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Memorable Maps: A Framework for Re-Defining
Places 1n Visual Place Recognition

Mubariz Zaffar™, Shoaib Ehsan

Abstract—This paper presents a cognition-inspired agnostic
framework for building a map for Visual Place Recognition. This
framework draws inspiration from human-memorability, utilizes
the traditional image entropy concept and computes the static
content in an image; thereby presenting a tri-folded criteria to
assess the ‘memorability’ of an image for visual place recognition.
A dataset namely ‘ESSEX3IN1’ is created, composed of highly
confusing images from indoor, outdoor and natural scenes for
analysis. When used in conjunction with state-of-the-art visual
place recognition methods, the proposed framework provides
significant performance boost to these techniques, as evidenced
by results on ESSEX3IN1 and other public datasets.

Index Terms— Visual Place Recognition, memorable maps,
ESSEX3IN1, memorability, staticity.

I. INTRODUCTION

ISUAL Place Recognition (VPR) is a well-defined,
Valbeit a highly challenging module of a Visual-SLAM
(Simultaneous Localization and Mapping) based autonomous
system [1]. It represents the ability of a robot to ‘remem-
ber’ a previously visited place in the world map and thus
subsequently generating a belief about the robot’s location in
the world. VPR can either be used as a stand-alone vehicle
localization system in an appearance-only topological and/or
topometric map or it can be combined with metric SLAM
techniques to perform loop closure [2]. The scope of this work
and our evaluations are limited to the former, however, it is
possible to adopt the combination of our work and VPR within
SLAM systems for loop-closure. Some key advances in SLAM
research can be broken down into semantic mapping (surveyed
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Fig. 1. A block-level overview of the proposed memorable maps framework
is shown here.

in [3]) and visual place recognition (surveyed in [1]), where
the latter can be annexed into the former [3].

Traditionally, for visual place recognition, ‘Places’ have
been selected/sampled based on time-interval [4], dis-
tance [5] or distinctiveness [6] in different approaches. These
approaches are discussed in depth in the next section. Most
of these methods attempt to reduce the size of robot’s map
and do not quantify if a sampled/sub-sampled image is a
good representation of a place; thereby has a greater chance
of matching upon revisiting. The quality of image selection
mechanism restricts the performance of a VPR system, both in
the short-term and long-term. Due to limited number of images
being stored in the map, it is critical to select those images
that can be matched successfully upon repeated traversal-the
motivation for this research.

In this work, we look at image selection from a semantic
point of view and draw inspiration from images memorable to
a human-cognition system. We use a Convolutional Neural
Network [7] to compute the memorability of an incoming
camera frame. However, while objects like vehicles and
pedestrians in an image are subjectively-memorable; they are
intrinsically not good for VPR as these dynamic objects
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are rarely re-observed. We thus perform object detection to
compute the staticity of an image and mask memorability
of dynamic content. In addition to being memorable and
static, an image should be content-rich thus we calculate the
entropy map.

The contribution of this work is a semantically coherent
framework (Fig. 1) that filters an input image through a
tri-folded criteria. Hence, ensuring that every image to be
inserted against a place in robot’s map is a good representation
of the said place and highly recognizable. To analyze the effec-
tiveness of this framework, we created a dataset ‘ESSEX3IN1’
from indoor, outdoor and natural environments. Unlike exist-
ing VPR datasets, ESSEX3IN1 mimics a robot exploring
an environment instead of traditional path-following and is
thus composed of highly confusing images from all three
environments. We show how these confusing images lead to
poor performance of current visual place recognition systems.
The final results show the effectiveness of proposed framework
in segregating these ‘confusing’ images from ‘good’ images,
thereby increasing VPR precision and reducing database size.
We also evaluate our framework on other public VPR datasets
to show that this performance enhancement can be generalized.
Due to its agnostic nature, any VPR technique can obtain a
performance boost by stacking the presented framework as an
additional layer in the VPR pipeline.

The remainder of the paper is organized as follows.
In Section II, a comprehensive literature review regarding VPR
state-of-the-art is presented with focus on image selection
and semantic-mapping. Section III presents the motivation,
design and implementation details of the ‘memorable maps’
framework developed in this work. Section IV is dedicated
to the experimental setup for evaluating and analyzing state-
of-the-art VPR techniques with and without proposed frame-
work. Following-up on Section IV, Section V puts forth the
results/analysis obtained by combining memorable maps and
contemporary VPR techniques on multiple public datasets and
ESSEX3INI. Finally, conclusions and future directions are
presented in Section VI

II. RELATED WORK

VPR and SLAM have seen major developments through
different cognitive, intuitive or semantic approaches to the
problem. A comprehensive review of these techniques is
performed by Lowry et al. [1]. An earlier work on probabilistic
implementation of SLAM in visual-appearance domain, called
‘FAB-MAP’, is presented by Cummins et al. [8]. This work
was combined in [9] with a biologically inspired SLAM tech-
nique ‘RAT-SLAM’ [10], mimicking the Rat’s hippocampus.
Milford et al. [11] utilize sequence of images instead of indi-
vidual frames to successfully match previously visited places
under significant environmental variations. Similar to other
fields, Convolutional Neural Networks (CNNs) have been a
game-changer for VPR. The application of CNN for VPR
was first studied by Chen ef al. [12]. Authors in [13] trained
two dedicated Neural Networks for VPR on Specific Places
Dataset (SPED) containing images from different seasons and
times of day. Unlike previous implementations where image
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descriptors were manually formed from CNN layer activa-
tions, Arandjelovic et al. [14] trained a new VLAD (Vector
of Locally Aggregated Descriptors) layer for an end-to-end
CNN-based-VPR. For images containing repetitive structures,
Torii et al. [15] proposed a robust mechanism for collecting
visual words into descriptors. Synthetic views are utilized for
enhanced illumination invariant VPR in [16], which shows
that highly condition variant images can still be matched if
they are from the same viewpoint. In [17], authors try to
extract local features from convolutional layers corresponding
to salient Regions of Interest (ROI), thus providing significant
viewpoint invariance. State-of-the-art performance is shown
by authors in [18], by combining VLAD descriptors with
ROI-extraction to show immunity to appearance and viewpoint
variation. Fang et al. [19] presented a ground texture-based
localisation technique for illumination-controlled localisation
estimation.

