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Abstract 

 

Accurate and reliable traffic forecasting for complicated transportation networks is of vital importance to 

modern transportation management. The complicated spatial dependencies of roadway links and the 

dynamic temporal patterns of traffic states make it particularly challenging. To address these challenges, 

we propose a new capsule network (CapsNet) to extract the spatial features of traffic networks and utilize 

a nested LSTM (NLSTM) structure to capture the hierarchical temporal dependencies in traffic sequence 

data. A framework for network-level traffic forecasting is also proposed by sequentially connecting 

CapsNet and NLSTM. On the basis of literature review, our study is the first to adopt CapsNet and 

NLSTM in the field of traffic forecasting. An experiment on a Beijing transportation network with 278 

links shows that the proposed framework with the capability of capturing complicated spatiotemporal 

traffic patterns outperforms multiple state-of-the-art traffic forecasting baseline models. The superiority 

and feasibility of CapsNet and NLSTM are also demonstrated, respectively, by visualizing and 

quantitatively evaluating the experimental results. 

 

1. Introduction 

 

Traffic prediction has become crucial for individuals and public agencies due to the requirements of 

accurate travel time estimation and dynamic transportation management. Traffic prediction aims to 

forecast the future traffic states of connected roadway segments on the basis of historical traffic data 

within an underlying roadway network structure. 
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In the early stage, the majority of traffic prediction studies that focus on small-scale roadway 

networks are normally fulfilled based on statistical models with limited transportation data. In recent 

years, advanced data-driven machine learning methods have been widely adopted for network-wide 

traffic state prediction with the rapid development in traffic sensing technologies and computational 

power. Machine learning models have outperformed classical statistical models due to their capabilities 

of handling high-dimensional and complicated spatiotemporal data. However, the potential of machine 

learning models for traffic prediction has not been fully utilized until the rise of deep neural network (NN) 

models (also referred to as deep learning models) (Ma et al., 2015). 

Deep learning models have achieved superior performance in traffic forecasting tasks compared 

with conventional machine learning models. With the utilization of fully connected NNs (Park and Rilett, 

2010) for traffic prediction, many advanced and powerful deep learning models, such as deep belief 

networks (DBNs) (Huang et al., 2014), convolutional NNs (CNNs) (Ma et al., 2017), and recurrent NNs 

(RNNs) (Lint et al., 2002), have been applied to extract high-dimensional features of traffic states and 

have achieved good prediction performance. However, these models should be improved in terms of 

capturing the spatial and temporal dependencies in high-dimensional traffic data. Most of the existing 

studies on traffic prediction have modeled spatial dependencies with CNNs (Ma et al., 2017; Zhang et al., 

2016) and captured temporal dependencies via RNNs (Ma et al., 2015; Cui et al., 2017). They (Yu et al., 

2017; Li et al. 2018; Zhang et al., 2014) have also proposed models by combining CNNs and RNNs to 

fulfill this task. However, conventional CNNs and RNNs have their limitations when handling 

network-wide traffic data.  

Conventional CNNs are appropriate for capturing spatial relationships in Euclidean space that are 

represented by two-dimensional (2D) matrices or images. On this basis, spatiotemporal traffic data 

learning using CNNs can be roughly categorized into two strategies. The first strategy (Ma et al., 2017) 

uses CNNs to learn spatiotemporal traffic data as a 2D matrix, in which the spatial and temporal 

dimensions are separately distributed in two directions. However, the actual structure of a complicated 

roadway network cannot be properly represented by a 2D matrix, and CNNs inevitably capture a certain 

amount of spurious spatial relationships. The second strategy (Zhang et al., 2016; Yu et al., 2017) 

employs CNNs to capture the spatial dependencies by projecting various traffic states to their 

corresponding physical roadway links using different colors and by processing a traffic network map as 

an image. In this way, the actual spatial features of the traffic network are learned. However, CNN-based 

feature extraction models still face challenges. First, the pooling operations in CNNs proactively discards 

substantial information; thus, critical correlations of traffic states between links may be lost. Then, the 

neurons in conventional CNNs are unsuitable in representing the various properties of a particular entity 

(Sabour et al., 2017), such as pose, deformation, albedo, hue, and texture. Given that the structure of a 

traffic network is fixed in a map-based image, the various colors of pixels located on roadways that 

represent traffic states can be considered as the textures or poses of the traffic network viewed from 

different perspectives. Thus, the CNN approach is insufficient to capture the relative spatial 

dependencies between colored pixels when these colors gradually change in a sequence of map-based 

images. In addition, the interdependencies between roadway links cannot be captured by CNNs for 

several specific complicated road network structures that contain viaducts, intersections, and side roads, 

as shown in Fig. 1.  
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Fig. 1. Viaducts, intersections, and side roads in a traffic network 

 

RNN and its variants, such as long short-term memory (LSTM) network (Hochreiter and 

Schmidhuber, 1997), are effective for capturing the temporal features of traffic states. Existing studies 

have used stacked LSTMs to enhance the short-term traffic prediction performance (Cui et al., 2017). 

