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Abstract— The positioning accuracy of the existing vehicular
Global Positioning System (GPS) is far from sufficient to support
autonomous driving and ITS applications. To remedy that,
leading methods such as ranging and cooperation have improved
the positioning accuracy to varying degrees, but they are still full
of challenges in practical applications. Especially for cooperative
positioning, in addition to the performance of methods, cooper-
ators may provide false data due to attacks or selfishness, which
can seriously affect the positioning accuracy. By fully exploiting
the characteristics of blockchain and edge computing, this paper
proposes a vehicular blockchain-based secure and efficient GPS
positioning error evolution sharing framework, which improves
vehicle positioning accuracy from ensuring security and credibil-
ity of cooperators and data. First, by analyzing the GPS error,
a bridge can be established between the sensor-rich vehicles
and the common vehicles to achieve cooperation by sharing
the positioning error evolution at a specific time and location.
Particularly, the positioning error evolution is obtained by a deep
neural network (DNN)-based prediction algorithm running on the
edge server. We further propose to use blockchain technology for
storage and sharing the evolution of positioning errors, mainly
to guarantee the security of cooperative vehicles and mobile
edge computing nodes (MECNs). In addition, the corresponding
smart contracts are designed to automate and efficiently perform
storage and sharing tasks as well as solve inconsistencies in time
scales. Extensive simulations based on actual data indicate the
accuracy and security of our proposal in terms of positioning
error correction and data sharing.

Index Terms— Positioning error evolution, edge computing,
DNN, vehicular blockchain, smart contract.

I. INTRODUCTION

POSITIONING information is very important for vehicles,
especially for autonomous vehicles, which can be used to

navigate in real-time with other data such as geographic data
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and vehicle state data. Vehicles with accurate position infor-
mation can adjust driving conditions according to dynamic
changes in the driving environment, thus enabling safe driving
and improving the driving experience.

Global Positioning System (GPS) is one of the most widely
used technologies. Although GPS signals are available most of
the time, accurate positioning is still challenging for supporting
autonomous driving and other applications where positioning
accuracy is critical. For instants, in urban canyons, due to
multipath interference, GPS accuracy in urban canyons ranges
between 30-50 meters [1]. Even under normal circumstances,
GPS positioning errors may lead to wrong navigation, waste
of time, and traffic accidents. Fortunately, for some vehicles
with multiple sensors (hereinafter referred to as sensor-rich
vehicles), such as camera and Lidar, other sensing methods
can be used to improve their positioning accuracy [2], [3].
However, on the one hand, for current traffic scenarios, most
common vehicles still exist, and it is impossible to obtain
accurate sensing information. On the other hand, Lidar sensors
are expensive, which restricts their large-scale application.
Therefore, how to improve GPS positioning accuracy is still
worth studying.

A lot of work has been proposed to improve the GPS
positioning accuracy of vehicles, from hybrid systems,
infrastructure-based positioning, vehicle cooperative
positioning (VCP), cooperative positioning (CP) systems,
fusion systems, to mobile phone-based positioning, etc.
Demetriou et al. [1] proposes a system called CoDriv for
providing the accurate position of sensor-rich vehicles to
a common vehicle. Angelis et al. [4] propose to use the
Global Navigation Satellite System (GNSS) and cellular
networks to form a hybrid scheme for user positioning in
urban scenarios. Alam and Dempster [5] discuss modern
and conventional CP systems. Yassin and Rachid [6]
explain the principles behind positioning techniques used in
satellite networks, mobile networks, and Wireless Local Area
Networks. Some infrastructure-based positioning methods are
proposed (e.g., anchor nodes [7], and magnetic positioning
system [8]). Wang et al. [9] design a dedicated short-
range communications (DSRC)-based vehicle cooperative
positioning enhancement system. Li et al. [10] develop
roadside equipment (RSE)-assisted lane-level positioning
method using GPS data and received signal strength (RSS)
data. Walter et al. [11] propose to use the sensors of Android
smartphone for vehicle navigation when the GPS signal is lost.
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These efforts use different methods to improve vehicle
positioning accuracy to degrees. However, the methods based
on expensive sensors are still challenging for applying to
common vehicles. The ranging based method also has errors
in the ranging process [10]. Therefore, starting from the
GPS positioning error characteristics, it is very meaningful
to study a scheme that can adapt to the current scenario of
the coexistence of common vehicles and sensor-rich vehicles
to facilitate positioning error correction. On the one hand,
the mobile edge computing nodes (MECNs) can store accurate
map information, and sensor-rich vehicles can easily obtain
accurate positioning. On the other hand, thanks to the comput-
ing power and storage capabilities of edge computing, sensor-
rich vehicles participating in cooperative positioning can store
the positioning error model in MECNs to provide a reference
for common vehicles. However, due to attacks or selfish
reasons, cooperative vehicles and MECNs cannot be fully
trusted, which may provide false data. How to improve the
security and reliability of cooperators and data is worth pon-
dering. Indeed, blockchain is a very promising technology for
secure storing and sharing data in many application scenarios,
such as the Internet of Things (IoT) and vehicular networks
[12], [13]. Applying blockchain technology for vehicle posi-
tion information sharing can bring many benefits, such as secu-
rity, automation, and transparency [14]. Therefore, positioning
accuracy can be improved by avoiding malicious false data and
motivating more users to participate in cooperative positioning.

This work proposes a vehicular blockchain-based frame-
work for improving GPS positioning accuracy by ensuring
the security and credibility of cooperative data. In particular,
as information providers, sensor-rich vehicles provide posi-
tioning errors obtained by other methods to common vehicles
(i.e., data requesters). Specifically, the characteristics of GPS
error are analyzed and the GPS positioning error evolution
model is obtained by the deep neural networks (DNN). Then
we put forward a GPS error evolution sharing framework that
utilizes edge computing and blockchain technology. In order
to solve the problem of inconsistent block generation time
and information exchange time scale, we designed smart
contracts that run the data storage and sharing process securely
and efficiently. The main contributions of this paper are
four-fold:

• System Solution: A vehicular blockchain-based GPS error
evolution model sharing framework is proposed. The
corresponding smart contracts for data storage and shar-
ing are designed. Our proposal improves the accuracy
of cooperative positioning by ensuring the security and
reliability of cooperators and data.

