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Coupled Charging-and-Driving Incentives Design
for Electric Vehicles in Urban Networks

Benoit Sohet, Yezekael Hayel, Olivier Beaude and Alban Jeandin

Abstract—Electric Vehicles (EV) impact urban networks both
when driving (e.g., noise and pollution reduction) and charging.
For the electrical grid, the flexibility of EV charging makes it a
significant actor in “Demand Response” mechanisms. Therefore,
there is a need to design incentive mechanisms to foster customer
engagement. A congestion game approach is adopted to evaluate
the performance of such electrical transportation system with
multiple classes of vehicles: EV and Gasoline Vehicles. Both
temporal and energy operating costs are considered. The latter is
nonseparable as it depends on the global charging need of all EV,
which is scheduled in time by a centralized aggregator in function
of nonflexible consumption at charging location. Thus, driving
and charging decisions are coupled. An adaptation of Beckmann’s
method proves the existence of a Wardrop Equilibrium (WE) in
the considered nonseparable congestion game; this WE is unique
when the charging unit price is an increasing function of the
global charging need. A condition on the nonflexible load is given
to guarantee the monotonicity of this function. This condition is
tested on real consumption data in France and in Texas, USA.
Optimal tolls are used to control this electrical transportation
system and then computed in order to minimize an environmental
cost on a simple network topology.

Index Terms—Congestion game, Electric vehicle, Nonseparable
costs, Wardrop equilibrium.

I. INTRODUCTION

A. Motivation

In 2015, the whole transport sector accounted for about
a quarter (23%) of global energy-related greenhouse gas
emissions [1]. Locally, road transport may undermine urban
well-being because of traffic congestion, local air pollution
and noise. Electric vehicles (referred to as EV afterwards, with
both battery and plug-in hybrid technologies included) seem to
be an answer to both low carbon mobility (if associated with a
low carbon electricity production mix) and urban well-being.
However, with around 8.3 millions EV expected in France
by 2035 (see middle scenario of [2]), while the subsequent
country electrical energy consumption in 2035 will be lower
than the actual one, the charging need may reach 10% in
terms of power [2], which may lead to local grid constraints,
e.g., transformers aging, power losses. Currently, even if the
penetration rate of EV is not really significant at the scale of
a country, it can be already substantial locally1.
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1See e.g. the case of “Île-de-France”, with more than 20 000 EV in
circulation: http://www.automobile-propre.com/dossiers/voitures-electriques/
chiffres-vente-immatriculations-france/ (in French).

However, the flexibility of EV charging – in terms of
compatibility with end users mobility needs and technical
capabilities for load management – makes it a significant
actor in “Demand Response” mechanisms [3] which is an
emerging field in “smart grids”2. It consists in controlling
consumption profile by, e.g., postponing usages in time, or
reducing the level of power consumed, and with different
objectives for the electrical system: local management of
production-consumption balance, mitigating the impact on the
electricity network [4], constituting a “Virtual Power Plant”
by aggregating flexible usages (see, e.g., [5] in the case of
EV), etc. It is revolutionizing the traditional paradigm of the
electricity system, where almost only generation units were
flexible to ensure its effective operation. In this context, taking
into account charging strategies into everyday EV driving
decisions will become an important issue in smart cities,
particularly for urban networks [6]. A first problem is the
design of charging incentives (e.g., under the form of pricing)
to share – in space and time – public EV charging stations
(or EVCS) [7]. Directly related to this day-by-day setting is
the problem of charging infrastructure sizing, in terms of: (a)
number of charging points; (b) location in space, and; (c)
available levels of power (for each charging point and/or at
the scale of a station, or network of stations) [8].

To solve these problems, EV driving decisions must be also
taken into account because of the driving-and-charging cou-
pling. This coupling is clearly observable during widespread
holidays departures or notable sport events: the majority of
driving EV need to charge at public EVCS, where there could
be a significant waiting time and available power reduction
(when allocated/shared between plugged EV) due to simulta-
neous power demands. As an example of incentive mechanism,
Tesla EVCS may adapt the charging prices in order to en-
courage EV to charge in empty EVCS rather than congested
ones3. Another example of this coupling worth mentioning
comes from the French company CNR (Compagnie Nationale
du Rhône) and its “Move In Pure” charging subscription: in
order to guarantee that the source of electricity is renewable,
charging is incentivized to be scheduled in some hours of the
day and locations. In a more futuristic vision, the EV charging-
and-driving coupling can be transposed into a charging-by-
driving one, with an inductive charging system (under the
road) as suggested in [9].

2This is particularly true in comparison to other typical electrical tasks,
like heating, cooking, lighting, for which there is no potential to “smartly”
schedule the associated electricity consumption profile.

3https://www.tesla.com/support/supercharging.

ar
X

iv
:2

00
1.

11
75

8v
1 

 [
cs

.G
T

] 
 3

1 
Ja

n 
20

20

http://www.automobile-propre.com/dossiers/voitures-electriques/chiffres-vente-immatriculations-france/
http://www.automobile-propre.com/dossiers/voitures-electriques/chiffres-vente-immatriculations-france/
https://www.tesla.com/support/supercharging


2

Fig. 1. Schematic representation of the coupled choice of driving and charg-
ing. The driving problem gives an electricity charging need to the charging
problem, which in turn provides a charging unit price. Our system is composed
by four entities: Transportation Network Operator (TNO), Electricity Network
Operator (ENO), Electric Vehicles (EV) and an EV aggregator.

B. Game theory design

The model introduced in this work takes into account
this coupling between EV driving and charging decisions to
offer an accurate representation of EV behavior in order to
test incentives aimed at, e.g., mitigating their impact on the
electricity network.

In our game theory model, drivers choose their travel
path depending on the costs they face (here travel duration
and energy consumption), which depend themselves on the
choices of the others (here through traffic congestion, and
in the proposed charging problem). This congestion game is
heterogeneous because multiple vehicle classes are considered
(EV and gasoline vehicles, or GV), with different costs, and
nonatomic as the large number of vehicles considered is
approximated as infinite, and replaced by a continuous mass.

