N

N
N

HAL

open science

Two-Phase Scheduling for Efficient Vehicle Sharing
Ji Liu, Carlyna Bondiombouy, Lei Mo, Patrick Valduriez

» To cite this version:

Ji Liu, Carlyna Bondiombouy, Lei Mo, Patrick Valduriez. Two-Phase Scheduling for Efficient Ve-
hicle Sharing. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (1), pp.457-470.

10.1109/TTTS.2020.3011952 . lirmm-02913503

HAL Id: lirmm-02913503
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02913503
Submitted on 9 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02913503
https://hal.archives-ouvertes.fr

Two-phase Scheduling for Efficient Vehicle Sharing

Ji Liu, Member, IEEE, Carlyna Bondiombouy, Lei Mo, Member, IEEE, and Patrick Valduriez

Abstract—Cooperative Intelligent Transport Systems (C-ITS)
is a promising technology to make transportation safer and
more efficient. Ridesharing for long-distance is becoming a key
means of transportation in C-ITS. In this paper, we focus on
private long-distance ridesharing, which reduces the total cost of
vehicle utilization for long-distance journeys. In this context, we
investigate journey scheduling problem with shared vehicles to
reduce the total cost of vehicle utilization. Most of the existing
works directly schedule journeys to vehicles with long scheduling
time and only consider the cost of driving travellers instead of
the total cost. In contrast, to reduce the total cost and scheduling
time, we propose a comprehensive cost model and a two-phase
journey scheduling approach, which includes path generation and
path scheduling. On this basis, we propose two path generation
methods: a simple near optimal method and a reset near optimal
method as well as a greedy based path scheduling method.
Finally, we present an experimental evaluation with different
path generation and path scheduling methods with synthetic data
generated based on real-world data. The results reveal that the
proposed scheduling approach significantly outperforms baseline
methods in terms of total cost (up to 69.8%) and scheduling time
(up to 84.0%) and the scheduling time is reasonable (up to 0.16s).
The results also show that our approach has higher efficiency (up
to 141.7%) than baseline methods.

Index Terms—Vehicle
Scheduling, Optimization

sharing, Path planning problem,

I. INTRODUCTION

Cooperative Intelligent Transport Systems (C-ITS) [1]
promise to make transportation safer and more efficient. By
integrating different data sources, C-ITS can deeply change
people’s driving experience by reducing traffic congestion,
providing intelligent transportation algorithms, reducing sig-
nificantly the number of traffic accidents, and finally realizing
unmanned vehicles [2]. For instance, by integrating the loca-
tion of different vehicles, a centralized system could generate a
smart scheduling plan for all the related vehicles. However, ve-
hicle locations in different agencies are not frequently updated
or the data are not fully exploited. When there is an order, an
agency’s employees typically assign the order to an available
vehicle in the agency without paying attention to the overall
cost. In addition, there is no cooperation among different
vehicle agencies and thus, no data integration. By integrating
the data about vehicle locations in different agencies in a single
system, we could achieve smart scheduling so that the total
cost of vehicle utilization is reduced.

J. Liu (e-mail: liuji04 @baidu.com) is with the Big Data Laboratory, Baidu
Research, 100085 Beijing, China.

C. Bondiombouy (e-mail: carlynablessing@gmail.com) is with African
Center of Excellence in Mathematical Sciences, IT and Applications, 01 BP
613 Porto-Novo, Benin.

L. Mo (e-mail: Imo@seu.edu.cn) is with the School of Automation,
Southeast University, 210096 Nanjing, China.

P. Valduriez (e-mail: patrick.valduriez@inria.fr) is with Inria, University of
Montpellier, CNRS, LIRMM, 34095 Montpellier, France.

ol

\p.es/
Ai ﬂk Q¥ | Brussels

| calais | <O
Fig. 1: An example for long-distance ridesharing. A, B, C
represent three groups of travellers distributed in Amsterdam,
Calais and Brussels. 1, 2, 3 respectively represent Group A
travels from Amsterdam to Brussels, Group B from Brussels
to Calais and Group C from Brussels to Amsterdam.

