation of global minimum of pro-
gramming. As a result, the teacher generates the compressed
map by programming as the data annotation for the following
learning student.

A. Scoring by Alignments

The definition of whether a laser map point is observed in
the map comes from iterative closest point (ICP), which is a
popular point cloud registration algorithm for its simplicity in
the area of computer vision and robotics. The crucial part of
ICP [26], [27] is the point-to-point distance d; ,,, between the
stored map point m; and current laser point /;, which is the
minimization part of ICP essentially. Based on the matched
distance after the pose is estimated or corrected, we set the
map point as observed with the following criteria:

0 di;m; = din
1 dl,',m; < dth (1)

where d;j, is a threshold value in 3D Euclidean space to decide
if the map point in one frame is observed or not. This criteria
helps to distinguish the dense parts and sparse parts when the
map points have uneven point density. Specifically, the dense
part of the map points are observed more times than the sparse
ones, which indicates the different importance of map points.
Given a sequence of poses P and raw scans S from LiDAR
sensor, we can score each map point by aligning the scans to
the map and cumulating the observation counts. This scoring
process should fulfill the following strategies:

« a map point can not be observed multiple times repeatedly
at one pose: to reduce the sensitivity to high density points
in one frame.

« the observation counts can be accumulated in different
poses: the larger count is, the more times a landmark is
observed, the more useful for localization.

The strategies of our scoring function are presented in Fig. 2.
Finally, all map points {m;} can be weighted as q, =
{q,-}l-:L___ N,,» Where Ny, is the number of points in the original
full map M,. For the following programming problem, g; is
set t0 (Gmax — 9i)/(Gmax — Gmin), Which maps the original
counts to the range of [0, 1]. Together, a binary visibility
matrix A is generated to represent the matching results after
all the alignments. The size of A is N, by N,,, where N, is
the size of P or S. More precisely, if the i’ map point m;
is observed when the platform is at the j* pose p j» then
Aj;; = 1; conversely Aj; = 0. We denote the storage
complexity of A by O(N,N,,) for clarity, and O(N,,) for q.

Observed = H

B. Integer Linear Programming
Intuitively, the basic requirement for point cloud registration
is that the observed map points should be greater than a certain
quantity b in one laser frame. Under this constraint, the map
compression problem can be formulated as follows:
minimize qTx
X
subject to Ax > b1
x € {0, 1} 2)
where x is a binary vector indicates whether a map point
should be eliminated or not; if map point m; is kept, then
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x m;

Fig. 2. Graphic illustration of the scoring strategy. Some map points are
matched many times after scan alignments, which indicate that they are
informative part for localization.

* |

x;i = 1. q weights each map point individually in the
minimization part. The hard constraint Ax > b1 guarantees
the continuous point cloud registration for pose tracking. The
larger b is, more map points are kept after programming, and
vice versa.

But the programming may fail if the number of matched
map points is less than b in some places, we introduce a slack
variable ¢ into the inequality to relax the optimization, shows
as follows:

mini;nize qTx + ilT;‘
subject to Ax + ¢ > bl
x € {0, 1}
¢ (0,2 3)

where ¢ is a semi-positive integer vector that allows less
visible constraints on some laser frames. A is a tuning para-
meter that decides the hardness of constraint, when A goes
to zero, the constraint becomes softer, since the minimization
part allows large values in ¢ combining the small value of A.

Some previous methods [8], [14] used quadratic term Q in
the programming. Q is a N, by N, matrix that represents
the artificial defined relations between each map points. Such
large matrix is a huge burden for optimization, and improves
the matching performance not too much [8] [14]. We discard
the quadratic term for simplification, same as [19].

After the optimization, we label the results on the origi-
nal map M, to achieve annotation for the following learn-
ing phase, and compressed map from programming is also
generated:

M, programming Mp @)

compress

C. Problem Partitioning and Merging

The optimization process is still a heavy calculation for
the millions of map points. It is too hard to solve the
problem in short time with thousands of poses or frames
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Algorithm 1 Problem Partitioning and Merging Strategy
Input:
The binary vector of map points: x;
The other parameters of ILP: A, q, 4, b;
The number of first partitioned trajectory: N,;
Output:
while N, > 1 do
Partition visibility Matrix by rows: A = [A1; s ANE]
fori =1 to N, do
Obtain x; by solving Eq. (3) with A;
end for
Merge all the sub-solutions: X = x| V -V Xy,
Ne = N /2;
end while

(N, inequalities) and huge number of map points (N,, vari-
ables). Theoretically, the time complexity of the binary ILP
problem is exponential along with N,,, and is also related
to the number of constraints N,, denoted by O (f(Np, Np)).
For example, binary ILP is solvable in O (2" N, N p) time by
brute-force enumerative algorithm [28]. In this paper, a novel
partitioning and merging strategy is proposed to obtain an
approximation of the final solution in limited time.