Generally, traffic conditions are not only influenced by short-term historical information that is directly 

relevant to current traffic states but also by upper-level long-term traffic patterns with strong periodicity 

and regularity. However, long-term temporal dependencies under severe weather or disasters do not 

contribute considerable short-term information to traffic prediction and should be selectively captured. 

According to (Moniz and Krueger, 2018), a stacked LSTM or a single-layer LSTM cannot 

comprehensively characterize a temporal hierarchy. 

To overcome the drawbacks of conventional CNNs and LSTMs, we propose a new capsule network 

(CapsNet) to extract the spatial features of traffic networks and utilize a newly proposed nested LSTM 

(NLSTM) structure to improve the performance of time-series learning. The CapsNet utilizes capsules in 

vector form rather than in scalar form as neurons in the NN. The direction and length of a capsule vector 

encode the state of high-level features and the detection probability of a feature, respectively. With the 

aid of capsules and a dynamic routing algorithm between them, the CapsNet considers slightly active 

features and largely addresses the existing problems in conventional CNNs. The NLSTM with the 

capability to access inner memories selectively in constructing temporal hierarchies is utilized to capture 

the hierarchical temporal dependencies in traffic data dynamically. The evaluation results show that the 

proposed framework with the combination of CapsNet and NLSTM outperforms multiple state-of-the-art 

traffic forecasting baseline models.  

In summary, our main contributions are as follows. 

1) We learn the traffic network as an image and propose a new CapsNet to capture the spatial 

dependencies between the roadway links and extract the high-level spatial features of 

network-level traffic states; 

2) We utilize an NLSTM structure to capture the hierarchical temporal dependencies in traffic 

sequence data dynamically; 

3) We propose a new framework for network-level traffic prediction by combining CapsNet and 

NLSTM. On the basis of literature review, our study is the first to adopt CapsNet and NLSTM in 

traffic forecasting; 

4) The superiority and feasibility of CapsNet and NLSTM are demonstrated by visualizing and 

quantitatively evaluating the experimental results. 

The remainder of this paper is organized as follows. Sections 2 and 3 presents the related works and 

our methodology, respectively. Section 4 shows the experimental data and results. Finally, Section 5 

concludes the paper and open questions for future research. 

 

2. Literature review 

 

The approaches in the existing literature on short-term traffic prediction can be divided into two 

families, namely, statistical methods and artificial intelligence. Statistical methods, such as 
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autoregressive integrated moving average (ARIMA) (Hamed et al., 1995), ARIMA variants (Voort et al., 

1996; Williams and Hoel, 2003; Williams, 2001), Kalman filter (Okutani and Stephanedes, 1984; Guo et 

al., 2014), and exponential smoothing (Williams et al., 1998; Tan et al., 2009), have been investigated 

and applied to predict traffic flow parameters. In comparison with parametric statistical models, 

non-parametric machine learning models have more portability, higher accuracy, and are free of 

assumptions on data distribution (Davis and Nihan, 1991). For example, k-nearest neighbors (Zheng and 

Su, 2014; Cai et al., 2016) and support vector machines (Smola and Schölkopf, 2004; Wu et al., 2004), 

which are popular in the field of prediction, have been widely utilized to predict traffic speed and travel 

time.  

However, as a component of artificial intelligence, machine learning methods may fail when 

addressing complicated high-dimensional data. In the early stage, several NN approaches, such as 

artificial NN (Huang and Ran, 2006), fuzzy NN (Yin et al., 2002), state-space NN (Van et al., 2005) and 

radial basis function NN (Messer et al., 1998; Zhu et al., 2014), were applied to predict traffic states. In 

recent years, considerable advanced and powerful deep learning models, such as DBNs (Huang et al., 

2014), stacked autoencoders (Lv et al., 2015), CNNs (Ma et al., 2017; Liu et al., 2018), and RNNs (Ma et 

al., 2015; Lint et al., 2002; Cui et al., 2017), have been adopted in traffic forecasting. As a representative 

variant of RNNs, LSTM was first introduced in traffic prediction task and showed promising 

performance (Ma et al., 2015). On this basis, stacked bidirectional LSTMs are also adopted to enhance 

the short-term traffic prediction (Cui et al., 2017). Existing studies (Ma et al., 2017; Yu et al., 2017; Liu et 

al., 2018) have used CNNs in expanding the study areas to large-scale traffic networks, which are proven 

effective in computer vision and image recognition areas (Oquab et al., 2014), to extract spatial 

dependencies from traffic data to facilitate prediction performance. For example, a one-dimensional 

CNN has been used to capture the spatial features of traffic flow (Wu and Tan, 2016). 

