
1

A Survey of Deep Learning Applications to
Autonomous Vehicle Control

Sampo Kuutti, Richard Bowden, Yaochu Jin, Phil Barber, and Saber Fallah,

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Designing a controller for autonomous vehicles capa-
ble of providing adequate performance in all driving scenarios is
challenging due to the highly complex environment and inability
to test the system in the wide variety of scenarios which it may
encounter after deployment. However, deep learning methods
have shown great promise in not only providing excellent perfor-
mance for complex and non-linear control problems, but also in
generalising previously learned rules to new scenarios. For these
reasons, the use of deep learning for vehicle control is becoming
increasingly popular. Although important advancements have
been achieved in this field, these works have not been fully
summarised. This paper surveys a wide range of research works
reported in the literature which aim to control a vehicle through
deep learning methods. Although there exists overlap between
control and perception, the focus of this paper is on vehicle
control, rather than the wider perception problem which includes
tasks such as semantic segmentation and object detection. The
paper identifies the strengths and limitations of available deep
learning methods through comparative analysis and discusses the
research challenges in terms of computation, architecture selec-
tion, goal specification, generalisation, verification and validation,
as well as safety. Overall, this survey brings timely and topical
information to a rapidly evolving field relevant to intelligent
transportation systems.

Index Terms—Machine learning, Neural networks, Intelli-
gent control, Computer vision, Advanced driver assistance, Au-
tonomous vehicles

I. INTRODUCTION

IN 2016, traffic accidents resulted in 37,000 fatalities in
the United States [1] and 25,500 fatalities in the European

Union [2]. With the steady increase in the number of vehicles
on the road, issues such as traffic congestion, pollution, and
road safety are becoming critical issues [3]. Autonomous
vehicles have gained significant interest as solutions to these
challenges [4]–[7]. For instance, 90% of all car accidents
are estimated to be caused by human errors, while only
2% are caused by vehicle failures [8]. Further benefits from
autonomous vehicles in terms of better fuel economy [9], [10],
reduced pollution, car sharing [11], increased productivity, and
improved traffic flow [12] have also been reported.

This work was supported by the UK-EPSRC grant EP/R512217/1 and
Jaguar Land Rover.

Sampo Kuutti and Saber Fallah are with the Centre for Automotive
Engineering, University of Surrey, Guildford, GU2 7XH, U.K. (e-mail:
s.j.kuutti@surrey.ac.uk, s.fallah@surrey.ac.uk).

Richard Bowden is with the Centre for Vision Speech and Signal
Processing, University of Surrey, Guildford, GU2 7XH, U.K. (e-mail:
r.bowden@surrey.ac.uk).

Yaochu Jin is with the Department of Computer Science, University of
Surrey, Guildford, GU2 7XH, U.K. (e-mail: yaochu.jin@surrey.ac.uk).

Phil Barber was with Jaguar Land Rover Limited (e-mail: pbar-
ber2@jaguarlandrover.com).

Some of the earliest autonomous vehicle projects were
presented in 1980s by Carnegie Mellon University for driving
in structured environments [13] and the University of Bun-
deswehr Munich for highway driving [14]. Since then, projects
such as DARPA Grand Challenges [15], [16] have continued
to drive forward research in autonomous vehicles. Outside of
academia, car manufacturers and tech companies have also
carried out research to develop their own autonomous vehicles.
This has led to multiple Advanced Driver Assistance Sys-
tems such as Adaptive Cruise Control (ACC), Lane Keeping
Assistance, and Lane Departure Warning technologies, which
provide modern vehicles with partial autonomy. These tech-
nologies not only increase the safety of modern vehicles and
make driving easier but also pave the way for fully autonomous
vehicles which do not require any human intervention.

Early autonomous vehicle systems were heavily reliant on
accurate sensory data, utilising multi-sensor setups and expen-
sive sensors such as LIDAR to provide accurate environment
perception. Control of these autonomous vehicles was handled
via rule-based controllers, where the parameters are set by the
developers and hand-tuned after simulation and field testing
[17]–[19]. The downside of this approach is the time intensive
hand-tuning of parameters [20] and the difficulty of such rule-
based controllers to generalise to new scenarios [21]. Also,
the highly non-linear nature of driving means that control
methods based on linearisation of the vehicle model or other
algebraic analytical solutions are often infeasible or do not
scale well [22], [23]. Recently, deep learning has gained
attention due to the numerous state-of-the-art results it has
achieved in fields such as image classification and speech
recognition [24]–[26]. This has led to increasing use of deep
learning in autonomous vehicle applications, including plan-
ning and decision making [27]–[31], perception [32]–[36], as
well as mapping and localisation [37]–[39]. The performance
of Convolutional Neural Networks (CNNs) with raw camera
inputs has the potential to reduce the number of sensors used
by autonomous vehicles. This has led to some organisations
investigating autonomous vehicles without expensive sensors
such as LIDAR, instead employing extensive use of deep
learning for scene understanding, object recognition, semantic
segmentation, and motion estimation. The strong results of
deep learning in these perception problems have also sparked
interest in using Deep Neural Networks (DNNs) to produce
control actions in autonomous vehicles. Indeed, autonomous
vehicle control often has a strong link to perception, as many
techniques use CNNs to predict control actions based on
images of the scene, without any separate perception module,
thereby removing the separation between the perception and

ar
X

iv
:1

91
2.

10
77

3v
1 

 [
cs

.L
G

] 
 2

3 
D

ec
 2

01
9



2

control layer.
Deep learning offers several benefits for vehicle control.

The ability to self-optimise its behaviour from data and adapt
to new scenarios makes deep learning well suited to control
problems in complex and dynamic environments [40]–[42].
Rather than having to tune each parameter iteratively while
trying to maintain performance in all foreseeable scenarios,
deep learning enables developers to describe the desired be-
haviour and teach the system to perform well and generalise
to new environments through learning [43]–[47]. For these
reasons, there has been significant interest in deep learning for
autonomous vehicle control in recent years. There are a variety
of different sensor configurations; whilst some researchers
aim to control the vehicle with camera vision only, others
utilise lower dimensional data from ranging sensors, and some
use multi-sensor set ups. There are also some differences in
terms of the control objective, some formulate the system as
a high-level controller which provides, for example, desired
acceleration, which is then realised through a low-level con-
troller, often using classical control techniques. Others aim
to learn driving end-to-end, mapping observations directly
to low-level vehicle control interface commands. Although
there has been a large variety of different approaches used to
tackle autonomous vehicle control via deep learning, currently
there is a lack of analysis and comparison between these
different techniques. This manuscript aims to fill this gap in the
literature, by reviewing the deep learning approaches to vehicle
control and analysing their performance. Furthermore, the
manuscript will evaluate the current state of the field, identify
the main research challenges, and make recommendations for
the direction of future research.

The remainder of this manuscript is structured as follows.
Section II provides a brief introduction to deep learning meth-
ods and approaches relevant to autonomous vehicles. Section
III discusses recent approaches to autonomous vehicle control
using deep learning, which is broken into three categories:
(A) lateral, (B) longitudinal, and (C) simultaneous lateral and
longitudinal control. Section IV presents the main research
challenges from the previous section’s discussion. Finally,
Section V concludes the current state of the field and provides
recommendations for the direction of future research.

II. REVIEW OF DEEP LEARNING

In this section, we briefly introduce the deep learning
techniques and approaches related to the works discussed in
later sections. A brief summary on learning strategies, datasets,
and tools for deep learning in autonomous vehicles is given.
Since a full description on all deep learning algorithms used
in autonomous vehicles would be out of the scope of this
manuscript, we refer the interested reader to the insightful texts
on this topic in [46]–[52].

A. Supervised Learning

In deep learning, the objective is to update the weights of
a deep neural network during training, such that the model
learns to represent a useful function for its task. There are
numerous learning algorithms available, but most algorithms

described in this manuscript can be classified as supervised or
reinforcement learning. Supervised learning utilises labelled
data, where an expert demonstrates performing the chosen task
at hand. Each data point in the set includes an observation-
action pair, which the neural network then learns to model.
During training, the network approximates its own action for
each observation, and compares the error to the labelled action
by the expert. The advantage of supervised learning is speed
of training convergence and no need to specify how the task
should be performed. While the simplicity of the supervised
approach is appealing, the approach has some disadvantages.
Firstly, during training the network makes predictions on the
control action in an offline framework, where the network’s
predictions do not affect the states seen during training. How-
ever, once deployed, the network’s actions will affect future
states, breaching the i.i.d. assumption made by most learning
algorithms [53]–[55]. This leads to a distribution shift between
training and operation, which can lead to the network making
mistakes due to the unfamiliar state distributions seen during
operation. Secondly, learning a behaviour from demonstration
leaves the network susceptible to biases in the data set. For
complex tasks, such as autonomous driving, the diversity of the
data set should be ensured if the aim is to train a generalisable
model which can drive in all different environments [56], [57].

B. Reinforcement Learning
Reinforcement learning enables the model to learn to per-

form the task through trial and error. Reinforcement learning
can be modelled as a Markov decision process, formally
described as a tuple (S, A, P, R), where S denotes the state
space, A represents the action space of possible actions, P
denotes the state transition probability model, and R represents
the reward function. At each time-step the agent observes a set
of states st, takes an action at from possible actions A, and
then the environment transitions according to P. The agent
then observes a new set of states st+1 and receives a reward
rt. The aim of the agent is to learn a policy π(st, at) mapping
observations to actions such that the accumulated rewards
are maximised. Therefore, the agent can learn from its own
actions through interactions with the environment and receives
an estimate of its performance through the reward function.
The advantage of this approach is that no labelled data sets
are required and a behaviour which generalises well to new
scenarios can be learned through reinforcement learning. The
downside of reinforcement learning is its low sample efficiency
[58], which means converging to an optimal policy can be
slow, thereby requiring time-intensive simulations or costly
real-world training [50].

Reinforcement learning algorithms can be divided into
three classes: value-based, policy gradient, and actor-critic
algorithms [59]. Value-based algorithms (e.g. Q-learning [60])
estimate the value function V (s), which represents the value
(expected reward) of being in a given state. If the state
transition dynamics P are known, the policy can choose actions
which bring it to states such that the expected rewards are
maximised. However, in most reinforcement learning settings
the environment model is not known. Therefore, the state-
action value or quality function Q(s, a), which estimates the



3

value of a given action in a given state, is used instead.
The optimal policy is then found by greedily maximising the
state-action value function Q(s, a). The disadvantage of this
approach is that there is no guarantee on the optimality of
the learned policy [61], [62]. Policy gradient algorithms (e.g
REINFORCE [63]) do not estimate a value function, but in-
stead parametrise the policy and then update the parameters to
maximise the expected rewards. This is done by constructing
a loss function and estimating a gradient of the loss function
with respect to the network parameters. During training, the
network parameters are then updated in the direction of the
policy gradient. The main disadvantage of this approach is the
high variance in the estimated policy gradients [64]–[66]. The
third class, actor-critic algorithms (e.g. A3C [67]), are hybrid
methods which combine the use of a value function with a
parametrised policy function. This creates a trade-off between
the disadvantages of the high variance of policy gradients
and the bias of value-based methods [51], [68], [69]. Another
separating factor between different reinforcement learning
algorithms is the type of reward function used. The reward
function used can be either sparse or dense. In a sparse reward
function, the agent only receives a reward following specific
events, such as success or failure in its task. The benefit of this
approach is that the success (e.g. reaching a goal location) or
failure (e.g. colliding with another object) is easy to define for
most tasks. However, this can further exacerbate the sample
complexity issue in reinforcement learning, since the agent
would only receive a reward relatively rarely, resulting in slow
convergence. On the other hand, in a dense reward function
the agent is given a reward at every time-step based on the
state it is in. This means that the agent receives a continuous
learning signal, estimating how useful the chosen actions were
in their respective states.

C. Datasets and Tools for Deep Learning

The rapid progress in the implementation of deep learning
systems on autonomous vehicles has led to the availability
of diverse deep learning data sets for autonomous driving
and perception. Perhaps the most well known data set for
autonomous driving is the KITTI benchmark suite [70], [71],
which includes multiple data sets for evaluation of stereo
vision, optical flow, scene flow, simultaneous localisation and
mapping, object detection and tracking, road detection and
semantic segmentation. Other useful data sets include the
Waymo Open [72], Oxford Robotcar [73], ApolloScape [74],
Udacity [75], ETH Pedestrian [76], and Caltech Pedestrian
[77] data sets. For a more complete overview of available
autonomous driving data sets, see the survey by Yin & Berger
[78]. Besides public data sets, there are also a number of
other tools available for the development of deep learning
in autonomous vehicles. The current leading Artificial Intelli-
gence (AI) platform for autonomous driving is the NVIDIA
Drive PX2 [79], which provides two Tegra system-on-chips
(SoC) and two Pascal graphics processors with dedicated
memory and specialised support for DNN calculations. For
more diverse tasks, the MobilEye EyeQ5 [80] provides four
fully programmable accelerators, each optimised for a different

family of machine learning algorithms. This diversity can be
useful in systems where different families of deep learning al-
gorithms have been used. On the other hand, Altera’s Cyclone
V [81] SoC provides a driving solution optimised for sensor
fusion. For a more in-depth review of autonomous driving
hardware platforms, see the discussion by Liu et al. [82].

III. DEEP LEARNING APPLICATIONS TO VEHICLE
CONTROL

The motion control of a vehicle can be broadly divided into
two tasks; lateral motion of the vehicle is controlled by the
steering of the vehicle, whilst longitudinal motion is controlled
through manipulating the gas and brake pedals of the vehicle.
Lateral control systems aim to control the vehicle’s position
on the lane, as well as carry out other lateral actions such as
lane changes or collision avoidance manoeuvres. In the deep
learning domain, this is typically achieved by capturing the
environment using the images from on-board cameras as the
input to the neural network. Longitudinal control manages the
acceleration of the vehicle such that it maintains the desirable
velocity on the road, keeps a safe distance from the preceding
vehicle, and avoids rear-end collisions. While lateral control
is typically achieved through vision, the longitudinal control
relies on measurements of relative velocity and distance to the
preceding/following vehicles. This means that ranging sensors
such as RADAR or LIDAR are more commonly used in longi-
tudinal control systems. The majority of the current research
projects have chosen to focus on only one of these actions,
thereby simplifying the control problem. Moreover, both types
of control systems have different challenges and differ in terms
of implementation (e.g. sensor setups, test/use cases). For these
reasons this section is split into three subsections, with the
first two subsections discussing lateral and longitudinal control
systems, independently, and the third subsection focusing on
techniques which have attempted to combine both longitudinal
and lateral control.

A. Lateral Control Systems

One of the earliest applications of artificial neural networks
to the vehicle control problem was the Autonomous Land
Vehicle in a Neural Network (ALVINN) system by Pomerleau
in 1989 which was first described in [83] and further extended
in [84]. ALVINN utilised a feedforward neural network, with a
30x32-neuron input layer, one hidden layer with four neurons,
and a 30-neuron output layer in which each neuron represents
a possible discrete steering action. The system used the input
from a camera together with the steering commands of the
human driver as training data. To increase the amount of data
and variety of scenarios available, the author employed data
augmentation methods to increase the available training data
without recording any additional footage; each image was
shifted and rotated, so as to make the vehicle appear to be
situated at a different part of the road laterally. Additionally,
to avoid bias towards recent inputs (e.g. if a training session
ends in a long right hand turn, the system could be biased
to turn right more often) a buffering solution was used where
previously encountered training patterns were retained in the



4

buffer. The buffer contained 4 patterns of previous data at any
time, which were periodically replaced such that the patterns
in the buffer had no right or left bias on average. Both the
image shifting as well as buffering solutions were shown to
significantly improve the system performance. The system was
trained on a 150m stretch of road, after which it was tested on
a separate stretch of road at speeds ranging from 5 to 55mph
allowing steering without intervention for distances of up to
22 miles. The system was shown to be able to remain, on
average, 1.6cm distance from the centre of the road compared
to that of 4.0cm under human control. This demonstrated that
neural networks can learn to steer a vehicle from recorded
data.