• AI-based Algorithm: We propose a DNN-based error
correction algorithm that runs on the edge server and can
take advantage of the computing power and low latency
characteristics of edge computing.

• Collective Learning Strategy: Cooperation between vehi-
cles by sharing DNN models instead of positioning error
data, which makes the results more adaptive to the current
driving environment.

• Validation: The developed proposal is evaluated by exten-
sive simulations. Simulation results validate the accuracy

and security of our proposal in terms of positioning error
prediction, error correction and data sharing process.

The remainder of the paper is organized as follows. The
related work is presented in Section II. In Section III, we depict
the system architecture and analyze the GPS error. Based on
the system model, the deep learning algorithm for analyzing
GPS error evolution is proposed in Section IV. In Section V,
we present the vehicular blockchain structure and smart con-
tracts. Extensive simulation results are discussed in Section VI,
and conclusion is drawn in Section VII.

II. RELATED WORK

In this section, we survey the existing works on the improve-
ment of vehicle positioning accuracy and vehicular blockchain.

A. Positioning of Vehicles

There are two main types of methods for positioning of
vehicles. One is a non-cooperative positioning method based
on the vehicle’s own body sensor such as radar, camera,
and Lidar, and the other is a CP method [15], [16]. For
non-cooperative positioning, in most cases, the positioning
accuracy is relatively accurate. Chen et al. [17] propose a
positioning algorithm based on machine vision that utilizes
low-cost monocular cameras. In [18] and [19], Lidar is adopted
to observe the surrounding environment and match the obser-
vation with a priori knew 3D point cloud map for estimating
the position of the vehicle within the map. However, this
sensor-based approach has the drawback of a line-of-sight
characteristic and severely affected by the weather. The authors
of [20] propose a sensor fusion-based vehicle positioning sys-
tem by using GPS, camera and digital map, etc., which costs
less. High definition (HD) map contains the accurate three-
dimensional characterization of the road network (centimeter-
level accuracy). However, the requirements of high accuracy
and real-time also make the collecting and processing of large
amounts of data become extremely challenging. At the same
time, its huge amount of data consumption of communication
and computing resources should not be underestimated.

For CP, it is through direct communication between several
vehicles to improve their positioning accuracy [5]. The authors
of [5] discuss modern and conventional CP systems in detail.
One is based on the method of ranging, such as RSS, time of
arrival (TOA), angle of arrival (AOA), and Time Difference-of-
Arrival (TDOA), which estimate the relative position directly
at the RF-signal level [16]. However, these measurements are
challenged by some drawbacks varying from complexities of
the time-synchronization, occupations of the high-bandwidth,
to huge costs on the implementations. Kloeden et al. design
a low-cost prototype system for vehicle self-localization using
AOA technique [21], which can achieve lane positioning.
In order to solve the problem of inaccurate positioning caused
by nonline-of-sight (NLoS), a TOA-based positioning technol-
ogy is proposed [22]. In addition to the ranging-based method,
the other is to exchange positioning data, speed and other
information between vehicles to improve positioning accuracy.
Cooperative vehicle communication technology offers new
opportunities for CP methods [9], [23]–[25]. The authors
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of [9] take use of DSRC for sharing motion states and
physical measurements among vehicles to improve vehicle
positioning accuracy. In [23] and [24], GPS position estimates
and vehicle-to-vehicle (V2V) measurements are combined for
positioning enhancement. The authors also explain the effect
of noise on the GPS and received signal strength of V2V.
Kakkavas et al. [25] investigate the performance of relative
posting using V2V and the importance of AOA and TDOA for
location estimation. A drawback of this type of method is that
the exchange of information between vehicles is unreliable,
which results in reduced awareness of the relative position of
the own vehicle relative to the surrounding vehicle. Cooper-
ators who are not fully trusted will also affect the accuracy
of cooperative positioning. These inspire our work to improve
positioning accuracy from the perspective of cooperators and
cooperative data security.

There are also some methods based on smartphones, road-
side unit (RSU), and other infrastructures. The former dra-
matically depends on the accuracy in real-time event data
provided by smartphones. Both [11] and [26] use smartphones
to improve GPS positioning accuracy. In [11], the sensor
data of the smartphone is used to fuse the GPS data of the
vehicle to realize the vehicle navigation when the GPS is not
available. In order to solve the problem of insufficient accu-
racy of the current positioning technology, the authors [26]
introduce a smartphone-based lane detection system, which
uses the low-power inertial sensor data in the smartphone
to provide an accurate estimate of the current lane position
of vehicles. In [10], the RSE is fully utilized for lane-level
positioning. Both GPS and RSS data are considered and
high positioning accuracy is achieved by connected vehicle
networks. A hybrid TDOA and AOA localization method
in three-dimensional (3D) space are proposed in [27]. The
principle of infrastructure-assistant methods are the same as
the ranging method of CP, but the positioning is accurate
when the vehicle needs to access multiple infrastructures
at the same time. The focus of both [28] and [29] is on
machine learning algorithms for the indoor positioning system.
By contrast, the focus of this paper is on the use of vehicular
blockchain technology to improve the security and reliability
of cooperators and cooperative data for enhancing the position-
ing accuracy in outdoor vehicular environments. These work
[28], [29] demonstrate the feasibility of applying machine
learning algorithms for positioning.

B. Background of Blockchain Technology

Blockchain is a decentralized infrastructure widely used
in emerging digital cryptocurrencies. It has the characteris-
tics of decentralization, data not tampering, and trustwor-
thiness [14]. According to the degree of centralization of
the blockchain systems, it is mainly divided into three cate-
gories: public blockchain, consortium blockchain, and private
blockchain [30]. The public blockchain allows any node to
join the blockchain network and view information on the
blockchain, such as Bitcoin [31] and Ethereum [32]. The
consortium blockchain allows authorized nodes to join the
network and can view information according to permissions,

which is often used between organizations. In the private
blockchain, all nodes in the network are in the hands of an
organization or entity.

In the blockchain system, non-tamperable data structures,
distributed network consensus mechanisms, and increasingly
flexible smart contracts are representative innovations. The
core problem of distributed networks is how to achieve consen-
sus efficiently [14]. The consensus mechanisms of the current
blockchain system are mainly the following: Practical Byzan-
tine Fault Tolerance (PBFT), Proof of Work (PoW), Proof of
Stake (PoS), and Delegated Proof of Stake (DPoS) [33]–[35].