However, a common means of adopting CNNs for traffic forecasting is by processing 2D spatial–

temporal data as images and by learning spatial–temporal dependencies from these images (Ma et al., 

2017). To model the spatial–temporal relationships of traffic states effectively, hybrid CNN approaches 

that incorporate LSTM (Yu et al., 2017) and residual unit (Zhang et al., 2016) have been proposed for 

traffic prediction by learning the spatial features from the images converted from grid- or pixel-based 

traffic network maps. However, these approaches that adopt conventional CNNs still cannot handle the 

overlapping roadways caused by low-resolution images, separate spatially interlaced links in viaducts in 

2D space, and accommodate the physical specialties of traffic networks.  

We construct a new CapsNet to solve the limitations of CNN approach in extracting the spatial 

features of network-level traffic states and utilize a nested LSTM structure to improve the performance of 

time-series learning. The two methods are sequentially connected to build a deep learning architecture 

for the traffic prediction problem. 

 

3. Methodology 

 

3.1. Network representation 

 

The traffic state of a roadway link in a road network is defined by the average speed of vehicles that 

travel on that link. The average speed of a link 𝑎 in period 𝑡 is calculated as follows: 

𝑉𝑎𝑡 =
∑ 𝑉𝑖𝑡

𝑘
𝑖=1

𝑘
,                                  (1) 
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where a ∈ (1,2, ⋯ , n), 𝑘 is the number of vehicles passing through the link during the time interval, and 

𝑉𝑖𝑡 represents the average speed of each vehicle.  

To learn traffic as images, the average speed of each link is projected in the road network combined 

with a GIS map to establish the spatial correspondence between the links and traffic states. As shown in 

Fig. 2, the calculated speed on each link is visualized with different colors. We then convert the color 

image to a single-channel grayscale image. 

 

 

Fig. 2. Transportation network representation

 

The traffic states of the road network are characterized by matrix images through a gridding process. 

The road network is divided into multiple grids with a certain spatial latitude and longitude range. The 

schematic of processing is shown in Fig. 3, in which a small part of the road network is used as an 

example. First, the road network is segmented by grids with a size of 0.0001° × 0.0001° (latitude and 

longitude). Subsequently, the value of each grid is determined on the basis of the speed of links using the 

following criteria: if no link passes through the grid area, then the value is zero; if only one link passes 

through the grid area, then the value is the speed of this link; if multiple links occupay the same grid area, 

then their average speed is assigned to the grid.  

 

Fig. 3. Schematic of the gridding process 

 

On the basis of the above process, each grid is taken as a pixel with one channel, in which its value 

is the projected velocity value. Sequences of images are generated as data samples, and the time interval 

in these sequences is 2 min. These images not only represent the traffic state but also contain the spatial 

structure of the road network and the relative topology among different links. 

 

3.2. Spatial features captured by CapsNet 

 

In the aforementioned review, the CNN approach has shown promising results in capturing the 

spatial relationships among the links in urban road networks, where a congestion occurring on a far-side 
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road segment may also influence the near-side traffic condition. However, this method has several 

important drawbacks. First, the CNN approach extracts the spatial dependencies on many distant links by 

using successive convolutional layers or max pooling, where valuable information is lost. Second, the 

CNN approach cannot effectively distinguish between two links that are not spatially connected for 

several complicated road structures, such as viaducts. Third, the CNN approach cannot   sufficiently 

handle the overlapping areas due to the low resolution in the grid-based image process. Thus, in this 

study, a CapsNet is utilized to solve the limitations of the CNN approach in extracting the spatial features 

of network-level traffic states.  

A CapsNet is a new type of NN structure that is characterized by the use of “capsules” in a vector 

form rather than traditional scalar forms of neurons. In extracting the local features in images, all 

important information about the state of the features that the capsules detect is encapsulated in the vector 

form. Particularly, the length of an output vector encodes the detection probability of a feature. The 

direction of the vector encodes the state of the features, such as rotation angle, direction, and size. The 

CapsNet inherently can detect multiple objects. Therefore, the CapsNet can effectively distinguish the 

spatial interlaced links and overlapping regions on several complicated road structures and 

low-resolution problem in traffic images by using such state of the features implied in the output vectors. 

In addition, the CapsNet can retain all the extracted local features by replacing the pooling operation with 

a dynamic routing operation between the capsules and thus avoid the problem of missing several spatial 

relationships among the links. 