The first to suggest reinforcement learning for vehicle
steering was the work carried out by Yu [85]. Yu proposed
a road following system based on Pomerleau’s work utilising
reinforcement learning to design a controller. The advantage
of which was the ability to learn from previous experiences to
drive in new environments and continuously learn and improve
its road following ability through online learning. Combining
supervised learning and reinforcement learning, Moriarty et
al. [86] developed a lane-selection strategy for a highway
environment. The results showed that the vehicles with learned
controllers managed to maintain speeds close to the desired
speed and resulted in less lane-changes. Moreover, the learned
control strategy resulted in better traffic flow than manually
constructed controllers.

The neural networks utilised in the aforementioned early
works are significantly smaller when compared to what is
feasible with today’s technology [87]. Indeed, while neural
networks are hardly new, the research interest and adoption
to various applications has exploded in recent years due
to increased computing power, especially through parallel
graphics processing units (GPUs) which can significantly
reduce training time and improve performance. Moreover, the
availability of large public data sets and hardware solutions
optimised for deep learning have made training and valida-
tion of neural network systems easier. Overall, these recent
advancements have enabled better performance through more
complex systems with vastly increased amounts of training
data and episodes.

Utilising deeper models with CNNs, Muller et al. [88]
trained a sub-scale radio controlled car to navigate off-road in
the DARPA Autonomous VEhicle (DAVE) project. The model
was trained with training data collected from two forward-
facing cameras while a human was controlling the vehicle.
Using a 6-layer CNN, the model learned to navigate around
obstacles when driving at speeds of 2m/s. Building on the
approach of DAVE, NVIDIA utilised a CNN to create an end-
to-end control system for steering of a vehicle through super-
vised learning [87]. The system is capable of self-optimising
the system performance and detecting useful environmental
features (e.g. detection of roads and lanes). The CNN used
(see Fig. 1) can learn the steering policy without explicit
manual decomposition of the environmental features, path
planning, or control actions using a small amount of training
data. The training data set consisted of recorded camera
footage and steering signals from a human driven vehicle.

The CNN consisted of 9 layers, including a normalisation
layer, 5 convolutional layers and 3 fully connected layers,
with a total of 27 million connections and 250,000 parameters.
This method achieved a 98% autonomy in initial testing and
100% autonomy during a 10-mile highway test, measured
based on the number of interventions required over a given
test time. However, it should be noted that this measure does
not include lane changes or turns, and therefore only evaluates
the system’s ability to stay in its current lane.

Fig. 1. Convolutional Neural Network utilised in the NVIDIA end-to-end
steering system. (Figure recreated based on [87]).

A further example of supervised learning for steering of
an autonomous vehicle is the work by Rausch et al. [42],
where supervised learning was employed to create an end-
to-end lateral vehicle controller. Rausch et al. utilised a CNN
with four hidden layers, three convolutional layers and one
fully connected layer. The training data was the steering
angle and front-facing camera footage which was provided
by a human steering a vehicle in a CarSim [89] simulation,
with imaging captured at 12 frames per second (FPS) at a
resolution of 1912x1036. The data collection was collected
from a 15-minute simulation run resulting in a total of 10,800
frames. Inappropriate frames caused by bad driving behaviour
or graphic errors (e.g. due to a fault in the simulator) were
removed from the training data manually. Then, the neural net-
work was trained with three different optimisation algorithms
to update the network weights, namely Stochastic Gradient
Descent (SGD) [90], Adam [91], and Nesterov’s Accelerated
Gradient (NAG) [92]. During training Adam resulted in the
best loss convergence, while during the evaluation, the NAG
trained network performed the best in terms of keeping the



5

vehicle in the centre of the lane. Therefore, convergence of
the loss function is not necessarily representative of a well-
trained neural network. The neural networks were shown to
learn good estimations of the human driver’s steering policy,
however by comparing the steering angles, it could be seen
that the steering signal of the neural networks included noisy
behaviour. A potential reason is that the system estimates
the required steering angle at each frame, with no context
regarding previous states or actions. This results in the steering
signals between subsequent time steps varying significantly
from each other, causing noisy output. This could be resolved
by utilising a RNN to provide memory of previous inputs and
outputs for the system, giving it temporal context.

Introducing temporal context to a deep learning steering
model, Eraqi et al. [93] utilised a Convolutional Long Short-
Term Memory Recurrent Neural Network (C-LSTM) to learn
to steer a vehicle based on visual and dynamic temporal
dependencies. The network was trained to predict steering
angles based on image inputs, and then compared it to a
simple CNN architecture used in [94]. Experimental results
showed improved accuracy and smoother steering variations
when using the C-LSTM network. However, the model was
only evaluated offline by comparing the predicted control
action against ground truth, which does not necessarily give
an accurate evaluation of driving quality [95]. Live testing,
where the model can control the vehicle to test the learned
driving behaviour, should be used instead.

There has also been lateral control techniques for lane
change manoeuvrers presented. Wang et al. [96] used rein-
forcement learning to train an agent to execute lane change
manoeuvrers using a Deep Q-Network (DQN). The network
uses host vehicle speed, longitudinal acceleration, position,
yaw angle, target lane, lane width and road curvature to
provide a continuous value for the desired yaw acceleration.
To ensure Q-learning could be used to output continuous
action values, a modified Q-learning approach was used to
support continuous action values, where the Q-function was a
quadratic function approximated by three single hidden layer
feedforward neural networks. The proposed approach was
tested in a simulated highway environment, with preliminary
results showing effective lane change manoeuvrers learned by
the agent.

A summary of the research works covered in this section
can be seen in Table I. Due to the advancements mentioned
previously, the recent trend has been to move to deeper models
with increased amounts of training data. Recent works have
also investigated introducing temporal cues into the learning
model, but this suffers from instability in training. Moreover,
many of the models developed so far have been trained and
evaluated in relatively simple environments. For instance, most
researchers have decided to focus on lateral control for a
single task. For example in models trained for lane keeping
no decision-making for e.g. lane changes or turns to different
roads have been incorporated in these systems. This opens
possible avenues for future research where multiple actions
could be carried out by the same DNN. It should also be
noted that the majority of these works were trained and
evaluated in simulated environments, which further simplifies

the task and would require further tests to validate their real
world performance. Nevertheless, there have been important
developments in this field and these results show great promise
for the use of deep learning for autonomous vehicle control.

B. Longitudinal Control Systems

Machine learning methods have also shown promise in
applications to vehicle longitudinal control, such as ACC
design. The ACC can be described as an optimal tracking
control problem for a complex nonlinear system [97], [98]
and therefore is poorly suited to control systems based on
linear vehicle models or other algebraic analytical solutions
[99]. Such traditional control systems provide poor adapt-
ability in complex environments and do not conform to the
driver’s habits [100]. The strong nonlinear nature of the
system makes it difficult to build a vehicle model without
significant uncertainty, limiting the effectiveness of model-
based solutions. However, neural networks have shown great
potential for optimising nonlinear, high-dimensional control
systems [40], [41], [101]–[106]. For instance, reinforcement
learning can learn an optimal control policy through interac-
tion with the environment, without knowledge of the system
model [50]. Furthermore, the strong adaptive capacity and
model-free capability of reinforcement learning makes it an
attractive solution for ACC design. In early works, Dai et
al. [107] proposed a fuzzy reinforcement learning method for
longitudinal control of an autonomous vehicle. The method
combines a Q estimator network (QEN) with a Takagi-Sugeno-
type Fuzzy Inference System (FIS). The QEN is used to
estimate the optimal action value function whilst the FIS gets
the control output based on the estimated action value function.
The described approach was evaluated in a simulation of a car-
following scenario where the lead vehicle varies its velocity
over time with a maximum episode duration of 80s. The
controller was shown to be able to successfully drive the
vehicle without failing after 68 trials. However, the reward
function of the proposed approach by Dai et al. is only based
on the spacing between the lead and the following vehicle.
The reward function is the key to a successful reinforcement
learning approach as it is the means by which the developer
indicates the desirability of being in any given state. Therefore,
the reward function needs to accurately capture the task to be
performed and the manner in which it should be completed.
For longitudinal control, the reward function should motivate
the agent to adopt a safe and efficient driving strategy. For
these reasons, a reward function with only one parameter such
as inter-vehicle spacing may not be sufficient in real-time
applications.

There are several works in which the use of multi-objective
reward functions have been explored. For example, Desjardins
& Chaib-Draa [23] used a multi-objective reward function
based on time headway (distance in time from the lead vehicle)
and time headway derivative. The agent was encouraged
through the reward function to keep a 2s time headway to
the lead vehicle, and the time headway derivative provided
information regarding whether the vehicle is moving closer
to or farther from the lead vehicle, and allowed it to adjust



6

TABLE I
A COMPARISON OF LATERAL CONTROL TECHNIQUES.

Ref. Learning Strategy Network Inputs Outputs Pros Cons Experiments

[83],
[84]

Supervised
Learning

Feedforward
network with 1
hidden layer

Camera image Discretised steering
angles

First promising
results for neural
network-based
vehicle controllers

Simple network and
discretised steering
angle outputs de-
grade performance

Real & Simulation

[85]
Reinforcement
Learning

Feedforward
network with 1
hidden layer

Camera image Discretised steering
angles

Supports online
learning

Simple network and
discretised steering
angle outputs de-
grade performance

Simulation

[88]
Supervised
Learning 6-layer CNN Camera images Steering angle Robust to environ-

mental diversity

Large errors,
trained and tested
on a sub-scale
vehicle model

Real world (sub-
scale vehicle)

[87]
Supervised
Learning 9-layer CNN Camera image Steering angle val-

ues

High level of au-
tonomy during field
tests

Only considers lane
following, requires
interventions by the
driver

Real world & Sim-
ulated

[42]
Supervised
Learning 8-layer CNN Camera image Steering angle val-

ues
Learns from mini-
mal training data

Noisy behaviour of
the steering signal Simulation

[93]
Supervised
Learning C-LSTM Camera image Steering angle val-

ues
Considers temporal
dependencies

RNNs can be diffi-
cult to train, lack of
live testing

No live testing,
tested on data set
image examples
only

[96]
Reinforcement
Learning

3 feedforward net-
works

Host vehicle states
and road geometry

Vehicle yaw accel-
eration

Executes
lane changes
successfully

Limited testing
or results, lack
of comparison to
other lane change
algorithms

Simulation

its driving strategy accordingly. Taking the time headway
derivative into consideration in the reward function encourages
the agent to choose actions which help it progress toward
the desired state (ideal time headway). The authors used this
reward function in a policy-gradient method for a Cooperative
Adaptive Cruise Control (CACC) system. The neural network
architecture chosen had two inputs, a single hidden layer of 20
neurons, and an output layer with 3 discrete actions (brake,
accelerate, do nothing). In the learning process, an average
of over 2.2 million iterations were obtained over ten learning
simulations. The chosen method was shown to be efficient in
CACC, providing average time headway errors of 0.039s in
an emergency braking scenario. While the magnitude of the
time headway errors remain small, it should be noted that
the velocity profile of the subject vehicle showed oscillatory
behaviour. This would make the system uncomfortable for the
passengers as well as pose a potential safety risk. Potential
solutions for this could include utilising continuous action
values, the use of RNNs, or negative rewards for changes
in acceleration to help smooth the velocity profile of the
vehicle. Similarly, Sun [99] proposed a CACC system based
on rewards from time headway and time headway derivative in
a Q-learning algorithm. This approach was shown to reduce
the learning time of the neural network. Over one hundred
learning simulations, the best performing policy (the policy
which obtained the highest reward) was chosen for evaluation.
The algorithm was evaluated in a simulation of a stop-and-
go environment in which the lead vehicle accelerated and
decelerated periodically. The agent was shown to provide
adequate performance in a platoon scenario. However, whilst
such multi-objective reward functions are an improvement over
single objective reward functions such as the one proposed

by Dai et al. [107], this reward function does not consider
passenger comfort which could lead to harsh accelerations or
decelerations.

Huang et al. [108] presented a Parameterised Batch Actor-
Critic (PBAC) reinforcement learning algorithm for longitu-
dinal control of autonomous vehicles based on actor-critic
algorithms. A multi-objective reward function was designed
to reward the algorithm for tracking precision and drive
smoothness. The method was validated by field experiments on
various driving environments (e.g. flat, slippery, sloping, etc.)
and the results suggested the method can track time-varying
speeds more precisely than traditional Proportion-Integration
(PI) or Kernel-based Least Square Policy Iteration (KLSPI)
controllers trained with reinforcement learning [109], [110].
This was due to lower sensitivity to noise of speeds and
accelerations. Moreover, smooth driving was achieved using
the proposed method. The addition of driving smoothness in
the reward function makes these systems more comfortable
for passengers. However, the method was evaluated in an
environment without adjacent vehicles or other obstacles. This
allowed the authors to not consider safety parameters in the
reward function, which leaves the algorithm susceptible to
crashes in environments with other vehicles present. Therefore,
additional terms for safety would be required in the reward
function to ensure safe behaviour of the autonomous vehicle.

One such reward function was proposed by Chae et al.
[111], who proposed an autonomous braking system for colli-
sion avoidance based on a DQN approach. The reward function
balances two conflicting objectives: avoiding collision and
getting out of high risk situations. To speed up convergence,
a replay memory was used to store a number of episodes of
which some are chosen randomly to help train the network.



7

Additionally, a ’trauma memory’ of rare critical events (e.g.
collision) was used to improve stability and make the agent
more reliable. The system was evaluated in situations where
the vehicle had to avoid collision with a pedestrian, using
various Time-to-Collision (TTC) values with 10,000 tests for
each TTC value. It was shown that for TTC values above 1.5s,
collisions were avoided every time, whereas at 0.9s (lowest
TTC value used) the collision rate was as high as 61.29%.
Additionally, the system was evaluated in a test procedure
specified by the Euro NCAP test protocol (CVFA and CVNA
tests [112]) and the system passed these tests without collision.
Therefore, the system was considered to exhibit desirable and
consistent brake control behaviour. In addition, Chen et al.
[100] presented a personalised ACC which can learn from
human demonstration. The proposed algorithm is based on Q-
learning with a reward function based on distance to the front
vehicle, vehicle speed, and acceleration. The authors used a
Q-learning algorithm based on a feedforward artificial neural
network to estimate the Q-function and calculated the desired
velocity, which is then converted to low-level control com-
mands by a Proportional Integral Derivative (PID) controller.
The neural network used to estimate the Q-function consists
of an input layer with 5 nodes, a hidden layer with 3 nodes,
and an output layer with 1 node which predicts the desired
velocity. The performance of the system was evaluated based
on comfort and driving smoothness in simulation with different
velocities and desired inter-vehicle clearances. The system
was shown to provide better performance when compared
to traditional ACC approaches. Similarly, Zhao et al. [113]
proposed a personalised ACC approach which considers safety,
comfort, as well as personalised driving styles. The reward
function considers the driver habits, passenger comfort, and
safety in an effort to find a good tradeoff between safety and
comfort. The proposed approach uses a Model-free Optimal
Control (MFOC) algorithm based on an actor-critic neural
network structure. By optimising the algorithm to drive in a
more human-like fashion, the human driver is more likely to
trust the system and continue using it. For this purpose, the
network would also be capable of learning from the human
driver when the cruise control feature was switched off to
better tune its parameters and to adopt a driving strategy based
on the owner’s driving habits. The proposed algorithm was
tested in a simulation under various environments and was
shown to perform better than PID and Linear Quadratic Reg-
ulator (LQR) based controllers. For instance, in an emergency
braking test scenario shown in Fig. 2, the MFOC maintained a
safer clearance compared to PID, while the LQR failed the test
by causing a rear end collision. However, while conforming
to individual driving habits can be useful to ensure the user
feels safe and comfortable in the car, strategies for mitigating
the negative effects of learning bad driving habits should also
be considered to ensure the long term reliability and safety of
the system.