The smart contract of blockchain technology is the decen-
tralized, information-sharing program code deployed on the
blockchain. The parties who signed the contract agreed on
the contract content and deployed it on the blockchain in the
form of smart contracts, which can automatically execute the
contract on behalf of the signatories without relying on any
central organization [14], [36]. The operation of the smart con-
tract is as follows. The smart contract encapsulates a number
of predefined states, conversion rules, trigger conditions, and
corresponding operations. After being signed by the parties,
it is attached to the blockchain data in the form of program
code, and is recorded after propagation and verification by the
blockchain network. In the distributed ledger of each node,
the blockchain can monitor the status of the entire smart
contract in real-time and activate and execute the contract
after confirming that certain trigger conditions are satisfied.
Smart contracts encapsulate the complex behavior of nodes
in a blockchain network, providing a convenient interface
for building upper-layer applications based on blockchain
technology.

C. Blockchain for Internet of Vehicles

At present, the blockchain technology has not been applied
to vehicle positioning, so we investigate the state-of-the-art
work in applying blockchain to the Internet of Vehicles.

Kang et al. [12] make use of blockchain technology to
achieve secure data sharing in the Internet of Vehicles. In this
paper, the vehicle can be a data provider or requester, using
efficient contracts running on the blockchain for efficient data
storage and sharing. In [37], a distributed and self-managed
Vehicle Ad-hoc Networks (VANETs) architecture based on
concept of Ethereum is proposed. Specifically, Ethereum’s
contract system is utilized to organize and self-manage various
applications running on the RSU to provide different services
to the vehicle. In order to protect the vehicle from security
and privacy threats, a blockchain-based system is proposed
to increase the security of the vehicular ecosystem [38].
Singh and Kim [39] use the blockchain technology applied
in Bit-coin to propose an Intelligent Vehicle (IV) data
sharing framework to build trust and reliability. In the trust
environment based IV framework, the blockchain is used
as the backbone of the IV data sharing. Yang et al. [40]
propose a decentralized trust management system in vehicular
networks based on blockchain technology to solve the
problem that the vehicle is difficult to evaluate the credibility
of the received message due to the untrusted environment.
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TABLE I

MAIN NOTATIONS

In this system, the vehicle can use a Bayesian inference
model to verify received messages from neighboring vehicles.

However, although these important works have made great
efforts to improve the accuracy of vehicle positioning, there
are still challenges in practical applications. In detail, in the
current mixed traffic scene, GPS is still the main way of
positioning most vehicles. It is meaningful to improve the
positioning accuracy by analyzing the GPS positioning error
characteristics to carry out corresponding research. In addition
to the positioning method itself, data security is an important
factor to consider in cooperative positioning methods because
the cooperative vehicle and MECNs are not completely reli-
able. Therefore, this paper uses DNN and vehicular blockchain
technology to improve the positioning accuracy of vehicles to
take a further step in terms of accuracy and security.

III. SYSTEM MODEL

In this section, we describe the system architecture and the
models that need to be used for positioning error correction.
In addition, we analyze the possibility of sharing vehicle
positioning error models for improving positioning accuracy.
The main notices and abbreviations in this article are listed
in Table I and Table II.

A. Positioning Scenarios and System Architecture

Generally speaking, there are two types of vehicles, i.e.,
common vehicles and sensor-rich vehicles, driving on the
road. Among them, common vehicles can only obtain position
information through GPS. In addition to GPS, sensor-rich
vehicles can also be assisted by other on-board sensors, such as
camera and Lidar. Assume that the GPS receivers of the two
types of vehicles are the same. All vehicles can access the
MECNs to request service within the communication range.
The MECNs have enough storage space and computing power,
which store accurate location information of the infrastructure
in the area (e.g., landmark), as shown in Fig. 1.

TABLE II

MAIN ABBREVIATIONS

Fig. 1. System architecture of the GPS error sharing framework using
vehicular blockchain.

When a sensor-rich vehicle approaches the landmark,
the distance and angle between itself and the landmark can
be obtained by on-board sensors. And the position of the
landmark can be used to calculate the current position of
the vehicle. For vehicle i , the GPS position is expressed as
Pi =< pe

i , pn
i >, and the vehicle position P �

i =< p�e
i , p�n

i >
measured with landmark l can be expressed as:�

p�e
i = pe

l + dil ∗ cos θil

p�n
i = pn

l + dil ∗ sin θil
, (1)

where Pl =< pe
l , pn

l > is the position of landmark l,
dil and θil are the distance and angle between vehicle i and
landmark l, respectively.
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Currently, on-board sensors have relative high range accu-
racy in most cases. Therefore, for vehicle i , we consider that
P �

i is the accurate position information compared to Pi . The
GPS positioning error Ei can be calculated as:

Ei = �Pi − P �
i �. (2)

B. GPS Error Analysis

In practice, GPS measurements contain a variety of errors,
which can be classified into three categories based on the
source of the error: 1) errors associated with GPS satellites;
2) errors associated with signal propagation; 3) and receiver-
related errors. Many studies and our previous work have shown
that according to the nature of the error, these errors can be
divided into two types: systematic error and random error
[41], [42]. The GPS errors E can be decomposed into:

E = Es + Er , (3)

where Es and Er are the systematic errors and random error,
respectively. Particularly, the systematic error mainly includes
satellite orbit error, satellite clock error, ionospheric delay,
tropospheric delay, receiver clock error and receiver position
error, providing the same error magnitude and direction for
each GPS receiver within a certain range, about 50 − 200km.
The random error mainly includes multipath effect error and
receiver noise. Usually, random error Er is much smaller than
the systematic error Es [43], [44].

For vehicles i and j that are driving on the same road at
similar times, their relative error � �Eij � is satisfied:

� �Eij � = � (Pi − Pj ) � − � (P �
i − P �

j ) �
≤ � (Pi − Pj ) − (P �

i − P �
j ) �

≤ � Ei − E j �, (4)

where Pi , Pj , P �
i , P �

j , Ei and E j are the GPS position, accurate
position and GPS positioning error of vehicle i and vehicle j ,
respectively. According to (3) and (4), we can get:

� �Eij � ≤ � (Esi + Eri ) − (Esj + Er j ) �
≤ � Esi − Esj � + � Eri − Er j �, (5)

where Esi , Esj , Eri and Er j are systematic errors and random
error of GPS positioning of vehicle i and vehicle j , respec-
tively.