ReLU Conv1

PrimaryCaps

128

9x9

9x9

8

16

16

30

TrafficCaps

 

Fig. 4. Layers of CapsNet 

 

In this study, the CapsNet model is composed of two convolutional layers and a fully connected 

layer (called TrafficCaps), as shown in Fig. 4. For the input images that represent the traffic state of the 

road network, the first convolutional layer is used to extract the spatial relations between the adjacent 

links, that is, the local features of traffic states. The second convolution layer is then utilized in the 

primary capsule layer (named PrimaryCaps), and the “neurons” that use a single scalar output are 

converted to primary capsules in the vector form with a dimension of 8. Finally, the TrafficCaps is 

employed to capture the spatial relationship between the local features implied in all primary capsules 

and to output the features to a set of advanced capsules with a dimension of 16. The details of each part 

are subsequently explained. 

In CNNs, high-level neurons receive input scalars from low-level neurons through weighting 

operations and activation functions, and the weights are learned by backpropagation (Lecun et al., 1990). 

By contrast, the weighting operations, activation functions, and learning method of weights between 

primary and advanced capsules are different because the capsules are in the vector form in the CapsNet. 

The first convolution layer is the same as the convolutional layer in CNN by using ReLU as the 
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activation function. The latter two layers use a novel nonlinear “squashing” activation function for the 

vector form of capsules, as shown as follows: 

𝑣𝑗 =
‖𝑠𝑗‖

2

1+‖𝑠𝑗‖
2

𝑠𝑗

‖𝑠𝑗‖
,                                   (2) 

where 𝑣𝑗  is the output vector of capsule 𝑗, and 𝑠𝑗 is the input vector. The squashing operation ensures 

that the short vectors shrink to approximately zero length and long vectors shrink to a length slightly 

below 1. Thus, the length of the output vector of a capsule can represent the probability of the existence 

of the extracted local features. 

To obtain the spatial relationship between the local features of network-level traffic state extracted by 

the PrimaryCaps layer and advanced features, an affine transformation is performed by multiplying the 

local features with a weight matrix 𝑊𝑖𝑗. 

𝑢̂𝑗|𝑖 = 𝑊𝑖𝑗𝑢𝑖 ,                                   (3) 

where 𝑢𝑖 is the local features extracted by a primary capsule 𝑖, and 𝑢̂𝑗|𝑖 is the input vector associated 

with an advanced capsule 𝑗. 

For the TrafficCaps, input 𝑠𝑗 to an advanced capsule 𝑗 is the weighted sum over all input vectors 

𝑢̂𝑗|𝑖 from the primary capsules in the layer. 

𝑠𝑗 = ∑ 𝑐𝑖𝑗𝑢̂𝑗|𝑖𝑖 ,                                (4) 

where weights 𝑐𝑖𝑗  are the coupling coefficients that determined by an iterative dynamic routing 

algorithm (Sabour et al., 2017). The essence of the dynamic routing algorithm is to find a part of primary 

capsules that is highly correlated to the advanced capsules, that is, to determine the local features with 

high probability to be associated with the high-level feature. This process represents the capability of the 

model to explore the spatial relationships among the distant links. For example, the dynamic routing 

algorithm will associate advanced capsule 𝑗 with a set of primary capsules that contains the local 

features that affect congestion when it represents a severe congestion at a viaduct. The specific process of 

the dynamic routing algorithm is described as follows. 

1) For each primary capsule 𝑖 in the PrimaryCaps layer, the coupling coefficients 𝑐𝑖𝑗  with all the 

advanced capsules 𝑗 are summed to 1 by using a SoftMax function:  

𝑐𝑖𝑗 =
exp(𝑏𝑖𝑗)

∑ exp(𝑏𝑖𝑘)𝑘
,                               (5) 

where routing logit 𝑏𝑖𝑗  is the log prior probability that capsule 𝑖 should be coupled to capsule 𝑗, and 

output 𝑐𝑖𝑗  represents the normalized probability that primary capsule 𝑖 is associated with advanced 

capsule 𝑗 . In the first iteration, the initial value of routing logit 𝑏𝑖𝑗  is set to zero in which the 

probabilities of the primary capsule accepted by each advanced capsule are equal. 

2) After all the weights 𝑐𝑖𝑗  are calculated for all the primary capsules, each advanced capsule j of 

the TrafficCaps is weighted by using Equation (4).  

3) In this step, all the capsules from the last step are activated by the squashing nonlinear function, 

as shown in Equation (2). In this process, the direction of the vector is preserved in output 𝑣𝑗 and its 

length is enforced to be less than 1, which corresponds to the detection probability of high-level features. 