The charging unit price is the solution of a charging problem
managed by an aggregator, which schedules in time the
charging operation of the whole EV fleet. For simplification
purposes, its objective is supposed to be aligned with the
one of the Electricity Network Operator (ENO): minimizing
local electricity distribution costs (centralized optimization
problem). A use case of this framework is when all EV sign a
contract whereby they experience cheaper electricity fares in
exchange of delegating the control of their charging operations
to the aggregator (see, e.g., [10] for a presentation of such
stakeholder in the case of EV aggregation).

To design incentives on top of this model, the driving
and charging parts can be seen as the lower level of a
bilevel framework illustrated in Fig. 1. At the upper level,
a Transportation Network Operator (TNO) and the ENO may
impose tolls and electricity fares that induce a financial cost
to drivers, thus influencing their driving and charging choices.
This aspect is illustrated in the numerical section.

Note that in this model, driving and charging decisions
of EV users are coupled: the total energy charging need
the aggregator schedules depends on the driving strategies
of all EV. In turn, the cost for a unit of energy used to
drive – named here charging unit price – is minimized by
the aggregator depending on the total electricity distribution

costs, which will impact the driving strategies. Therefore, the
charging unit price depends on the total energy charging need,
which makes it nonseparable: the energy consumption cost
of an EV depends on the driving strategies of all EV, even
those on different paths. Finally, travel duration and energy
consumption costs are nonlinear: the problem can be classified
as a nonatomic multiclass congestion game with nonseparable
and nonlinear cost functions. The interactions between the four
different entities constituting this complex economical system
are summarized here and in Fig. 1:
• (a large number of) Electric Vehicles (EV): each EV

determines its travel path which minimizes its total cost,
including congestion and energy,

• the EV aggregator: determines the optimal charging
schedule for EV, minimizing the charging costs,

• the Transportation Network Operator (TNO): determines
optimal tolls on each road to control the traffic in the
transportation network,

• the Electricity Network Operator (ENO): determines the
electricity fare in order to manage electricity demand and
cover electricity production costs.

Our problem is related to intelligent electrical transportation
systems in the sense that our model enables the control of
the behavior of EV drivers. Game theory is a perfect tool to
understand intelligent and adaptive behavior of drivers related
to control.

C. Related works

There is an emerging literature on the coupling of driving
and charging decisions, identified in the review paper [11].
Let us detail the two contributions closest to our work in
terms of methodology. In [12], only EV are considered, and
their charging choices are represented in an “extended trans-
portation network”: each station is replaced by a set of virtual
arcs, each one corresponding to a specific charging (energy)
amount. EV driving consumption is distance-dependent, each
station has electricity production costs and sets a charging
unit price maximizing its own profit. This considered game
is then separable and no theoretical result is given on the
equilibrium. In [13], GV are added to the problem of [12],
but EV energy consumption is not taken into account and
the charging need is supposed to be the same for all EV.
Nevertheless, all stations belong to the same local grid so that
a peak demand at one station impacts each station’s charg-
ing unit price. This makes their game nonseparable, though
theoretical and numerical results are given on a (separable)
decomposed model version. Other works mentioned in [11]
are similar to the two previous ones, like [14] where the
vehicle’s destination offering a minimal cost is chosen, or
[15] where a fleet operator chooses the proportion of its
vehicles to charge instead of taking customers. Finally, in
a more recent paper [16], the authors propose a hierarchical
model in which multiple charging network operators manage
their own charging station, inducing a particular behavior of
EV. The problem is formulated as a Mathematical Problem
with Equilibrium Constraints (MPEC) which is NP hard. A
heuristic based on solving a sequence of integer programs
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with convex objective and constraints is suggested to tackle the
problem, but the computational complexity is still important.
Numerical illustrations are proposed with a six nodes graph
and a power network model associated with.

Unlike the previous references, our model does not rely
on iterations between the driving and charging problems but
offers a closed-form expression of the costs. Our solution to
deal with this added complexity is based on the following
works. Firstly, basic Traffic Assignment Problem (TAP) with
single-class customers is defined and studied in [17]. It is
shown that when all customers are equally affected by the
congestion (symmetric setting) and when the cost functions
are increasing, the equilibrium is unique. In recent years,
there has been an increasing interest for mixed TAP (MTAP)
where two or more classes of vehicles are considered [18].
Uniqueness of the Wardrop Equilibrium4 (WE) in mixed TAP
is proved in [19] when the cost functions are the same for
every customer, up to an additive constant. The complexity
induced by mixing different types of traffic in a routing
game comes from the difficulty to use standard approaches
like Beckmann’s one in order to determine the WE. In fact,
different impacts on travel costs cause an asymmetry in the
Jacobi matrix [20]. Therefore different techniques and ap-
proaches like nonlinear complementarity, variational inequality
and fixed-point problems for characterizing equilibrium are
reviewed in [21]. Secondly, studies of nonatomic games with
nonseparable costs are nontrivial and very few papers deal
with this framework. In [22], the authors generalize the bound
obtained by Roughgarden and Tardos [23] on the Price of An-
archy5 for nonseparable, symmetric and affine costs functions.
In [24], the author considers a similar framework but with
asymmetric and nonlinear costs. The bounds obtained are tight
and are based on a semidefinite optimization problem. In [25],
the authors propose a new proof for the Price of Anarchy in
nonatomic congestion games, particularly with nonseparable
and nonlinear cost functions. Their geometric approach leads
to obtain in a simple manner the bounds found in [22] and [24].
Similarly to this game theoretic literature, we focus on the
algorithmic part and techniques to characterize and compute
an equilibrium based on potential functions and Beckmann’s
techniques, for nonatomic routing games with nonseparable
cost functions. In fact, our framework induces particular cost
functions which enables us to characterize the WE as the
minimum of a global function.

Our model was first presented in our previous work [26] on
a toy example. The main contributions of this paper are:

i) an explicit formulation of the charging unit price based
on a water-filling approach as in [27], which depends
on EV energy consumption and which is integrated in a
coupled driving-charging model in a closed-form fashion.
In particular, it extends the approach of [12] where the
considered charging problem does not allow a temporal
power scheduling, the charging cost being directly cal-
culated based on the total EV energy need. Furthermore,

4The concept of equilibrium used in game theory in the case of a continuous
mass of players.