For the same type of GPS receiver, the positioning error
radius is fixed. In addition, at similar moments, the satel-
lite combinations that can be observed by each vehicle are
basically the same. Therefore, when using the same satellite
combination for positioning, the satellite position deviation
caused by satellite clock difference, atmospheric delay, etc.,
is almost the same. Moreover, for two vehicles with similar
positions, the difference in position between vehicles is negli-
gible relative to the distance from the vehicle to the satellite.
In this paper, vehicles for cooperative positioning and common
vehicles are considered to be on the same road segment, that
is, between two intersections, and generally less than 2 km.
Therefore, in this case, the systematic error can be considered

to be almost the same, that is, Esi ≈ Esj . Bring it into (5) to
get:

� �Eij �≤� Eri − Er j � . (6)

Since random errors Er are quite small compared to sys-
tematic errors Es , Ei ≈ E j can be considered in this case.

IV. POSITIONING ERROR CORRECTION ALGORITHM

As outlined above, sensor-rich vehicles can utilize other
sensors to correct their position through the location of the
landmarks (e.g., stop sign) and get the current GPS position-
ing error. However, due to the discontinuity of landmarks,
accurate position information based on sensor ranging can-
not be obtained without the landmark assistance. Therefore,
the positioning error of these road sections can be compensated
through prediction. In this section, we propose a deep learning-
based algorithm for predicting error evolution that can be used
to fill the error of these discontinuous road sections.

A. DNN for Positioning Error Prediction

DNN is highly fault-tolerant and self-learning, self-
organizing and adaptive, capable of simulating complex non-
linear mapping. Many factors are affecting the accuracy of
GPS positioning and the relationships are complicated. There-
fore, the characteristics of the DNN and powerful nonlinear
processing capabilities are well suited for predictive problems
in traffic scenarios. Due to the powerful computing capacity
of the edge server and improved data set, the DNN algorithm
can run on the edge server for prediction when the landmark
is unavailable.

In our work, a DNN algorithm is proposed to learn and
compensate for the positioning error. When there is a landmark
on the road, the positioning error obtained by the sensor-rich
vehicles can be used as the training data of the neural network.
When there is no landmark on the road, the positioning error
can be predicted by using the GPS data of the vehicle and the
vehicle motion state data.

1) Input Nodes: In this scenario, there are five input nodes,
i.e., vehicle’s speed vi , vehicle’s acceleration ai , driving direc-
tion dri , the GPS position pe

i and pn
i . Therefore, the input

vector can be expressed as [vi ai dri pe
i pn

i ].
2) Output Nodes: There are two output nodes, which are the

positioning error in the east direction �Ee
i and the positioning

error in the north direction �En
i . The input vector can be

expressed as [�Ee
i �En

i ].
3) Layers of Network: In general, a DNN is a neural network

with multiple hidden layers between input and output [45].
When using the DNN for prediction, the more hidden layer,
the higher the accuracy of the network, while the complexity
and time-consuming will increase. There is currently no defin-
itive formula to calculate the number of network layers, and it
is necessary to continuously learn and train according to the
data set and specific problems.

4) Hidden Layers Nodes: On the one hand, too few hidden
layer nodes will make the network unable to have the nec-
essary learning ability and information processing capability.
Conversely, too many hidden layer nodes will not only greatly
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Fig. 2. The deep neural network for predicting error evolution.

increase the complexity of the network structure, but also
reduce the speed of network learning, and the network is
more likely to fall into local optimum in the learning process.
In general, the number of hidden layer nodes are related to the
number of training set samples, the number of input nodes, and
the number of output nodes. The upper bound of hidden layers
nodes that do not cause overfitting is [46]:

Nh = S

(λ ∗ (I + O))
, (7)

where I and Oare the number of input and output nodes,
respectively, S means number of samples in the training data
set, and λ is a scale factor, typically a constant within [2, 10].

According to Andrew’s course [47], when the number of
hidden layers is greater than 1, the number of nodes of each
hidden layer should be the same. A typical diagram of DNN
used in this work is shown in Fig. 2.

Let zl , al and bl represent the vector of all inputs, the vector
of all outputs, and the vector of all offsets of the l’th layer,
respectively. Thus, the relationship between zl and al−1 can
be expressed as:

zl = Wl ∗ al−1 + bl, (8)

where Wl represents the weight from al−1 connected to zl .
We can also describe their relationship as a vector form:

al = σ(zl)

= σ(Wl ∗ al−1 + bl), (9)

where σ(·) is activation function.

B. DNN Training and Parameter Learning

The activation functions used by the hidden layers and
output layer of the network are the ReLU function σ(z) =
max(z, 0) and Sigmoid function σ(z) = 1

1+e−z , respectively.
The loss function used in this article is mean square error
(MSE), which is suitable for numerical prediction problems
and can be calculated as follows:

f (θ, x, y) = 1

n

n�
i=1

(ŷ − yi )
2, (10)

and

θ = {W, b}, (11)

where x and y are the input and output vectors, respectively.
θ is the parameter vector of the loss function. W and b are the
linear relationship coefficient matrix and bias vector of each
hidden layer and output layer. n is the number of samples, ŷ
and yi represent the actual output and desired output of i ’th
sample, respectively.