4) In the iteration process, the initial coupling coefficients are iteratively refined by updating 𝑏𝑖𝑗  on 

the basis of the following rule:  

𝑏𝑖𝑗 = 𝑏𝑖𝑗 + 𝑢̂𝑗|𝑖 ∙ 𝑣𝑗.                              (6) 

Routing logit 𝑏𝑖𝑗  is updated by using the dot product of the input to capsule j and its output. In the 

field of mathematics, the dot product becomes large for similar vectors. Therefore, the corresponding 

routing logit increases when the input and output are similar; thus, the primary capsule is coupled to the 
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advanced capsule with a similar output. This process represents the association of local features with the 

high-level feature. 

5) The algorithms from Steps 1–4 are repeated several times to obtain the optimal routing weights. 

The dynamic routing algorithm is easy to be optimized, and experiments show that the CapsNet model 

can be optimized by iterating three times on an MNIST dataset (Lecun and Cortes, 2010). 

Overall, a set of vectors is generated to express the spatial features of network-level traffic state by 

applying the CapsNet model on the input traffic images for subsequent operations in the next step.  

 

3.3. Long short-term temporal features captured by NLSTM 

 

The traffic state normally has strong time evolution patterns and long-term dependencies, and a 

congestion state may last for several hours. LSTMs, which introduce memory units to optionally decide 

information through different cell states, have achieved promising learning capability of long-term time 

series (Hochreiter and Schmidhuber, 1997). In this study, a novel nested architecture of LSTMs, which is 

evaluated to outperform stacked and single-layer LSTMs on various character-level language modeling 

tasks (Moniz and Krueger, 2018), is used to capture the temporal features of traffic state. In stacked 

LSTMs (Cui et al., 2017), all the information extracted from a low LSTM must be inputted to the 

subsequent high-level LSTM layer and must be filtered again. 
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Fig. 5. NLSTM architecture 

 

NLSTMs add depth to LSTMs by nesting rather than stacking. As shown in Fig. 5, the value of a 

memory cell in an NLSTM is computed by using an LSTM structure, which acts as an internal unit that 

has its own inner memory cells. The long-term information learned by the internal unit can be selectively 

read and written by using the standard LSTM gates. This process enables the inner memories to 

remember and process traffic events on long time scales, especially when these events are irrelevant to 

the immediate present. Such selective access to inner memories in NLSTM exhibits a stable and efficient 

performance in capturing the long-term dependencies of traffic states. 

The equations that update the cell state and gates in an internal LSTM unit are similar to the 

standard LSTM unit, as shown as follows (the parameters with superscript ~ belong to the internal LSTM 

unit): 
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𝐼 𝑡 = 𝜎 𝑖(𝑥𝑡̃𝑊̃𝑥𝑖 + ℎ 𝑡−1𝑊̃ℎ𝑖 + 𝑏 𝑖),                        (7) 

𝑓 𝑡 = 𝜎 𝑓(𝑥𝑡̃𝑊̃𝑥𝑓 + ℎ 𝑡−1𝑊̃ℎ𝑓 + 𝑏 𝑓),                      (8) 

𝑐 𝑡 = 𝑓 𝑡 ⊙ 𝑐 𝑡−1 + 𝐼 𝑡 ⊙ 𝜎 𝑐(𝑥𝑡̃𝑊̃𝑥𝑐 + ℎ 𝑡−1𝑊̃ℎ𝑐 + 𝑏 𝑐,                  (9) 

𝑜 𝑡 = 𝜎 𝑜(𝑥𝑡̃𝑊̃𝑥𝑜 + ℎ 𝑡−1𝑊̃ℎ𝑜 + 𝑏 𝑜),                     (10) 

ℎ 𝑡 = 𝑜 𝑡 ⊙ 𝜎 ℎ(𝑐 𝑡),                      (11) 

where 𝑥𝑡̃ and ℎ 𝑡−1 are the inputs of the internal LSTM unit and are calculated based on the parameters 

of the external unit, as shown as follows: 

  𝑥𝑡̃ = 𝐼𝑡 ⊙ 𝜎𝑐(𝑥𝑡𝑊𝑥𝑐 + ℎ𝑡−1𝑊ℎ𝑐 + 𝑏𝑐),                 (12) 

ℎ 𝑡−1 = 𝑓𝑡 ⊙ 𝑐𝑡−1,                    (13) 

where 𝐼 𝑡, 𝑓 𝑡, and 𝑜 𝑡 are the three states of the gates; 𝑐 𝑡 is the cell input state; 𝑊̃𝑥𝑖, 𝑊̃𝑥𝑓, 𝑊̃𝑥𝑜, and 𝑊̃𝑥𝑐 

are the weight matrices connecting 𝑥𝑡̃ to the three gates and cell input; 𝑊̃ℎ𝑖, 𝑊̃ℎ𝑓, 𝑊̃ℎ𝑜, and 𝑊̃ℎ𝑐 are the 

weight matrices that connect ℎ 𝑡−1 to the three gates and cell input; 𝑏 𝑖, 𝑏 𝑓, 𝑏 𝑜, and 𝑏 𝑐 are the biases of 

the three gates and cell input; σ represents the sigmoid function; and ⊙ represents the scalar product of 

two vectors. 