5Standard game theoretic measure of equilibria performance (w.r.t. a
centralized optimum).

N Set of nodes
K Set of Origin-Destination pairs
A Set of arcs (directed links)
R Set of paths (or routes)
Dk Travel demand of O-D k
la length of arc a
Xe Proportion of EV
fr,s Flow rate of vehicle class s on path r
xa,s Flow rate of vehicle class s on arc a

da(xa) Travel duration on arc a
d0

a Free flow reference time
Ca Capacity of arc a in vehicles per unit of time
τ Economic value of travel duration per unit of time

ta,s Toll for vehicle class s on arc a
ms Energy consumption for vehicle class s per distance unit
λs Unit energy price for vehicle class s

cr,s(x) Total driving cost for vehicle class s on path r
T Number of charging time slots
`t Total electricity load during time slot t
`0,t Nonflexible electricity consumption during time slot t
`e,t Flexible electricity consumption during time slot t

ft(`t) Local electricity distribution costs (i.e., electricity fare) during time slot t
Le Total charging need

cenv(x) Environmental cost

TABLE I
TABLE OF NOTATION

with the electrical grid costs internalized directly inside
the charging unit price, there is no need in our work
to iterate between the driving and charging problems
to determine the game’s equilibrium and therefore, no
problem of convergence as in [12];

ii) the proof of existence of a WE in a nonseparable routing
game – by finding an equivalent Beckmann’s function –
and its uniqueness under a “smoothness condition” on the
nonflexible load the ENO must meet (in addition to the
EV charging need) in a general transportation network.
Numerically, this condition is verified on real data sets
and key sensitivity parameters are identified (seasonal
effects and consumption habits);

iii) the design of incentives to minimize an environmental
cost for the TNO: numerically, optimal tolls can be
computed by the proposed model; significant gains are
obtained relatively to the no-toll case.

The paper is organized as follows. Our coupled model is
introduced in Sec. II and the coupling between the driving and
charging problems through the charging unit price is explained
in Sec. III. Equilibrium analysis of this model is proposed in
Sec. IV and numerical illustrations based on real data analysis
are exposed in Sec. V. Finally, conclusions and perspectives
are given in last Sec. VI.

II. A MULTICLASS NONSEPARABLE ROUTING GAME

Two types (or classes) of vehicles are considered: Electric
Vehicles (EV) and Gasoline Vehicles (GV)6. All vehicle users
determine rationally (i.e. optimally) their travel path, with
perfect knowledge of all the costs. The novelty is that the
costs considered here depend not only on the congestion of
the driving path, but also on the energy used to travel along
it. Moreover, the energy cost for EV depends on the global

6Note that the following study can be generalized to more classes.
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charging demand of electricity, which depends itself on the
driving strategies of all EV in a way described in next section.

Notations: bold symbols refer to vectors, subscript e to
EV variables and g to GV ones.

The road network is represented by a graph G = (N ,A),
where N is the set of nodes and A is the set of arcs (directed
links), each arc a ∈ A being associated with a length la
(expressed in km typically). The set of paths (or routes) of
G is R , and a quantity δa,r is defined as equal to 1 if arc
a ∈ A is part of the path r ∈ R , 0 otherwise. This way, the
length of route r ∈ R can be expressed by: lr = ∑a δa,rla.

The set of all Origin-Destination (O-D) pairs is K , and each
O-D pair k ∈K is associated with a travel demand Dk and a
set of different possible paths rk ∈ Rk linking O to D (there
may be more than one). Travel demand Dk represents the
proportion of vehicles which need to travel from O to D per
unit of time (e.g., per day, considering morning and evening
commuting periods of working days) and is the input of the
driving problem (set to 0 if there is no demand for O-D pair
k and ∑k Dk = 1). Note that the driving problem is stationary:
all demands Dk are averaged over time. The proportion of EV
among all vehicles is written Xe, and the proportion of GV is
then given by Xg = 1−Xe.

Every path r ∈ R is associated with an EV, a GV and a
total vehicle flow rates: respectively fr,e, fr,g and fr = fr,e+ fr,g.
Meeting all travel demands imposes constraints on these flows:

∀k ∈K , ∀s ∈ {e,g} ,

{
∀rk ∈ Rk , frk,s ≥ 0 ,

∑rk∈Rk
frk,s = Xs Dk .

(1)

Here it is assumed that the travel demand on each O-D pair
is proportionally distributed between classes: the demand for
O-D pair k ∈K by class s ∈ {e,g} is Xs Dk.

Similarly, every arc a ∈ A is associated with an EV, a GV
and a total vehicle flow per unit of time: respectively xa,e, xa,g
and xa = xa,e + xa,g, which are related to route flows as such:

xa,s = ∑
k∈K

∑
rk∈Rk

δa,rk frk,s (s = e,g) . (2)

The vector containing all EV and GV arc flows is noted x.
There are three sorts of costs on every arc a ∈ A :

(i) The travel duration on arc a is given by the following
congestion function (from the Bureau of Public Roads) [28]:

da(xa) = d0
a

[
1+α(xa/Ca)

β
]
, (3)

where Ca is the capacity of the link in vehicles per unit of
time and d0

a = la
va

is the free flow reference time, with va
the maximum speed limit on the arc. The two remaining
parameters α > 0 and β > 1 are adjusted empirically. Note
that travel duration is the same for both classes, and that it
depends on the total flow on the arc xa.

(ii) Travelers on arc a are also subject to a toll, ta,e or ta,g,
which depends on their vehicle class. This is the control of
the TNO (see Fig. 1).

(iii) Finally, vehicles are energy consuming, and the driving
cost should depend on this feature too. Here, the consumption
model is distance-dependant: me (resp. mg), the electricity

(resp. fuel, in liter) consumed per distance unit, is constant
and does not depend on speed profiles, etc. With λs the
charging/fueling unit price, the consumption cost on arc a is
(s = e,g): la︸︷︷︸

km

× ms︸︷︷︸
(kWh,L)/km

× λs︸︷︷︸
e/(kWh,L)

(e) . (4)

Summing these three costs, the total driving cost for a
vehicle of type s ∈ {e,g} choosing route r ∈ R is given by:

cr,s(x) = ∑
a∈A

δa,r×
(

τda(xa)+ ta,s + lamsλs

)
, (5)

where τ is the cost of one unit of time spent driving. Note that
here the price of fuel is assumed constant: λg is an exogenous
parameter, it does not depend on drivers decisions. On the
contrary, the charging unit price λe is endogenous as it will
depend on EV driving strategies: this is the subject of the next
section.