Reinforcement learning has been shown to be an effective
approach for vehicle longitudinal control systems as shown
by the discussion above. However, the main drawback for
reinforcement learning is the time-intensive training [50],
[114]. In contrast, supervised learning methods simplify the

Fig. 2. MFOC Controller compared to PID and LQR controllers in an
emergency braking scenario. (a) Clearance between the lead and follower
vehicle. (b) Velocity profiles of the lead vehicle and the three controllers
[113].

learning process with the use of prior knowledge of the
supervisor, but lack the level of adaption that makes re-
inforcement learning attractive to complex decision-making
systems such as autonomous driving. For these reasons, there
are multiple examples in the literature that combine rein-
forcement and supervised learning to exploit the advantages
of both approaches; reinforcement learning allows for self-
adaptation in new and complex environments whilst the prior
knowledge of supervised learning speeds up the learning
process. For example, Zhao et al. [22], [115], [116] introduced
a supervised reinforcement learning algorithm for an ACC
system. By utilising actor-critic methods, the authors propose
a novel supervised actor-critic (SAC) learning scheme, which
is then implemented with feed-forward neural networks into
a hierarchical acceleration controller. The proposed approach
was evaluated in a simulation for an emergency braking
scenario. The network was trained for emergency braking in
dry conditions, whilst it was evaluated in both dry and wet
road conditions and results were compared to the performance
of a PID controller. The simulation results demonstrated that
the SAC algorithm has superior performance compared to
that of the PID controller as well as a supervised learning
based controller (without reinforcement learning), and can
adapt to changing road conditions. This shows the benefits
of combining supervised learning with reinforcement learning
to leverage the combined advantages of both methods. Pre-
training the network via supervised learning helps reduce
the training time of reinforcement learning and improves the
convergence of the algorithm, both of which are common
problems in reinforcement learning algorithms. Meanwhile,
by exploring different actions through trial and error, rein-
forcement learning improves the performance beyond what
supervised learning can provide. Also, the authors stated that
using an actor-critic network architecture was beneficial as
the evaluation of actions by the critic boosts the system’s



8

performance in critical scenarios such as emergency braking.
A summary of the longitudinal control methods can be seen

in Table II. In contrast to lateral control systems, vision-based
inputs are not generally used for longitudinal control. Instead
sensor inputs from ranging sensors (e.g. RADAR, LIDAR)
and host vehicle states are more commonly used. These lower
dimensional inputs (e.g. time headway or relative distance)
can then easily be used to define a reward function for
reinforcement learning. The second major difference between
lateral and longitudinal control algorithms is the choice of
learning strategies. While lateral control techniques favour
supervised learning techniques trained on labelled datasets,
longitudinal control techniques favour reinforcement learning
methods which learn through interaction with the environment.
However, as seen in this section, the reward function in
reinforcement learning needs to be carefully designed. Safety,
performance, and comfort all need to be considered. Poorly
designed reward functions result in poor performance or the
model not converging. Another challenge with reinforcement
learning algorithms is the trade-off between exploration and
exploitation. During training, the agent must take random
actions to explore the environment. However, to perform well
in its task the agent should exploit its knowledge to find
the optimal action. Example solutions for this are the ε-
greedy exploration policies and the Upper Confidence Bound
(UCB) algorithm. ε-greedy strategies choose a random action
with a probability ε, which decreases overtime as the agent
learns its environment. On the other hand, UCB encourages
exploration in states with high uncertainty, whilst exploitation
is encouraged in regions with high confidence. Therefore,
intrinsic motivation is implemented in the system, encouraging
the agent to learn about its environment, whilst exploitation
can be taken advantage of in states which have already been
explored adequately [51], [117]–[119]. Other approaches have
sought to use supervised learning as a pre-training step to get
the advantages of both reinforcement and supervised learning.

C. Simultaneous Lateral & Longitudinal Control Systems

The previous sections demonstrated that DNNs can be
trained for either longitudinal or lateral control of a vehicle.
However, for autonomous driving, the vehicle must be able to
control both steering and acceleration simultaneously. In early
works towards full vehicle control through deep learning, Xia
et al. [120] introduced an autonomous driving system based
on Q-learning combined with learning from the experience of
a professional driver. The reward value of the professional
driver’s strategy and the Q-value learned through the Q-
learning method were combined in the pre-training phase to
improve the speed of convergence during training. A filtered
experience replay stores a limited number of episodes and
allows elimination of poor experimental rounds from memory,
improving convergence on a control strategy. The proposed
Deep Q-learning with filtered experiences (DQFE) approach
was compared to a naive neural fitted Q-iteration (NFQ)
[121] algorithm without pre-training by an experienced driver.
During training, it was shown that the DQFE approach reduced
the training time by 71.2% for the 300 training episodes.

Moreover, during 50 tests on a competition track, the proposed
approach completed the track 49 times, compared to only 33
with NFQ. Additionally, DQFE performed better in terms of
mean distance from centre of the track. Therefore, the addition
of filtered experience replay improved the speed of conver-
gence as well as performance of the algorithm. Comparing two
neural networks for lane keeping systems, Sallab et al. [122]
investigated the effects of discretised and continuous actions.
Two approaches, DQN and a Deep Deterministic Actor Critic
(DDAC) algorithm, were evaluated in a TORCS simulator
[123]. In the two networks developed by the authors, the DQN
could only output discretised values (steer, gear, brake, and
acceleration), while the DDAC supports continuous action val-
ues. The DDAC consisted of two networks; an Actor Network
which is a neural network responsible for taking actions based
on perceived states and the Critic Network which criticises the
value of the action taken. The experimental results showed
that the DQN algorithm suffered in performance due to the
fact that it cannot support continuous actions or state spaces.
The DQN algorithm is suitable for continuous (input) states,
however it still requires discrete actions since it finds the
action that maximises the action-value function. This would
require an iterative process at every time step for continuous
action spaces [124]. As shown in Fig. 3, the ability to support
continuous action values allowed the DDAC algorithm to
follow curved tracks more smoothly and stay closer to the
centre of the lane when compared to the DQN algorithm,
thereby producing better performance for lane keeping.

Fig. 3. The lane keeping performance of (a) the DQN with discretised outputs
and (b) DDAC with continuous output values [122].

Vision based vehicle control using CNNs has also been
researched. For instance, Zhang et al. [125] proposed a su-
pervised learning method, SafeDAgger, for training a CNN
to drive in a TORCS simulation. The proposed method is
based on the Dataset Aggregation (DAgger) imitation learning
algorithm [54]. In DAgger, the agent first learns a primary
policy through traditional supervised learning, with the train-
ing set generated by a reference policy. Then, the algorithm
iteratively generates new training examples through the learned
policies, which are then labelled by the reference policy. The
new expanded dataset can then be used to update the learned
policy through supervised learning. This has the advantage



9

TABLE II
A COMPARISON OF LONGITUDINAL CONTROL TECHNIQUES.

Ref. Learning Strategy Network Inputs Outputs Pros Cons Experiments

[107]

Fuzzy
Reinforcement
Learning

Feedforward
network with 1
hidden layer

Relative distance,
relative speed,
previous control
input

Throttle angle,
brake torque

model-free, contin-
uous action values

Single term reward
function Simulation

[23]
Reinforcement
Learning

Feedforward
network with 1
hidden layer

Time headway,
headway derivative

Accelerate, brake,
or no-op

Maintains a safe
distance

Oscillatory acceler-
ation behaviour, no
term for comfort in
reward function

Simulation

[108]
Reinforcement
Learning

Actor-Critic
Network with
feedforward
networks

Velocity, velocity
tracking error,
acceleration
error, expected
acceleration

Gas and brake com-
mands

Learns from mini-
mal training data

Noisy behaviour of
the acceleration sig-
nal

Real world

[111]
Reinforcement
Learning

Feedforward
network with 5
hidden layers

Vehicle velocity,
relative position of
the pedestrian for
past 5 time steps

Discretised deceler-
ation actions

Reliably avoids col-
lisions

Only considers
collision avoidance
with pedestrians,
high rate of
collision at low
TTC

Simulation

[100]
Reinforcement
Learning

Feedforward
network with 1
hidden layer

Relative distance,
relative velocity,
relative acceleration
(normalised)

Desired
acceleration

Provides smooth
driving styles,
learns personal
driving styles

No methods for pre-
venting learning of
bad habits from hu-
man drivers

Simulation

[113]
Reinforcement
Learning

Actor Critic Net-
work with feedfor-
ward networks

Relative distance,
host velocity,
relative velocity,
host acceleration

Desired
acceleration

Performs well in a
variety of scenarios,
safety and comfort
considered, learns
personal driving
styles

Adapting unsafe
driver habits could
degrade safety

Simulation

[22]

Supervised
Reinforcement
Learning

Actor-Critic
Network with
feedforward
networks

Relative distance,
relative velocity

Desired
acceleration

Pre-training by
supervised learning
accelerates learning
process and
helps guarantee
convergence,
performs well in
critical scenarios

Requires
supervision to
converge, driving
comfort not
considered

Simulation

that states which were not reached in the initial training
set can be covered in the new extended training set. The
primary policy is then iteratively fine-tuned using the new
training set. Zhang et al. proposed an extension to this method,
called SafeDAgger, where the system estimates (in any given
state) whether the primary policy is likely to deviate from the
reference policy. If the primary policy is likely to deviate by
more than a specified threshold, the reference policy is used
to drive the vehicle instead. The safety policy is estimated
by a fully connected network where the input is the last
convolutional layer’s activation. The authors used this method
to train a CNN to predict a continuous steering wheel angle
and a binary decision for braking (brake or do not brake).
The authors then evaluated supervised learning, DAgger, and
SafeDAgger by driving them on three test tracks, with up
to three laps on each track. Out of the three algorithms
evaluated, SafeDAgger was found to perform best in terms
of the number of completed laps, number of collisions, and
mean squared error of steering angles. In another work, Pan
et al. [126] used DAgger-like imitation learning to learn to
drive at high speeds autonomously, with continuous actions
for both steering and acceleration. The reference policy for
the dataset was obtained from a model predictive controller
operated using expensive high resolution sensors, which the
CNN then learned to imitate using only low cost camera
sensors for observations. The technique was first tested in
Robot Operation System (ROS) Gazebo [127] simulations,

followed by a real-world 30m long dirt track with a 1/5-scale
vehicle. The sub-scale vehicle successfully learned to drive at
speeds up to 7.5m/s around the track. Instead of using direct
vision for control, Wang et al. [128] demonstrated that DAgger
can be used to train an object-centric policy, which uses salient
objects in the image (e.g. vehicles, pedestrians) to output a
control action. The trained control policy was tested in Grand
Theft Auto V simulation, with a discrete control action (left,
straight, right, fast, slow stop) which was then translated to
a continuous control with a PID controller. The test results
demonstrated improved performance with the object-centric
policy compared to models without attention or those based
on heuristic object selection. Vision based techniques have also
been used to mitigate collisions by Porav & Newman [129],
who built on the previous work by Chae et al. [111] by using a
deep reinforcement learning algorithm for collision mitigation
which can provide continuous control actions for both velocity
and steering. The system uses a Variational AutoEncoder
(VAE) coupled with an RNN to predict the movement of
obstacles and learns a control policy with Deep Deterministic
Policy Gradient (DDPG) to mitigate collisions in low TTC
scenarios. The network used a semantically segmented image
to predict continuous steering and deceleration actions. The
proposed technique shows improvement over braking-only
policies for TTC values between 0.5 and 1.5s, and up to 60%
reduction in collision rates.

Inverse Reinforcement Learning (IRL) approaches have also



10

been investigated in the context of control systems as a way to
overcome the difficulty of defining an optimal reward function.
IRL is a subset of reinforcement learning, in which the reward
function is not specified, but the agent attempts to learn it from
an expert’s demonstrations. In IRL, the agent assumes that the
expert is completing the task by following an unknown reward
function. It then estimates a reward function in which the
demonstrators’ trajectory is the most likely one. This has the
advantage that instead of requiring the developer to explicitly
specify a reward function, they simply have to demonstrate
the intended behaviour. This can be advantageous since in
large and complex tasks, defining an adequate reward function
to provide optimal agent behaviour can be both difficult and
time consuming [130]. IRL approaches have been shown to
not only reduce the amount of time required for design and
optimisation, but also improve the system performance by
creating more robust reward functions. Abbeel & Ng [131]
showed that when IRL was applied to a problem where the
agent learned by observing an expert, the agent performed as
well as the expert when evaluated with respect to the reward
function used by the expert, even if the reward function derived
from observations was not the expert’s true reward function.
Moreover, it was shown that in a simplistic highway driving
scenario with 5 different actions for lane selection available
to the agent and multiple driving styles demonstrated, the
IRL algorithm successfully learned to mimic the demonstrated
driving behaviours. Further, Silver et al. [21] used an IRL
algorithm based on Maximum Margin Planning [132] which
was shown to be effective in a demonstration of an autonomous
vehicle in unstructured terrain. The vehicle was shown to
perform better than an agent based on traditional reinforcement
learning with a hand-tuned reward function. Additionally, the
IRL approach was shown to require significantly less time to
design and optimise compared to the reinforcement learning
agent. Kuderer et al. [20] proposed a vehicle controller that
can learn individual driving styles from demonstration using
IRL. The algorithm assumes that the demonstrator is driving
in a way to maximise an unknown reward function. From
this, the learning model estimates the weights in a linear
reward function based on 9 features for driving. Initially,
the weights were equally set and were then updated based
on demonstrations of 8 minutes per driver. After finding the
driving policy, the chosen trajectories were compared to those
observed from human drivers. The system was shown to learn
drivers’ personal driving styles from minimal training data and
performed adequately in simulated testing.

Building on the IRL approaches, Wulfmeier et al. [133]
proposed an IRL approach for deep learning. The proposed
algorithm is based on the Maximum Entropy [134] model for a
trajectory planner, and uses CNNs to infer the reward functions
from expert demonstration. The approach was trained on a
dataset collected over the course of one year with a total
of 120km of driving a modified golfcart on walkways and
cycle lanes. The input to the network was the LIDAR point
cloud map, which was represented on a discretised grid map.
The output of the network was a discrete set of actions. The
proposed approach was demonstrated to work better than a
manually constructed cost function. Moreover, the learned

algorithm was shown to be more robust to sensor noise. This
shows that the use of DNNs in an IRL algorithm for trajectory
planning was beneficial overall. Therefore IRL techniques
could be considered as a potential way to overcome the
difficulties of designing an optimal reward function for driving.

However, there are some challenges for IRL approaches
in practical applications. Firstly, there is no guarantee of
optimality of the demonstrations. For example, in a driving
demonstration, no human driver can carry out the driving tasks
optimally every time. Therefore, the training data will include
suboptimal demonstrations which will affect the final reward
function constructed. There are some solutions to minimising
the effect of suboptimal demonstrations; using multiple trajec-
tories and averaging over multiple sets to find a reward func-
tion or removing the assumption of global optimality [135].
Secondly, reward ambiguity can lead to further problems in
IRL approaches. Given expert demonstrations of driving strate-
gies, there can be multiple reward functions that explain the
expert’s behaviour. Therefore, an effective IRL algorithm must
find a reward function that considers the expert’s trajectory
optimal and rejects other possible trajectories. Thirdly, the
reward function derived through IRL methods may not be safe,
as noted by Abbeel et al. [136], who used IRL to operate an
autonomous helicopter and had to manually tune the reward
function for safety. Therefore, hand tuning of the derived
reward function may be required to ensure safe behaviour.
Lastly, the computational burden of IRL methods can be
heavy since they often require iteratively solving reinforcement
learning problems with each new reward function derived
[130]. Nevertheless, in tasks where an adequately accurate
reward function cannot be easily defined, IRL approaches can
provide an effective solution.