Traditionally, places have been described by camera frames,
where a place is selected from multiple video frames based on
either time-step, distance or distinctiveness. Most of the VPR
datasets [4], [9], [11], [17], [20]-[23] are time-based, as frames
are selected given a fixed FPS (frames per second) rate of a
video camera. However, time-based place selection assumes a
constant non-zero speed of the robotic platform and is thus
impractical in many situations. To cater for variable speed,
distance-based frame selection is used where a frame is picked
every few metres to represent a new place [5], [24]. Both time-
and distance-based approaches lead to huge database sizes and
frequently sample visually identical frames as different places;
thus leading to inaccuracies and impracticality for long-term
autonomy.

Different research works have tried to overcome these
intrinsic limitations of image sampling by proposing image
selection based on visual distinctiveness. Chapoulie et al. [6]
use a customised algorithm that detects change point for seg-
mentation between different topological places in both indoor
and outdoor scenes. Image sequence partitioning for creating
sparse topological maps is presented by Korrapati et al. [25],
where sequences of images are divided into nodes/places
using four descriptors namely GIST, Optical Flow, Local
Feature Mapping and Common-Important Words. In [26],
a thematic approach is adapted to evaluate the novelty of
an incoming image by co-relating it with the redundancy
of visual features/topics. Bayesian surprise is adapted with
immunity to sensor type, for extracting landmarks to create
a sparse topological map in [27]. Online topic modeling with
visual surprise calculation is done by Girdhar et al. [28] for
under-water explorations. An incremental unsupervised place
discovery scheme is adopted by Murphy et al. [2] which fuses
information over time to find visually distinct places.

Semantic mapping techniques for summarizing a robot’s
experience are surveyed by Kostavelis et al. [3]. Authors
in [29] present both offline and online solutions for finding
images that best summarize a given sequence. The score for
every incoming image is related to the difference of posterior
distribution from prior distribution using bayesian surprise or
set theoretic surprise. In [30], coresets are used to pre-cluster
input image stream and then topic-based image representation
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is used followed with graph-based incremental clustering.
A place detection scheme is proposed by Karaoguz et al. [31]
based on bubble-space representation. A new place is checked
for informativeness based on surface deformation and variance
in a time-window of coherent images. The authors in [32]
use region proposals in spatio-temporal context instead of
low-level features to represent input frames and then based
on region-adjacency-graph detect visually distinct places.
A human-augmented change point detection scheme is pre-
sented by Topp ef al. [33] where a change stimuli could either
be pointed out by the robot or its operator. The authors propose
the change as a structural ambiguity, which can be pointed out
either by the robot or a human operator during a guided tour.
Detection of change point is also targeted by Ranganathan [34]
with a Bayesian probabilistic model. One common element to
all these works is that they focus on map compression, video
segmentation or experience summarisation, but do not discuss
if the resulting compressed/summarized map is actually com-
posed of good matchable images of places. These methods
define the distinctive nature of images based on their visual
difference from previously seen images. Resultingly, such
visually different images may come from grassy plains, natural
scenery, dynamic objects or low-textured places leading to
poor VPR performance. Drawing inspiration from the said,
we in this work, define distinctiveness based on a place’s mem-
orability (cognitive), static-content and information-richness
leading to highly matchable compressed maps dubbed as
‘memorable maps’. The human-memorability of an image
is a well-known research domain and has drawn significant
interest of the research community over the past many years.
This work on predicting the memorability of an image was
pioneered by Isola et al. [35] and deep learning was used to
achieve state-of-the-art co-relation with human-memorability
by Khosla et al. [7]. There are 3 key tracks that have been
adopted in literature for improving the memorability models:
1) Introducing the role of emotions into the concept of mem-
orability [36], [37]., 2) Introducing regional attention-based
models [38]-[40]., 3) Studying the memorability of outdoor
natural scenes [41], [42].

In addition to the above literature review, we discuss two
works that have similar motivation to our approach. The inter-
esting work by Hartmann et al. [43] proposes a random forest
classifier of 5 decision trees trained on a dataset of 455 out-
door images. The objective of this random forest is to find
keypoints in an image with low matchability and subsequently
discarding them. This technique is computationally intensive
in comparison to our methodology as we compute a single
matchability (memorability) score against an image instead
of scores against each image keypoint. Moreover, in VPR,
features coming from dynamic objects and low-textured scenes
are usually not re-observable/matchable (as shown later in
our paper) but have not been examined in [43]. Although
vegetation is considered to belong to non-matchable category,
results show features coming from trees as being classified as
matchable in [43]; which usually in VPR contribute negatively
to the distinctiveness of a place (as shown in Fig. 3). More
recently, a CNN able to classify input frames as stable/unstable
is trained by Dymczyk er al. [44] for long term visual place
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recognition. Similar to [43], this work also proposes that veg-
etation in outdoor scenes is not suitable, but does not consider
outdoor dynamic objects like cars, pedestrians, animals etc.
Also, informativeness of stable frames in terms of extracted
features and predicted matchability is not inspected given that
walls are selected as stable elements of an image. Therefore,
to the best of author’s knowledge, our work combines for
the first time all three of these criteria namely memorability,
staticity and entropy to create memorable maps. We show
utility of our proposed framework by reporting results on
multiple public datasets. The agnostic nature of our framework
is presented by using multiple state-of-the-art VPR techniques
in combination with memorable maps.

III. METHODOLOGY

This section presents in depth the framework developed in
our work. A sub-section is dedicated to each of the three cri-
teria (i.e., memorability, staticity and entropy) adopted by the
framework. We also discuss the integration of our framework
with VPR techniques as a final sub-section.

For the purpose of evaluation and analysis, we have used
AMOS-Net [13], Hybrid-Net [13] and Region-VLAD [18] as
our VPR techniques throughout this paper. The details of these
techniques are given in Section IV-B.

A. Memorability

1) Why Memorability?: The human-cognition system is
powerful in evaluating what images are useful to be stored in
the brain’s memory fragments [45], [46]. We usually remember
concrete structures like buildings, streets, squares etc. How-
ever, more natural scenes like fields, forests, grassy plains
and far out sceneries are less memorable. This ‘memorability’
concept is also intuitive as it is easy to confuse different
natural scenes with each other compared to concrete structures.
In reference to VPR, there are two further reasons for the
non-salience of trees, vegetation and natural scenery: 1) They
are highly appearance-variant compared to concrete structures,
2) Local features coming from trees and vegetation etc. are
usually mismatched, as explored in the works of [47]-[49].
In order to explain (1), we have shown samples of appearance
changes in Fig. 2, along with the memorability maps created
(methodology explained in sub-section III-A.2) by our frame-
work. In Fig. 3, we have shown how non-memorable scenes
are mismatched by state-of-the-art VPR systems leading to
false-positives.