III. CHARGING PRICE: A CENTRALIZED WATER-FILLING
APPROACH

In our framework, the charging unit price, which is inte-
grated into the driving cost function, is chosen by an aggrega-
tor to balance its costs. These costs are aligned with the ones
of the ENO and limited to the global production cost: the
losses associated with the dispatching of power to dispersed
charging stations is not considered here and will be the subject
of a future work. Furthermore, this aggregator manages the
charging operation of all EV by scheduling in time the total
charging need in order to minimize its global production cost.
The resulting charging unit price then affects retroactively the
path choices of EV in the stationary routing game through the
driving cost function.

The scheduling only considers the aggregated (over all EV)
energy need Le: using (4) (constant energy consumption per
distance unit), Le is proportional to the total travelled distance
by all EV:

Le = ∑
k∈K

∑
rk∈Rk

frk,elrk me = me ∑
a∈A

xa,ela . (6)

Note that Le depends on all EV flows, and that a higher flow
xa,e on an arc a does not automatically lead to a higher Le
because of the travel demand constraints (1): there might be
fewer EV traveling on a longer arc b at the same time.

The scheduling problem is written in discrete time: the
aggregator schedules the global charging need Le resulting
from the stationary driving problem among a finite number
T ≥ 2 of time slots t ∈{1, . . . ,T} (typically, this discretized pe-
riod represents a day). More precisely, the aggregator chooses
which portion `e,t of the aggregated charging need Le to charge
during each time slot t in order to minimize its costs (here,
the electricity generation). This scheduling is not trivial since
these costs may depend inherently on the time slot t (e.g.,
solar panels produce only during the day) and are increasing
with the total electricity load `t during that time slot t [29].
Here, the following “proxy”7 is considered to represent this
cost:

∀t ∈ {1, . . . ,T} , ft(`t) = ηt(`t)
n (n≥ 2) (7)

7It does not include dynamic or location effects.
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Note that quadratic cost functions ft (n = 2) are good proxies,
widely used in the literature [27]: they will be considered in
the numerical section.

At each time slot t, the total electricity load `t is made
of two components: the portion `e,t of the aggregated charg-
ing need which is scheduled at t, and a nonflexible (fixed)
consumption `0,t which includes electrical usages that are
present in charging locations where EV are plugged (e.g.,
household appliances when charging at home, tertiary ones
at professional sites). While nonflexible consumption `0,t is a
parameter of the charging problem, `e,t is the control variable.
As modeled in [27] (and in many other papers about EV smart
charging), EV consumption has to be scheduled depending on
other electrical usages, the impact on the grid being dependent
on the aggregate consumption (obtained as the sum of flexible
and nonflexible profiles). Note that here, all EV share the
same (local) electricity network. In an extended setting, the
aggregate consumption profile could be calculated at different
charging locations, with possibly different electricity network
topologies, constraints and nonflexible profiles.

Formally, the charging problem solved by the EV aggregator
is stated as follows:

min
`e=(`e,t)t

T

∑
t=1

ft (`0,t + `e,t) , s.t.

{
∀t , `e,t ≥ 0 ,

∑
T
t=1 `e,t = Le .

(8)

For a global charging need Le issued from the driving
problem (second constraint in (8)), the aggregator has to
determine the aggregated charging profile `e := (`e,1, . . . , `e,T )
which minimizes the total charging cost. Note that this
problem is parametrized by both the global charging need
Le (from the driving problem, so endogenous in the cou-
pled charging-driving model) and the nonflexible load pro-
file `0 (exogeneous). Finally, note that the disaggregation
of the aggregate charging profile `e obtained as the output
of this scheduling problem is assumed possible here: thanks
to the large number of EV, the aggregated charging profile
can be decomposed into charging profiles for every EV. In
practice, the underlying assumption is that all EV can find an
available charging station at any moment and any location (no
reservation or queuing effect here) and that there are enough
EV not driving for the charging purposes.

Suppose now without loss of generality (because there are
no dynamical effect taken into account here) that time slots
are ordered such that f ′1(`0,1) ≤ ·· · ≤ f ′T (`0,T ), adding time
slot T +1 (with `0,T+1 =+∞) to unify notations. Considering
the two following auxiliary parameters:

αt =
t

∑
s=1

`0,s and βt =
T

∑
s=t+1

fs(`0,s) , (9)

respectively representing the cumulative nonflexible load up
to time t, and the cost due to nonflexible load after time t,
the optimal value V of problem (8) is given by the following
Proposition.

Proposition 1. Given a nonflexible vector `0 , if the

global charging need verifies Le ∈
]
L(t̄−1)

e ,L(t̄)
e

]
with the

energy thresholds L(t)
e =

[
∑

t
s=1 (ηt+1/ηs)

1/(n−1)
]
`0,t+1 − αt

for t ∈ {1, . . . ,T}, then the solution of the energy scheduling
problem (8) yields the optimal value:

V (Le) = (
t̄

∑
s=1

η
− 1

n−1
s )−(n−1)× (Le +αt̄)

n + βt̄ . (10)

Proof. Without loss of generality, time slots are assumed to
be ordered by marginal cost f ′t (`0,t), i.e. f ′1(`0,1)≤ f ′2(`0,2)≤
. . .≤ f ′T (`0,T ). At the optimal scheduling of a given charging
need Le, time slots used share the same marginal cost, lower
than the marginal costs of the unused time slots. This way,
the aggregator schedules Le in the order of time slot indices
(t = 1, then t = 2, etc.).

As a consequence, energy thresholds L(t)
e are defined as the

charging need from which the aggregator starts using time
slot t + 1 (0 ≤ t < T ). At each threshold, the charging need
L(t)

e is scheduled among the time slots already used (s ≤ t)
so that the resulting marginal costs are all equal to the one
of the empty time slot t + 1: f ′s

(
`0,s + `

(t)
e,s

)
= f ′t+1 (`0,t+1).