Therefore, for each sample, f = 1
2�ŷ − y�2

2. Suppose the
network has L layers, we can get ŷ = aL . Combine (9) to
solve the gradient of the output layer (i.e., L’th layer) based
on the loss function:

∂ f (θ, x, y)

∂W L
= ∂ f

∂zL

∂zL

∂W L
=(aL − y)(aL−1)T � σ �(zL), (12)

and

∂ f (θ, x, y)

∂bL
= ∂ f

∂zL

∂zL

∂bL
= (aL − y) � σ �(zL), (13)

where � means Hadamard product.
For hidden layers, we can obtain

∂ f (θ, x, y)

∂zl
= ∂ f (θ, x, y)

∂zL

∂zL

∂zL−1 · · · ∂zl+1

∂zl
. (14)

Combining (8) and (14), the Wl and bl of the l’th layer are
easy to derive:

∂ f (θ, x, y)

∂Wl
= ∂ f

∂zl

∂zl

∂Wl
= ∂ f

∂bl
(al−1)T , (15)

and

∂ f (θ, x, y)

∂bl
= ∂ f

∂zl
∂zl

∂bl . (16)

According to (8) and (9), the relationship between zl and
zl+1 can be represented as

zl+1 = Wl+1 ∗ al + bl+1

= Wl+1 ∗ σ(zl) + bl+1. (17)

Therefore, we can obtain

∂ f (θ, x, y)

∂bl
= (Wl+1)T ∂ f

∂bl+1 � σ �(zl), (18)

and

∂ f (θ, x, y)

∂Wl
= (Wl+1)T ∂ f

∂bl+1 � σ �(zl)(al−1)T . (19)

Parameter adjustment according to the following equations
during the learning process:

Wl = Wl − η ∗ ∂ f

∂bl
(al−1)T (20)

and

bl = bl − η ∗ ∂ f

∂bl
, (21)

where η is learning rate. The detailed prediction process of
DNN is shown in Algorithm 1.



904 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 22, NO. 2, FEBRUARY 2021

Algorithm 1 Algorithm of Training DNN
Input: The training samples {(x1, y1), (x2, y2), . . . , (xn, yn)},

number of layers L, maximum number of iterations Imax ,
iteration step size s, and stop iteration threshold ε;

Output: The linear relationship coefficient matrix W and bias
vector b of each hidden layer and output layer;

1: Initialize the values of W and b as random values;
2: for i ter = 1 : Imax do
3: for i = 1 : n do
4: Calculate the forward process of each data and retain

the value of the activation function for each layer al
i ;

5: Calculate the loss value by loss function f (θ, x, y);
6: Calculate the gradient of the output layer ∂ f

∂zL
i

=
∂ f
∂aL

i
� σ �(zL

i );

7: for l = 2 : L do
8: Calculate ∂ f

∂zl = (Wl+1
i )T ∂ f

∂zl+1
i

� σ �(zl
i );

9: end for
10: for l = 2 : L do
11: Update Wl and bl by
12: Wl = Wl − η

�n
i=1

∂ f
∂zl

i
(al−1

i )T ;

13: bl = bl − η
�n

i=1
∂ f
∂zl

i
;

14: end for
15: if Changes in W and b less than ε then
16: Stop training.
17: end if
18: end for
19: end for

C. Positioning Error Correction

In this paper, other vehicles, especially common vehicles,
can use the error evolution of blockchain in sensor-rich vehi-
cles in the near future to correct their positioning errors. This
subsection proposes a strategy based on transfer learning to
perform positioning error correction.

For sensor-rich vehicles, the DNN-based prediction model
and the resulting error evolution results are stored on the
blockchain. The specific data storage and sharing process
based on vehicular blockchain will be introduced in Section V.
For the common vehicle i , after obtaining the model para-
meters and positioning errors of other J vehicles, it first
judges whether or not to use the information. By com-
paring the positioning error of vehicle j, j ∈ J (i.e.,
�E j = (�Ee

j ,�En
j )) and average error other J vehicles

�Eave = (
1

J

�J
j=1 �Ee

j ,
1

J

�J
j=1 �En

j ). For each vehicle j ,

if ||�E j ,�Eave|| ≥ δ, where δ is a certain threshold, it is
considered to provide erroneous data and the data is not used.
After culling the erroneous data, the model parameters and
positioning errors of other vehicles are averaged separately.
Then, vehicle i adds a hidden layer to the neural network and
continues training, thereby obtaining error evolution, which
can be used to correct its positioning.

When vehicle i uses data stored in the blockchain by other
vehicles, it also needs to pay the corresponding fee. Vehicles
that provide multiple error information will be financially

penalized or removed from the vehicular blockchain. This will
incent more vehicles to provide information and ensure the
accuracy of the data.

V. BLOCKCHAIN CONSTRUCTION

In this section, we introduce the blockchain-based posi-
tioning error evolution model sharing method, the system
architecture as well as the running smart contracts.

A. Vehicular Blockchain

The sensor-rich vehicle can get its own positioning error
evolution about the current road segment. Through the previ-
ous analysis, this information can be shared with other vehicles
in similar locations in the near future. In this paper, error
correction can be done in two ways: One is to obtain the
positioning error evolution of sensor-rich vehicles and directly
combine the GPS positioning information of the vehicle to
obtain the corrected position. The other is to predict the
positioning error of a common vehicle through the error
prediction model obtained by sensor-rich vehicles, thereby
performing error correction. Considering the timeliness of
information and the validity of location, MECNs can serve
as a storage and sharing center for information. However,
vehicles may provide incorrect data for various reasons (even
selfishness), and MECNs may be attacked rather than fully
reliable. Therefore, blockchain technology can be used to
achieve secure and reliable storage and sharing of information.

Since GPS information and positioning error information
can only be applied to vehicles within the area, we adopt a
consortium blockchain based on vDLT blockchain platform,
which is faster than the traditional public blockchain and
the cost is greatly reduced. The vehicular blockchain system
architecture is shown in Fig. 1, which is consisted of vehicle
nodes, MECNs. The consensus process is controlled by pre-
selected nodes (MECNs). In this scenario, sensor-rich vehicles
are mainly data providers, and common vehicles are mainly
data requesters. The data provider only encrypts and transmits
the data and transmits the data as a blockchain transaction to
the nearby MECN for a corresponding reward. In particular,
MECNs are not only used for data storage but also perform
the smart contract as controllers during data sharing.

B. Smart Contracts for Information Sharing

Smart contracts based on blockchain technology can not
only take advantage of the cost-efficiency of smart contracts
but also avoid the interference of malicious behaviors on the
normal execution of contracts, so that information storage
and sharing based on smart contracts can run efficiently and
safely. In addition, since the block generation period (0.5s)
is inconsistent with the time scale of the vehicle information
broadcast cycle (200ms), smart contracts can also be used to
solve this problem.