2) Memorability Implementation: Inspired from
human-memorability, we apply the work done originally
for marketing and advertising in [7] to VPR problem.
A Convolutional Neural Network namely Hybrid-CNN [50]
which was originally trained on Places365 dataset [50] for
deep learning-based scene recognition, has been fine-tuned
on LaMem dataset by Khosla et al in [7]. The authors
in [7] have named this fine-tuned Hybrid-CNN as ‘MemNet’.
The LaMem dataset (introduced by [7]) is composed
of 60,000 images covering multiple scenarios ranging from
natural scenery, indoor scenes, outdoor scenes and distinctive
objects. The ground-truth human-memorability provided in
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Memorability Map
High— Low :: Red - Green

Fig. 2. Concrete structures appear similar under seasonal changes while
non-memorable elements like trees, vegetation and natural scenery appear
very different. The memorability maps (in last row) show the effectiveness of
our memorability implementation (sub-section III-A.2) in segregating concrete
structures from these appearance variant regions. All examples images have
been utilised from the Nordland dataset [21] and SPEDTest dataset [12] to
ensure consistency with the evaluation mechanism.

Query

Ground Truth

Hybrid SPP
Best Matched

AMOS SPP
Best Matched

Region VLAD
Best Matched

Fig. 3. Natural places mismatched by VPR methods due to confusing features
coming from trees, grass and plains are shown here. Red boundary represents
an incorrect match while green boundary represents a correct match. All
images in this figure were found static and information-rich, i.e., human-
memorability is the only criterion that can discard these images.

LaMem dataset has been computed for each of the images
using an interactive game played by multiple human subjects.
Images are shown to players in a sequence and are repeated
after a random interval where a human has to identify/recall
a previously seen image. By using this LaMem dataset,
the authors [7] fine-tuned the Hybrid-CNN achieving a high
co-relation (0.64) with human memorability. Resultingly,
the output of this fine-tuned Hybrid-CNN (MemNet) is a
human-memorability score m for each input image in the
range of 0 — 1, with m = 1 being the most memorable.
However, for our framework, we require a memorability
map (as in Fig. 6) against every image instead of a single
memorability score as output by MemNet [7]. The motivation
for this memorability map is to cater for highly memorable
but dynamic objects as discussed later in this sub-section and
utilised in sub-section III-D.
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The CNN input layer size is set to W1 x H1. We re-size
every incoming image to W2 x H2.

where; W2=ax W1, H2=b x H1

We then split this rescaled-image into C (where, C = a x b)
non-overlapping crops of size W1 x H 1 each and sequentially
feed them as inputs to CNN. This in turn gives us the
memorability matrix M as shown below.

mii mi2 mip

mai my2 map
M =

Mgl Mg2 Map

where, m;; is the memorability of each W1 x H1 cropped
image. To create a memorability map, we rescale the matrix M
from a xb to W2 x H?2 with bilinear interpolation. Some exam-
ples of memorability maps overlayed on images are shown
in Fig. 2 and Fig. 6. We have employed C = 5 x 5 through-out
this work and a parametric variation of this is shown later
in sub-section V-F. It can be seen (in Fig. 2 and Fig. 6)
that vegetation, natural scenery and trees are identified as
less-memorable which is consistent with our motivation in sub-
section III-A.1. However, for human cognition (and therefore
for [7]), objects such as faces, animals and vehicles are
memorable. But, such dynamic objects are not re-observable
and therefore, they are not salient for VPR; we cater for this
in the following sub-section.

B. Staticity

1) Why Staticity?: The previous sub-section shows how
memorability is a good evaluation criterion for a camera frame
to be used in VPR. However, one limitation is the fact that
objects like cars, pedestrians, buses, animals and bicycles in
an image are all classified as highly memorable but are not
re-observable (for VPR problem). Resultingly, images that
may be memorable but have high dynamic content will fail
to match upon repeated traversal. Fig. 4 shows some of these
images mismatched by VPR techniques [13], [18].

2) Staticity Implementation: To cater for highly dynamic
images, we perform image segmentation into static and
dynamic pixels. We re-size all input images to W2 x H?2.
We use an object detector [51] that can detect 80 different
classes of objects in an image. Out of these 80 classes, 21 cor-
respond to highly-dynamic, commonly-observed objects.
These dynamic objects include cars, pedestrians, buses, trucks,
animals etc. We, therefore, only consider proposals of bound-
ing boxes coming from objects of interest, i.e., dynamic
objects. Please note that we have used the default parameters
of YOLO [51] in our work.

Since the staticity map is computed for each pixel in the
image, it can be represented as a staticity-matrix S of size
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Fig. 4. Dynamic places mismatched by state-of-the-art VPR systems.
Features coming from vehicles are not re-observable in addition to the
occlusion caused by them in different scenes. Red boundary represents an
incorrect match while green boundary represents a correct match.

W2 x H?2 as below.

S11 S12 S1W,
521 8§22 S2W,

S = .
SHyW,  SHW,  ---  SHyW,
where; {sij € Zy | Z» = [0, 11}

sij = 1|Pixel = Static

sij = 0|Pixel = Dynamic

Fig. 6 shows the typical staticity map computed in our frame-
work. However, although an image containing low-textured
scenes (walls/door/pillars) can be classified as concrete (mem-
orable) and static but it does not have distinguishable features
and hence, it is not distinct. We accommodate this limitation
in the following sub-section.

C. Entropy

1) Why Entropy?: An input camera frame containing a
room/lift door is commonly observed by a robot navigating
indoors. Such a frame is classified as memorable and static,
but has little to no information differentiating it from other
doors in the building, thus leading to false positives. The same
can be extended to any other frame with occlusion resulting
from walls, pillars etc. Examples of such confusing frames are
shown in Fig. 5.

2) Entropy Implementation: To avoid less informative or
occluded frames, we evaluate the information content of an
image by computing its local entropy against every image
pixel. This local entropy corresponds to the number of bits
required to encode the local gray-scale distribution in an
image. Based on standard boolean algebra, the number of bits
required to represent any positive integral value can be com-
puted by logo(Numerical_V alue). We use a circular window
of r pixels radius as our local neighbourhood to get the entropy
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AMOS SpPP
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Fig. 5. Low-entropy places mismatched by state-of-the-art VPR methods
can be commonly observed in indoor robot navigation datasets. Along with
intrinsically less-informative images of doors/walls, static occlusion can also
lead to poorly defined places. Red boundary represents an incorrect match
while green boundary represents a correct match.

map of an incoming camera frame against each pixel. The
total number of histogram bins used for entropy computation
are 256 corresponding to 0 — 255 gray-scale intensity values.
The generic algorithm for entropy map computation is shown
below and adapted from [52].