As cost functions ft are convex, this method ensures that the
marginal cost associated with each infinitesimal portion of L(t)

e

was lower than f ′t+1 (`0,t+1). Mathematically, L(t)
e = ∑

t
s=1 `

(t)
e,s

with:  `
(t)
e,s =

(
ηt+1
ηs

)n−1
`0,t+1− `0,s for s≤ t ,

`
(t)
e,s = 0 for s > t ,

which yields the energy thresholds formula.
Thus, if t̄ is such that the charging need Le is in ]L(t̄−1)

e ,L(t̄)
e ],

then the optimal charging profile `e is such that for t > t̄,
`e,t = 0 and for t ≤ t̄, f ′t (`0,t + `e,t) = f ′1 (`0,1 + `e,1), so that:

V (Le) =
t̄

∑
t=1

ηt

(
η1

ηt

) n
n−1

(`0,1 + `e,1)
n +βt̄ .

Finally, `e,1 is deduced using constraint Le = ∑
T
t=1 `e,t :

t̄

∑
t=1

(
η1

ηt

) 1
n−1

(`0,1 + `e,1) = Le +αt̄ .

Note that when electricity costs functions ft are not time-
dependent (∀t , ηt = η so that ft = f ), the optimal aggregated
charging profile `e of Prop. 1 has a water-filling structure [27].

Having optimally scheduled the aggregated charging need
Le, the aggregator then determines the charging unit price:

λe(Le) =
V (Le)

Le +∑
T
t=1 `0,t

, (11)

with V (Le) expressed by Equation (10). By defining this
way the charging unit price, the aggregator makes EV and
nonflexible appliances pay equally (per energy unit) for the
total electricity costs caused by their aggregated electricity
consumption. This means that for consumers, electricity us-
ages during peak hours are as much expensive as during off-
peak hours. This also means that households may have a
smaller electricity bill thanks to the efforts made by the EV
community.
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This function λe is differentiable for any Le, even though
function V was piecewise-defined in Prop. 1. Additionally,
the following section will show the importance of the interval
of Le values for which λe is increasing. To this end, the next
Proposition gives a necessary and sufficient condition – on
nonflexible load `0 – to have an increasing λe.

Proposition 2. The charging unit price function λe is increas-
ing on R∗+ if and only if:

∑
T
t=1 η̃t ˜̀n

0,t

∑
T
t=1

˜̀0,t
≤ n , with

{
˜̀0,t =

`0,t
`0,1

,

η̃t =
ηt
η1

.
(12)

Proof. The proof consists in showing that λ′e is increasing on
R+ and in particular strictly increasing on [0,L(T−1)

e [. Indeed,
in that case, λe would be increasing on R∗+ if and only if
λ′e(0)≥ 0, condition leading to Eq. (13) of Prop. 2. Note that
the case with no nonflexible consumption (`0 = 0) is ruled
out, as λe(Le) = Ln−1

e would be unconditionally increasing.
Even though the numerator V of λe is piecewise-defined,

this function is C1 on R+ as it is based on continuous func-
tion over intervals (see Eq. (10)). Moreover, λ′e is piecewise
differentiable and for Le ∈

]
L(t−1)

e ,L(t)
e

[
(1≤ t ≤ T ):

λ
′′
e (Le) =

2βt

(Le +αT )3 +Ht
(Le +αt)

n−1

(Le +αT )3

[
(n−1)(n−2)L2

e

+2(n−2)(nαT −αt)Le +
(
2ε

2−2nε+n2−n
)

α
2
T

]
,

where ε = αt
αT

. The second term is non-negative since the three
polynomial coefficients are non-negative for n ≥ 2. The first
term is also non-negative, and even positive for t ≤ T −1. The
proof is completed using the continuity of λ′e.

Note that when the marginal electricity cost (w.r.t. the
aggregated charging need Le: V ′(Le)) is smaller than the
charging unit price λe(Le), Prop. 2 does not hold and λe is
(locally) decreasing. Also observe that a smooth nonflexible
profile (∀t, |`0,t/`0,1−1| small) leads to a low ratio in (12),
which induces an increasing λe.

IV. OPTIMAL ROUTING CONSIDERING ENERGY COST

Going back to the study of the routing game in which play-
ers’ costs are defined in (5), a natural concept of equilibrium
is the Wardrop Equilibrium (WE) defined as follows:

Definition 1. A flow x∗ is a Wardrop Equilibrium (WE) if and
only if:

∀s ∈ {e,g} , cr,s(f∗)≤ cr′,s(f∗), (13)

for all paths r,r′ with r such that fr,s > 0.

Literally it means that at a WE, for any given vehicle class,
the travel costs on all the paths actually used ({r : fr,s > 0})
are equal, and less than those which would be experienced on
any unused path ({r′ : fr′,s = 0}). Note that WE flow f∗) (or
equivalently x∗) will be denoted with an asterisk thereafter.

Even if the considered routing game is nonseparable and
with multiple types of flows, the structure of the charging unit
price λe enables us to apply a similar approach to the method

of Beckmann et al. in [30] which is a well-known convex opti-
mization technique in order to find equilibria in routing games.

Proposition 3. The local minima of the following constrained
optimization problem are WE:

min
x

B(x) s.t. (1) , with

B(x) = τ ∑
a∈A

∫ xa

0
da(x)dx + ∑

a∈A
s∈{e,g}

ta,sxa,s + ∑
s∈{e,g}

∫ Ls(xs)

0
λs(x)dx ,

(14)
extending the definition of the global charging need Le in (6)
to the GV class with Lg = mg ∑a xa,gla.

Proof. Let a path flow vector f be a solution of the minimiza-
tion problem (14) of Beckmann’s function B under constraints
of (1). Then there exist constants λk,s and µr,s (for all k ∈ K ,
r ∈R , s∈ {e,g}) such that f is a solution of the corresponding
Karush-Kuhn-Tucker (or KKT) conditions:

∂L
∂ fr,s

= 0 ,
∂L

∂λk,s
= 0

µr,s× fr,s = 0
µr,s, fr,s ≥ 0

where



L = B(x)− ∑
s=e,g

∑
k∈K

λk,shk,s

− ∑
s=e,g

∑
r∈R

µr,s fr,s

hk,s = ∑
rk∈Rk

frk,s−XsDk .