Ridesharing is a promising approach for reducing energy
consumption and traffic congestion while satisfying people’s
commuting needs [3]]. Ridesharing based on private cars, often
known as carpooling or recurring ridesharing, has been studied
for years to deal with people’s routine commutes. Furthermore,
ridesharing based on buses or other vehicles for long-distance
travelling is becoming a promising transport manner in C-
ITS [4]. According to the analyses of the French National
Transport Survey [3] and the Europe Environment Agency
(EEA) Report [6]], the long-distance is defined as the distance
longer than 80 km across different cities or countries. In
this paper, we focus on private long-distance ridesharing with
vehicles, where several vehicles can realize a set of journeys
for different groups of travellers while a vehicle can only
realize a journey for a single group at a time in order to
ensure the privacy and efficiency of each journey. Private long-
distance ridesharing can be widely exploited to reuse buses
from different bus agencies for several traveller groups in order
to reduce the total cost of vehicle utilization.

As shown in the example presented in Figure[I] three groups
of travellers (A, B and C) are respectively distributed in three
cities, e.g., Amsterdam, Brussels and Calais. Group A needs
to go to Brussels (1), Group B needs to go to Calais (2)
and Group C needs to go to Amsterdam (3). Assume timing
is perfect, i.e., just after Group A arrives in Brussels (1),
Group B can start travelling and just after Group B arrives
in Calais (2), Group C can begin to go to Amsterdam (3).
In this case, without private long-distance ridesharing, each
group needs to rent a vehicle to go from one city to another
with high cost, which includes the cost to return back the
vehicle from their destination city to the original city. With
private long-distance ridesharing, only one vehicle needs to
be exploited, which will go from Amsterdam to Brussels,
Brussels to Calais, and finally back to Amsterdam. This simple
example shows a significant cost reduction for three groups

with one vehicle. Furthermore, significant cost can be reduced
by exploiting private long-distance ridesharing for multiple
groups of travellers and vehicles.

In order to provide private long-distance ridesharing, the
scheduling of journeys to each vehicle is critical to satisfy
travellers’ requirements in order to reduce total cost. The
journey scheduling process is to map each journey to a vehicle
and decide if the vehicle should be returned back to its
original location after realizing the journey. The result of
the scheduling process is a scheduling plan. A journey can
be realized by any available vehicle with different cost. We
assume that the vehicle is available for driving the travellers
during day time and that there is always an available driver to
drive the vehicle according to the scheduling plarﬂ A vehicle
has its original location and should be returned back to its
original location after realizing its scheduled journeys. As
the travellers are sensitive to the cost of using vehicles, the
objective of journey scheduling is to reduce the total cost of
realizing all the journeys in the orders. The total cost is the cost
of using the vehicle, including transporting travellers, driving
the vehicle to the start location of each journey and returning
back to the original location. Thus, the problem we address
in this paper is how to efficiently generate a scheduling plan
that reduces the total cost of all the orders.

There are already some scheduling methods [7]], [8], [9],
[LO] for ridesharing. However, they do not consider the cost to
drive the vehicle to the start location of the scheduled journey
or the cost to return the vehicle back to its original location.
In addition, existing scheduling methods directly schedule
journeys to available vehicles, which corresponds to long
scheduling time. In this paper, we decompose the problem into
two sub-problems and propose a two-phase journey scheduling
approach, which generates paths based on the journeys and
then schedules each path to vehicles in order to minimize the
total cost. A path [[L1] is a combination of successive journeys
to be scheduled as a unit to a vehicle. A vehicle is not returned
back to its original location until all the journeys in the path are
realized. We propose a cost model to calculate the total cost
to schedule journeys to different vehicles. We propose two
path generation methods, i.e., Simple Near Optimal (SNO)
and Reset Near Optimal (RNO), which yield low cost. In
addition, we propose a greedy path scheduling method in
order to schedule each path to a vehicle in order to reduce
the total cost. The two-phase approach, SNO and the greedy
path scheduling method have already been implemented in the
scheduling system of a startup company, i.e., TUDINCﬂ The
main contributions of this paper are:

1) A problem formulation of journey scheduling problems.
We decompose the journey scheduling problem into two
sub-problems, i.e., path generation problem and path
scheduling problem.

'We assume that a driver is always available for a vehicle. Under the given
scheduling plan, we assign a driver to a vehicle. If the driver is not available
for the whole path, more drivers can be assigned to the vehicle to ensure
that this vehicle can be driven according to the scheduling plan. The cost of
sending a driver to vehicle is out of the scope of the paper as this depends
on the preference of the drivers.

Zhttps://www.tudingbus.com/

2) A cost model for journey scheduling. The cost model
calculates the total cost to realize all the journeys cor-
responding to a scheduling plan with the consideration
of the cost to drive the vehicles to the start location of
each journey and the cost to return vehicles.