For the external LSTM unit, only the cell state update rule is changed to the output of the internal 

LSTM.  

𝑐𝑡 = ℎ 𝑡                            (14) 

In this study, the temporal features of the traffic state are iteratively calculated by using the NLSTM 

model for traffic prediction. 

 

3.4 Framework 

 

The spatiotemporal features of the traffic state can be learned by the CapsNet and the NLSTM. We 

sequentially integrate CapsNet and NLSTM to forecast the future traffic states. The outputs of the 

CapsNet are spread in one vector and are passed to the NLSTM as the input, as shown as follows: 

𝑥𝑡 = {𝑣𝑗
𝑡}

𝑗=1

𝑝
,                          (15) 

where 𝑣𝑗
𝑡  is the output vector of advanced capsule 𝑗 at timestamp 𝑡, and 𝑝 is the number of 

advanced capsules. At the end of the model, a fully connected layer is added after the NLSTM model to 

obtain the predictions of the traffic states of all links. The predicted speed is calculated as follows: 

𝑦𝑡+1 = 𝑤 × ℎ𝑡 + 𝑏,                    (16) 

where ℎ𝑡 is the output of the NLSTM; and 𝑤 and 𝑏 represent the weight and bias between the 

hidden layer and the fully connected layer, respectively. 𝑦𝑡+1 is the final output vector with the size of 

the number of links. 

The entire prediction model of the network-level traffic state is shown in Fig. 6. The model is 

trained from end to end, and multi-step predictions are conducted based on the historical data of several 

steps. 
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Fig. 6. Architecture of the prediction model (FC = Fully connected layers) 

 

4. Empirical study  

 

4.1. Data description 

 

The traffic data used in the experiment were collected from the GPS devices mounted on floating 

vehicles. The time interval of data uploading approximately ranged from 10 s to 1 min, which depends 

on the sampling resolutions of GPS devices. Generally, narrow intervals may generate invalid data with 

average speed of zero and affect the traffic prediction performance. Thus, the time interval was 

aggregated to 2 min to capture the traffic state variations of the road network in this study accurately. 

The dataset was divided into two subsets for training and testing to validate the effectiveness of 

the proposed prediction model. The training set was collected from June 1–31, 2015, and the test set 

was collected from August 1–14, 2015. The evaluated roadway network in this study encompasses 278 

links, which include arterial roads, interchanges, and intersections, that are located between the Second 

and Third Ring Roads in Beijing. After the gridding process, the traffic states of the network are 

represented by an image with a size of 164 × 148 for 2 min. 

In the experiment, the time lag of the input sequence was set to 15, which indicated that the traffic 

states of the previous 30 min were used as the input of the proposed model. The 30 min historical traffic 

speeds were used to predict the following 2, 10, and 20 min traffic speeds, which corresponded to the 

number of the time lags (a, b, c) = (1, 5, 10) in Fig. 6.   

 

4.2. Implementation 

 

4.2.1. Hardware 

The deep learning model was implemented by using Python Keras (Chollet, 2018) and was 

executed on a server with 8 NVIDIA GeForce Titan X GPUs (12 GB RAM).  

 

4.2.2. Model parameters 
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The details of our CapsNet+NLSTM deep learning model are shown in Table 1. The input has 

three dimensions, where the first two dimensions represent the resolution of the input image, and the 

last dimension indicates the amount of channel of the input image. The model was trained using the 

optimizer RMSprop (Tieleman and Hinton, 2012). The learning rate was set to 0.001 with 0.5 decay 

parameter for every 20 epochs, and the batch size was set to 32. A dropout layer was applied to prevent 

the problem of overfitting (Srivastava et al., 2014), and a fivefold cross-validation was used to 

determine the parameters of our deep learning model. In the cross-validation, the train set was divided 

into five subsets. Four subsets were used for training, and the remaining subset was used for validation. 

The optimal model has the lowest average prediction error in all validation datasets. 