While the previously mentioned works in this section
demonstrate that a DNN can be trained to drive a vehicle,
training a vehicle to simply follow a road or keep in its lane
without any outside context is not sufficient for deploying
fully autonomous vehicles. Humans drive vehicles with the
goal of arriving at our target destination, and learning to drive
from camera images to imitate human driving behaviour is
not enough to understand the full context behind the human
driver’s action. For instance, it has been reported [83], that
upon reaching a fork in the road end-to-end driving techniques
tend to oscillate between the two possible driving directions.
Not only is this impractical if our goal is to continue in
the left direction, but can result in unsafe behaviour where
the DNN oscillates between left and right but never picking
either direction. Aiming to provide autonomous vehicles with
contextual awareness, Hecker et al. [137] collected a data set
with a 360-degree view from 8 cameras and a driver following
a route plan. This data set was then used to train a DNN
to predict steering wheel angle and velocities from example
images and route plans in the data set. Qualitative testing
was done to evaluate learning on instances from the data set,
suggesting the model was learning to imitate the human driver,
but no live testing was completed to validate performance.
With a similar aim, Codevilla et al. [138] trained a supervised
learning algorithm, which uses both images and a high-level
navigational command for its driving policy. The network was



11

trained through end-to-end supervised learning, conditioned
by a high-level command which could be follow road, go
straight, turn left, or turn right. The authors tested two network
architectures which could take the navigational command into
account; one where the command was an additional input to
the network, and one where the network branched at the end
into multiple sub-modules (feedforward layers), one for each
possible command. The authors noted that the latter archi-
tecture performed better. The resulting network was initially
tested in CARLA [139] simulation, followed by real-world
testing on a 1/5-scale car. The resulting policy successfully
learned to turn the correct way at intersections as commanded.
The authors noted that data augmentation and noise injection
during training was key to learning a robust control policy.
This method was further extended in [140], by using an extra
module for velocity prediction, which helps the network in
some situations, such as when the vehicle is stopped at a traffic
light, to predict the expected vehicle velocity from visual cues
and prevent it from getting stuck when the vehicle comes
to a full stop. Further improvements to the model were a
deeper network architecture and a larger training set, which
reduced the variance in training. A slightly different approach
was explored using reinforcement learning by Paxton et al.
[141] where the high-level command is provided by another
DNN responsible for decision making. The system consisted
a DDPG network for low-level control and a DQN for a
stochastic high level policy subject to linear temporal logic
constraints. The aim of the vehicle was to navigate a busy
intersection, where some lanes had stopped vehicles so that
the host vehicle had to successfully change lanes as well.
The system was tested in 100 simulated intersections with and
without stopped cars ahead, for a total of 200 tests. Without
stopped cars the agent succeeded every time, whereas with
stopped cars ahead, 3 collisions occurred.

Moving away from end-to-end approaches, researchers at
Waymo recently presented ChauffeurNet [142]. ChauffeurNet
uses mid-to-mid learning to learn a driving policy, where the
input is a pre-processed top-down view of the surrounding
environment which represents useful features such as roadmap,
traffic lights, a route plan to follow, dynamic objects, and past
agent poses. The agent then processes these inputs through
an RNN to provide a heading, speed, and waypoint, which
are then achieved through a low-level controller. This had the
advantage that pre-processed inputs could be obtained either
from simulation or real-world data, which makes transferring
driving policies from simulation to the real world easier
[143], [144]. Furthermore, synthesising perturbations to model
recoveries from incorrect lane positions or even scenarios
such as collisions or driving off-road provides the model with
robustness to errors and allows the model to learn to avoid
such scenarios.

An overview of full vehicle control approaches can be seen
in Table III. Unlike previous sections, a variety of learning
strategies have been utilised here, however supervised learning
is still the preferred approach. An important note on the works
where full vehicle control via neural networks is researched,
is that robust and high performing models still seem out of
reach. For instance, techniques which implement full vehicle

control tend to have poorer performance on steering than
techniques which only consider steering. This is explained by
the significant increase in the complexity of the task which the
neural network is trained to perform. For this reason, several
of the works summarised in this section have been trained
and evaluated in simplified simulated environments. While full
vehicle control should be the end goal of autonomous vehicle
control techniques, current approaches have yet to achieve
adequate performance in complex and dynamic environments.
Therefore future research is required to further improve the
control performance of neural network-driven autonomous
vehicles.

IV. CHALLENGES

The previous section discussed various examples of deep
learning applied to vehicle controller design. While this shows
that there is a significant amount of interest in the research of
such systems, they are still far from ready for commercial
application. There remains a number of challenges that must
be overcome before learned autonomous vehicle technology is
ready for widespread commercial use. This section is dedicated
to discussing the technological challenges for deep learning
based control of autonomous vehicles. It is worth remembering
that besides these technological challenges, issues such as
user acceptance, cost efficiency, machine ethics for artificial
intelligence technologies, and lack of legislation/regulation for
autonomous vehicles must also be addressed. However, the
aim of this manuscript is to focus on deep learning based
autonomous vehicle control methods and their technical chal-
lenges, therefore general and non-technological challenges for
autonomous vehicles are out of the scope of this manuscript,
for further reading on these topics, see [145]–[150].

A. Computation

The major drawback for deep learning methods is the
large amount of data and time required for adequate training,
especially for reinforcement learning methods. This can lead to
long training periods which can cause delays and additional
cost in the design of an autonomous vehicle. The common
solution to reduce training data requirements or the time
required for training is to combine reinforcement learning
with supervised learning, which helps reduce the training
time whilst still providing good adaptability. Nevertheless,
for a fully autonomous vehicle, the amount of training data
required to build a reliable and robust system can be vast.
It is challenging to train a vehicle to drive in all possible
scenarios that it could encounter in the real world due to
the huge quantity of data that needs to be collected. There
are several companies researching autonomous driving using
machine learning and collaborating and sharing data would
be the fastest route to move from experimental systems to
commercial ones. However, this is unlikely as companies
researching autonomous vehicles are not willing to share their
resources due to fear of diluting their competitive advantage
[151]. However, while increasing the amount of available data
is useful to learn more complex behaviours, using larger data
sets brings its own challenges, such as ensuring diversity of



12

TABLE III
A COMPARISON OF FULL VEHICLE CONTROL TECHNIQUES.

Ref. Learning Strategy Network Inputs Outputs Pros Cons Experiments

[120]

Supervised
Reinforcement
Learning

Feedforward
network with 2
hidden layers

Not mentioned Steering, accelera-
tion, braking Fast training Unstable (Can steer

off the road) Simulation

[122]
Reinforcement
Learning

Fully connected
/ Actor-Critic
Network with
feedforward
networks

Position in lane, ve-
locity

Steering, gear,
brake, and
acceleration values
(discretised for
DQN)

Continuous policy
provides smooth
steering

Simple simulation
environment Simulation

[125]
Supervised
Learning CNN / Feedforward Simulated camera

image

Steering angle, bi-
nary braking deci-
sion

Estimates safety of
the policy in any
given state, DAgger
provides robustness
to compounding er-
rors

Simple simulation
environment,
simplified
longitudinal output

Simulation

[126]
Supervised
Learning CNN Camera image Steering and throttle

High speed driving,
Learns to drive on
low cost cameras,
Robustness of DAg-
ger to compounding
errors

Trained only for el-
liptical race tracks
with no other vehi-
cles, Requires iter-
atively building the
dataset with the ref-
erence policy

Real world (sub-
scale vehicle) &
Simulation

[128]
Supervised
Learning CNN Image 9 discrete actions

for motion

Object-centric pol-
icy provides atten-
tion to important
objects

Highly simplified
action space Simulation

[129]
Reinforcement
Learning VAE-RNN Semantically

segmented image
Steering, accelera-
tion

Improves collision
rates over braking
only policies

Only considers
imminent collision
scenarios

Simulation

[133]
Inverse Reinforce-
ment Learning CNN

LIDAR point
clouds on a grid
map

Discrete motions
Robust to noise,
avoids handcrafting
of cost function

Increased computa-
tion burden of IRL,
no guarantee of cost
function optimality

No live testing

[137]
Supervised
Learning CNN

360-degree view
camera image,
route plan

Steering angle, ve-
locity

Takes route plan
into account Lack of live testing

No live testing,
tested on data set
image examples
only

[138]
Supervised
Learning CNN Camera image, nav-

igational command
Steering angle, ac-
celeration

Takes navigational
commands
into account,
generalises to new
environments

Occasionally fails
to take correct turn
on first attempt

Real (sub-scale ve-
hicle) & Simulation

[141]
Reinforcement
Learning

Feedforward
network with 1
hidden layer

Host vehicle states,
set of features for
each nearby vehi-
cle, vehicle position
and priority in inter-
section

steering angle rate,
acceleration

Considers decision
making provided by
another DNN

Large number in-
puts which would
be difficult to ex-
tract in reality, Not
collision free

Simulation

[142]
Supervised
Learning CNN-RNN

Pre-processed top-
down image of sur-
roundings

Heading, velocity,
waypoint

Ease of transfer
from simulation to
real world, robust
to deviations from
trajectory

Can output way-
points which make
turns infeasible, can
be over aggressive
with other vehicles
in new scenarios

Real world & Sim-
ulation

the data. If the amount of data used for training the model
is increased, without ensuring variety in the data set, the risk
of overfitting to the data set increases. For instance, Codevilla
et al. [140] compared 4 driving models trained with 2, 10,
50, and 100 hours of data, and it was shown that the model
trained with 10 hours of driving data performed best in most
scenarios. This is due to many of the instances in the training
set being very similar, captured in typical driving conditions.
As the data set size increases, rare driving scenarios (where
the model is more likely to fail) are encountered increasingly
rarely during training. Therefore, when generating large data
sets, diversity in the data set must be ensured.

Further computational complexity is caused by the contin-
uous states and actions in which the agent has to operate.
As stated in the previous section, continuous action values

are necessary for a deployable vehicle control system to have
adequate performance. However, as the number of dimensions
grows, the computational complexity grows exponentially
[152], this is known as the Curse of Dimensionality [153].
In the high-dimensional problems of vehicle control, this has
a significant effect on the computational complexity of any
solution. Although discretisation of the system can reduce the
complexity, as seen in previous examples, this can lead to
degradation in system performance. Other solutions include
using multiple learners to reduce learning time [154], [155],
evolution strategies which are highly parallelisable [156], or
removing unnecessary data from the training and system input
data [157].

Overall, the high computational burden of DNNs is a chal-
lenge to not only the development and training of the networks



13

but also the deployment of such systems in vehicles. The high
computational overhead of the deep learning algorithms will
require high computing capabilities on-board, driving up the
system cost and power requirements, which must be kept in
mind during the system design.

B. Architectures

Another challenge with deep learning is selecting the archi-
tecture of the neural networks. There are no clear guidelines
for ’good’ neural network architecture for a given task. For
instance, in terms of size and number of layers, it has been
shown that too few neurons will lead to a system with poor
performance. However, too many neurons may overfit to the
training data and therefore not generalise well. Also, given
that additional neurons will lead to increased computational
complexity, finding an optimal number of neurons would
be of great benefit to deep learning methods [158], [159].
Other parameters can also have an effect on the performance,
training, and convergence of the system. The fundamental
architecture, training method, learning rate, loss function,
batch size etc., all need to be decided upon and defined,
which affect the performance of the agent. However, there
are few methods for choosing these parameters, and often
trial-and-error and heuristics are the only viable options for
optimising each parameter due to the complexity of DNNs
[49]. This is generally achieved by choosing a range of values
for the hyperparameters in the neural network, and finding the
best performing values. However, using such trial-and-error
methods for exploring the hyperparameter space can be slow,
given the amount of computation required for each training
run.

Solutions to this challenge currently being researched in-
clude computerised ways of finding optimal values for these
parameters, either by trialling across a range or using model-
based methods to converge on the best values. There are
several methods for changing the parameters over the chosen
range, such as Coordinate Descent [160], Grid Search [160],
[161], and Random Search [162]. Coordinate Descent keeps
all hyperparameters except one fixed, and finds the best value
for one parameter at a time. Grid Search optimises every
parameter simultaneously, including the cross-product of all
intervals. However, this vastly increases the computational
expense by requiring a large number of neural network models
to be trained and therefore is only suitable when the models
can be trained quickly. Random Search often finds a good
set of parameters faster than a Grid Search by sampling the
chosen interval randomly [162], [163]. However, this has the
disadvantage that the parameter space is often not covered
completely, and some sample points can be very close to
each other. These disadvantages can be solved by using quasi-
random sequences [164]. Alternatively, one can use model-
based hyperparameter optimisation methods, such as Bayesian
optimisation or tree-structured Parzen estimators, which tend
to yield better results but are more time intensive [164]–
[167]. Other proposed approaches focus on automated hyper-
parameter tuning by eliminating undesirable regions of the
hyperparameter search space in order to converge to optimal

values [168], [169]. Recent research has also explored neural
architecture search methods which take hardware efficiency
into account by incorporating the hardware feedback into
the learning signal [170]–[173]. This has resulted in neural
network architectures which are specialised for specific hard-
ware platforms, and demonstrate a hardware efficiency benefit
over non-specialised architectures. Such methods could also be
extended to find efficient network architectures for vehicle on-
board hardware platforms. It should be noted that automated
neural architecture search is an active area of research, for
further discussion on this topic we refer the reader to the
survey by Elsken et al. [174].

While architecture selection is a general problem for many
deep learning applications, a complex task such as autonomous
driving also brings its own challenges. Currently, most end-
to-end driving systems have been limited to smaller networks.
This is due to the relatively small datasets used, which would
cause deeper networks to overfit to the training data. However,
as noted in [140], when large amounts of data are available,
deeper architectures can reduce both bias and variance in
training, resulting in more robust control policies. Further
thought should be given to architectures specifically designed
for autonomous driving, such as the conditional imitation
learning model [138], where the network included a different
final network layer for each high-level command used for driv-
ing. These challenges translate to mid-to-mid approaches as
well, as the selection of high-level features represented in the
input to the network must be chosen carefully. Future works
investigating specialised network architectures for autonomous
driving can therefore be expected.

C. Goal Specification

Adequate goal specification is a challenge specific to re-
inforcement learning methods. One of the advantages of
reinforcement learning is that the behaviour of the agent does
not need to be specified implicitly as it would be in rule-based
systems. Only the reward function, which can often be easier
to define than the value function, and the control action (e.g.
steering, acceleration, braking) need to be defined. However,
the goal of reinforcement learning is to maximise the long
term accumulated reward as defined by the reward function.
Therefore, the desired behaviour of the agent must be accu-
rately captured by the reward function, otherwise unexpected
and undesired behaviour might occur. For instance, instead of
using binary rewards for successful or unsuccessful completion
of tasks, intermediate rewards can be used to guide the agent
towards desired behaviour, this process in known as reward
shaping [175], [176]. For example, Desjardins & Chaib-Draa
[23] used the time headway derivative to reward the agent for
actions that helped it move towards the ideal time headway
state. Furthermore, for a complex task such as driving, a multi-
objective reward function needs to consider different objectives
which may conflict with each other. For example, for driving,
these objectives may include maintaining a safe distance from
other vehicles, staying close to the centre of the lane, avoiding
pedestrians, not changing lanes too often, maintaining desired
velocity, and avoiding harsh accelerations/braking. Hence, the



14

reward function should not only consider all factors that affect
the agent’s behaviour, but also the weight of these factors.