In this paper, first, the trajectory is partitioned into N,
sections evenly:

P:{P]9,P23"'3PN3} (5)
and the visibility matrix is segmented by rows:
A=[A; Ay Ay, (6)

Note that the total size of map points X remains invariant
before solving all Eq. (3) with each A;. After optimization,
we merge all the sub-results together as the final compressed
result using binary OR operations, as follow:

Xmerged = X1 VX2 V - VX, (7

Obviously, the new map Xy¢rgeq is reduced compared to the
original x, and still satisfies the constraints for localization.
We regard Xpergeq as the full map, and apply the Eq. (5, 6, 7)
as a new iteration. This partitioning and merging operation
is repeated iteratively. In each new iteration, the splitting
length or the number of divided trajectories is re-doubled from
the previous iteration process. Essentially, the proposed split
and merge method is a kind of greedy strategy. We first solve
a partial ILP problem, which is regarded as the locally optimal
solution on one section of whole trajectory. And then all
compressed results are merged for the next ILP problems with
larger partitioned sections. The iteration will continue until the
global programming problem is solved on the whole trajectory
finally. An illustration of the partitioning and merging strategy
is presented in Algorithm 1 and Fig. 3. For every partitioned
ILP during iterations, the storage complexity of q remains
as O(Ny,). The complexity of A is reduced to O(N,,) from
O(NpNy), since the number of rows is kept at a constant

value C = Np which is not related to the size of total set

Te’
N, essentially. Similarly, the time complexity is also not

¥ ¥ ¥ ¥
e | N S S
I
¥ ¥
oo IR e
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Fig. 3. This figure illustrates the formulation of the proposed strategy. One
block represents the relative map points that reserved for one partitioned
trajectory. With the proposed partitioning and merging method, the whole
map can be compressed to a limited scale iteratively.

Merge l

connected to N, and is reduced to O(f (N, C)), thus the
entire problem can be solvable within tractable time.

In [14], both visual features and keyframes in graph are
partitioned for faster processing. The experiments were con-
ducted in indoor environments with separated rooms, so it’s
reasonable that they used graph-cut to partition the problem
according to the minimum co-observed landmarks between
keyframes. While for the extension to outdoors, where the
number of co-observe landmarks between poses are almost
the same, we tried minimum graph cut of frames but obtained
unacceptable results for map compression (every single pose
is split from the pose graph). So we select the uniform
partitioning of poses as the strategy in the outdoor scenes,
and the whole map points are used for every ILP on sub-piece
of trajectory.

Analysis With the proposed partitioning strategy of ILP
problem, the optimized result is approaching to the global
minimum iteratively. We perform the analysis as follows, and
select a case study in Fig. 3.

Suppose that there are two maps and trajectories: x| =
{x11,x12}; X0 = {x21,X2}, and P, P> respectively. Xii
represents the part of x; that can only be observed by P,
and x1» is the shared part by P; and P, which means both
‘P1 and P, can observe the map points in xj3. It is same for
Xp1 and Xp7 in X2. We denote the reduction result of one map
points set x as x~ . The different observation cases determine
the results of the optimization:

« For x1; and x37, no points is eliminated after the merging
and optimization. Because some poses in P only observe
X1 not Xj2 or Xp1, X;; will not satisfy the constraints
Ax + ¢ > bl. x> should not be reduced for the same
reason.

o Other poses in P; or P, observe the shared part after
merging process. The number of observed laser points of
some poses is larger than b, which means that some points
in the merged shared part are redundant. We assume
that there exist X;ep, = {xfz,xi} after the optimiza-
tion of the whole map part, and the X, still satisfy
the constraints of programming since there must be a
summarized {X},,X5,} that can provide enough obser-
vations for localization, same as single x17 or X1 for P
and P».
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Overall, by optimizing the shared part of merging result,
the proposed partitioning strategy is able to reduce the amount
of map points iteratively.

V. LEARNING FROM THE OPTIMIZED RESULT

As one can see, for the teacher part in Fig. 1, the program-
ming based approach costs manpower for data preparation and
is time consuming in optimization step, which also brings
much computational complexity on resource constrained plat-
form. Considering the second hypothesis, the observation
count is also correlated to the geometric property of point
cloud map, thus we propose to learn the map compression
skill. In this section, we select certain representative features
from 3D point clouds for Random Forest (RF) training [29].
The trained RF model is regarded as the innovated student
model in the proposed teacher-student paradigm, as shown
in Fig. 1. The trained forest is able to compress the new orig-
inal maps, thus achieving learning map compression without
complex optimization.