 

Table 1 Model structure of CapsNet+NLSTM 

Name of layers Parameters  Output  Parameter scale 

Input  164 × 148 × 1 0 

Convolution  

Kernel size = 9 × 9 

Channels = 128 

Stride = 2 

78 × 70 × 128 10,496 

PrimaryCaps 

(Convolution) 

Kernel size = 9 × 9 

Channels = 128 

Stride = 4 

18 × 16 × 128 1,327,232 

Reshape Capsule dimension = 8 4,608 × 8 0 

TrafficCaps 

(Fully connected) 

Advanced capsule = 30 

Capsule dimension = 16 
30 × 16 17,694,720 

(Flattened)  480 0 

NLSTM Hidden unit = 800 800 9,222,400 

Dropout 0.2 800 0 

Fully connected  278 222,678 

Total parameters   28,477,526 

4.2.3. Baseline models 

We compared the proposed model with five baseline deep NN models, namely, LSTMs (Hochreiter 

and Schmidhuber, 1997), NLSTM (Moniz and Krueger, 2018), DCNNs (Ma et al., 2017), CapsNet 

(Sabour et al., 2017), and CNN+LSTMs (Yu et al., 2017), to evaluate its prediction performance. The 

details of the CNN+LSTM baseline model is shown in Table 2, and the total parameters are 

approximately half of the CapsNet+NLSTM model. For the LSTM, NLSTM, DCNNs, and CapsNet 

models, their structures were the same as the part of the two combined models. The LSTM model was 

constructed by stacking two standard LSTMs with 800 hidden units. The NLSTM model was a nested 

structure with the same 800 hidden units. For the single model of DCNNs and CapsNet, a flattened layer 

was added on the fully connected layer to integrate the outputs of 15 time steps into one vector for 

prediction. 

 

 

 

 

 

Table 2 Model structure of CNN+LSTMs 
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Name of layers Parameters Output Parameter scale 

Input  164 × 148 × 1 0 

Convolution1 

Pooling1 

Filter (3 × 3 × 16) 

Pooling (2 × 2) 
82 × 74 × 16 160 

Convolution2 Filter (3 × 3 × 32) 
41 × 37 × 32 4,640 

Pooling2 Pooling (2 × 2) 

Convolution3 Filter (3 × 3 × 64) 
21 × 19 × 64 18,496 

Pooling3 Pooling (2 × 2) 

Convolution4 Filter (3 × 3 × 128) 
11 × 10 × 128 73,856 

Pooling4 Pooling (2 × 2) 

Flattened  14,080 0 

LSTM1 Hidden unit = 800 800 47,619,200 

LSTM2 Hidden unit = 800 800 5,123,200 

Fully connected  278 222,678 

Total parameters   53,062,230 

 

4.2.4 Evaluation metrics 

The deep learning models in this study were evaluated by using two commonly used metrics in 

traffic forecasting, namely, mean squared error (MSE) and mean absolute percentage error (MAPE), 

which can be expressed as follows:  

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑁
𝑖=1 ,                          (17) 

   𝑀𝐴𝑃𝐸 =  
1

𝑛
∑ (

𝑦̂𝑖−𝑦𝑖

𝑦̂𝑖
)𝑁

𝑖=1 ,                          (18) 

where 𝑦̂𝑖 is the prediction result of sample i, and 𝑦𝑖  is the ground truth of the corresponding traffic 

speed. 

 

4.3. Experimental results 

 

4.3.1. Comparison 

In this section, we compared our CapsNet+NLSTM model with the other five baseline models and 

evaluated the prediction results by using the MSE and MAPE metrics. Table 3 shows the comparison 

of different models for 1, 5, and 10 step-ahead predictions. 

Table 3 Comparison among different methods 

Time steps 2 min 10 min 20 min 

Metrics MSE MAPE MSE MAPE MSE MAPE 

LSTMs 41.67 0.2158 44.67 0.2255 48.11 0.2273 

NLSTM 39.55 0.2067 44.49 0.2229 47.32 0.2246 

DCNNs 42.94 0.2131 47.14 0.2367 51.38 0.2384 

CapsNet 35.80 0.1891 42.53 0.2205 47.08 0.2308 

CNN+LSTMs 36.57 0.2051 43.10 0.2181 45.90 0.2258 

CapsNet+NLST

M 

31.04 0.1757 39.29 0.2071 42.88 0.2183 
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Among the three prediction steps, our CapsNet+NLSTM model yields the most accurate results in 

terms of MSE and MAPE. The average MSE values for CNN+LSTMs decrease by 15%, 8.8% and 

6.6%. The CapsNet model performs better than the CNN model with 16.6%, 9.8%, and 8.4% lower 

MSE. This finding indicates that CapsNet shows stronger capability compared with CNNs in terms of 

the extraction of spatial features. For long-term temporal features, the prediction error increases with 

the prediction horizon, and the gap between the NLSTM and CapsNet+NLSTM models becomes small. 

This phenomenon indicates that the temporal features play an important role for the traffic prediction 

with the increase of prediction step size. Notably, the proposed model utilizes less parameters 

compared with the CNN+LSTM model and achieves more accurate results, which indicates that the 

CapsNet+NLSTM model achieves superior performance in predicting traffic states and shows a 

promising potential to be utilized.  