A further challenge for agents which control both lateral
& longitudinal actions is the difficulty of defining a reward
function when the agent must be able to perform multiple
actions (steering, braking, and acceleration). In reinforcement
learning, the agent uses the feedback from the reward function
to improve its own performance. However, when the agent is
carrying out multiple actions, it may not be clear which of
the actions resulted in the given reward. For example, if the
vehicle steers away from the road, the acceleration may not be
at fault but a negative reward signal is sent to the agent. One
solution to this is a Hybrid Reward Architecture [177], where
the system uses a decomposed reward function and learns a
separate value function for each component reward function.
Alternatively, Shalev-Shwartz et al. [178] proposed a solution
in which the reward function is decomposed into a high level
decision making system, through which the agent learns to
drive safely and make strategic decisions (e.g. which cars to
overtake or give way to), and a low level reward function
which helps the agent learn an optimal policy for different
actions (e.g. overtaking, merging, decelerating etc.).

The developer should also take care that the agent does
not exploit the reward function in unexpected ways, resulting
in unintended behaviour. This effect is also known as reward
hacking. Reward hacking occurs when the agent finds an
unanticipated way of exploiting the reward function to gain
large rewards in a way which goes against the developers’
defined objective(s) for the agent. For example, a robot used
in ball paddling with a reward function based on the distance
between the ball and the desired highest point, may attempt
to move the racket up and keep the ball resting on it [152].
Potential solutions to avoid reward hacking were proposed
by Amodei, et al. [179] in the form of adversarial reward
functions, model look-ahead, reward capping, multiple reward
functions, and trip wires. Adversarial reward functions utilise
a reward function which is its own agent, similar to generative
adversarial networks. The reward function agent can then
explore the environment, making it more robust to reward
hacking. It could, for example, try to find instances where
the system claims a high reward from its actions, while
a human would label it as a low reward. On the other
hand, model look-ahead gives a reward based on anticipated
future states, instead of the present one. Reward capping
is a simple solution to reward hacking, where a maximum
value is imposed on the reward function, thereby preventing
unexpected high reward scenarios. Multiple reward functions
can also increase robustness to reward hacking, since multiple
rewards can be more difficult to hack than a single one.
Finally, trip wires are deliberately placed vulnerabilities in the
system, where reward hacking is most likely to occur. These
vulnerabilities are then monitored to alert the system if the
agent is attempting to exploit its reward function. Another
approach to solving these challenges in goal specification
is using inverse reinforcement learning to extract a reward
function from expert demonstrations of the task [180]–[183].

D. Adaptability & Generalisation

Another challenge for learned control systems is dealing
with different environments with a scalable approach. For
example, a driving strategy that is successful in an urban
environment may not be optimal on a highway, since they
are very different environments with different traffic flow
patterns and safety issues. Similar issues arise with changing
weather conditions, seasons, climates etc. A neural network’s
ability to use what it has learned from previous experiences
to operate in a completely new environment is referred to as
generalisation. However, the problem with generalisation is
that even if the system demonstrates good generalisation in
one new environment, there is no guarantee it will generalise
to other possible environments. Moreover, considering the
complex operating environment of a vehicle, it is not possible
to test the system in all scenarios. Therefore, building a deep
learning system capable of generalising to such a vast variety
of situations, as well as validating its generalisation capability
poses major challenges. This is a challenge that must be
overcome for deep learning driven autonomous vehicles to be
deployable in the real world, as the vehicles must be able to
cope with the various different environments it will be used
in.

Generally, to avoid poor generalisation in DNNs the training
must be stopped before the DNN starts to overfit to the
training data. Overfitting refers to creating a model that fits
the training data too well, losing its ability to generalise to
new data. Overfitting occurs when the network is trained
with either insufficient amounts of training data or too many
training episodes on the same training data. This results in the
neural network memorising the training data, thereby losing
generalisation. Unfortunately, there are no known methods
of choosing the optimal stopping point in order to avoid
overfitting [184]. However, it is possible to get some indication
of the network’s generalisation capability by having three
different data sets: training, validation, and test sets. The
training and validation sets are used during training, but
only the training set results are used to update the network
weights [185]. The purpose of the validation set is to minimise
overfitting, by monitoring the error in the validation data set.
In this way, it will be ensured that changes which reduce
the error on the training set also reduce the error on the
validation set, thereby avoiding overfitting. If the accuracy of
the validation set starts to decrease over the training iterations,
then the network is starting to overfit and training should be
stopped. In addition to stopping overfitting, a validation set
can also be used to compare different network architectures
(e.g. comparing two different networks with different numbers
of hidden layers) to provide a measure of generalisation.
Nevertheless, utilising the validation set simultaneously in the
selection of the network and to terminate training can result
in overfitting to the validation set. Therefore an additional
independent set, known as testing set, is required for the
evaluation of the network performance [186]. The testing set is
only used to test the final network to confirm its performance
and generalisation capabilities. The testing set must provide
an unbiased evaluation of the network’s generalisation [185].



15

Therefore, it is crucial that the test set is not used to choose
between different networks or network architectures.

There are also techniques available for DNNs which aim to
reduce the test error, although often at the cost of increased
training error, known as regularisation techniques [48]. The
basis of regularisation techniques is to introduce some con-
straints on the deep learning model, which either introduce
prior knowledge into the model or promote simpler models in
order to achieve better generalisation capability. There are a
variety of regularisation techniques available to choose from.
For instance, L1 and L2 regularisation techniques introduce
a constraint on the model by including an additional term
in the cost function of the learning model, which makes
the network prefer smaller weights. The smaller weights in
the network reduce the effect of individual inputs on its
behaviour, which means that the effect of local noise is reduced
and the network is more likely to learn trends across the
whole data set [49], [187]. Similarly, imposing constraints on
the network weights through weight clipping has also been
shown to improve robustness [188], [189]. Another popular
regularisation technique is dropout, which drops out some
randomly selected neurons from training and only updates the
remaining weights for the given training example. At each
weight update, a different set of neurons is omitted, thereby
preventing complex co-adaptions between neurons. This helps
each neuron learn features which are important for the given
task and therefore helps reduce overfitting [190], [191].

E. Verification & Validation

The testing of the system needs to be rigorous to validate
the performance and safety of the system. However, the
problem is that real-world testing can be expensive in terms
of time, labour, and finances. Indeed, full-scale vehicle studies
with multiple vehicles have typically been achieved through
collaboration of government research projects with automotive
manufacturers, such as Demo ’97 [192]–[194] or Demo 2000
[195]. Alternatively, simulation studies can reduce the amount
field testing required, and can be used as a first step for
performance and safety evaluation. Simulation studies are
significantly cheaper, faster, more flexible, and can be used to
set up situations not easily achieved in real life (e.g. crashes).
Indeed, with the increasing accuracy and speed of simulation
tools, simulation has become an increasingly dominant method
of study in this field [196].

While simulation has multiple advantages, the model errors
must be kept in consideration throughout the verification and
validation process. This is especially critical for training, as
training an agent in an imprecise model will result in a system
that will not transfer to the real-world without significant mod-
ifications [152], [197]. Complex mechanical interactions, such
as contacts and friction, are often difficult to model accurately.
These small variations between the simulation model and
the real-world can have drastic consequences on the system
behaviour in the real world. In other words, the problem is
the agent overfitting its policies to the simulation environment,
and not transferring well to a real-world environment. For
a system that can be evaluated and used in the real-world,

training, as well as testing, in both simulation and field tests
would be required [198]. The large number of trials required
for reinforcement learning algorithms to converge, makes them
susceptible to this issue where simulation is used for training.
However, recent studies in robot manipulation have shown
effective transfer of learned policies from simulation to the
real world [199]–[202].

Validation of the model and simulation environment alone
is not enough for autonomous vehicles, as the influence of
the training data can be equal to that of the algorithm itself
[203]. Therefore, there should be emphasis on validating the
quality of the training set as well. Ensuring that the data set
represents the desired operational environment adequately, and
covers the potential states is important. For instance, data
sets that are biased towards a certain action (e.g. turn left)
or scenario (e.g. driving in daytime) can introduce harmful
biases into the learning model. Therefore, data sets should
be validated to understand if they contain potentially harmful
biases or patterns that could lead to undesirable behaviour of
the learned control policy [56].

F. Safety

In a safety-critical system, such as vehicle operation, a
serious malfunction or failure could result in death or serious
harm to people or property. Therefore, the safety of road users
must be ensured before such systems are deployed commer-
cially. However, ensuring functional safety in deep learning
systems can be challenging. As the neural networks become
more complex, the solutions they provide and how they come
to those solutions becomes increasingly difficult to interpret
[204]. This is known as the black box problem. The opacity
of these solutions is an obstacle to their implementation in
safety-critical applications; while it is possible to show that
these systems provide good performance in our validation
environment, it is impossible to test these systems in all the
possible environments they would encounter in the real world.
Therefore, if we do not understand the way in which the
system makes its decisions, ensuring it does not make unsafe
decisions in new environments becomes increasingly difficult.
It becomes even more challenging in online learning methods,
since they change their policies during operation and therefore
could potentially shift from safe policies to unsafe policies
over time [205]–[209].

Any autonomous vehicle system not only needs to drive
safely, but it also needs to be capable of reacting in a safe
manner to other vehicles or pedestrians acting unpredictably.
It can be difficult to guarantee the safety for any vehicle
controller if, for example, another driver is acting recklessly or
a previously unseen pedestrian runs onto the road. Therefore,
it would be useful to include unsafe and aggressive driving
behaviours of other vehicles into the training data of the
vehicle controller to enable it to learn how to deal with such
situations. One option to improve reliability and safety in
such situations is utilising a trauma memory [111] where rare
negative events (e.g. collisions) are stored. These are then used
in training to persistently remind the agent of these events and
ensure it maintains safe behaviour.



16

TABLE IV
A SUMMARY OF RESEARCH CHALLENGES.

Challenge Sub-challenges Potential Solutions

Computation

• Computation requirements for deep learning
• Large data sets for supervised learning
• Curse of dimensionality in high dimensional problems
• Simulation requirements for sample inefficient techniques

• Scalable model architectures
• Sharing data sets
• Improving sample efficiency in reinforcement learning
• Parallelisable architectures for training

Architectures
• Lack of clear rules for network architectures
• Reliance on heuristics and trial-and-error

• Automated neural architecture search methods
• Specialised architectures for autonomous driving

Goal
Specification

• Well designed reward functions for complex tasks
• Multi-objective reward functions
• Reward hacking

• Reward shaping
• Inverse reinforcement learning
• Hybrid reward architectures

Adaptability &
Generalisation

• Wide variety of the operational environment
• Overfitting to training data/environment

• Representative data sets and/or training environments
• Effective use of regularisation techniques

Verification &
Validation

• Inability to test in all possible scenarios
• High cost of field testing
• Inaccuracies in simulation
• Biases and gaps in data sets

• High fidelity simulations
• Effective simulation to real world transfer
• Validation of data set coverage

Safety

• Complexity and opaqueness of DNNs
• Safe training in the real world
• Adversarial attacks

• Research into interpretability of DNNs
• Fail safes and virtual safety cages
• Human oversight
• Improving model robustness to perturbations

Also, safety must be maintained during any training or
testing in the real world. For instance, during early training
of a reinforcement learning agent, the agent is more likely to
use exploration than exploitation of past experiences, which
means the agent will effectively be learning through trial and
error. Therefore, care must be taken to ensure the exploration
happens in a safe manner. This is especially true in any
environment including other road users or pedestrians, since
inappropriate actions chosen due to exploration could have
disastrous results. Exploration poses safety challenges as the
agent is encouraged to take random actions, which can lead to
catastrophic events if not considered beforehand [210]–[213].
Potential solutions include the use of demonstrations such as
in IRL to provide examples of safe behaviour which could
be used as a baseline policy, simulated exploration where
exploration happens in a simulated environment, bounded
exploration which limits exploration in state spaces which
are considered unsafe, and human oversight although this
is limited in scalability and not feasible in some real-time
systems. The same holds true for any testing and evaluation
of the system; until the system has been deemed to perform
adequately and in a safe manner, all necessary precautions
must be taken to ensure safety [179].

An approach for ensuring functional safety for deep learning
based autonomous vehicles is suggested by Shalev-Shwartz
et al. [178]. In the proposed system architecture, the policy
function is decomposed into a learnable part and a non-
learnable part. The learnable part is responsible for the comfort
of driving and for making strategic decisions (e.g. which
cars to overtake or give way to). This policy is learned
from experience by maximising an expected reward from the
reward function. On the other hand, the non-learnable policy
is responsible for the safety by minimising a cost function
with hard constraints (e.g. the vehicle is not allowed within
a specified distance of other vehicles’ trajectories) to ensure

functional safety. Alternatively, Xiong et al. [214] suggested a
control structure which combines reinforcement learning based
control with safety based control and path tracking. The aim is
to combine a traditional control method with a reinforcement
method to take advantage of the superior performance of deep
learning systems whilst ensuring safety through traditional
control theory. The path tracking element is included to ensure
the vehicle stays on (or as close as is safe to) the centre of
the lane. The reinforcement learning approach is based on
the DDPG algorithm. Also, the safety based controller uses
an Artificial Potential Field method [215] which models any
obstacles with a repulsive force to steer the vehicle away from
them. The final steering policy is then found by the weighted
summation of the three models. The system was shown to keep
a safe distance in a simulated environment where the vehicle
had to drive along a curve with other vehicles nearby.

Furthermore, malicious inputs to deep learning systems have
to be considered. It has been shown that visual classification
DNN systems are vulnerable to adversarial examples, which
are perturbed images that cause the DNNs to misclassify them
with high confidence [216]–[219], including misclassification
of traffic signs [220]. DNNs have been shown to be vulnerable
to printed adversarial examples in the real world [221] and
even to 3D-printed physical adversarial examples [222], which
suggests they are a threat to DNN applications in the real
world. Moreover, the image modification of the adversarial ex-
amples have been shown to be subtle enough that a human eye
does not notice the modification, making prevention of such
malicious attacks difficult [221]. These types of weaknesses
in DNNs could be exploited and pose a security concern for
any technology using DNNs. Although defences against these
attacks have been proposed [223], state-of-the-art attacks can
by-pass defences and detection mechanisms.



17

V. CONCLUDING REMARKS

In this manuscript, a survey of autonomous vehicle con-
trol approaches utilising deep learning was presented. The
approaches were separated into three categories: lateral (steer-
ing), longitudinal (acceleration and braking), and simultaneous
lateral and longitudinal control methods. The focus of this
manuscript has been on the vehicle control techniques rather
than perception, however there is some obvious overlap be-
tween them. It was shown that research interest in this field has
grown significantly in recent years and is expected to continue
to do so. The applications discussed in this paper show great
promise for the application of deep learning to autonomous ve-
hicle control. However, current deep learning based controller
performance has significant room for improvement. Moreover,
much of the current research is only limited to simulation.
While testing in simulation is useful for feasibility studies and
initial performance evaluations, extensive testing and training
in the field will be required before these systems are ready for
deployment.

The main research challenges to deep learning based vehicle
control were also discussed and can be seen summarised in
Table IV. Computation was identified as a challenge due
to the large amount of data required to train deep learning
models. Architectures were also identified as a challenge
due to the difficulty of choosing the optimal network archi-
tecture for a given task. Goal specification is a challenge
for reinforcement learning techniques due to the importance
of designing a reward function which promotes the desired
behaviour. Adaptability and generalisation is a challenge in the
autonomous vehicle domain due to the highly complex nature
of the operational environment. Verification and validation is a
further challenge due to the high cost and time requirements of
field tests and training. While simulation is an obvious solution
to reduce the amount of physical field testing required, the use
of simulation in training and testing has its own drawbacks.
Safety was identified as a crucial challenge due to the safety
critical nature of the autonomous vehicle domain. This is
made more challenging due to the opaque nature of deep
learning methods, making safety validation of these systems
problematic.