Using relation (2), differentiating L w.r.t. fr,s (with r ∈ Rk)
gives:

∂L
∂ fr,s

= cr,s−λk,s−µr,s ,

so that using the KKT conditions: ∀r ∈ Rk, cr,s ≥ λk,s, with
equality for r such that fr,s > 0.

Hence, if for any k ∈ K there are two paths r,r′ ∈ Rk with
different costs cr,s < cr′,s, then fr′,s = 0. Otherwise, fr′,s > 0
and cr′,s = λk,s ≤ cr,s , which is contradictory. Thus, the KKT
conditions correspond exactly to the Def. 1 of a WE.

The result of previous Proposition gives a simple method
to find WE thanks to standard optimization algorithms which
can be used to solve this convex (under some conditions)
minimization problem. Moreover it leads to some theoretical
properties of WE, starting with the following Proposition:

Proposition 4. There exists a WE, and a sufficient condition
for uniqueness is that the charging unit price λe is increasing.

Proof. The proof of this proposition is composed of two parts.
First, the existence of the WE is based on the continuity prop-
erty of the Beckmann’s function B on the compact feasible set,
so it has at least one minimum, which is a WE according to
Prop. 3. Second, the proof of the uniqueness involves a deeper
analysis. Assuming that λe is increasing, the proof consists in
showing that B is strictly convex. Indeed, in that case, the KKT
conditions are equivalent to the minimization problem (15)
under the linear constraints of (1). As the KKT conditions are
equivalent to Def. 1 of a WE (as seen in Appendix C), this
means that the WE correspond to the minima of B , which is
unique because of B strict convexity.

B is strictly convex if its hessian H (B is twice continuously
differentiable because λe is C1) verifies uT H (f)u> 0 for all
path flows f in the interior of the feasible space S◦ and all
directions u ∈ S .
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Fig. 2. Feasible set for class s and trip Dk , which allows three different paths.

H has a block structure (for any f ∈ S◦):

H
((

frk,k,s
)

rk,k,s

)
=

(
M+D D

D D

)
,

with matrices D =
(
Dr,r′

)
r,r′∈R and M =

(
Mr,r′

)
r,r′∈R defined

as: {
Dr,r′ = ∑a δa,r δa,r′ d′a (xa)

Mr,r′ = k lr lr′
where k = me

2
λ
′
e(Le) .

It is sufficient to verify uT H (f)u> 0 only along indepen-
dent directions u ∈ S chosen as in Fig. 2. Without loss of
generality, the proof will be illustrated only on the example
of Fig. 2, where there are only one class s and one O-D pair
k (associated with a travel demand Dk) which is connected by
three paths r, r′ and r′′. In this case, there are two independent
directions u=− fr,s + fr′,s and v (see Fig. 1).

If s = g, then:

uT H (f)u= ∑
a
(δa,r′ −δa,r)

2d′a(xa) ≥ 0 ,

since d′a are positive in the interior S◦. More precisely, as
r 6= r′, there exists a such that δa,r 6= δa,r′ , so that the previous
inequality is strict. The proof is similar for direction v, or for
s = e where:

uT H (f)u= k(l′− l)2 +∑
a

(
δa,r′ −δa,r

)2 d′a(xa) > 0 .

In practice, the uniqueness of WE allows the TNO or the
ENO to predict accurately drivers’ behavior and in turn, to
design good incentives according to their own objectives.
Prop. 2 and 4 show that this property depends on the nonflex-
ible profile. Moreover, as any local minimum of the function
defined in equation (14) is a Wardorp equilibrium, standard
algorithms like gradient descent or simulated annealing can
be used to find these points. Our coupled game and this
direct method to find its WE constitute a privileged framework
to design incentives, compared to iterative and decomposed
models [9], [12]. Numerical examples of incentive design are
given in next section.

V. NUMERICAL RESULTS

The first numerical experiment will complement the
theoretical analysis of the charging problem by testing on
real data the validity of the equivalent condition given in
Prop. 2 for an increasing charging unit price λe, leading

Fig. 3. Sample of Recoflux statistical model dataset.

to a unique WE of the coupled driving-charging problem.
Then, the sensitivity of the WE will be studied, with respect
to realistic parameters like gasoline price or when tolls are
imposed in order to reduce an environmental cost. For this,
experiments will be conducted on a simple framework made
of three parallel roads.

Notations: because multiple days are considered in this part,
`0(d) is used for the nonflexible consumption profile of day d.

For all the simulations, cost functions are time-independent
and quadratic: ∀t ∈ {1, . . . ,T}, ft(`t) = f (`t) = η`2

t .

A. Properties of charging unit price λe

This section focuses on two different sets of real data (resp.
from France and Texas, USA) of hourly household electricity
consumption throughout a year. As discussed previously, the
properties of the EV charging scheduling of Eq. 8 depends on
`0(d) (see, e.g., Prop. 2). Numerically, the sensitivity of these
properties to the number of time slots T (directly based on
their – common – duration) is analyzed here.

The first dataset, “Recoflux”, is from Enedis (the main
French distribution network operator) and is a statistical repre-
sentation of a typical French household consumption profile,
taking into account electrical heating, water heating and all the
other usages8. Fig. 3 shows samples of each type of days in
this dataset. Note that winter consumption looks like a “trans-
posed version” of the summer one due to constant heating.

In the raw data, daily consumption is split in 24 hourly
time slots. Fig. 4.a shows (star markers) that in this case,
Prop. 2 is not verified during whole summer, meaning that
a TNO cannot rely on a unique WE to make its decisions. To
aggregate the nonflexible data to a lower number of time slots
(T < 24), these data are ordered increasingly then summed
into the corresponding slots. For example for T = 2, for each
day d the consumption vector `0(d) is divided in two: the
lower half is summed to get `0,1(d) while the higher half is
summed to get `0,2(d). Note that consecutive hourly time-
slots might not be in the same new time slot, as it is the
case for the off-peak hours in France, corresponding to night
hours and some of the afternoon hours (from 11pm to 9am and
from 3pm to 5pm. However, the modelling choice done here
leads to an underestimation of the number of days for which

8Available at https://www.enedis.fr/coefficients-des-profils (RES1 BASE).

https://www.enedis.fr/coefficients-des-profils
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Fig. 4. Proportion of days per month when λe is increasing (using Prop. 2),
for different number T of time slots (top: Recoflux; bottom: Pecan Street). A
lower T ensures a higher proportion of days where WE is unique.