A. Feature Extraction

We first focus on the local geometric features of point
cloud map M,, several descriptors are extracted for each map
point m; as follows:

o The eigenvalues 4 > Ay > A3 of m; combined with near
points are computed to describe the local surface around
the point. Walls, slopes and bushes on both sides of the
road are distinguished from each other for the different
surface shapes. The ratios of eigenvalues are widely used
in various applications in perception, such as loop closing
for mapping [30] etc. We extract the original eigenvalues
and feed them into RF for training and testing in this
section.

o Surface normals n = (ny, ny, n3) are computed to make
difference between similar shapes around the vehicle,
walls and road planes e.g. Normal vector is the eigen-
vector of the smallest eigenvalue A3 essentially. We filter
the normal vectors of the whole map in one global frame,
in order to keep the consistency of orientations of surface
normals.

o Density p is computed for more descriptions on different
shapes of objects. p is estimated by a sphere that contains
k nearest points around one point, where k is a constant
value across whole map. This feature is able to distinguish
the sparse branches and dense leaves on trees for example.
The uneven density can reflect the different importance
of 3D points essentially, which is useful to achieve
localization oriented map compression.

o Advanced LiDAR sensors can provide intensity value
I of m;, representing different reflections of surfaces,
glasses and walls for example.

Besides the basic descriptors above, considering that mobile
vehicle is running on road in maps, the relation information
between poses P and map points M, is also important for
localization tasks. For each map point m;, we search the
nearest pose p; in the trajectory. We select p; to represent the
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path point that most likely observe m;. Two main distances in
Euclidean space are used as follows:

o The range distance Tpjm from p; to the m; is impor-
tant, which is helpful to keep near walls and eliminate
buildings which are too far in the learning stage.

o The elevation h pjumi in local is used, which is helpful to
distinguish bushes that lying on the ground and leaves on
the trees for example. hp; », is computed according to
the range difference on Z-axis in the global frame.

To accelerate the nearest neighbor search, a K-dimension
(KD) tree is built between M, and P, and also in M, itself
for estimations of surface normals and densities. Note that the
3D coordinates of points m2; or poses p; are in the same global
frame.

Finally, the extracted geometric features in the learning
phase are as follows:

fz{ﬁ}z{11912,l3an19n29n3,p9I,rpj,m;ahp_,‘,m;} (8)

In summary, the feature of every point in point
clouds is generated for map compression. Specifically,
{21, 22,43,n1,n2,n3, p} are calculated considering the
nearby points of one point, and {1, 7, m;» hp;m;} are based
on self properties of one point.

In [17], ranking features are designed artificially on the
agent side of camera, such as track length of a visual point,
maximum angle between observed rays etc. And there also
exist some modeling measurements for laser scans, such as
ray casting method [31] or incident angles [32]. But these
exhausting feature extractions are expensive and against the
proposed concise learning based method. 3D LiDAR scanners
can obtain much more accurate range measurements than cam-
eras, so we extract the geometric feature descriptions of laser
points in maps, where complex model of ray casting or other
observation models are not selected in the learning stage of
our algorithm.

B. Building Random Forest

After the feature extraction process from the map M,,
we can train a random forest model T. Random forest is a
powerful and popular classifier in machine learning area, and
has been used in many applications for its simplicity. There
are less parameters in RF model, which can be trained without
GPU device. In point clouds, RF model is able to handle the
unavoidable noises. For autonomous driving or transportation
systems, random forest method is widely used for point cloud
segmentation or classification tasks [33]-[35].

In random forest, the trees are independent to each other
in training step, but make the final decision with probability
together in prediction step. Firstly, trees are built by per-
forming an individual learning algorithm that splits the input
features into subsets. The splitting criteria is based on Gini
index. Then the predicted class is voted by the trees. The
classification result can be presented in probability form:

0 Prob,, < Prob,
X = ' )
1 Prob,,; > Prob,
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(a) original full map M, and satellite imagery of YQ dataset

Fig. 4.

(a) Origin full map at south part of Yuquan campus in Zhejiang University, attached with the satellite imagery. The training material provided by

the teacher are colored in green, and the blue part are used by the student for evaluation. The green line in satellite imagery is the trajectory of platform
motion. (b) The proposed map compression is also evaluated on sequence 10 of KITTI odometry benchmark, which is collected in an rural residential area

of Karlsruhe City.

where Prob,,, is the probability of whether a map point m;
should be kept in the learned compressed map M;.

We can compress the original full map to a certain amount
by controlling the threshold Prob;j using T, which is trained
on M, with the same ratio; or we can train a forest with
a different compression ratio on M,, and achieve another
ratio M; by thresholding Proby;, directly. The two different
compression methods are compared in the following experi-
mental section.