Therefore, further research into interpretability of neural
networks and functional safety validation methods for neural
network-driven vehicles will be required. Before deep learning
can be deployed on the road, some safety validation techniques
will need to be found to address their opaqueness. Ensuring
the safety of these deep neural networks is a major barrier
preventing them from being used commercially. Furthermore,
as noted by Salay et al. [224] in their analysis of the
ISO26262 [225] standard, more than 40% of the required
software techniques in the current version of the standard
are incompatible with machine learning techniques, whilst the
rest are either directly applicable or applicable if modified
slightly. This reveals further need for these standards to be
revised to address machine learning systems for autonomous
vehicles [226]. Other safety aspects which warrant further
research include defences against adversarial attacks, as they
currently present a significant safety problem for the use of

DNNs in autonomous vehicles. Also, robustness to erroneous
inputs from sensory data or communication failures must
be investigated. There is currently a significant gap in the
literature for investigation of fault tolerant systems. Further
research into how deep learning control systems deal with
issues such as communication failures, erroneous sensory
inputs, input noise, or sensor failure would move the industry
towards robust and safe solutions. Furthermore, while research
into deep neural networks with both lateral and longitudinal
vehicle control is still relatively sparse, there is significant on-
going research in this area. Full vehicle control with deep
neural networks is typically achieved in simple simulation
scenarios and/or with discretised outputs. Much work can be
done to improve the performance of the full vehicle control
techniques as well. Techniques in Sections III-A and B show
promising results for lateral and longitudinal control systems,
and future work will be required to bridge these techniques
into an autonomous vehicle system with strong performance
in the more general case of combined lateral and longitudinal
control. This will also include further experiments in the
real world to validate the performance of the learned control
policies. Other avenues for future research include learning
driving manoeuvrers which are still typically achieved through
classical control techniques, such as overtaking [227], [228]
or merging [229], [230]. Further work will also be needed to
design autonomous vehicles which can understand the rules of
the road and the behaviour of other road users. Some on-going
research was discussed where the deep neural network can
take into account the intended route or target destination, but
more research is needed to ensure these techniques can stop
at stop signs and red lights, respect speed limits, or negotiate
intersections and roundabouts with other vehicles.

REFERENCES

[1] National Highway Traffic Safety Administration (NHTSA), “2016
Fatal Motor Vehicle Crashes: Overview,” 2017. [Online]. Available:
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812456

[2] European Commission, “2016 road safety statistics: What is behind
the figures?” 2017. [Online]. Available: http://europa.eu/rapid/press-
release MEMO-17-675 en.htm

[3] World Health Organization, “Global status report on road safety
2018,” 2018. [Online]. Available: https://www.who.int/violence
injury prevention/road safety status/2018/en/

[4] A. Eskandarian, Handbook of intelligent vehicles. Springer, 2012,
vol. 2.

[5] S. Thrun, “Toward robotic cars,” Communications of the ACM, vol. 53,
no. 4, p. 99, 2010.

[6] C. Urmson and W. Whittaker, “Self-driving cars and the Urban chal-
lenge,” IEEE Intelligent Systems, vol. 23, no. 2, pp. 66–68, 2008.

[7] U. Montanaro, S. Dixit, S. Fallah, M. Dianati, A. Stevens, D. Oxtoby,
and A. Mouzakitis, “Towards connected autonomous driving: review
of use-cases,” Vehicle System Dynamics, pp. 1–36, 2018.

[8] S. Singh, “Critical reasons for crashes investigated in the National
Motor Vehicle Crash Causation Survey,” National Highway Traffic
Safety Administration, no. February, pp. 1–2, 2015.

[9] T. Luettel, M. Himmelsbach, and H. J. Wuensche, “Autonomous
Ground Vehicles Concepts and a Path to the Future,” Proceedings of
the IEEE, vol. 100, no. Special Centennial Issue, pp. 1831–1839, 2012.

[10] W. Payre, J. Cestac, and P. Delhomme, “Intention to use a fully
automated car: Attitudes and a priori acceptability,” Transportation
Research Part F: Traffic Psychology and Behaviour, vol. 27, no. PB,
pp. 252–263, 2014.

[11] P. Ross, “Robot, you can drive my car,” IEEE Spectrum, vol. 51, no. 6,
2014.

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812456
http://europa.eu/rapid/press-release_MEMO-17-675_en.htm
http://europa.eu/rapid/press-release_MEMO-17-675_en.htm
https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/
https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/


18

[12] Department for Transport, “Research on the Impacts of Connected
and Autonomous Vehicles (CAVs) on Traffic Flow: Summary Report,”
2017. [Online]. Available: https://www.gov.uk/government/uploads/
system/uploads/attachment data/file/530091/impacts-of-connected-
and-autonomous-vehicles-on-traffic-flow-summary-report.pdf

[13] C. Thorpe, M. Herbert, T. Kanade, and S. Shafter, “Toward autonomous
driving: the cmu navlab. ii. architecture and systems,” IEEE expert,
vol. 6, no. 4, pp. 44–52, 1991.

[14] E. D. Dickmanns and A. Zapp, “Autonomous high speed road vehicle
guidance by computer vision1,” IFAC Proceedings Volumes, vol. 20,
no. 5, pp. 221–226, 1987.

[15] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron,
J. Diebel, P. Fong, J. Gale, M. Halpenny, G. Hoffmann et al., “Stanley:
The robot that won the darpa grand challenge,” Journal of field
Robotics, vol. 23, no. 9, pp. 661–692, 2006.

[16] M. Buehler, K. Iagnemma, and S. Singh, The DARPA urban challenge:
autonomous vehicles in city traffic. springer, 2009, vol. 56.

[17] T. Le-Anh and M. De Koster, “A review of design and control of
automated guided vehicle systems,” European Journal of Operational
Research, vol. 171, no. 1, pp. 1–23, 2006.

[18] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on intelligent vehicles, vol. 1, no. 1, pp. 33–55,
2016.

[19] M. Pasquier, C. Quek, and M. Toh, “Fuzzylot: a novel self-organising
fuzzy-neural rule-based pilot system for automated vehicles,” Neural
networks, vol. 14, no. 8, pp. 1099–1112, 2001.

[20] M. Kuderer, S. Gulati, and W. Burgard, “Learning driving styles
for autonomous vehicles from demonstration,” Proceedings - IEEE
International Conference on Robotics and Automation, vol. 2015-June,
no. June, pp. 2641–2646, 2015.

[21] D. Silver, J. A. Bagnell, and A. Stentz, “Learning Autonomous Driving
Styles and Maneuvers from Expert Demonstration,” in Experimental
Robotics. Springer, Heidelberg, 2013, pp. 371–386.

[22] D. Zhao, B. Wang, and D. Liu, “A supervised Actor-Critic approach
for adaptive cruise control,” Soft Computing, vol. 17, no. 11, pp. 2089–
2099, 2013.

[23] C. Desjardins and B. Chaib-draa, “Cooperative Adaptive Cruise Con-
trol: A Reinforcement Learning Approach,” IEEE Transactions on
Intelligent Transportation Systems, vol. 12, no. 4, pp. 1248–1260, 2011.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems, 2012, pp. 1097–1105.

[25] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared
views of four research groups,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 82–97, 2012.

[26] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[27] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-
making for autonomous vehicles,” Annual Review of Control, Robotics,
and Autonomous Systems, no. 0, 2018.

[28] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser, “Heuristic ap-
proaches in robot path planning: A survey,” Robotics and Autonomous
Systems, vol. 86, pp. 13–28, 2016.

[29] S. M. Veres, L. Molnar, N. K. Lincoln, and C. P. Morice, “Autonomous
vehicle control systemsa review of decision making,” Proceedings of
the Institution of Mechanical Engineers, Part I: Journal of Systems and
Control Engineering, vol. 225, no. 2, pp. 155–195, 2011.

[30] L. Caltagirone, M. Bellone, L. Svensson, and M. Wahde, “Lidar-based
driving path generation using fully convolutional neural networks,” in
Intelligent Transportation Systems (ITSC), 2017 IEEE 20th Interna-
tional Conference on. IEEE, 2017, pp. 1–6.

[31] S. Dixit, S. Fallah, U. Montanaro, M. Dianati, A. Stevens, F. Mc-
cullough, and A. Mouzakitis, “Trajectory planning and tracking for
autonomous overtaking: State-of-the-art and future prospects,” Annual
Reviews in Control, 2018.

[32] H. Zhu, K.-V. Yuen, L. Mihaylova, and H. Leung, “Overview of
environment perception for intelligent vehicles,” IEEE Transactions on
Intelligent Transportation Systems, vol. 18, no. 10, pp. 2584–2601,
2017.

[33] J. Van Brummelen, M. OBrien, D. Gruyer, and H. Najjaran, “Au-
tonomous vehicle perception: The technology of today and tomorrow,”
Transportation research part C: emerging technologies, 2018.

[34] J. Janai, F. Güney, A. Behl, and A. Geiger, “Computer vision for
autonomous vehicles: Problems, datasets and state-of-the-art,” arXiv
preprint arXiv:1704.05519, 2017.

[35] R. Benenson, M. Omran, J. Hosang, and B. Schiele, “Ten years of
pedestrian detection, what have we learned?” in European Conference
on Computer Vision. Springer, 2014, pp. 613–627.

[36] S. Zhang, R. Benenson, M. Omran, J. Hosang, and B. Schiele, “How
far are we from solving pedestrian detection?” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 1259–1267.

[37] S. Lowry, N. Sünderhauf, P. Newman, J. J. Leonard, D. Cox, P. Corke,
and M. J. Milford, “Visual place recognition: A survey,” IEEE Trans-
actions on Robotics, vol. 32, no. 1, pp. 1–19, 2016.

[38] K. R. Konda and R. Memisevic, “Learning visual odometry with a
convolutional network.” in VISAPP (1), 2015, pp. 486–490.

[39] S. Kuutti, S. Fallah, K. Katsaros, M. Dianati, F. Mccullough, and
A. Mouzakitis, “A survey of the state-of-the-art localization techniques
and their potentials for autonomous vehicle applications,” IEEE Inter-
net of Things Journal, vol. 5, no. 2, pp. 829–846, 2018.

[40] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of
deep visuomotor policies,” The Journal of Machine Learning Research,
vol. 17, no. 1, pp. 1334–1373, 2016.

[41] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye
coordination for robotic grasping with large-scale data collection,” in
International Symposium on Experimental Robotics. Springer, 2016,
pp. 173–184.

[42] V. Rausch, A. Hansen, E. Solowjow, C. Liu, E. Kreuzer, and J. K.
Hedrick, “Learning a deep neural net policy for end-to-end control of
autonomous vehicles,” in 2017 American Control Conference (ACC).
IEEE, 2017, pp. 4914–4919.

[43] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[44] I. Arel, D. C. Rose, and T. P. Karnowski, “Deep machine learning-a
new frontier in artificial intelligence research [research frontier],” IEEE
computational intelligence magazine, vol. 5, no. 4, pp. 13–18, 2010.

[45] J. Tani, M. Ito, and Y. Sugita, “Self-organization of distributedly
represented multiple behavior schemata in a mirror system: reviews
of robot experiments using rnnpb,” Neural Networks, vol. 17, no. 8-9,
pp. 1273–1289, 2004.

[46] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[47] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[48] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,” MIT
Press, 2016. [Online]. Available: http://www.deeplearningbook.org/

[49] M. Nielsen, “Neural Networks and Deep Learning,”
Determination Press, 2015. [Online]. Available: http://
neuralnetworksanddeeplearning.com/index.html

[50] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998, vol. 9.

[51] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Processing
Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[52] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint
arXiv:1701.07274, 2017.

[53] L. Bottou and O. Bousquet, “The tradeoffs of large scale learning,” in
Advances in neural information processing systems, 2008, pp. 161–168.

[54] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627–635.

[55] P. de Haan, D. Jayaraman, and S. Levine, “Causal confusion in
imitation learning,” arXiv preprint arXiv:1905.11979, 2019.

[56] A. Torralba, A. A. Efros et al., “Unbiased look at dataset bias.” in
CVPR, vol. 1, no. 2. Citeseer, 2011, p. 7.

[57] A. Gupta, A. Murali, D. P. Gandhi, and L. Pinto, “Robot learning
in homes: Improving generalization and reducing dataset bias,” in
Advances in Neural Information Processing Systems, 2018, pp. 9094–
9104.

[58] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu,
and N. de Freitas, “Sample efficient actor-critic with experience replay,”
arXiv preprint arXiv:1611.01224, 2016.

[59] V. R. Konda and J. N. Tsitsiklis, “On actor-critic algorithms,” SIAM
journal on Control and Optimization, vol. 42, no. 4, pp. 1143–1166,
2003.

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/530091/impacts-of-connected-and-autonomous-vehicles-on-traffic-flow-summary-report.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/530091/impacts-of-connected-and-autonomous-vehicles-on-traffic-flow-summary-report.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/530091/impacts-of-connected-and-autonomous-vehicles-on-traffic-flow-summary-report.pdf
http://www.deeplearningbook.org/
http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/index.html


19

[60] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[61] G. J. Gordon, “Stable function approximation in dynamic program-
ming,” in Machine Learning Proceedings 1995. Elsevier, 1995, pp.
261–268.

[62] J. N. Tsitsiklis and B. Van Roy, “Feature-based methods for large scale
dynamic programming,” Machine Learning, vol. 22, no. 1-3, pp. 59–94,
1996.

[63] R. J. Williams, Reinforcement-learning connectionist systems. College
of Computer Science, Northeastern University, 1987.

[64] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[65] M. Riedmiller, J. Peters, and S. Schaal, “Evaluation of policy gradient
methods and variants on the cart-pole benchmark,” in Approximate
Dynamic Programming and Reinforcement Learning, 2007. ADPRL
2007. IEEE International Symposium on. IEEE, 2007, pp. 254–261.

[66] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” 2014.

[67] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[68] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey
of actor-critic reinforcement learning: Standard and natural policy
gradients,” IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), vol. 42, no. 6, pp. 1291–1307, 2012.

[69] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estima-
tion,” arXiv preprint arXiv:1506.02438, 2015.

[70] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The kitti dataset,” International Journal of Robotics Research (IJRR),
2013.

[71] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on, 2012.

[72] “Waymo open dataset: An autonomous driving dataset,” 2019.
[Online]. Available: https://www.waymo.com/open

[73] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 Year,
1000km: The Oxford RobotCar Dataset,” The International Journal
of Robotics Research (IJRR), vol. 36, no. 1, pp. 3–15, 2017. [Online].
Available: http://dx.doi.org/10.1177/0278364916679498

[74] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin,
and R. Yang, “The apolloscape dataset for autonomous driving,” arXiv
preprint arXiv:1803.06184, 2018.

[75] Udacity Inc., “Udacity Self-driving Car Dataset,” 2018. [Online].
Available: https://github.com/udacity/self-driving-car

[76] A. Ess, B. Leibe, K. Schindler, , and L. van Gool, “A mobile vision
system for robust multi-person tracking,” in Computer Vision and
Pattern Recognition (CVPR), 2008 IEEE Conference on. IEEE Press,
June 2008.

[77] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection:
A benchmark,” in Computer Vision and Pattern Recognition (CVPR),
2009 IEEE Conference on. IEEE, 2009, pp. 304–311.

[78] H. Yin and C. Berger, “When to use what data set for your self-
driving car algorithm: An overview of publicly available driving
datasets,” in Intelligent Transportation Systems (ITSC), 2017 IEEE 20th
International Conference on. IEEE, 2017, pp. 1–8.