Algorithm 1 Computing Entropy Map
Create a Histogram of 256 Bins
for all Local Neighbourhoods in Image do
for all Pixels in Current Neighbourhood do
if Current_Pixel lies in BinX then
Items_in_BinX = Items_in_BinX + 1
end if
end for
Local_Entropy = logy(No.of Filled Histogram Bins)
Clear all Histogram Bins
end for

This algorithm gives us an entropy map represented as
matrix E of size W2 x H2. Local circular regions of images
containing texture-less doors/walls have a small range of
intensity gradients within the region and thereby have lower
entropy value. The maximum value of entropy is computed
from equation (1) and equals 8, given that the maximum
number of filled histogram bins is 256. Fig. 6 shows examples
of entropy maps computed in our framework. We have used
r = 5 in our work, where the reasons for this selection and
parametric variation are shown in sub-section V-F.

Max Entropy = logy (No. of Histogram Bins) (1)

el e e1w,
€21 €22 2w,
E = .
CHy W» CHy,W» CH, W,
where; {e;j € K | KCRAK=1{0,...,8}}
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Memorability Map
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Staticity Map

Static: White | Dynamic: Black

Entropy Map
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Fig. 6.

The three types of image maps created by proposed framework for evaluating the content of an input image. Concrete structures like buildings

and roads are memorable in comparison to grassy plains and trees [Top]. Cars, pedestrians and other dynamic objects are detected and evaluated for
the amount (approximate) of pixels they occupy [Middle]. Uniform and texture-less scenes, sky portions have low-entropy compared to feature rich

structures [Bottom].

D. Computing Scores and Thresholding

After acquiring all three maps of an image, we mask
memorability map and entropy map with staticity map. This
ensures that our decision to select an image based upon mem-
orability and entropy is immune to the information coming
from dynamic objects. Next, we compute the memorability
score (M S) of an image as the average value of memorability
map and compare it with a memorability threshold (MT),
to evaluate if this image/frame is memorable enough for use
in VPR. Secondly, we compute the percentage of static pixels
in our staticity map to get a staticity score (SS§). This is
then contrasted with staticity threshold (S7') to decide if an
incoming frame has enough static content to be inserted into
the map. Thirdly, we calculate the average value of entropy
map and scale it with the maximum value of entropy to get the
percentage of information content. This percentage dubbed as
the entropy score (ES), is compared with the entropy threshold
(ET) to settle if an input frame has enough information.

Finally, we use a tri-input AND criteria to select images
that are memorable, static and information-rich to be inserted
into the memorable map.

E. Integration of Memorable Maps and VPR Techniques

The integration of our framework with VPR techniques is
seamless and straight-forward. The core component that all
VPR techniques require to operate is a reference image data-
base, using which the VPR techniques propose a place-match
(image-retrieval) given an input query image. The creation
of this reference database by employing the memorable
maps framework instead of the traditional time-based or
distance-based approaches is what brings our framework
together with state-of-the-art VPR techniques. This integration
of memorable maps framework with the VPR methods can be
in an online or an offline fashion.

Algorithm 2 Image Selection for Memorable Map

for all Incoming Images do
Compute All Three Image Maps

1 W2,H2
MS=—— ’
W2 x H2 Z ij

i,j=1,1

1 W2,H2
§§= — ’
W2 x H2 Z Sij

i,j=1,1
1 W2,H2

ES

- W2xH2x8ij§]eij

if MS> MT & SS > ST & ES > ET then
Insert into Map
else
Dicard Image
end if
end for

In an offline approach, where a priori knowledge of the
environment is available in the form of images, memorable
maps framework can take this knowledge (images) and output
a memorable map as depicted in Fig. 1. In this case, the ‘Input
Camera Frames’ block of Fig. 1 represents the input knowl-
edge where each image is indexed in a sequential manner
and evaluated by our framework yielding a memorable map.
The contemporary VPR techniques can then use this memo-
rable map instead of the original time-based, distance-based
or distinctiveness-based reference image database, achieving
place matching performance boost and map-size reduction as
reported later in Section V.
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Before discussing the integration of our framework in an
online manner, it is important to understand that every query
image in an online VPR system becomes a reference image
at the next time step and is stored in the reference image
database. Thus, for every input query image two operations
are traditionally performed: 1) It is input to a VPR technique
to search for a prospective place match, 2) If it matches to a
previously known place, it is stored as an additional represen-
tation of the place and if it does not match to a previously
known place, it is stored in the map as a ‘new place’. Given
this understanding, the memorable maps framework can easily
be integrated into an online VPR system, where the input query
image is first evaluated for its salience by our framework. If it
is largely memorable, static and information-rich, only then it
is used for VPR and subsequent storage in the reference map.
For the online case, images in Fig. 1 would represent query
images such that their indices represent time-stamps.

IV. EXPERIMENTAL SETUP

This section discusses the datasets, VPR techniques and
evaluation metric used in our analysis. We present a new
dataset ESSEX3IN1, which is publicly available.! Addition-
ally, we briefly discuss three pre-existing public datasets used
for reporting our framework’s performance. The VPR tech-
niques used for our results and analysis are then summarized.
We utilise area-under-the Precision-Recall curve (AUC) which
is a well-established performance metric for VPR techniques.

A. Evaluation Datasets

This sub-section introduces the 4 datasets that we have
used in our work to discuss and analyse the performance of
memorable maps framework. Please note that none of these
datasets were used for training the 3 VPR techniques employed
in our work.

1) ESSEX3INI Dataset: Most of the Visual Place Recog-
nition datasets have been created from a pre-planned path
traversal. Thus, these datasets do not contain confusing images
that an exploration robot may come across. Also, these datasets
focus on a single type of environment either indoor or outdoor.
To evaluate and challenge our framework, we have created a
new dataset ESSEX3IN1 which is composed of images from
indoor, outdoor and natural scenes.