Overall, after the learning phase of the student, the trained
model can also reduce the map size, compared to the
teacher (4), as follows:

x=T(F)
-5

M, M, (10)

VI. EXPERIMENTAL RESULTS

The proposed learning paradigm for map compression
in Fig. 1 is evaluated in this section. We validate the prediction
effectiveness of the learned map M; from programming
based compressed map M, which is the comparison between
student and teacher in the paradigm. And ICP registration is
applied on M; to validate localization performance compared
to other map simplification methods. Computational complex-
ity of localization on different maps are also presented to
demonstrate the efficiency of the proposed map compression.
Finally, we also present the generalization to new places and
datasets without extra pre-training.

A. Dataset and Implementation

In the experiment sections, we first use the multi-session
dataset, called YQ, which is self-collected on a mobile robot
platform in a university campus during three days [36],
in which the LiDAR scans are captured by Velodyne VLP-16.
The original full map M, is generated by using SLAM, shown
in Fig. 4 (a). The point cloud map covers a ground area
more than 20000 m? with a density nearly 100 points/m?.
We also use a popular dataset KITTI [37] for evaluation,

which is a public dataset for autonomous driving. KITTI
provides laser scans from Velodyne HDL-64E and ground
truth of the poses from GPS data. We select sequence 10 from
KITTI odometry benchmark for evaluation, which is collected
in a rural residential area of nearly 12000 m?. The point
cloud map generated from KITTI dataset is with a density
of 118 points/m>, shown in Fig. 4 (b). Considering the
zero or low speed situation in data collection, we remove some
dense scans or poses to generate more uniform keyframes,
which avoids large observation count of point clouds at some
places. This kind of keyframe based method is widely used
in mapping techniques. Specifically, there are nearly 5000 and
1000 keyframes in the YQ and KITTI dataset respectively for
the different levels of speeds of mobile platforms. To reduce
the huge burden for storage and computation, we use Octree
grid filter to generate M,,. The filtered map keeps the original
geometric properties and is still suitable for localization, thus
is also an appropriate starting point for the following localiza-
tion oriented map compression. The maps in YQ and KITTI
dataset are summarized to 26.73% and 37.06% before map
compression, which are acceptable sizes for real operations.
The raw data map and summarized M, are shown in Fig. 5.

We implement the programming solution using the com-
mercial software Gurobi! [38]. The large matrices of ILP are
stored in separate files in disk, which can reduce the storage
complexity of internal memory on the resource constrained
platform. We build KD-tree using libnabo? [39] for fast nearest
neighbor search between poses and map points. Random forest
is trained on the open source code® [40]. Feature extrac-
tion and registration tests are implemented using libpoint-
matcher 4 [26]. By using libpointmatcher, the normal vectors
and relative eigenvalues are calculated from the covariance
matrix of 3D points. The generated surface normals are shown

1 https://www.gurobi.com
2https://github.com/ethz—aslllibnabo

3 https://github.com/imbs-hl/ranger
4https://github.com/ethz-asl/libpointmatcher
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(a) raw data map and the surface normals

Fig. 5.
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(b) generated M, after summarization and the surface normals

We present part of the raw map in (a), and the filtered M,, in (b). Compared to the map from raw scans, it is clearly that the summarized map

reduces the huge burden on resource constrained platform. In addition, we also present some generated surface normals in the two maps, shown as red arrows
in the point clouds. The surface normals vectors are similar in these two maps, which indicates that the geometric properties are kept after the summarization.
Therefore, the reduced map with acceptable size is still an appropriate start point for the following localization oriented map compression.

TABLE I
LOCALIZATION ON M, WITH DIFFERENT / (b = 1000)

TABLE I
MEAN DECREASE ACCURACY AND MEAN DECREASE GINI

A 0.01 0.02 0.05 0.1 0.2 Feature A1 X2 A3 n1 n2 n3 p I Tpjm; hpjm;
size 0.19% 0.98% 1.24% 1.28% 1.30% MDA 535 265 553 62.1 53.0 59.8 2479 68.8 1653 2572
error (m)  Fail Fail 0.096 0.094 0.102 MDG 594.4 535.9 590.6 729.9 664.2 990.0 1591.7631.1 1373.4 2297.9
error (°) Fail Fail 0.138 0.137 0.137

in Fig. 5. The common configuration in libpointmatcher is
sufficient for localization, so we follow this configuration in
the experiments. All maps are stored as PLY> format files.
To help understanding our implementation, we release the
source code online®.

As for the parameters, the threshold of matched distance is
set as dy, = 0.1m. To solve the proposed ILP, the number
of sub-sections is N,, which is decided by the split length in
each iteration of programming. And we set the length equals
to 50, 100, ... 3200 in each step (7 times of iterations for YQ,
and 5 times for KITTI). For training the forest T, the number
of trees is 100 and we set the depth of trees unlimited. About
1/3 or 1/2 part of M, is used for training the trees and
the rest of it is for validation, colored differently in Fig. 4.
In the theoretical part in this paper, b and Prob,; decide the
size of compressed maps in programing and learning methods
respectively.