[79] NVIDIA Corporation, “Autonomous car development platform
from NVIDIA DRIVE PX2,” 2018. [Online]. Available: https:
//www.nvidia.com/en-us/self-driving-cars/drive-platform/

[80] MobilEye, “The Evolution of EyeQ,” 2018. [Online]. Available:
https://www.mobileye.com/our-technology/evolution-eyeq-chip/

[81] Intel Corporation, “Cyclone V - Overview,” 2018. [Online]. Avail-
able: https://www.altera.com/products/fpga/cyclone-series/cyclone-v/
overview.html

[82] S. Liu, J. Tang, Z. Zhang, and J.-L. Gaudiot, “Caad: Computer
architecture for autonomous driving,” arXiv preprint arXiv:1702.01894,
2017.

[83] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” Advances in Neural Information Processing Systems 1, pp.
305–313, 1989.

[84] D. Pomerleau, “Neural network vision for robot driving,” Intelligent
Unmanned Ground Vehicles, pp. 1–22, 1997.

[85] G. Yu and I. K. Sethi, “Road-following with continuous learning,” in
Intelligent Vehicles ’95 Symposium., Proceedings of the, Detroit, MI,
1995.

[86] D. E. Moriarty, S. Handley, and P. Langley, “Learning distributed
strategies for traffic control,” Proc. of the fifth International Conference
of the Society for Adaptive Behavior, no. May 1998, pp. 437–446, 1998.

[87] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, “End to End Learning for Self-Driving Cars,”
no. May, 2016. [Online]. Available: http://arxiv.org/abs/1604.07316

[88] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-road
obstacle avoidance through end-to-end learning,” in Advances in neural
information processing systems, 2006, pp. 739–746.

[89] Mechanical Simulation Corporation, “CarSim.” [Online]. Available:
https://www.carsim.com

[90] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proceedings of COMPSTAT’2010. Springer, 2010, pp.
177–186.

[91] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[92] W. Su, S. Boyd, and E. Candes, “A differential equation for model-
ing nesterovs accelerated gradient method: Theory and insights,” in
Advances in Neural Information Processing Systems, 2014, pp. 2510–
2518.

[93] H. M. Eraqi, M. N. Moustafa, and J. Honer, “End-to-end deep learning
for steering autonomous vehicles considering temporal dependencies,”
arXiv preprint arXiv:1710.03804, 2017.

[94] R. Rothe, R. Timofte, and L. Van Gool, “Dex: Deep expectation
of apparent age from a single image,” in Proceedings of the IEEE
International Conference on Computer Vision Workshops, 2015, pp.
10–15.

[95] F. Codevilla, A. M. López, V. Koltun, and A. Dosovitskiy, “On offline
evaluation of vision-based driving models,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 236–
251.

[96] P. Wang, C.-Y. Chan, and A. de La Fortelle, “A reinforcement learning
based approach for automated lane change maneuvers,” in 2018 IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 1379–1384.

[97] A. Vahidi and A. Eskandarian, “Research advances in intelligent
collision avoidance and adaptive cruise control,” IEEE Transactions on
Intelligent Transportation Systems, vol. 4, no. 3, pp. 143–153, 2003.

[98] S. Moon, I. Moon, and K. Yi, “Design, tuning, and evaluation of a full-
range adaptive cruise control system with collision avoidance,” Control
Engineering Practice, vol. 17, no. 4, pp. 442–455, 2009.

[99] Q. Sun, “Cooperative Adaptive Cruise Control Performance Analysis,”
Ph.D. dissertation, Ecole Centrale de Lille, 2016.

[100] X. Chen, Y. Zhai, C. Lu, J. Gong, and G. Wang, “A Learning Model
for Personalized Adaptive Cruise Control,” in Intelligent Vehicles
Symposium (IV), 2017 IEEE, 2017, pp. 379–384.

[101] D. Wang and J. Huang, “Neural network-based adaptive dynamic
surface control for a class of uncertain nonlinear systems in strict-
feedback form,” IEEE Transactions on Neural Networks, vol. 16, no. 1,
pp. 195–202, 2005.

[102] M. M. Polycarpou, “Stable adaptive neural control scheme for nonlin-
ear systems,” IEEE Transactions on Automatic Control, vol. 41, no. 3,
pp. 447–451, 1996.

[103] R. Sanner and M. Mears, “Stable adaptive tracking of uncertainty
systems using nonlinearly parameterized on-line approximators,” IEEE
Transactions on Neural Networks, vol. 3, no. 6, pp. 837–863, 1992.

[104] D. Wang and J. Huang, “Adaptive neural network control for a class
of uncertain nonlinear systems in pure-feedback form,” Automatica,
vol. 38, no. 8, pp. 1365–1372, 2002.

[105] B. Ren, S. S. Ge, C.-Y. Su, and T. H. Lee, “Adaptive neural control
for a class of uncertain nonlinear systems in pure-feedback form
with hysteresis input,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp. 431–443, 2009.

[106] T. Zhang, S. S. Ge, and C. C. Hang, “Adaptive neural network con-
trol for strict-feedback nonlinear systems using backstepping design,”
Automatica, vol. 36, no. 12, pp. 1835–1846, 2000.

[107] X. Dai, C.-K. Li, and A. B. Rad, “An approach to tune fuzzy controllers
based on reinforcement learning for autonomous vehicle control,” IEEE
Transactions on Intelligent Transportation Systems, vol. 6, no. 3, pp.
285–293, 2005.

[108] Z. Huang, X. Xu, H. He, J. Tan, and Z. Sun, “Parameterized Batch
Reinforcement Learning for Longitudinal Control of Autonomous Land
Vehicles,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, pp. 1–12, 2017.

https://www.waymo.com/open
http://dx.doi.org/10.1177/0278364916679498
https://github.com/udacity/self-driving-car
https://www.nvidia.com/en-us/self-driving-cars/drive-platform/
https://www.nvidia.com/en-us/self-driving-cars/drive-platform/
https://www.mobileye.com/our-technology/evolution-eyeq-chip/
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
https://www.altera.com/products/fpga/cyclone-series/cyclone-v/overview.html
http://arxiv.org/abs/1604.07316
https://www.carsim.com


20

[109] X. Xu, D. Hu, and X. Lu, “Kernel-based least squares policy iteration
for reinforcement learning,” IEEE Transactions on Neural Networks,
vol. 18, no. 4, pp. 973–992, 2007.

[110] J. Wang, X. Xu, D. Liu, Z. Sun, and Q. Chen, “Self-learning cruise
control using kernel-based least squares policy iteration,” IEEE Trans-
actions on Control Systems Technology, vol. 22, no. 3, pp. 1078–1087,
2014.

[111] H. Chae, C. M. Kang, B. Kim, J. Kim, C. C. Chung, and J. W. Choi,
“Autonomous braking system via deep reinforcement learning,” in
2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2017, pp. 1–6.

[112] Euro NCAP, “European New Car Assessment Programme: Test Pro-
tocol - AEB VRU systems,” 2015.

[113] D. Zhao, Z. Xia, and Q. Zhang, “Model-free optimal control based
intelligent cruise control with hardware-in-the-loop demonstration [re-
search frontier],” IEEE Computational Intelligence Magazine, vol. 12,
no. 2, pp. 56–69, 2017.

[114] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of artificial intelligence research, vol. 4,
pp. 237–285, 1996.

[115] D. Zhao, Z. Hu, Z. Xia, C. Alippi, Y. Zhu, and D. Wang, “Full-
range adaptive cruise control based on supervised adaptive dynamic
programming,” Neurocomputing, vol. 125, no. February, pp. 57–67,
2014.

[116] B. Wang, D. Zhao, C. Li, and Y. Dai, “Design and implementation
of an adaptive cruise control system based on supervised actor-critic
learning,” 2015 5th International Conference on Information Science
and Technology (ICIST), pp. 243–248, 2015.

[117] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Advances in applied mathematics, vol. 6, no. 1, pp. 4–22, 1985.

[118] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motivation,”
in Advances in Neural Information Processing Systems, 2016, pp.
1471–1479.

[119] J. Schmidhuber, “A possibility for implementing curiosity and boredom
in model-building neural controllers,” in Proc. of the international
conference on simulation of adaptive behavior: From animals to
animats, 1991, pp. 222–227.

[120] W. Xia, H. Li, and B. Li, “A control strategy of autonomous vehicles
based on deep reinforcement learning,” in Computational Intelligence
and Design (ISCID), 2016 9th International Symposium on, vol. 2.
IEEE, 2016, pp. 198–201.

[121] M. Riedmiller, “Neural fitted q iteration–first experiences with a data
efficient neural reinforcement learning method,” in European Confer-
ence on Machine Learning. Springer, 2005, pp. 317–328.

[122] A. E. Sallab, M. Abdou, E. Perot, and S. Yogamani, “End-to-end
deep reinforcement learning for lane keeping assist,” arXiv preprint
arXiv:1612.04340, 2016.

[123] “The open racing car simulator.” [Online]. Available: http://
torcs.sourceforge.net/

[124] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[125] J. Zhang and K. Cho, “Query-efficient imitation learning for end-to-end
autonomous driving,” arXiv preprint arXiv:1605.06450, 2016.

[126] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and
B. Boots, “Agile autonomous driving using end-to-end deep imitation
learning,” Proceedings of Robotics: Science and Systems. Pittsburgh,
Pennsylvania, 2018.

[127] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), vol. 3. IEEE, pp. 2149–2154.

[128] D. Wang, C. Devin, Q.-Z. Cai, F. Yu, and T. Darrell, “Deep object cen-
tric policies for autonomous driving,” arXiv preprint arXiv:1811.05432,
2018.

[129] H. Porav and P. Newman, “Imminent collision mitigation with rein-
forcement learning and vision,” in 2018 21st International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2018, pp. 958–
964.

[130] S. Zhifei and E. M. Joo, “A review of inverse reinforcement learn-
ing theory and recent advances,” World Congress on Computational
Intelligence, pp. 1–8, 2012.

[131] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” Twenty-first international conference on Machine
learning - ICML ’04, p. 1, 2004.

[132] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin
planning,” in Proceedings of the 23rd international conference on
Machine learning - ICML ’06, 2006, pp. 729–736.

[133] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner,
“Large-scale cost function learning for path planning using deep inverse
reinforcement learning,” International Journal of Robotics Research,
vol. 36, no. 10, pp. 1073–1087, 2017.

[134] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum En-
tropy Inverse Reinforcement Learning.” AAAI Conference on Artificial
Intelligence, pp. 1433–1438, 2008.

[135] S. Levine and V. Koltun, “Continuous Inverse Optimal Control with
Locally Optimal Examples,” International Conference on Machine
Learning (ICML), pp. 41–48, 2012.

[136] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application
of reinforcement learning to aerobatic helicopter flight,” Education,
vol. 19, p. 1, 2007.

[137] S. Hecker, D. Dai, and L. Van Gool, “End-to-end learning of driving
models with surround-view cameras and route planners,” in Proceed-
ings of the European Conference on Computer Vision (ECCV), 2018,
pp. 435–453.

[138] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 1–9.

[139] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of the
1st Annual Conference on Robot Learning, 2017, pp. 1–16.

[140] F. Codevilla, E. Santana, A. M. López, and A. Gaidon, “Exploring the
limitations of behavior cloning for autonomous driving,” arXiv preprint
arXiv:1904.08980, 2019.

[141] C. Paxton, V. Raman, G. D. Hager, and M. Kobilarov, “Combining
neural networks and tree search for task and motion planning in
challenging environments,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 6059–6066.

[142] M. Bansal, A. Krizhevsky, and A. Ogale, “Chauffeurnet: Learning to
drive by imitating the best and synthesizing the worst,” arXiv preprint
arXiv:1812.03079, 2018.

[143] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to real reinforcement
learning for autonomous driving,” arXiv preprint arXiv:1704.03952,
2017.

[144] M. Müller, A. Dosovitskiy, B. Ghanem, and V. Koltun, “Driv-
ing policy transfer via modularity and abstraction,” arXiv preprint
arXiv:1804.09364, 2018.

[145] M. Maurer, J. C. Gerdes, B. Lenz, and H. Winner, Autonomous Driving.
Berlin: Springer, Heidelberg, 2016.

[146] European Commission, “Cooperative Intelligent Transportation
Systems - Research Theme Analysis Report,” 2016. [Online].
Available: http://www.transport-research.info/sites/default/files/TRIP
C-ITS Report.pdf

[147] S. A. Bagloee, M. Tavana, M. Asadi, and T. Oliver, “Autonomous
vehicles: challenges, opportunities, and future implications for trans-
portation policies,” Journal of Modern Transportation, vol. 24, no. 4,
pp. 284–303, 2016.

[148] HERE Technologies, “Consumer Acceptance of Autonomous
Vehicles,” 2017. [Online]. Available: https://here.com/file/13726/
download?token=njs4ZwfW

[149] L. Bosankic, “How consumers’ perception of autonomous
cars will influence their adoption,” 2017. [Online]. Avail-
able: https://medium.com/@leo pold b/how-consumers-perception-
of-autonomous-cars-will-influence-their-adoption-ba99e3f64e9a

[150] H. Abraham, B. Reimer, B. Seppelt, C. Fitzgerald, B. Mehler, and
J. F. Coughlin, “Consumer Interest in Automation: Preliminary Obser-
vations Exploring a Year’s Change,” 2017. [Online]. Available: http:
//agelab.mit.edu/sites/default/files/MIT-NEMPAWhitePaperFINAL.pdf

[151] W. Knight, “An Ambitious Plan to Build a Self-Driving Borg,” 2016.
[Online]. Available: https://www.technologyreview.com/s/602531/an-
ambitious-plan-to-build-a-self-driving-borg/

[152] Kober, Jens J., Bagnell, Andrew, Peters, Jan, “Reinforcement Learning
in Robotics: A Survey,” International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[153] R. Bellman, “Dynamic Programming,” Science, vol. 153, no. 3731, pp.
34–37, 1966.

[154] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-
learning with model-based acceleration,” in International Conference
on Machine Learning, 2016, pp. 2829–2838.

[155] J. T. Barron, D. S. Golland, and N. J. Hay, “Parallelizing reinforcement
learning,” UC Berkeley, 2009.

http://torcs.sourceforge.net/
http://torcs.sourceforge.net/
http://www.transport-research.info/sites/default/files/TRIP_C-ITS_Report.pdf
http://www.transport-research.info/sites/default/files/TRIP_C-ITS_Report.pdf
https://here.com/file/13726/download?token=njs4ZwfW
https://here.com/file/13726/download?token=njs4ZwfW
https://medium.com/@leo_pold_b/how-consumers-perception-of-autonomous-cars-will-influence-their-adoption-ba99e3f64e9a
https://medium.com/@leo_pold_b/how-consumers-perception-of-autonomous-cars-will-influence-their-adoption-ba99e3f64e9a
http://agelab.mit.edu/sites/default/files/MIT - NEMPA White Paper FINAL.pdf
http://agelab.mit.edu/sites/default/files/MIT - NEMPA White Paper FINAL.pdf
https://www.technologyreview.com/s/602531/an-ambitious-plan-to-build-a-self-driving-borg/
https://www.technologyreview.com/s/602531/an-ambitious-plan-to-build-a-self-driving-borg/


21

[156] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” arXiv
preprint arXiv:1703.03864, 2017.

[157] S. Yang, W. Wang, C. Liu, W. Deng, and J. K. Hedrick, “Feature
analysis and selection for training an end-to-end autonomous vehicle
controller using deep learning approach,” in 2017 IEEE Intelligent
Vehicles Symposium (IV). IEEE, 2017, pp. 1033–1038.

[158] Y. LeCun, “Generalization and network design strategies,” Connection-
ism in perspective, pp. 143–155, 1989.