λe is increasing. Indeed, if the chronological order was kept,
the T nonflexible load values would be closer to one another
(compared to the increasingly ordered ones) so that the ratio
of condition (12) would be lower.

By testing the condition of Prop. 2, Fig. 4.a shows when the
charging unit price λe is increasing for each day d of a given
year depending on the number of time slots. For T > 2 time
slots, summer months (from May to October) include days
when λe is not increasing, making it difficult for the TNO
and ENO to predict drivers behavior without WE uniqueness.
This is likely to be caused by the absence of heating during
these months. In winter, nearly constant heating makes up a
substantial part of consumption, lowering the impact of other
electrical appliances consumption variations: the ratios ˜̀0,t =
`0,t/`0,1 are then relatively low, so that Prop. 2 is verified. This
phenomenon is worse with a higher T , where `0,1 is made of
fewer consumption hours from raw data – the lowest ones –
which makes it even lower, so that ˜̀0,t are relatively high. In
conclusion, the higher the number T of time slots, the higher
the proportion of days with an increasing charging unit price.

The second dataset is the hourly electric consumption
throughout a year of a Texan household, given by the company
Pecan Street9. Compared to the previous dataset, consumption
here is higher during summer with the intensive use of air
conditioning in Texas. Here, λe is increasing only 34% of
the days for T = 2 (circle markers in Fig. 4.b). The main
reason explaining that is that Texan night consumption is very
low compared to day consumption, especially in the summer
period. Note also that mean profiles like Recoflux data might
smooth extreme consumption for which Prop. 2 is not verified
and λe is not increasing, explaining part of the differences
between the two datasets in Figs. 4.a and 4.b.

B. Sensitivity of Wardrop Equilibrium

While the first numerical experiment only focused on the
charging part of the problem, the two following sections

9Data available at http://www.pecanstreet.org/.

Fig. 5. Schematic representation of the TAP network considered. A simple
setting allowing a tractable analysis of the proposed coupled charging-and-
driving concept, and an evaluation of associated urban externalities.

consider the whole coupled problem of driving and charging,
showing in particular how the WE is sensitive to the main
parameters. The parameters of the problem are set as follows,
unless otherwise specified: T = 2 time slots; the nonflexible
load `0 is `0,1 = 16.7kWh and `0,2 = 25.6kWh, which are
the corresponding average – over the days of the considered
year – values in the Recoflux dataset; a quadratic electricity
cost function ft(`) = f (`) = η`2 with η = 0.01e/kWh2 which
allows scaling the charging unit price λe into the interval
[0.18,0.21]e/kWh for Le ∈ [0,40]% of total nonflexible energy
consumption (order of magnitude of EV charging consumption
relatively to other usages). Note that with the chosen quadratic
electricity cost function, `0 verifies the condition of Prop. 2,
which ensures the uniqueness of WE. In the simulations, WE is
computed thanks to Beckmann’s method as the unique solution
of a strictly convex optimization problem (see explanations
following Prop. 3).

The road network under study here is made of two nodes,
linked by three parallel links a, b and c (with la < lb and
la < lc). This setting represents a city where drivers can either
directly cross the city (path a) or take any ring road (path
b or c) in order to join the opposite side of the city (thus
lb = lc = π

2 la). The length la = 30km of arc a is a good
approximation of the daily mean individual driving distance
in France (following ENTD10 2008). For the speed limits on
the arcs, the example of Paris was taken: va = 50km/h and
vb = vc = 70km/h. The capacities of the arcs are set to Cb = X
and Ca = Cc = X/2, with X the total number of vehicles,
meaning that ring road b contains twice as many lanes as the
two other paths. The parameters α = 2 and β = 4 of the BPR
functions dr defined in (3) are determined empirically [31], so
that if all vehicles choose the same path, the corresponding
driving time will be three times longer than the free flow
reference time. The value of time τ is set to 10e/h according
to a French government report11. For GV, the consumption
parameters are λg = 1.5e/L and mg = 0.06L/km and for EV,
me = 0.2kWh/km [32]. Finally, the proportion Xe of EV is
supposed to be 50%, in line with future predictions. Tolls

10Enquête Nationale Transports et Déplacements: https://utp.fr/system/files/
Publications/UTP NoteInfo1103 Enseignements ENTD2008.pdf (in French).

11http://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/archives/
Valeur-du-temps.pdf.

http://www.pecanstreet.org/
https://utp.fr/system/files/Publications/UTP_NoteInfo1103_Enseignements_ENTD2008.pdf
https://utp.fr/system/files/Publications/UTP_NoteInfo1103_Enseignements_ENTD2008.pdf
http://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/archives/Valeur-du-temps.pdf
http://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/archives/Valeur-du-temps.pdf
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Fig. 6. Evolution of the WE x∗ with respect to fuel price λg, for Xg =Xe = 0.5.
There is a threshold on λg corresponding to a switch of traffic equilibrium.

are all set to zero in order to clearly analyze the effect of
congestion and energy on the behavior of EV and GV.

First, the sensitivity of WE w.r.t. the fuel price λg is assessed
in Fig. 6. Starting from the actual fuel price (around λg =
1.50e/L), the cost of energy consumption per distance unit is
higher for GV: mgλg > meλe(Le(xe)) for any EV flows xe.
All GV then use the shortest arc a (x∗a,g = Xg = 0.5), while
most of EV use the ring roads to avoid congestion (x∗a,e <
Xe = 0.5). While λg > 0.68e/L the obtained WE remains the
same. Then, and down to λg > 0.65e/L, the proportions of EV
and GV at equilibrium are inverted. This interval corresponds
to a threshold on (exogeneous) GV energy cost when mgλg
becomes lower than meλe(Le(xe)) for any EV flows xe. Then,
all EV use arc a while there are fewer and fewer GV on it,
because going on the long ring roads is not that expensive with
such a low fuel price. In terms of decision-making, lowering
taxes on fuel (leading to a smaller λg) may lower the level
of GV traffic inside cities. Note that the two ring roads are
used simultaneously, in proportions such that there are twice
as many vehicles on the ring road with the larger capacity, so
that the travel time is the same for both.