We test different values on A4 of Eq. (3), which is used
to balance the constraints and computing speed for soft opti-
mization. In YQ dataset, we set b = 1000 as a constant value,
then the compressed maps M are obtained by the teacher
model with different A. In order to select the most appropriate
parameter, we conduct point cloud registration on these maps.
The compressed sizes and localization errors are shown in
Tab. 1. Localization fails on 4 = 0.01,0.02 for the larger ¢
in Eq. (3), which makes the constraint soft but cause the lack
of observations on some poses. Finally, considering the trade
off between map size and localization performance, we select
A = 0.1 for optimization.

As for the random forest model, we evaluate the Mean
Decrease Accuracy (MDA) and Mean Decrease Gini (MDG)
of every feature. The more the accuracy decreases due to

5http://paulbourke.net/dataformats/ply
(’https://github.com/ZJ UYH/map_compression

the exclusion of a single feature, the more important that
feature is. The Mean Decrease Gini measures how each feature
contributes in the random forest. As one can see, in Tab. II,
hp;m; and p are more critical than the other features for
classification. As shown in Fig. 10, most reserved points are
mainly dense and close to the road, which also indicates that
hp;m; and p are helpful for point selection.

B. Approximation of ILP

First of all, in the teacher of the learning paradigm, we eval-
uate the performance of ILP using the proposed partitioning
and merging strategy. We tried to optimize the entire ILP
problem without partitioning but the final solution cannot
be achieved in days. So we use the proposed strategy to
compress the map iteratively, and the full map is compressed
to a certain ratio. We set b = 4000, 3000, 2000, 1000 in YQ
dataset, and the compression ratios are 6.60%, 4.53%, 2.75%
and 1.23% respectively after optimization; and the ratios are
2.28%, 2.02%, 1.29% and 0.61% in KITTI dataset.

Additionally, we record all the costs after every iterative
minimization, and the remained ratio respectively, shown
in Fig. 6. As one can see, the results show that the cost
and ratio are reduced after the minimization in the iterative
programming process. And the bigger b is, the more obvious
trend is: ratio is reduced to 6.60% from 9.29% with b = 4000,
and is also reduced to 1.23% from 1.75% with b = 1000
in YQ dataset. Though we do not know the final ratio
after the global optimization without partitioning, the whole
trend is approximate to the minimum after every iteration of
programming. This result validates the effectiveness of the
partitioning and merging strategy proposed in this paper.

C. Map Compression Comparison

In this section, we compare the similarity between the
teacher and the student in the learning paradigm. We first
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Fig. 6. The reductions of costs and remained points after the minimization of programming in YQ and KITTI datasets. The trends show that the final result
is approximate to the global minimum by using the proposed partitioning and merging strategy.

4.53% M, with b = 4000

2

RN, f

Fig. 7.

(a) Map compression results M, from ILP.

2.75% My with b = 2000

6.60% M; with Proby, = 0.675 4.53% M; with Proby, = 0.698 2.75% M, with Prob;, = 0.716  1.23% M; with Prob;, = 0.749
(b) Map compression results M, from the trained RF model.

7

In YQ dataset, the results from the two methods are quite similar. For the proposed ILP method, the number of points or compression ratio is

decided by the value of b. After the RF model is trained, the compression ratio is equal to the corresponding b by thresholding Prob;y. (a)Map compression
results M, from ILP. (b) Map compression results M; from the trained RF model.

generate different sizes of compressed maps M, by setting
the parameters b = 4000, 3000, 2000, 1000, then same sizes
of M; are learned by controlling the threshold Prob,;. With
the decrease of b and the increase of Prob;,, less map
points are reserved in M, and M/, shown in Fig. 7. Note
that we train different forest models using different annotated
maps M, for multiple compression ratios respectively. It is
the first method in Section V-B.

To compare the similarity between the compressed maps
from the teacher and student, we make statistics on the
matching distances between M, and M; via KD-tree in
YQ dataset. The nearest neighbor distances are counted as
histograms for similarity measure, shown in Fig. 8. When
the full map is compressed to 6.60% with b = 4000,
almost 50% predicted points are very close to the pro-
grammed ones and the matched distances are below 0.1m, and
above 70% when the distance is 0.2m, shown in Fig. 8 (a).
The similarity measurements in Fig. 8 (b), Fig. 8 (c¢) and
Fig. 9 (a) for b = 3000, 2000, 1000 also perform acceptable
results.

Besides learning from the same ratio compressed by pro-
gramming, we also propose the second method in Section V-B.
By tuning Proby, after the forest is trained, a certain ratio can
also be obtained from compressed maps with different ratio.
The distance histogram between 1.23% M; from b = 4000
and M, with b = 1000 is shown in Fig. 9 (b), which
achieves almost same similarity compared to Fig. 9 (a). And
the similarity of two different tuning methods is presented
in Fig. 9 (c), which validates the consistency of the learning
paradigm in this paper. At last, almost all the distances are
in the range of 0.2m in Fig. 8 and Fig. 9. The comparison
between M, and M, demonstrates the effectiveness of the
proposed teacher-student paradigm for map compression.