3) A two-phase journey scheduling approach with two path
generation algorithms and a greedy path scheduling
algorithm. The two-phase journey scheduling approach
first generates paths based on journeys and then sched-
ules each journey to vehicles in order to reduce the total
cost based on the cost model.

4) An extensive experimental evaluation on synthetic data
based on real-world data, that shows the advantages of
our approach, compared with baseline algorithms.

This paper is organized as follows. Section [[I] discusses
related work. Section[ITI]defines some basic concepts, proposes
a cost model and formally defines the scheduling problem we
address in this paper. Section [[V]describes our proposed two-
phase journey scheduling approach including path generation
methods and path scheduling methods. Section [V| presents
an experimental evaluation based on synthetic data generated
from real-world data, which shows the advantages of our
proposed methods. Finally, section [VI| concludes.

II. RELATED WORK

Many existing journey scheduling approaches directly
schedule each journey to each vehicle using heuristics in order
to minimize a cost function [7]], [8]. These approaches do not
combine the journeys into paths and the corresponding search
space is big (see details in Section[[II). Lam e al. [7] propose a
distributed genetic algorithm for scheduling. The principle of a
genetic algorithm is to encode possible scheduling plans into a
population of chromosomes, and subsequently to transform the
population using standard operations of selection, crossover
and mutation, producing successive generations, until the
convergence condition is met. It is hard to configure the initial
chromosomes and convergence condition when there is no
additional information about the scheduling. In addition, strict
convergence condition can incur long execution time as many
iterations are needed [12]]. Greedy scheduling algorithms are
proposed to maximize the profits of taxi drivers [9], while
the total cost of the journeys is not considered. The journeys
can be adjusted in order to reduce the number of vehicles to
use for the journeys [8], [10]. However, these methods are
not used for reducing the total cost to realize the journeys.
The total cost includes the cost to drive the vehicle to the start
location of each journey and the cost to return the vehicle to its
original location. A heuristic solution is proposed to schedule
journeys to public vehicles within a short distance, e.g., a city,
in order to have big sharing rate within short scheduling time
[L1]. However, this solution does not address the long-distance
vehicle sharing and does not consider the cost to return the
vehicles to the original location. It also directly schedules
journeys to vehicles without generating paths. In addition,
some approaches have other objectives than the total cost, e.g.,
reducing the number of buses [13]], maximizing the number of
bus riders [[14], improving the utilization efficiency of buses

[15], or optimizing the traffic based on behavior prediction
[16], [17].

In the case of long-distance journeys, the cost of vehicles
from different agencies or countries is different. Thus, the cost
of different scheduling plans is different. In addition, the cost
to return the vehicle may be significant. As a result, it is critical
to share a rented vehicle for a long time in order to reduce
the cost using a scheduling algorithm. In the case of short
distance journeys, the vehicles are generally within the same
city. Thus, the cost of different vehicles is generally similar.
In addition, the cost to return the vehicle may be negligible.
In this case, there is no need to rent a vehicle for a long time.
Thus, the problem of long-distance vehicle sharing is different
from that of short-distance.

Scheduling vehicles to journeys is similar to the scheduling
of parallel tasks in a distributed system, which is an NP-hard
problem [18]. The vehicles resemble the distributed servers
while each journey corresponds to a task to be scheduled.
There are many algorithms to schedule tasks in distributed
systems, e.g., Opportunistic Load Balancing (OLB) [19], Min-
imum Completion Time (MCT) [19], Data-Intensive Multi-site
task scheduling (DIM) [[15] and Heterogeneous Earliest Finish
Time (HEFT) [20]. After adapting them to the scheduling
process of vehicles, they can be described as follows.

OLB randomly selects an available or an earliest available
vehicle for a journey while MCT schedules a journey to
the vehicle that can finish its previous journey first with the
consideration of the time to move from its last place to the
start point of the journey. DIM first schedules the journeys to
the vehicle that has the same place as the start point of the
journey. Then, it balances the workload in each vehicle in order
to achieve load balancing and reduce the overall execution
cost. HEFT gives the priority to each journey according to
the dependencies between journeys and the distance of the
journey, i.e., the distance between the start location and the end
location of the journey. Then, it schedules the journeys with
the highest priority to the vehicle that can finish the journey
first. However, the aforementioned scheduling algorithms do
not take the cost of moving the vehicles from one place to the
start location of a journey or the cost of returning the vehicle
to its original location into consideration, which is critical to
vehicle sharing. The ActGreedy scheduling algorithm [12]] can
be used to efficiently schedule the journeys to vehicles for
reducing the cost based on a cost model. However, it does
not consider grouping different journeys into paths in order to
reduce the total cost to realize all the journeys.