The dataset was created in two stages using a human-held
mobile phone camera at the University of Essex (Colchester
Campus) and contains 210 query images and 210 refer-
ence images with viewpoint variations. In the first stage,
the objective was to take images from all sorts of envi-
ronments that were either ‘confusing’ or didn’t qualify the
definition of a ‘distinct Place’, where this indistinctness of a
place refers to perceptual aliasing. Two-third of the images
in ESSEX3IN1 are from this first stage. The second stage,
consists of images that were not confusing and could be
defined as ‘distinct places’. One-third of the total images are
from this second stage. Some images from these stages are
shown in Fig. 7. The ground-truth data provides information

1 https://github.com/MubarizZaffar/ESSEX3IN1-Dataset
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Stage: 2 Sample Images

Stage: 1 Sample Images

Fig. 7. Sample images from ESSEX3INI dataset. The first stage [on the
left hand side] images contain occlusions, dynamic objects, information-less
frames and non-memorable content like plains, natural scenery, vegetation
and trees. In contrast, the second stage [on the right hand side] contains
semantically identifiable and distinguishable images of various places from
University of Essex (Colchester campus).

about a single correct reference image against every query
image. This ground-truth is created manually by looking at
individual images such that the ground-truth pair of query and
reference image represent the same geographic location in the
world.

It is important to note that none of these images were
used in tuning our three thresholds and were not seen prior
by the proposed framework. The collection of dataset in this
two-staged manner was useful for analysis in Section V.

2) Nordland Dataset: The Nordland dataset [21] com-
prises of a train journey through Norway and is collected
in four different seasons with frame-to-frame ground-truth
correspondence. We use a subset of this dataset which consists
of 1622 query images and 1622 reference images. The query
images are from the traversal performed in summer where as
the reference images are from winter. Although this dataset
does not provide any viewpoint variation, but has signifi-
cant conditional variation. A retrieved image n is considered
true-positive if the original ground-truth is between n — 1 to
n + 1, i.e., each query image has 3 ground-truth references.

3) St. Lucia Dataset: The St. Lucia dataset was first intro-
duced in [9]. It was recorded in the surroundings of University
of Queensland’s St. Lucia campus during multiple times of the
day. This dataset consists of moderate viewpoint and illumina-
tion variation. The dataset also contains dynamic objects and
scene variation. The ground-truth is derived manually from
GPS data such that each query image has three reference
images as true-positives. The total number of query images
is 1261 and the total number of reference images is 1317.

4) SPEDTest Dataset: The SPEDTest dataset was intro-
duced in [12] and is a sub-set of the original Specific Places
Dataset [13]. It consists of 607 query images coming from
a variety of scenes and environments. Frame-to-frame corre-
spondence is available as the ground-truth.
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B. VPR Techniques

We have used three state-of-the-art VPR techniques (namely
AMOS-SPP, Hybrid-SPP and Region-VLAD) [13], [18] that
have shown promising results in recent research. AMOS-Net
is a modified Caffe-Net [53] with all parameters trained on
SPED dataset [13]. Hybrid-Net is another modified version
of Caffe-Net with weights for top 5 convolutional layers
initialized from Caffe-Net [53]. We have used Spatial Pyra-
midal Pooling as a feature descriptor for both AMOS-Net
and Hybrid-Net since it shows excellent results as compared
to other feature encoding methods. Features are extracted
from ‘conv5’ layer in case of both AMOS-Net and Hybrid-
Net. The third VPR technique, Region-VLAD, uses features
extracted from selected/interesting regions of an AlexNet
pre-trained on Places365 dataset [50]. Vector-of-Locally-
Aggregated-Descriptors [54] is subsequently used for encoding
the extracted features. In case of Region-VLAD, we use fea-
tures from ‘conv4’, number of regions-of-interest as 400 and a
visual dictionary size of 128. Evaluation of VPR techniques on
existing datasets is an offline process, therefore the integration
of our memorable maps framework with these techniques is
in accordance to the discussion for an offline VPR system in
sub-section III-E.

C. Evaluation Metric

For evaluating the performance of different VPR techniques,
Area-Under-the-precision-recall-Curve (AUC) has been
repeatedly used by the VPR research community [1], [12],
[14], [17], [18], [55]-[57]. AUC acts as a good metric to
assess the performance of a system based on true-positives
(TP), false-positives (FP) and false-negatives (FN). For a
given VPR technique, if a matched-place is the same as
the ground-truth, it is labelled as a TP. If a matched-place
does not match the ground-truth, it is labelled as a FP.
Additionally, if a matched-place that was discarded due
to a lower confidence-score but was actually a correct
match according to the ground-truth is labelled as a FN.
These are then used to compute the precision and recall
at different thresholds of confidence-score, which are then
plotted on y-axis and x-axis respectively. Area under this
Precision-Recall curve is computed and named as AUC.
The below 3 formulae are used for computing the Precision,
Recall and AUC.

Precision =TP/(TP + FP) 2)
Recall = TP/(TP + FN) 3)
N—1
wve =3 DAL iy @
i=

where; N = No. of Query Images
pi = Precision at point i

ri = Recall at point i

The extensive review of VPR research performed by Lowry
et al in [1] and the VPR research community [12], [14], [17],
[18], [55]-[57] in general agree that a highly precise VPR
system with high recallability is required, which serves as
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Ground Truth

Hybrid SPP
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Best Matched

Region VLAD
Best Marched

Fig. 8. VPR false positives upon evaluation on ESSEX3IN1 stage: 1. Images
with cars, trees and natural scenes are mismatched. Additionally, images
with low information and memorability are almost indistinguishable for even
human cognition.

our motivation to adopt AUC as an evaluation metric. This
paper ensures consistency and fair comparison of AUC scores
for different VPR methods on all datasets by computing and
reporting results only using equation (4).

V. RESULTS AND ANALYSIS

This section presents the results and analysis in a sequential
manner. We first show that images collected from the first
stage of ESSEX3INI actually lead to poor performance of
VPR systems and are not good for insertion into a robot map.
Secondly, we show the segregation performance of proposed
framework on these ‘confusing’ images and ‘good’ images.
Thirdly, we present the AUC improvement of different VPR
systems when plugged with our framework on all datasets
discussed in sub-section IV-A. This is followed-up with a
sub-section dedicated to qualitative analysis showing sample
images selected and discarded from all datasets. We then
highlight the contribution of each framework criterion qual-
itatively and quantitatively. Next, we report the effect on
VPR performance by sweeping framework parameters within
possible range. We show in the next sub-section, how our
framework leads to reduced map size and place matching time.
Finally, we show the integration of Spatio-Temporal filtering
with our framework to avoid large image gaps for localization.

A. Contemporary VPR Systems on ESSEX3INI Stage 1

The majority of VPR false positives against ESSEX3INT1 are
from the first stage of dataset collection. This is due to the
confusing images of fields, trees, doors, cars etc that lead to
perceptual aliasing. Some of these false positives are shown
in Fig. 8.

We show the AUC performance of VPR systems separately
on Stage 1 and Stage 2 in Fig. 9.