We present part of the map compression results in Fig. 10.
As one can see, for ILP and learning based methods,
the reserved point clouds after map compression are mainly
focused on the salient objects with dense points on the sides
of roads. Tree trunks, walls, telegraph poles etc., which can
be observed frequently for vehicles on roads, are still reserved
after compression with high ratio. While for ground, sparse
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Histograms of matched distances between M; and M, with b = 4000, 3000, 2000. Each learned map M; is generated from the respective forest

0.1 02 03 04 05 06 07 08 09

Matched Distance (m)

1

(a) 1.23%.M; from b = 1000

Fig. 9.

(b) tuning 1.23%.M; from b = 4000

(c) similarity of M in (a)(b)

(a) Histogram of matched distances between M; and M with b = 1000. (b) We achieve the same ratio 1.23% M; from M, with b = 4000

directly by tuning Probyj,. (c) The similarity of these two maps M, from different two methods with same compression ratio.

leaves and branches etc., are eliminated for the poor visibility
during localization. The map points closer to road are more
likely to be reserved for the stronger visibility. In summary,
the dense semantic parts of original map are critical compo-
nents of compressed maps for localization.

We consider that the reserved points will meet the needs of
location positioning from two aspects. Firstly, the local feature
based maps are widely used for precise registration or local-
ization [3], [10], [11]. Edges, walls or semantic objects are
mainly used for robust matching in these papers. Our reserved
points are similar to these features, which validates the ratio-
nality of the compressed result. Secondly, there is no prior
knowledge or semantic information in our system, and the
learned result from observation count is still similar with those
feature or semantic based maps, thus verifying the proposed
hypothesis in qualitative way.

In addition, we consider that there are some reasons limit
the applications of the learned student, as follows:

o The limitations of feature extractions and conventional
machine learning algorithm can not make the learned
results perfect. Some hidden features are hard to describe
by geometric descriptors, and this is the main reason.

o Clustered dense points are hard to distinguish each other
for almost same geometric features but different compres-
sion results.

o Some obscured (hidden feature) surfaces or objects are
observed few times on the sides of the road, but they
are similar with these kept map points, and can not be
classified using geometric property.

D. Localization Performance

We conduct the localization experiment on a part of YQ and
KITTI dataset. YQ dataset is a three-day multi-session dataset,
so we build the map using laser data in the first day, and make
evaluation in the third day, which validates the localization
performance under the temporal semi-static changes of the
environments. Since KITTI dataset provides single session for
one sequence, we evaluate the localization performance by
using the same laser data as the mapping step.

For comparison, we also generate some other compressed
maps, all the test maps states as follows:

e M, and M;: the maps compressed by the proposed
paradigm in this paper. Programming based method is
widely used for map compression as state-of-the-art [8],
[14], [16], [19].

e M,: random sampled map. To eliminate the effect of
random factors, we apply localization five times on five
different randomly sampled map.

o M,: voxel grid filtered map. We use PCL’ [41] to sample
the point cloud in 3D space, and the size of leaves decides
the compression ratio.

o M,.: segmented map by clustering. We use Euclidean
extraction clustering in PCL, and we try to make the high
density segments widely distributed in the space.

e M;: a filtered map by thresholding the weight
vector q. The observation count can also be used as a
sampling strategy [6], [7], which keeps landmarks that are

7 http://pointclouds.org
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My, from ILP
(a) Reserved points of the proposed methods

Camera View

My, from ILP

o

Camera View My, from ILP

(b) Reserved points of the proposed methods

o

M, from RF

Wy

M, from RF

(c) Reserved points of the proposed methods

Fig. 10.

After compression of YQ dataset, as shown in (a),(b) and (c), the reserved points are colored in red on the original maps (b = 4000, 6.60%).

The learned map M; is similar with the M, from the teacher. Intuitively, tree trunks, walls and some other landmarks are reserved for the higher visibility

during localization.

frequently observed, but not guaranteeing the localization
performance on the road.

e M,: asaliency map. We use the geometric based saliency
evaluation in [42], [43], and tune the relevant parameters
to obtain saliency points from the datasets in this paper.
The saliency map represents the interesting or important
part from the original map.

Localization performance is evaluated by applying
ICP registration continuously on these maps with different
ratios. The pose of first frame is given as the fixed start
position. ICP is applied for each current laser scan, which
uses the previous result as the initial value to achieve pose
tracking. Some key variants have effect on the registration
process [26], and we use the same set of parameters in
different maps to guarantee the fair test. Considering that
the most points are in 0.2m in the similarity comparison of
Fig. 8 and Fig. 9, we set the distance threshold to 0.2m in
YQ dataset. All the variants are listed in Tab. III.