The newly concluded contract collection will spread to the
entire network in the form of blocks. As shown in Fig. 3, each
block contains the following information: hash of the current
block, hash of the previous block, the timestamp when the
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Fig. 3. Smart contract recorded and data recorded in blocks of a blockchain.

consensus was reached, and transactions records set. A block
mainly contains three types of records, that is, data storage
records, data index records, and data sharing records.

(1) Smart Contract for Recording (SCR): Before performing
a smart contract for data sharing, the data provider needs to
store the encrypted data to the system. We design a storage
solution based on the InterPlanetary File System (IPFS) [48].
IPFS is an emerging standard for storing content addressable
files. Content-addressed storage is a mechanism for storing
information that can be retrieved based on its content rather
than its location. The SCR is deployed on the blockchain,
in which all files are linked to IPFS files. The file link content
mainly includes the local home directory path, the file name
(i.e. hash of the data), and the file size:

File Link = (/home/|| f ile name|| f ile si ze)

The request message for recording data from vehicle vi to a
nearby MECN M EC Nm , which contains the identifier K pu

i ,
the hash of the latest ined block h(Blockt−1), the file link
File Linki and timestamp, that is:

D_Reqvi→M EC Nm :

⎧⎪⎪⎨
⎪⎪⎩

K pu
i

h(Blockt−1)
File Linki

timestamp

⎫⎪⎪⎬
⎪⎪⎭

K v
i

.

Particularly, the signature of requester’s private key K v
i is

used to guarantee the truthfulness of the requested information.
Then vi will send the encrypted shared data to M EC Nm . After
the M EC Nm receives the request message and data, it will
verify that the hash of file content and file size are correct.
Once the verification is successful, M EC Nm will wrap the
received request into the new record message and add other
information such as identifier K pu

j , the file link File Linki

and timestamp. Similarly, the signature K M EC N
j are meant

to ensure truthfulness and allow anyone to verify that the
information has been tampered with. The record message can
be expressed as:

D_Recvi→M EC Nm :

⎧⎪⎪⎨
⎪⎪⎩

D_Reqvi→M EC Nm

K pu
m

File Linki

timestamp

⎫⎪⎪⎬
⎪⎪⎭

K M ECN
m

.

In case the file is correctly verified, M EC Nm broadcasts
the data record to other MECNs acting as verification nodes to
verify the signature to ensure its validity. After the consensus
on the event is achieved, the smart contract will be successfully

Fig. 4. Smart contract process for data storage.

Fig. 5. The consensus process for SCR.

executed and synchronize to the blockchain, indicating that the
file has been saved successfully, as shown in Fig. 4.

The consensus process for SCR is based on PBFT [34],
which has been widely used in many practical scenarios.
In addition, the consensus nodes are obtained by random
calculation, and at least 3 f +1 MECNs are randomly selected,
where f ≥ 1. The MECN calculates whether it is selected
according to its private key, and broadcasts the result to other
MECNs. This method ensures that the nodes selected in each
round are random and different, which increases security. The
consensus process mainly has the following steps as depicted
in Fig. 5 and Fig. 6:

• Broadcast: vi sends request to M EC Nm (consensus
nodes or accounting nodes). For accounting nodes,
it needs to forward the transaction to the consensus nodes,
then the consensus nodes broadcast the transaction to
other consensus nodes. M EC Nm sends broadcast the
event in Fig. 5 and Fig. 6.

• Pre-Prepare: The primary (MECN-leader) broadcasts the
Pre-Prepare message. The MECN_leader (primary node)
will validate the transaction immediately after packing
the transactions, and then include the validation result
into the Pre-Prepare message for the whole network
broadcast. Pre-Prepare message contains both the ordered
Transaction information and block validation result.
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Fig. 6. The consensus mechanisms for SCR.

• Prepare: Replicas send prepare message to others. After
receiving a Pre-Prepare message from MECN_leader,
a replica checks the validity of the message. When
the replica discovers that the message is from the
MECN_leader and receives it for the first time, the replica
will broadcast a Prepare message indicating consistency
with the result of the MECN_leader.

• Commit: All consensus MECNs send commit message
to others. After receiving the Prepare message, a replica
verifies and compares the verification result with the
Pre-Prepare message from the MECN_leader. When a
Prepare message is found to pass the feedback agreed
by 2 f replicas, it indicates that it enters the commit
state. The replicas broadcast a Commit message to other
replicas.

• Reply (write block): Consensus MECNs write the result
to blockchain. A replica will receive Commit information
from other nodes. When it finds that the information has
been approved by 2 f + 1 (including itself), it considers
the transaction to reach a consensus and attempts to send
the execution result to the block producer.

During a period of time, each MECN receives a data storage
request from different vehicles within communication range
and generates a corresponding data record. These records will
be gathered by the leader. And after the transaction is verified,
it is packaged into blocks and broadcasted to other pre-selected
MECNs on the blockchain for verification, which decide
whether to add the block to the end of the blockchain or not.
After the consensus is achieved, the data records contained
in the block will be persistent. More details about the con-
sensus process for blockchain are introduced in Section V.
C. Other MECNs will save data synchronously through IPFS
network.

(2) Data index recording: When vi uploads its data, it also
generates a corresponding data index for other vehicles to
quickly filter data, as shown below:

Data indexi = (File Name||Descri ption||
Data Provider ||T imestamp).

Similar to data recording, vi sends the request for recording
the data index to the nearby MECN M EC Nm , that is

DI_Reqvi→M EC Nm :

⎧⎪⎪⎨
⎪⎪⎩

K pu
i

h(Blockt−1)
Data indexi

timestamp

⎫⎪⎪⎬
⎪⎪⎭

K v
i

.

After verification, M EC Nm will wrap the received request
into a new data index record message

DI_Recvi→M EC Nm :

⎧⎪⎪⎨
⎪⎪⎩

DI_Reqvi→M EC Nm

K pu
m

Data indexi

timestamp

⎫⎪⎪⎬
⎪⎪⎭

K M ECN
m

.

Similarly, during the period in which the next block is
generated, each MECN obtains a data index request from
the sensor-rich vehicles within the communication coverage.
The process of adding data index records to the blockchain is
similar to data recording.

(3) Smart Contract for Sharing (SCS): The common vehicle
(data requester) v j gets the latest block from the blockchain
and selects the data that needs to be requested to be shared
according to its own situation and data description. When v j

issues a request for location information sharing, the SCS
is triggered. Assuming v j selects the data provided by vi ,
a request message to MECN M EC Nm will be sent and make
a payment.