B. Segregation Performance of Proposed Framework

For this
orable maps

sub-section, we apply the proposed mem-
framework on complete and randomized
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Fig. 9. Separate evaluation of VPR methods on each of ESSEX3INI stages
reveals the challenge faced by contemporary VPR techniques for matching
low-entropy, low-memorability and dynamic images.
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Fig. 10. The decrease in total selected images as each selection criterion is
increased can be observed here for the whole ESSEX3IN1 dataset. For each
threshold variation, the other two thresholds were set equal to zero, i.e., inac-
tive. Majority of the ET/MT based image selection is done between 0.4 — 0.7.
Purely static images (without vehicles, human and animals) exist in the dataset
which is why ST =1 does not reduce map size to zero.

ESSEX3IN1 dataset. We use the below thresholds to segregate
and discard ‘confusing’ images from ‘good’ images.

Memorability-threshold = 0.5
Staticity-threshold = 0.6
Entropy-threshold = 0.4

These values for the thresholds were selected from our analysis
on pre-existing public VPR datasets. Increasing these thresh-
olds reduces the number of images inserted into the memorable
map. This is shown in Fig. 10 by varying each threshold
from 0 — 1, while setting the other two equal to 0. The manual
selection of these particular values is based on the detailed
analysis provided in sub-section V-F. Briefly, these particular
values were employed for 3 reasons: 1) Agnostic performance
boost across all 4 datasets (refer sub-section V-C)., 2) Rea-
sonable number of ‘good’ images are left in the database as
loop-closure candidates (refer sub-section V-G)., 3) Deviating
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Fig. 11. The objective of memorable maps framework is to sample good
frames and discard confusing frames. This objective achievement is presented
by showing the contribution in memorable map from each ESSEX3IN1 stage.

significantly from these values could lead to zero or negative
changes in the AUC (refer sub-section V-F). Setting any of
the 3 thresholds equal to O will disable the corresponding
criterion, e.g., in a continuous highly crowded scene, the ST
can be disabled or the value of MT can be decreased for
a continuous agricultural/natural environment. Increasing the
thresholds towards 1 will result in decreased no. of images in
the database, which will have higher salience.

The new database created by presented framework consists
of memorable, static and informative images, thus dubbed as
a memorable map. We show in Fig. 11, how many of the total
images selected by presented framework are from which stage
of the dataset.

C. AUC Improvement of VPR Systems

By selecting images that are memorable, static and have
a higher entropy, the memorable maps framework gives
performance boost to state-of-the-art VPR techniques. Here,
we use fixed thresholds, as in previous sub-section V-B, but
an AUC sweep across these thresholds is presented later in
sub-section V-F. AUC evaluation is performed on the entire
(both stages combined randomly) ESSEX3IN1 dataset along
with the three public VPR datasets. It is important to note
that bad/confusing images found by our framework are not
removed from the reference database when evaluating AUC,
but are treated as true negatives. This ensures that AUC boost
reported here is not due to reduction of reference database
size. For comparison with our framework, we also show the
AUC performance for each technique by only employing static
images on all datasets. Please note that because SPEDTest,
Stlucia and Nordland datasets are largely static, the perfor-
mance boost by just employing static images is only evident
for ESSEX3INI1 dataset. This further validates the utility
of our new proposed dataset ESSEX3IN1 for VPR, while
simultaneously advocating for the efficacy of memorability
and entropy criteria.

Fig. 12 depicts the AUC increase by employing our frame-
work on ESSEX3IN1, St. Lucia, Nordland and SPEDTest
dataset, respectively. We use the same values for MT, ST and
ET as in sub-section V-B for ESSEX3IN1, Nordland and
SPEDTest dataset. However, for St. Lucia we reduce each of
the 3 selection thresholds by 0.05 to get a non-zero map size.
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Fig. 12. Increase in AUC by using the proposed framework in combination with VPR techniques on all 4 datasets employed in our work is presented here.

This performance increase for all techniques on all datasets advocates for the utility, generalisability and agnostic nature of our framework. Reference database
size remained the same for all AUC evaluations by treating confusing images as true-negatives. Please note that ESSEX3INTI is the only dataset with highly

dynamic content and therefore the AUC boost for employing only static images is not evident on other datasets.

Selected

Fig. 13.

Discarded

Examples of images selected and discarded by the memorable maps framework from all 4 datasets are shown here. Top-left pairs of 4 images in

each selected and discarded division are from ESSEX3IN1 dataset, followed-up with pairs from Stlucia dataset, Nordland dataset and SPEDTest dataset in
clockwise manner. Selected images from ESSEX3IN1 are pre-dominantly of buildings with distinctive patterns and are largely static, while discarded images
consist of far out natural scenes, dynamic objects or have low-entropy. Selected images in Stlucia dataset contain road signs, squares and houses. On the
other hand, discarded images comprise of far out road scenes with trees and large portions of sky. Selected images from Nordland dataset consist of either
appearing tunnels or bridges which contribute to their distinctiveness, while discarded images consist of vegetation or have low information. Staticity does
not play any role in Nordland dataset due to the absence of dynamic objects. Selected images in SPEDTest dataset are from CCTVs covering buildings or

distinctive locations, while discarded images consist of far out natural scenes and dynamic objects.

D. Selected vs Discarded Images

In this sub-section, we show some images from all 4 datasets
that were selected or discarded by our framework. This gives
a qualitative insight into the working of our framework in
different environments/datasets. Since the memorable maps
framework evaluates both the query images and reference
images, the images in Fig. 13 are impartial to such distinction.

We also report the distribution of memorable images over
the trajectories of Stlucia and Nordland datasets in Fig. 14.
Because the ground-truth information for these datasets does
not contain the exact inter-frame distance/time, the distribution
in Fig. 14 is shown over image indices, which is very close to
a constant distance-based distribution, as the speed of camera
platform is mostly constant over the respective trajectories.

ESSEX3IN1 and SPEDTest datasets are not trajectory-based,
therefore, this distribution of memorable images over trajec-
tory is not shown for these datasets.