TABLE III
VARIANTS IN ICP REGISTRATION FOR LOCALIZATION IN YQ DATASET

Module Description

Filtering of map M None

Filtering of scan S Random sampling, keep 10%
Data association KD-tree with k=5

Outlier filtering Keep matches below 0.2m and maximum

normal angles is 0.78 rad.
Error minimization

Checking

Point-to-plane

Iteration count reached 20, minimum error
below 0.01m and 0.001 rad

The results of localization tests are shown in Fig. 12.
We compare the 6D registration results with the ground truth
poses, and translation errors in 3D Euclidean space are pre-
sented in Fig. 12 (a) (c). As the heading error is important for
vehicles, and the rotation errors of yaw-component are shown
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learning model by setting b and tuning Prob;j,. The other compressed maps are generated by using the comparative methods.
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Fig. 12.

in Fig. 12 (b) (d). Pose tracking fails on most of 1.23% maps
in YQ dataset, while the proposed 1.23% M, and M; provide
informative map points for localization. In KITTI dataset with
0.61% compression ratio, the vehicle is also able to localize
itself only on M, and M. The compressed maps M; perform
slightly worse than M, because the programming based
method guarantees the matching points on all poses. Generally,
the proposed teacher-student learning paradigm achieves better
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Localization errors by applying ICP registration. The maps are compressed to certain ratios, the same as ILP with b = 4000, 3000, 2000, 1000.

performance than the other comparative methods, as the other
compressed maps are not localization oriented and can not
provide sufficient matching points for localization. As for
M, and M,, the sparse map can not provide efficient map
points for matching. M, are dense maps after clustering, but
the clusters can not guarantee the reliable localization on the
whole road. It is same for M; and M for the lack of point
visibility at some places.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YIN et al.: 3D LIDAR MAP COMPRESSION FOR EFFICIENT LOCALIZATION ON RESOURCE CONSTRAINED VEHICLES 13

TABLE IV
TIME COST (MINUTE) TO GENERATE M, AND M; (TRAIN/TEST)

YQ Maps 6.60% 4.53% 2.75% 1.23%
My 34.70 30.72 27.71 27.83
M, 10.20/1.09 8.94/0.98  9.35/0.98  7.79/1.04
KITTI Maps ~ 2.28% 2.02% 1.29% 0.61%
My 11.86 10.83 11.87 15.44
M; 4,24/1.02  3.90/1.00  3.69/1.04  3.22/1.02

Specifically, as shown in Fig. 10 and 11, our proposed maps
M, and M contain the most informative points on both sides
of the road, which can reduce the sensitivity to the environ-
mental changing possibly, thus keeping the platform localize
itself successfully in compressed maps. And the localization
results indicate that although M; is not totally same as M, in
the previous validation of prediction, the learned map M; from
student model is still effective for localization. With the map
size reduced down, the localization accuracies become worse.
But the errors on M; are limited to 0.5 m and 2°, which
indicates that the vehicle can achieve successful navigation in
the learned compressed maps. Overall, the localization results
on M, and M; show that the observation count and geometric
property are correlated with the localization performance, thus
verifying the two hypotheses proposed in this paper.

E. Efficiency

Efficiency of learning map compression is validated in this
subsection. We first compare the time cost between program-
ming (teacher) and learning (student) methods; then loading
and localization time. Two devices are used for optimization
and computation on point clouds: we use a workstation to
compress the full map using ILP and RF, equipped with Intel
E5-2696 2.30GHz and 128G RAM; the computing platform
for loading and registration point clouds in this section is a
laptop with Intel i5-5200U 2.20GHz and 12G RAM, which is
a common configuration for resource constrained platform.

1) Map Compression: The time costs for the programming
based method and random forest are evaluated using the
workstation. ILP summarizes the original full map M, to M,
from beginning to end. For the RF model, we use 1/3 and 1/2
part of M, in YQ and KITTI dataset as the training material,
and the rest of it is compressed for test. The time cost includes
the growing step of trees and the generation of M; at the rest
of places. The records of time costs to generate maps are listed
in Tab. IV.

Obviously, the optimization step of the teacher is more
time consuming. And the student can compress new maps
on the laptop, while ILP slows down the speed too much on
this device. With the trained student model, faster prediction
for large maps can be achieved by tuning Prob,;, directly,
compared to the complex optimization by setting b. For ILP,
much more time is needed when the map grows larger or the
mobile platform travels longer, but it will spend less time
for the RF model. In addition, more manpower is spent
on scoring process for ILP, while the feature extraction for

TABLE V
STORAGE SPACE (MB) AND TIME COST (S) TO LOAD DIFFERENT MAPS

YQ Maps 100% 6.60% 4.53% 2.75% 1.23%
Space (Mb) 729.5 494 339 20.6 9.2
Time (s) 44.95 3.11 2.06 1.30 0.58
KITTI Maps  100% 2.28% 2.02% 1.29% 0.61%
Space (Mb) 894.0 25.5 18.5 11.7 55
Time (s) 55.50 1.62 1.12 0.73 0.34

(a) vehicle

(b) onboard sensors

Fig. 13.