 

4.3.2. Evaluation of CapsNet 

We visualized and compared the prediction results of the CapsNet+NLSTM and CNN+LSTM 

models to evaluate the superior capability of CapsNet in extracting the spatial features of traffic states 

implied in the traffic images of complicated road networks. As shown in Fig. 7, we highlighted the 

links with a mean absolute error of speed more than 2 km/h, which were considered inaccurate 

predictions. In comparison with the CNN+LSTM prediction results in Fig. 7 (A) with 83 inaccurate 

links, the accuracy of CapsNet+NLSTM model exhibits an outstanding improvement with only 17 

links highlighted. Furthermore, the inaccurate prediction results in Fig. 7 (A) are mainly concentrated 

in the viaducts and low- resolution areas with links that are tightly arranged. This condition verifies the 

poor performance of CNN approaches in distinguishing the links that are not spatially connected and 

processing the overlapping areas in traffic images, as previously explained. By contrast, the 

CapsNet-based model can achieve accurate predictions under these conditions. 

  

(A) CNN+LSTMs (B) CapsNet+NLSTM 

Fig. 7. Visualization of prediction results (The links with inaccurate predictions whose mean absolute 

errors are more than 2 km/h are marked in red.) 

 

4.3.3. Evaluation of NLSTM 

Moreover, we compared the NLSTM with LSTM in a long time lag with 40-min historical traffic 

speeds as inputs to evaluate the performance of NLSTM in learning long-term features. The results are 

shown in Table 4. 
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Table 4 Comparison of NLSTM and LSTMs  

Category 
Prediction steps 2 min  10 min 20 min 

Time lags 30 min 40 min 30 min 40 min 30 min 40 min 

Loss 

(MSE) 

LSTMs 41.67 43.09 44.67 45.12 48.11 47.32 

NLSTM 39.55 39.41 44.49 44.65 47.32 46.96 

Efficiency 

(s) 

LSTMs 42 47 34 46 34 45 

NLSTM 19 23 18 23 20 22 

 

In comparison with LSTMs, the MSE values of NLSTM fluctuate more slightly when using 

long-term historical data in predicting multistep traffic speeds, especially in the 2-min interval 

short-term prediction. In terms of the number of parameters, the stacked and nested structures have the 

same scale of 8.8 M, and the NLSTM algorithm consumes small time in performing the prediction. 

These comparison results indicate that the NLSTM exhibits a stable and efficient performance in 

learning a long time series, which is the same as we expected. 

Overall, the CapsNet outperforms the CNNs in capturing the spatial features of traffic states, and 

the NLSTM performs better in terms of stability and efficiency compared with the stacked LSTMs. 

These results demonstrate the superiority of our CapsNet+NLSTM model over the state-of-the-art deep 

learning algorithms, which shows promising potential in forecasting the traffic states of large-scale 

urban road networks. 

 

5. Conclusions 

 

Traffic prediction remarkably influences the overall performance of traffic management and control 

systems. In this study, a CapsNet+NLSTM approach is presented to address the important drawbacks of 

statistical models and machine learning methods in handling the complex spatial relationships among the 

links when performing network-level traffic state prediction. We use the traffic roadway network as an 

image to capture the spatial structure of the road network and the relative topology among the different 

links. Many spatial relationships among the links are preserved, and considerable spatial features of the 

network are encapsulated in the vector form of capsules, such as position, direction, length, and travel 

speed of the road segment, by using the new CapsNet rather than conventional CNNs. The incorporated 

NLSTM model can achieve a stable performance in time-series prediction compared with the traditional 

stacked structure of LSTM. The experimental results indicate that the CapsNet+NLSTM model 

outperforms other baseline models.  

The major contributions of this study are summarized as follows. (1) A new CapsNet is developed to 

extract the comprehensive spatial features of roadway networks. (2) An NLSTM model is sequentially 

incorporated to capture the hierarchical temporal dependencies of traffic states. (3) The proposed model 

with the capability of capturing complicated spatiotemporal traffic patterns achieves the best prediction 

performance compared with the baseline models. (4) The visualized prediction results display the 

proposed model’s promising capability in handling complicated road networks that contain interlaced 

and compact links, such as viaducts and side roads.  

Several potential extensions in this research are considered. For example, the dynamic routing 
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algorithm between capsules will be improved. Specifically, the prediction accuracy and model efficiency 

should be increased because the dynamic routing algorithm is the core component of the CapsNet. 

Furthermore, the interpretation of the learned spatiotemporal features captured by the CapsNet and 

NLSTM will be investigated in the future. 
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