DS_Reqv j→M EC Nm :

⎧⎪⎪⎨
⎪⎪⎩

K pu
j

h(Blockt−1)
File Namei

timestamp

⎫⎪⎪⎬
⎪⎪⎭

K v
j

.

After the request has listened, the M EC Nm first verifies
the certificate of v j and the existence of requested data
through IPFS. The M EC Nm then encrypts the data using
the requester’s public key and stores it as a single-access
link as an access authorization to the requester and secure
protection of the data. When the data requester uses the link
to access the data to start the download, the link will be
invalid. Then, a smart contract sends payment to the data
provider vi immediately, as shown in Fig. 7. The consensus
process for SCS is also adopted to PBFT, similar to SCR.
Then the transaction record of the data sharing event will be
recorded on the blockchain, which is similar to data recording
and data index recording.

C. Consensus Process for Blockchain

During a certain period, the leader will aggregate data
records, data index records, and data sharing records as well
as package them into blocks. This block will be added to the
end of the blockchain after the consensus is achieved. The con-
sensus process is adopted to BFT-DPoS consensus algorithm,
which can reduce the block generation interval to 0.5s and
make the block confirmation speed increase significantly [35].
The DPoS is a consensus mechanism for authorizing equity.
Compared to the PoW and PoS mechanisms of the traditional
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Fig. 7. Smart contract process for data sharing.

public blockchain, DPoS does not waste power resources to
compete for billing rights.

It votes to select a number of block producers, ensuring the
normal operation of the entire network. The MECNs on the
blockchain compete for block producers based on the number
of vehicle coins they hold, trust values, and computing power.
During the voting process, every MECN on the block uses the
rights in their hands to support trusted candidates and then
determines a certain number of producers based on the overall
voting situation, recorded as M EC NP (n), n = 1, 2, . . . , N .
Determine the production sequence for the M EC NP and take
turns to produce new blocks. Only one of the M EC NP is
allocated at a time for block production. Each M EC NP (n)
generates one block every 0.5 seconds, and a total of 6
blocks are generated. If a producer misses producing block,
it will be skipped and the producer will be deleted. Each time
a production cycle is completed, the producers will be re-
selected. Let the block producer become the primary node.
After the block is generated, the primary node broadcasts
the block to the remaining N − 1 nodes at the same time
and obtains the verification feedback from each node. If more
than 2/3 of the nodes agree with the verification, the block is
persistent and irreversible.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of our proposed algorithm
is evaluated by a large number of simulations, which are
divided into three aspects. First, we evaluated the accuracy
and timeliness of the positioning error prediction algorithm.
Next, the error correction accuracy of the proposed method
is evaluated by comparison with other positioning methods.
Finally, by evaluating the robustness and security of the
algorithm, the impact of false data on the performance of
CP methods is reflected. In the simulation, it is assumed
that all vehicles are equipped with the same GPS positioning
performance.

A. Positioning Error Prediction

First, we verify the performance of the positioning error pre-
diction algorithm in terms of accuracy and timeliness. We use

TABLE III

DNN SETTINGS

Fig. 8. Comparison of positioning errors between different positioning
methods.

the autonomous vehicle based on the comma.ai platform and
an On-Board Unit (OBU) to obtain vehicle location, speed,
braking status and other parameters [49]. The speed of vehicle
is 30 to 50km/h. Vehicle acceleration is −4 to 4m/s2. The
travel direction of the vehicle is east or north. Each road
section is approximately 1km. In particular, we analyze the
location data to obtain the current GPS systematic error as well
as random error range and use it as simulation data. According
to the result of the error analysis, the systematic error Es is
about 20m and the random error obeys Gaussian distribution
Er ∼ N(0, 4.63). Detailed parameter settings for DNN are
listed in Table III.

We divide the error evolution model sharing into the follow-
ing three cases: 1) common vehicle i directly uses the position-
ing error shared by sensor-rich vehicles to correct its position
(case 1); 2) common vehicle i retrains DNN using data shared
by sensor-rich vehicles (case 2); 3) common vehicle i directly
use sensor-rich vehicles to share the prediction model to add
a hidden layer and continue training (case 3). In addition,
the sensor-rich vehicles that perform the positioning error
information sharing are set to 3. The threshold δ introduced
in Section IV.C. is set to 3m.

For the sake of display, we extracted the first 80 samples.
It can be seen from Fig. 8, among these three cases,
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TABLE IV

ERROR CORRECTION PERFORMANCE EVALUATION OF DIFFERENT CASES

the positioning error of case 1 is larger, while cases 2 and
3 have similar positioning performance. Although the fea-
sibility of the vehicle to improve the positioning accuracy
through positioning error sharing is obtained through analysis
in Section III, there are still differences between vehicles.
Therefore, when these error information are directly used
to improve the positioning accuracy of other vehicles, per-
formance is affected. Cases 2 and 3 both re-estimate the
error evolution based on their own data and information
shared by sensor-rich vehicles, which is more suitable for
their own situation. In addition, we have listed some special
results in Table. IV, which represent the maximum, minimum,
average and mean square error (MSE) between the positioning
error and the true positioning error obtained in the three cases.
Similar to the results in Fig. 8, the difference between the
positioning error of case 1 and the true value is the largest,
with a maximum difference of 4.87 m. And the error between
case 2 and case 3 and the true value are within 2.5 m.
Similarly, it can be seen from the table that the MSE in each
case is 5.04, 1.24 and 0.53, respectively, indicating that the
prediction model in case 3 describes the experimental data
with better accuracy. However, the minimum column data
indicates that the prediction results in all three cases are very
similar to the real values, indicating that it is feasible to
improve the vehicle positioning accuracy by means of error
sharing.

We further evaluate the timeliness of case 2 and case 3 under
the same conditions. Learning loss of case2 and case3 are
depicted in Fig. 9. It can be seen that learning loss of
case 3 drops faster than case 2, indicating that case 3 is
more efficient in learning. The reason is that for case 2,
common vehicle i needs to retrain DNN based on data shared
by itself and sensor-rich vehicles. For case 3, the common
vehicle i adds a layer of continuous training on top of the
other vehicle-trained network architecture. Since the previous
network model has been trained and the network parameters
have been determined, the learning loss has to drop much
faster, which is more time-efficient.