The vehicle equipped used for data collection.

s f ; ¢
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(a) 100% M, (b) 4% M are colored in red

Fig. 14. The learned model from YQ dataset is also able to compress new
map at other places.

learning method is much more automatic. In a word, by using
RF model, we can generate the informative compressed maps
more easily with higher efficiency.

2) Loading Map: We compress the 100% M, to different
sizes of M, and M; using the trained RF model. The sizes
of the maps and loading times on the laptop are listed in
Tab. V. Map with 1.23% and 0.61% ratio occupy less space
on disk and are efficient for loading. With less size and time,
the vehicle is able to achieve fast localization and navigation
in real-world applications.

3) Localization: We record the time costs of ICP reg-
istration on different ratios of part maps in YQ dataset.
ICP registration performs more than 1000 times on each part
map from beginning to end, and the average time of all
methods in this paper are listed in Tab. VI. We also record the
number of iterations in ICP process, which is able to reflect
the complexity of this algorithm, shown in Tab. VII.

As shown in the tables, since the map points are com-
pressed to a very small amount, there is little difference in
time costs. And when the map is reduced gradually, more
iterations of ICP are needed to locate the vehicle. In M,
and M, current laser points are matched with widely distrib-
uted map points, so more iterative steps are taken to reduce
the distances or plane angles around the vehicle. While for
M, or M, since the map points are semi-clustered, and
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Fig. 15. Localization errors on the Park dataset. M; performs better than the other simplified maps.

TABLE VI
TIME COST (SECOND) FOR ICP REGISTRATION IN YQ DATASET

Maps 6.60% 4.53% 2.75% 1.23%
My 0.026 0.025 0.023 0.023
M, 0.030 0.028 0.029 0.028
My 0.033 0.033 0.031 Fail
My, 0.031 0.029 Fail Fail
M. Fail Fail Fail Fail
My 0.026 0.024 Fail Fail
M Fail Fail Fail Fail
TABLE VII

AVERAGE NUMBER OF ITERATIONS FOR ICP IN YQ DATASET

Maps 6.60% 4.53% 2.75% 1.23%
My 6.26 6.62 7.10 8.23
M, 7.58 8.07 8.86 10.04
M, 7.68 8.36 9.05 Fail
My, 8.57 9.28 Fail Fail
M Fail Fail Fail Fail
M, 6.37 6.50 Fail Fail
M Fail Fail Fail Fail

ICP becomes more efficient after using outlier filters. Actually,
the use of global maps costs much time on nearest neighbor
search, though initial value and KD-tree are given; so less time
will be spent if we use keyframes with smaller scale maps.

FE. Generalization

Finally, the proposed teacher-student paradigm is general-
ized to other places out of YQ or KITTI dataset. We use a
dataset collected from a park to build a new full map, which is
self-collected by another vehicle, shown in Fig. 13. The point
cloud map is about 98 points/m® and covers the area of 9000
m?. By using RF model from YQ dataset, we compress the full
map to 4%, 3%, 2% and 1% ratios directly without complex
ILP. This learned student model is trained in YQ dataset and
tested in Park dataset without changing.

As shown in Fig. 14, the final learned maps in park are
similar with those in YQ, where trees trunks and bushes near

the roads are reserved, and useless map points are removed
for clearance. We also conduct the localization experiment on
these maps, compared to other map simplification methods.
The results are shown in Fig. 15, and the proposed M; achieve
better performance than the others. This experiment for map
compression validates the generalization of the innovated
student. Finally, both results shown in Fig. 12 and Fig. 15
show that the localization performance is correlated with the
observation count and geometric property of the point cloud
map, thus making the proposed hypotheses verified.

VII. CONCLUSION

An efficient learning map compression method is proposed
in this paper using 3D LiDAR data and vehicle poses, which is
based on the framework of teacher-student paradigm. Specif-
ically, our method is driven by the proposed hypotheses:
observation count is correlated with localization performance,
and is also correlated to the geometric property of point cloud
map. We first achieve the map compression by programming
with the observation count, which is regarded as the teacher
and provides training material. A partitioning and merging
strategy is proposed to solve the programming problem within
tractable time. The student is the RF model with geometric
features of point clouds, which is trained to compress full maps
in new environments. The results show that learned maps are
effective and efficient for vehicle localization even when the
map is reduced to near 1% of the original size. In the future,
we intend to achieve map update to remove low dynamics in
the environments, thus making the map more reliable for long
term localization.
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