C. Minimizing Environmental Cost

This section focuses on the optimization of a global function
of the TNO which depends on the WE x∗. One particular
function could be the level of pollution, where a TNO controls
the toll prices on all paths such that the global level of pollu-
tion is minimal. Only GV release polluting substances into the
air, therefore the level of pollution depends on the expected
number of GV on each arc. Based on Little’s formulae of
queueing theory [33], this expected number of GV on arc a
is the product of the rate xa,g and the expected travel duration
da(xa). Note that this upper-level optimization problem is
not performed by the EV aggregator but an autority/regulator
of the transportation network that is the TNO. The TNO
determines only here the GV toll ta,g on the arc crossing the
city. For all the other traffics, there is no toll applied, which is
typically the kind of incentive large urban cities like London
proposed (vehicles have to pay a toll in order to go across the
city downtown).

Fig. 7. Evolution of the optimal toll t∗a,g and the potential environmental gain
δ(Xe) w.r.t. the proportion Xe of EV, for different γa scenario. As Xe grows, the
traffic operator induces a bigger impact on pollution if choosing the optimal
toll, which decreases.

Fig. 8. Distribution of EV and GV at the WE which minimizes pollution,
as the proportion of EV grows and for γa = 2. Ex: for Xe = 0.33, few GV
(x∗a,g = 0.47 < Xg = 0.67) while all EV (x∗a,e = Xe = 0.33) are on a. As Xe
grows, EV replace GV on arc a.

The purpose of this toll is to limit the number of GV
contributing to the environmental cost, defined as:

cenv(x) = γaxa,gda(xa)+ xb,gdb(xb)+ xc,gdc(xc) , (15)

with γa ≥ 1 the weight of environmental cost on arc a (inside
the city): this represents a willingness to diminish (local)
pollution in the city center. Note also that at equilibrium, the
environmental cost function cenv depends implicitly on the toll
ta,g through the WE flows x∗. The TNO can thus control
this environmental cost, solving an upper-level optimization
problem:

c∗env = min
ta,g≥0

cenv
(
x∗(ta,g)

)
, (16)

with x∗(ta,g) the (unique) WE associated to ta,g. As there is
no explicit formulation of the WE (as a function of ta,g), it is
difficult to determine explicit solutions for this optimization
problem, or even to integrate optimality conditions of the
lower-level problem (WE between the vehicles) into the upper
one (of the TNO). In turn, an exhaustive search on ta,g with a
0.01e increment is performed.

The proportion Xe of EV has an important impact on this
global minimization problem. Then, the potential environmen-
tal gain δ(Xe) by taxing optimally, relatively to the reference
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case c(0)env obtained when ta,g = 0, depends on this proportion
as:

δ(Xe) =
|c∗env− c(0)env|

c(0)env

, with c∗env of (16) . (17)

For the NTO, it is interesting to know the environmental
gain corresponding to an optimal determination of tolls that
minimize the environmental cost. The optimal toll value t∗a,g
depends on the proportion of EV Xe, as illustrated in Fig. 7.
In this figure, t∗a,g and the corresponding maximal environ-
mental gain δ are computed for any EV penetration Xe, for
different environmental policy scenario (represented by γa, the
importance given to local pollution inside the city). In general,
for a higher EV penetration, arc a will be naturally more
congested, so that a lower toll t∗a,g is sufficient to optimally
reduce the number of GV crossing the city, which explains
why the blue dotted curves t∗a,g(Xe) are decreasing. Regarding
the different scenario, the higher γa is, the higher t∗a,g must
be to prevent GV from crossing the city and the higher
the potential environmental gain δ is. For γa = 1000 (circle
markers), the city’s environmental cost is almost equivalent
to the environmental cost only on arc a: In the optimal WE,
there is no GV crossing the city, so that our toll mechanism
corresponds to a restriction one where GV would be forbidden
to cross the city. For γa = 2 (cross markers), there may be GV
crossing the city at the optimal WE, as shown in Fig. 8 for
EV penetrations lower than 20%. In this case of high GV
proportion, if all GV used only the ring roads there would
be too much congestion, i.e., local pollution. For this reason,
the optimal toll may be lower than the one deterring all GV
from crossing the city (see the cross and circle markers in
Fig. 7). For EV penetrations higher than 33%, the proportion
of EV crossing the city is the same (see Fig. 8), so that the
total cost associated with arc a is constant and the optimal toll
t∗a,g = 0.9e remains constant (see Fig. 7).

VI. CONCLUSION

With the growing number of EV, new challenges related to
driving and charging matters arise. In our routing game, the
coupling between driving and charging was modeled by a non-
separable, non-linear charging unit price function λe, which
depends on EV flows on the overall transportation network. In
this work, the existence of a Wardrop Equilibrium (WE) was
proved for any transportation network, by generalizing Beck-
mann’s method. Moreover, it was shown that the uniqueness
of the WE depends on the monotonicity of the charging unit
price, which depends itself on the profile of the nonflexible
load.

Numerically, the properties of WE have been analyzed on
two real datasets of nonflexible loads, observing in particular
that uniqueness depends on seasonal effects and electrical con-
sumption habits. Other numerical experiments on a network
example with parallel arcs illustrate two kinds of incentives
sent by the TNO and their effects on the WE. First, lowering
taxes on fuel incite GV to use longer arcs (typically ring
roads). Second, a toll system helps to control the proportion
of GV on the shorter arc (typically crossing a city center).

In a future work, an accurate model of the distribution grid
will be added to our framework for a better description of
the costs caused by the charging operation. On top of that,
a theoretical framework will be set to study more thoroughly
the incentive problem for all the operators, making it a bi-level
game.
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