[159] N. Morgan and H. Bourlard, “Generalization and Parameter Estimation
in Feedforward Nets: Some Experiments,” Advances in neural infor-
mation processing systems, pp. 630–637, 1989.

[160] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” in Neural networks: Tricks of the trade. Springer,
2012, pp. 437–478.

[161] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,”
in Neural networks: Tricks of the trade. Springer, 1998, pp. 9–50.

[162] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter
Optimization,” Journal of Machine Learning Research, vol. 13, pp.
281–305, 2012.

[163] C. Raffel, “Neural Network Hyperparameters,” 2015. [Online].
Available: http://colinraffel.com/wiki/neural network hyperparameters

[164] Y. Sevchuk, “Hyperparameter optimization for Neural Net-
works,” 2016. [Online]. Available: http://neupy.com/2016/12/17/
hyperparameter optimization for neural networks.html

[165] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Op-
timization of Machine Learning Algorithms,” Advances in Neural
Information Processing Systems, vol. 25, pp. 2960–2968, 2012.

[166] C. E. Rasmussen, “Gaussian processes in machine learning,” in Ad-
vanced lectures on machine learning. Springer, 2004, pp. 63–71.

[167] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
Hyper-Parameter Optimization,” in Advances in Neural Information
Processing Systems (NIPS), 2011, pp. 2546–2554.

[168] M. Kumar, G. E. Dahl, V. Vasudevan, and M. Norouzi, “Parallel
architecture and hyperparameter search via successive halving and
classification,” arXiv preprint arXiv:1805.10255, 2018.

[169] T. B. Hashimoto, S. Yadlowsky, and J. C. Duchi, “Derivative free opti-
mization via repeated classification,” arXiv preprint arXiv:1804.03761,
2018.

[170] H. Cai, C. Gan, and S. Han, “Once for all: Train one network and spe-
cialize it for efficient deployment,” arXiv preprint arXiv:1908.09791,
2019.

[171] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2820–2828.

[172] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 10 734–10 742.

[173] F. Scheidegger, L. Benini, C. Bekas, and C. Malossi, “Constrained deep
neural network architecture search for iot devices accounting hardware
calibration,” arXiv preprint arXiv:1909.10818, 2019.

[174] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” Journal of Machine Learning Research, vol. 20, no. 55, pp.
1–21, 2019.

[175] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations : Theory and application to reward shaping,” Sixteenth
International Conference on Machine Learning, vol. 3, pp. 278–287,
1999.

[176] A. D. Laud, “Theory and Application of Reward Shaping in Reinforce-
ment Learning,” Ph.D. dissertation, University of Illinois, 2004.

[177] H. Van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes, and
J. Tsang, “Hybrid reward architecture for reinforcement learning,” in
Advances in Neural Information Processing Systems, 2017, pp. 5392–
5402.

[178] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” arXiv preprint
arXiv:1610.03295, 2016.

[179] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman,
and D. Mané, “Concrete problems in ai safety,” arXiv preprint
arXiv:1606.06565, 2016.

[180] S. Russell, “Learning agents for uncertain environments (extended ab-
stract),” Proceedings of the 11th Annual Conference on Computational
Learning Theory (COLT), pp. 101–103, 1998.

[181] J. Z. Kolter, P. Abbeel, and A. Y. Ng, “Hierarchical Apprenticeship
Learning, with Application to Quadruped Locomotion,” Science, vol. 1,
pp. 1–8, 2008.

[182] D. Silver, J. A. Bagnell, and A. Stentz, “Learning from demonstra-
tion for autonomous navigation in complex unstructured terrain,” in
International Journal of Robotics Research, vol. 29, no. 12, 2010, pp.
1565–1592.

[183] N. Ratliff, J. A. Bagnell, and S. S. Srinivasa, “Imitation learning for
locomotion and manipulation,” in Proceedings of the 2007 7th IEEE-
RAS International Conference on Humanoid Robots, HUMANOIDS
2007, 2008, pp. 392–397.

[184] R. J. Schalkoff, Artificial Neural Networks. New York: McGraw-Hill,
1997.

[185] B. D. Ripley, Pattern Recognition in Neural Networks. Cambridge:
Cambridge University Press, 1996.

[186] C. M. Bishop, “Neural networks for pattern recognition,” Journal of
the American Statistical Association, vol. 92, p. 482, 1995.

[187] A. Y. Ng, “Feature selection, l 1 vs. l 2 regularization, and rotational
invariance,” in Proceedings of the twenty-first international conference
on Machine learning. ACM, 2004, p. 78.

[188] P. Merolla, R. Appuswamy, J. Arthur, S. K. Esser, and D. Modha,
“Deep neural networks are robust to weight binarization and other non-
linear distortions,” arXiv preprint arXiv:1606.01981, 2016.

[189] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in neural information processing systems, 2015, pp. 3123–
3131.

[190] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” arXiv preprint arXiv:1207.0580, 2012.

[191] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–
1958, 2014.

[192] H. Raza and P. Ioannou, “Vehicle following control design for auto-
mated highway systems,” IEEE Control Systems Magazine, vol. 16,
no. 6, pp. 43–60, 1996.

[193] R. Rajamani, H. S. Tan, B. K. Law, and W. B. Zhang, “Demonstration
of integrated longitudinal and lateral control for the operation of
automated vehicles in platoons,” IEEE Transactions on Control Systems
Technology, vol. 8, no. 4, pp. 695–708, 2000.

[194] C. Thorpe, T. Jochem, and D. Pomerleau, “The 1997 automated high-
way free agent demonstration,” in Intelligent Transportation System,
1997. ITSC’97., IEEE Conference on. IEEE, 1997, pp. 496–501.

[195] S. Kato, S. Tsugawa, K. Tokuda, T. Matsui, and H. Fujii, “Vehicle
Control Algorithms for Cooperative Driving with Automated Vehicles
and Intervehicle Communications,” IEEE Transactions on Intelligent
Transportation Systems, vol. 3, no. 3, pp. 155–160, 2002.

[196] L. Ng, C. M. Clark, and J. P. Huissoon, “Reinforcement learning
of adaptive longitudinal vehicle control for dynamic collaborative
driving,” in IEEE Intelligent Vehicles Symposium, Proceedings, 2008,
pp. 907–912.

[197] C. G. Atkeson, “Using Local Trajectory Optimizers To Speed Up
Global Optimization In Dynamic Programming,” Advances in Neural
Information Processing Systems (NIPS),, pp. 663–670, 1994.

[198] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
A. Sendonaris, G. Dulac-Arnold, I. Osband, J. Agapiou, J. Z. Leibo,
and A. Gruslys, “Learning from demonstrations for real world rein-
forcement learning,” arXiv preprint arXiv:1704.03732, 2017.

[199] P. Christiano, Z. Shah, I. Mordatch, J. Schneider, T. Blackwell, J. To-
bin, P. Abbeel, and W. Zaremba, “Transfer from simulation to real
world through learning deep inverse dynamics model,” arXiv preprint
arXiv:1610.03518, 2016.

[200] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and
R. Hadsell, “Sim-to-real robot learning from pixels with progressive
nets,” arXiv preprint arXiv:1610.04286, 2016.

[201] E. Tzeng, C. Devin, J. Hoffman, C. Finn, X. Peng, S. Levine,
K. Saenko, and T. Darrell, “Towards adapting deep visuomo-
tor representations from simulated to real environments,” CoRR,
abs/1511.07111, 2015.

[202] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in Intelligent Robots and Systems (IROS),
2017 IEEE/RSJ International Conference on. IEEE, 2017, pp. 23–30.

[203] K. R. Varshney and H. Alemzadeh, “On the safety of machine learning:
Cyber-physical systems, decision sciences, and data products,” Big
data, vol. 5, no. 3, pp. 246–255, 2017.

http://colinraffel.com/wiki/neural_network_hyperparameters
http://neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html
http://neupy.com/2016/12/17/hyperparameter_optimization_for_neural_networks.html


22

[204] D. Castelvecchi, “Can we open the black box of ai?” Nature News,
vol. 538, no. 7623, p. 20, 2016.

[205] X. Zhang, M. Clark, K. Rattan, and J. Muse, “Controller verification in
adaptive learning systems towards trusted autonomy,” in Proceedings
of the ACM/IEEE Sixth International Conference on Cyber-Physical
Systems. ACM, 2015, pp. 31–40.

[206] M. Clark, X. Koutsoukos, J. Porter, R. Kumar, G. Pappas, O. Sokolsky,
I. Lee, and L. Pike, “A study on run time assurance for complex
cyber physical systems,” AIR FORCE RESEARCH LAB WRIGHT-
PATTERSON AFB OH AEROSPACE SYSTEMS DIR, Tech. Rep.,
2013.

[207] S. Jacklin, J. Schumann, P. Gupta, M. Richard, K. Guenther, and
F. Soares, “Development of advanced verification and validation pro-
cedures and tools for the certification of learning systems in aerospace
applications,” in Infotech@ Aerospace, 2005, p. 6912.

[208] C. Wilkinson, J. Lynch, and R. Bharadwaj, Final Report, Regulatory
Considerations for Adaptive Systems. National Aeronautics and Space
Administration, Langley Research Center, 2013.

[209] P. Van Wesel and A. E. Goodloe, “Challenges in the verification of
reinforcement learning algorithms,” Technical report, NASA, Tech.
Rep., 2017.

[210] J. G. Schneider, “Exploiting model uncertainty estimates for safe dy-
namic control learning,” in Advances in neural information processing
systems, 1997, pp. 1047–1053.

[211] J. A. Bagnell, “Learning decisions: Robustness, uncertainty, and ap-
poximation,” Robotics Institute, p. 78, 2004.

[212] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11), 2011, pp.
465–472.

[213] T. M. Moldovan and P. Abbeel, “Safe exploration in markov decision
processes,” arXiv preprint arXiv:1205.4810, 2012.

[214] X. Xiong, J. Wang, F. Zhang, and K. Li, “Combining deep reinforce-
ment learning and safety based control for autonomous driving,” arXiv
preprint arXiv:1612.00147, 2016.

[215] S. Glaser, B. Vanholme, S. Mammar, D. Gruyer, and L. Nouveliere,
“Maneuver-based trajectory planning for highly autonomous vehicles
on real road with traffic and driver interaction,” IEEE Transactions on
Intelligent Transportation Systems, vol. 11, no. 3, pp. 589–606, 2010.

[216] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” arXiv
preprint arXiv:1312.6199, 2013.

[217] A. Nguyen, J. Yosinski, and J. Clune, “Deep Neural Networks are
Easily Fooled,” Computer Vision and Pattern Recognition, 2015 IEEE
Conference on, pp. 427–436, 2015.

[218] S. M. Moosavi Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a sim-
ple and accurate method to fool deep neural networks,” in Proceedings
of 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), no. EPFL-CONF-218057, 2016.

[219] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[220] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 10426 LNCS, 2017, pp. 3–29.

[221] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” arXiv preprint arXiv:1607.02533, 2016.

[222] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing Robust
Adversarial Examples,” arXiv preprint arXiv:1707.07397, 2017.

[223] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE transactions on neural networks and
learning systems, 2019.

[224] R. Salay, R. Queiroz, and K. Czarnecki, “An analysis of iso 26262:
Using machine learning safely in automotive software,” arXiv preprint
arXiv:1709.02435, 2017.

[225] International Organization for Standardization, “Iso 26262: Road
vehicles-functional safety,” International Standard ISO/FDIS, 2011.

[226] F. Falcini, G. Lami, and A. M. Costanza, “Deep learning in automotive
software,” IEEE Software, vol. 34, no. 3, pp. 56–63, 2017.

[227] S. Dixit, U. Montanaro, S. Fallah, M. Dianati, D. Oxtoby, T. Mizutani,
and A. Mouzakitis, “Trajectory planning for autonomous high-speed
overtaking using mpc with terminal set constraints,” in 2018 21st
International Conference on Intelligent Transportation Systems (ITSC).
IEEE, 2018, pp. 1061–1068.

[228] S. Dixit, U. Montanaro, M. Dianati, D. Oxtoby, T. Mizutani, A. Mouza-
kitis, and S. Fallah, “Trajectory planning for autonomous high-speed

overtaking in structured environments using robust mpc,” IEEE Trans-
actions on Intelligent Transportation Systems, 2019.

[229] K. Amezquita-Semprun, Y. C. Pradeep, P. C. Chen, W. Chen, and
Z. Zhao, “Experimental evaluation of the stimuli-induced equilibrium
point concept for automatic ramp merging systems,” IEEE Transactions
on Intelligent Transportation Systems, 2019.

[230] V. Milanés, J. Godoy, J. Villagrá, and J. Pérez, “Automated on-ramp
merging system for congested traffic situations,” IEEE Transactions on
Intelligent Transportation Systems, vol. 12, no. 2, pp. 500–508, 2010.

Sampo Kuutti received the MEng degree in me-
chanical engineering in 2017 from University of
Surrey, Guildford, U.K., where he is currently pursu-
ing the PhD degree in automotive engineering with
the Connected Autonomous Vehicles Lab within the
Centre for Automotive Engineering. His research in-
terests include deep learning applied to autonomous
vehicles, functional safety validation, and safety and
interpretability in machine learning systems.

Richard Bowden is Professor of computer vision
and machine learning at the University of Surrey
where he leads the Cognitive Vision Group within
the Centre for Vision, Speech and Signal Process-
ing. His research centres on the use of computer
vision to locate, track, and understand humans. He
is an associate editor for the journals Image and
Vision computing and IEEE TPAMI. In 2013 he was
awarded a Royal Society Leverhulme Trust Senior
Research Fellowship and is a fellow of the Higher
Education Academy, a senior member of the IEEE

and Fellow of the International Association of Pattern Recognition (IAPR).

Yaochu Jin is a Professor in Computational Intelli-
gence, Department of Computer Science, University
of Surrey, Guildford, U.K. His main research inter-
ests include data-driven surrogate-assisted evolution-
ary optimization, evolutionary learning, interpretable
and secure machine learning, and evolutionary de-
velopmental systems.

Dr Jin is the Editor-in-Chief of the IEEE TRANS-
ACTIONS ON COGNITIVE AND DEVELOP-
MENTAL SYSTEMS and Co-Editor-in-Chief of
Complex & Intelligent Systems. He is an IEEE

Distinguished Lecturer and IEEE Fellow.

Phil Barber was formerly Principal Technical Spe-
cialist in Capability Research at Jaguar Land Rover.
For over 30 years in the automotive industry he has
witnessed the introduction of computer controlled
by-wire technology and been part of the debate over
the safety issues involved in the implementation of
real-time vehicle control.



23

Saber Fallah is Senior Lecturer (Associate Pro-
fessor) in Vehicle and Mechatronic Systems at the
University of Surrey and the Director of Connected
Autonomous Vehicle Lab within the Centre for
Automotive Engineering, where he leads several
research activities funded by the UK and European
governments (e.g. EPSRC, Innovate UK, H2020)
in collaboration with major companies active in
autonomous vehicle technologies. His research in-
terests include reinforced deep learning, advanced
control, optimisation and estimation and their appli-

cations to connected autonomous vehicles.


	I Introduction
	II Review of Deep Learning
	II-A Supervised Learning
	II-B Reinforcement Learning
	II-C Datasets and Tools for Deep Learning

	III Deep Learning Applications to Vehicle Control
	III-A Lateral Control Systems
	III-B Longitudinal Control Systems
	III-C Simultaneous Lateral & Longitudinal Control Systems

	IV Challenges
	IV-A Computation
	IV-B Architectures
	IV-C Goal Specification
	IV-D Adaptability & Generalisation
	IV-E Verification & Validation
	IV-F Safety

	V Concluding Remarks
	References
	Biographies
	Sampo Kuutti
	Richard Bowden
	Yaochu Jin
	Phil Barber
	Saber Fallah