B. Positioning Error Correction

Subsequently, we study the positioning performances of dif-
ferent positioning methods, such as GPS, vehicular cooperative
positioning (VCP), RSU-based ranging positioning (RRP) and
the proposed error model sharing (EMS) method. The results
are shown in Fig. 10 and Table V. In this case, the GPS
maximum positioning error is close to 27m. It can be seen that
EMS, VCP, and BRP all improve the accuracy of positioning

Fig. 9. Training curves tracking the learning loss of case 2 and case 3.

Fig. 10. Comparison of positioning errors between different positioning
methods.

error to some extent. Among these comparison algorithms,
the worst performance is VCP, which has a maximum posi-
tioning error of 9.56m. The underlying reason is that the
positioning of the vehicle itself is not accurate, so there is an
error in the position information provided during cooperative
positioning. In addition, when information is exchanged, V2V
communication has delays, packet loss, etc., resulting in a
decrease in positioning performance. By contrast, the position-
ing error of EMS and RRP is the smallest, because RSU and
landmark have accurate position information. The maximum
positioning error of EMS and RRP are 4.15m and 6.57m.
Although in more than half of the cases, the positioning error
of EMS, VCP, and RRP is within 3m. However, VCP and
RRP have a larger error range than EMS. In addition, the RRP
method requires at least two RSUs for positioning accuracy to
be guaranteed.

In order to further analyze the different positioning methods
to improve the GPS positioning error, we decompose the
positioning error into two directions: the east and the north.
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Fig. 11. Positioning Error of different methods.

TABLE V

ACCURACY EVALUATION OF DIFFERENT METHODS

As can be seen from the Fig. 11 and Table V, the positioning
errors of the EMS and RRP methods in both directions are
shifted in the positive and negative directions with y = 0 as
the center, while the error of the VCP method is not centered
on y = 0. In addition, the maximum positioning errors of
EMS, VCP, and RRP in a single direction are 3.58m (north),
8.07m (east) and 6.00m (east), respectively. The result verifies
that the vehicle GPS positioning error can be decomposed
into systematic error and random error, wherein the systematic

Fig. 12. Comparison of positioning errors between different positioning
methods with fewer cooperators.

TABLE VI

ROBUSTNESS AND SECURITY EVALUATION OF DIFFERENT METHODS

error provides the same error magnitude and direction for
each GPS receiver within a certain range, as we analyzed in
Section III. The VCP method does not eliminate the systematic
error. There is still a large positioning error. Both EMS and
RRP methods can better eliminate GPS systematic errors,
resulting in higher positioning accuracy.

C. Robustness and Security Analysis

In order to evaluate the robustness of the proposed method,
we set the vehicles for cooperative positioning in the VCP
and RSUs in RRP to 2. For the EMS method, set the
vehicles for data sharing to 2 and 1, respectively. The VCP
method and RRP method cannot perform positioning error
correction if only one vehicle or RSU available. The results
are depicted in Fig. 12 and Table VI. EMS (2) indicates
the use of information shared by two sensor-rich vehicles,
while EMS (1) indicates the use of one. Combined with
Fig. 10, the performance of the error correction for each
method may decrease as the number of vehicles or RSUs used
for cooperation is reduced. For VCP, when the cooperative
positioning vehicle changes from 3 to 2, the maximum posi-
tioning error increases by 10.89m. Similarly, the maximum
positioning error of RRP is increased by 3.66m. In contrast,
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Fig. 13. Comparison of positioning errors between different positioning
methods with malicious node.

EMS still maintains good performance. When only two sensor-
rich vehicle data are available, the maximum positioning
error increases from 4.15m to 6.79m. In addition, even if
only one sensor-rich vehicle data is available, the positioning
error correction performance is still higher than VCP (three
cooperative vehicles) and RRP (two RSUs). It shows that
the EMS method is more adaptable to the environment, and
can still achieve acceptable error correction results without
sufficient sensor-rich vehicles.

Next, for a situation where there are three vehicles or three
RSUs co-located, we randomly set one of them as a malicious
node. Malicious nodes provide false location information,
which affects the correction of positioning errors. We evaluate
the performance of the three positioning methods in this case,
and the results are shown in Fig. 13 and Table VI. Case (a)
represents that the false data provided by the malicious node is
slightly different from the real data (i.e., positioning error < δ),
and case (b) represents that the data error is large. First,
false data has a large impact on the performance of VCP and
RRP, and the positioning error increases with the increase of
false data error. For the EMS algorithm, when the false data
difference is small, the common vehicle will still accept the
positioning error correction, thus increasing the positioning
error. When the false data difference is large, the data will
be eliminated without affecting the final positioning accuracy.
In addition, due to the nature of the blockchain, the data
written to the blockchain cannot be tampered with. There-
fore, for the false data provider, it can be directly removed
from the blockchain system, thus ensuring the accuracy and
security of the data. Therefore, the positioning error correction
performance is similar to that of EMS (2) in Fig. 12.

VII. CONCLUSION

In this paper, a vehicular blockchain-based positioning
error correction framework has been proposed for securely

and efficiently improving the GPS positioning accuracy of
vehicles. In particular, by analyzing the GPS positioning error
characteristics, the feasibility of using sensor-rich vehicles to
compensate for the positioning accuracy of common vehicles
is obtained. Next, for the landmark discontinuous scenario,
the DNN-based error correction algorithm has been proposed
to obtain the positioning error evolution. Then, we have
designed a vehicular blockchain based on vDLT platform for
secure and efficient information storage and sharing. In addi-
tion, by fully exploiting the characteristics of blockchain and
edge computing, smart contracts for data recording and sharing
have been developed, which are running on the vehicular
blockchain. In the proposed framework, the MECNs not
only act as storage units, but also perform smart contracts
and perform DNN operations. Extensive simulations have
exhibited the effectiveness and accuracy of our proposed
method compared with the traditional method. For many error
prediction models stored on blockchain, how to choose the best
provider to achieve higher positioning accuracy is one of the
research priorities of future work. In addition, considering the
impact of multipath in urban environments, how to eliminate
random errors is another problem that needs to be studied.
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