E. Criterion Contribution Analysis

Each criterion in the memorable maps framework
contributes to AUC boost. This subsection is dedicated to
giving an insight into this individual contribution. We use
ESSEX3INI for this purpose as it contains confusing images
from all three (memorability, staticity and entropy) paradigms.
For our AUC evaluation on ESSEX3IN1, we show the contri-
bution of each criterion in Fig. 15. The analysis is performed
based on the number of images that were mismatched by a
VPR technique and were also discarded by atleast one of the
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Fig. 14. Images selected as memorable over the trajectories of Stlucia [9]
and Nordland datasets [21] are shown here. The horizontal axis represents the
discrete, positive and equally-spaced indices of all the images in respective
dataset. Each vertical bar represents an image selected as memorable by our
framework. Because Spatio-Temporal filtering has not been utilized for this
analysis, the selection of images is not uniform.
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Fig. 15. Percentage contribution of each criterion into AUC increase is shown
for ESSEX3IN1. This contribution is directly linked with the type of envi-
ronment being explored. In a highly dynamic environment, the contribution
of staticity will be more significant than suggested by this chart and such.

memorable maps framework criterion. Additionally, we also
show in Fig. 16, a qualitative holistic view into cases where
each criterion fails and others are used to cater for this failure,
thereby, explaining intuitively why each of the criterion in our
framework has its individual significance.

While Fig. 15 suggests that each of the three criteria are
useful; the % contribution is linked to (and can vary with)
the number of non-memorable, dynamic and information-less
images in the dataset. (refer Fig. 10)

F. Parametric Variation

In this subsection, we present the variation in Visual Place
Recognition performance with stricting framework criteria on
ESSEX3IN1. We sweep each of the three criteria from 0-1
(Step size: 0.1) while keeping the other two inactive (i.e., set
equal to zero). The data points for memorability and entropy
thresholds have an upper-bound after which the total number
of selected images equals to O (refer Fig. 10).

Fig. 17 shows that increasing entropy-threshold and
memorability-threshold increases the AUC Performance for
all three VPR techniques and follows a direct-relationship.

7365

On the other hand, the variation in AUC with increas-
ing staticity-threshold follows a different trend. Firstly,
the increase in AUC with ST is comparatively lower com-
pared to MT/ET; which is due to the less number of
dynamic images in the dataset compared to non-memorable
and low-entropy images. Secondly, the variation in AUC
with ST for Region-VLAD is higher compared to AMOS-
SPP/Hybrid-SPP. We associate this with the fact that AMOS-
SPP/Hybrid-SPP have been trained on SPED (Specific Places
Dataset) and discourage features coming from vehicles. While
our analysis/results reveal that Region-VLAD extracts and
positively matches features coming from cars in different
places (See Fig. 4). Thirdly, there is an evident decrease in
AUC as ST goes above 0.9. This decrease is expected as
images with very low dynamic content can still be matched
by contemporary VPR-techniques and discarding such images
leads to the observed decline in VPR-performance. Please note
that the best AUC results in Fig. 17 are higher than the results
reported in Fig. 12. This trend needs to be seen in co-relation
with the reduction in map size as reported in Fig. 10. Increas-
ing the three thresholds results in highly salient images stored
in the map leading to higher AUC, however, it also reduces the
absolute number of place recognition (loop-closure) candidates
in the map and therefore, the framework thresholds need to
be selected accordingly. The presented trends give a general
idea for setting thresholds, thus to maintain a good balance
between VPR performance and a salient representation of the
world in a metric/topological/topo-metric map.

We also show the effect of varying the value of C from
sub-section III-A.2 in Fig. 18 for the reader’s understanding.
Changing this parameter within the range shown in Fig. 18
does not have any effect on the AUC performance of all
techniques on SPEDTest dataset, suggesting that our frame-
work in not sensitive to this parameter. The effect on entropy
map and entropy score (ES) by varying the local circular
neighbourhood (7) in sub-section III-C.2 is reported in Fig. 19.
The entropy score (ES) is dependent on this local circular
neighbourhood r, such that increasing the value of r reduces
the resolution of entropy map and increases the entropy score
ES. This effect is similar to low-pass filtering and is explained
as: Increasing the value of r increases the number of pixels
to be added to the histogram, where the larger the radius of
the circle, the greater will be pixel intensity divergence and
hence higher is the logy score, leading to higher ES. This
therefore, requires us to affix the value of r to a value where
coupled with ET, we can successfully distinguish between
low and high informative images. We are also interested in
having high-resolution entropy maps instead of low-resolution
entropy maps due to the salience of low-level features (like
edges, corners etc) to the VPR problem.

G. Reduced Map Size and Computational Time

In addition to the increase in AUC, the developed framework
helps in reducing the robot’s map size which has been the
motivation for semantic mapping research reviewed in this
paper. This size reduction also leads to lesser computational
overhead for VPR. The reduction in map size for the thresholds
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Staticity 1 1 0.5 1 1 0.6 0.99

Score (SS) Highly Static Highly Static Dynamic Highly Static Highly Static Dynamic Highly Static
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Selected by
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Fig. 16. Examples of images that are selected/discarded based on various combinations of memorable maps framework criteria are shown here. Please note
that the understanding for ‘informative’ and ‘memorable’ nature of an image is subjective and in our work, it is expressed by the practical/implementation
nature of the term. For-example, an image of a bush (top-left) is called informative because it has several edges, corners and contours for computer-vision
feature descriptors and thereby has a high entropy. Similarly, memorability is explained by its cognitive perception, i.e., the work of [7].
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Fig. 17.  Variation in VPR AUC performance by changing each of the memorable maps framework thresholds within their full range on ESSEX3IN1 is
presented. For each threshold variation, the other two thresholds were set equal to zero, i.e., inactive. Memorability and entropy continuously increase AUC
until the total number of selected images equals to zero; suggesting that images with higher memorability and entropy are well-matched by VPR methods.
On the contrary, since images with low dynamic content should/can still be matched, variation in staticity threshold does not lead to a continuous AUC

increase. AUC change with ST is not at the same scale as MT/ET so it is shown separately.
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Original Image

Fig. 18. Changing the value of C for computing memorability map does not
result in any major change, as shown here. Images employed are from the
SPEDTest [12] dataset and no change in AUC for this dataset was observed
for the range of C used in this figure.

presented in Section V-B is shown in Fig. 20. Because the
map-size reduction by discarding non-memorable images can
also lead to the reduction of absolute number of true-positives,
we show this trend in Fig. 21. It can be seen in Fig. 21
that using the memorable maps framework does result in
the decrease of true-positives, however, the proportion of
discarded false-positives is greater than true-positives, which
leads to the AUC boost reported previously in sub-section V-C.

The computational performance is reported by calculating
the time required to match a query image with all the reference
images (having pre-computed feature descriptors) in both a
conventional map and a memorable map. This offline matching

Original Image

ES=0.43

ES=0.49 ES=0.52 ES=0.55

Fig. 19. Variation in the entropy map and the entropy-score (ES) are shown
here for different values of local circular neighbourhood (r) given fixed image
size (W2 x H?2). The larger the radius, the lower the resolution of entropy
map. Increasing r also increases the value of ES due to increased no. of
pixels for grayscale histogram that results in higher pixel intensity deviation.

time is elaborated in Table I, where a memorable map having
lesser number of reference images (see Fig. 20) achieves better
matching time. The end-to-end time required in our implemen-
tation to compute the salience of an image for memorable map
is around 5 sec. Because our current implementation utilizes a
sequential combination of different research works, i.e., YOLO
and MemNet, the timing is bottle-necked by the sum of
individual timings of each of these works. We believe that
there is room to improve the time required to compute these
maps by employing a different suit of CNNs (object detectors
and memorability maps), improving software implementation,
utilizing hardware advances and by parallelizing the map
computation by exploiting the independence of the three maps
from each other.
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TABLE I
MATCHING TIME PER QUERY IMAGE
System Specifications Intel(R) Xeon(R) Gold 6134 CPU @ 3.20GHz, 64GB Physical Memory
Framework Without Memorable Maps With Memorable Maps
VPR Methods AMOS-SPP | Hybrid-SPP | Region-VLAD | AMOS-SPP | Hybrid-SPP | Region-VLAD
ESSEX3INT (sec) 10.2 9.9 0.14 4.1 39 0.05
Nordland (sec) 78.7 76.4 1.1 9.1 8.7 0.12
St. Lucia (sec) 63.9 62.1 0.88 14.7 14.2 0.21
SPEDTest (sec) 29.5 28.6 0.41 7.7 7.5 0.11
Map Size Reduction AUC Boost
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Fig. 20. Reduction in topological map size given similar or better VPR results
is of prime importance for an autonomous robot to efficiently map/explore
an environment. As depicted here, memorable maps framework intrinsically
reduces map size while giving AUC boost to contemporary VPR systems.
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Fig. 21. The absolute decrease in true-positives and false-positives by using
the memorable maps framework is shown here for all techniques on the
ESSEX3IN1 dataset.

H. Spatio-Temporal Filtering With Proposed Framework

A natural extension to the memorable maps framework is
to define an upper bound on the maximum distance and/or
time travelled within which a best image (or Top-N images)
from the traversed sequence should be be selected, even if
the said image does not fully satisfy the proposed criteria.
This can also be accommodated using a hysteresis-mechanism,
where if a scene is continuously non-salient, the values for
thresholds can be reduced to select relatively-less salient
images. Depending on the size of employed hysteresis, it can
be ensured that salient images distributed through-out the
trajectory are selected. Thus, in a long traversal where
the depicted scenery may not be memorable, static and/or
highly-informative through-out the sequence, spatio-temporal
filtering will ensure that the most memorable, static and
informative image within the sequence is selected. This image

m No Memorable Maps Framework  With Spatio-Temporal Filtering - Without Spatio-Temporal Filtering

Fig. 22.  Employing spatio-temporal filtering within the memorable maps
framework to avoid large geographical gaps between salient images leads
to lesser AUC boost as less salient images are added to the map. Using
our framework without spatio-temporal filtering leads to the highest AUC,
followed by our framework with spatio-temporal filtering and lastly without
the memorable maps framework. Region-VLAD has significantly less num-
ber of true-positives through-out the trajectory, therefore AUC boost with
spatio-temporal filtering is not evident for this technique.

Memorable Images Distributed Over Trajectory
Nordland Dataset (With Spatio-Temporal Filtering)

Ses

Dataset Image Indices (Equally-Spaced)

Memorable Images Distributed Over Trajectory

Nordland Dataset (Without Spatio-Temporal Filtering)

i

Dataset Image Indices (Equally-Spaced)

ﬁ—.—ﬁ—
———_]
e
====—]|

Fig. 23. Changes in memorable images selected over the Nordland trajectory
by employing hysteresis-based spatio-temporal filtering within the memorable
maps framework are shown here. Depending on the width of hysteresis, image
gaps can be further reduced at the cost of reduced map salience.

can then be flagged as a ‘low-quality’ image in the memorable
map and depending on the under-lying VPR system can either
be treated differently (e.g., use longer matching sequences
in [11]), avoided for use in loop-closure or treated as a
potential false-positive prediction [58].

Because employing such a mechanism can lead to changes
in AUC, we have reported this analysis of AUC boost with and
without the spatio-temporal filtering in Fig. 22 for Nordland
dataset. Our selection of filtering methodology is hysteresis-
based, such that if in a sequence of 20 consecutive frames,
none of the images satisfy the criteria thresholds of sub-
section V-B, we reduce these thresholds by 0.03 for the
respective sequence. It can be clearly seen in Fig. 22 that
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allowing less-salient images into the map does lead to lesser
AUC boost. We also show the changes in distribution of a
total of 412 memorable images over the Nordland trajectory
by employing such hysteresis-based spatio-temporal filtering
in Fig. 23.

VI. CONCLUSION AND FUTURE WORK

We proposed a cognition-inspired generalized framework
for creating ‘memorable maps’. This framework evaluates
an incoming camera frame for its memorability, staticity
and entropy to decide a frame’s insertion into the robot’s
map. By using ‘ESSEX3IN1’, we show how images that are
confusing and indistinct lead to perceptual aliasing and are also
mismatched by contemporary VPR systems. The application
of proposed framework in detecting these confusing images
and subsequently improving VPR performance is presented.
We generalise the applicability of our framework by reporting
results on multiple public datasets. Due to its agnostic nature,
memorable maps framework can be plugged into any VPR
technique giving performance boost.

While presented thresholds are suitable for different indoor,
outdoor and natural environments, they are not illumina-
tion invariant. In future work, it will be useful to inte-
grate [59] to this work, thus making these thresholds as
illumination-dependent variables. We acknowledge that there
is room for a geography-based supervisory mechanism that
determines the selection of salience thresholds, e.g, discarding
images in a highly crowded urban environment may not
be a desirable trait and such. The memorable maps frame-
work coupled with different VPR techniques also enables
the creation of a large-scale dataset containing ‘good’ and
‘confusing’ images. Such a dataset could subsequently help in
training an end-to-end neural network for classifying an image
as good/bad for map-insertion. Another important area of
improvement is adopting the natural outdoor scenery-focused
memorability computation, as in [41], [42], into the memorable
maps framework. These natural scenery focused memorability
prediction methods can further help to distinguish between
distinct and indistinct outdoor scenes. We hope that our work
draws attention of VPR community towards further research
in segregation between confusing and good images. Thus,
moving closer to practical deployment of VPR systems.
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