The problem we address can be formulated as the Mixed-
Integer Linear Program (MILP) problem as explained in [[II-E]
Although the B&B method [21] can provide an optimal
solution for the MILP problem, the complexity of B&B can
be exponential [22], which is unacceptable. In our work, our
proposed two-phase approach first generates paths and then
schedules paths to different vehicles. A basic approach to
generating paths is to encapsulate each journey as a path.
However, this approach cannot optimize the combination of
different journeys to reduce cost. A-star is an efficient algo-
rithm to generate a shortest path between two points [23].
However, it lacks the sensibility of the total cost of the

generated path. We propose a greedy approach to generate
a path, which corresponds to the minimal total cost based on
a cost model. Inspired by [8], we propose the adjustment of
journeys while meeting the time requirements of the journeys
in order to reduce the total cost. In addition, there are different
scheduling algorithms to match each path to different vehicles.
A basic approach for path scheduling is to randomly select a
vehicle for each path. Based on the location of the vehicle,
a second approach can be to schedule the path to the bus,
which has the nearest location to the start place of the path.
This approach can reduce the cost to drive the vehicle from its
original location to the start location of the path. In addition, a
path can also be scheduled to the available vehicle that has the
lowest renting cost. However, this approach does not consider
the total cost to realize the whole paths. In this paper, we
propose a greedy approach, which selects the vehicle that
corresponds to the minimum cost to realize the generated
paths.

When vehicle utilization is high, the corresponding schedul-
ing plan typically leads to journey delay problems. A delay
on one journey can cascade through the schedule, delaying
all subsequent journeys on that path, and if all vehicles are
in use there are no spares in case of breakdowns, crashes,
or severe delays. A common strategy to deal with it is to
have some buffer time between journeys and paths [24] while
the buffer may cause more cost [25]. In our cost model,
we can set the rest time (see details in Formula [I0) longer
to address the journey delay. As the execution time of our
algorithm (RNO or SNO) is very short, we can re-execute the
scheduling algorithm when there is an important delay. And
then, we dynamically change the scheduling plan based on
the new results of re-execution. In addition, we can assign
a new vehicle to the impacted path without changing other
scheduling plans of other paths [26]. Note that the last two
strategies can be also used in a railway system: a train that is
late has impact on other trains (because of connections) and
the schedule needs to be adjusted.

III. PROBLEM DEFINITION

In this section, we define some basic concepts, present the
time constraints and give a motivating example. Then, we
propose a cost model to estimate the cost corresponding to a
scheduling plan and finally formulate the problem we address
in this paper.

A. Notations and Definitions

We first introduce some important terms, e.g., order, journey
and journey scheduling.

Let us assume that there are multiple requirements from
travellers, denoted by orders, and diverse vehicles to be used
to achieve these orders. An order represents that a group of
travellers wants to travel to different locations. We assume that
the number of travellers in each group is smaller than a limit,
e.g., 20 travellers, so that one vehicle is able to pick up all
the travellers. If an order has more travellers than the limit,
the order can be split into multiple orders and the number of
travellers in each split order is no more than the limit. An

order contains multiple journeys. A journey represents the
smallest unit of travel, which should be realized by a vehicle
to transport a group of travellers from a start location to an
end location with a time duration defined by the start time
and end time of the journey. The time period of the start
time and end time should be long enough for a vehicle to
travel from the start location to the end location. The start
time of a journey can be postponed or the end time can be
brought forward, i.e., the group of travellers arrive at the end
location before the original end time. A vehicle has an original
location, which means that the vehicle is retrieved from that
location and should be finally returned back to it. The cost of
using a vehicle includes renting, driving without passengers
and driving with passengers. The cost of renting the vehicle
is per day. The cost to drive without passengers is the cost to
drive the vehicle to the start location of each journey or the
cost to return the vehicle to its original location. The cost to
drive with passengers is the cost to transport the travellers from
the start location to the end location defined in the journey.
When the vehicle is at its original location, the cost to drive
without passengers is null. The vehicles belong to different
types, and different types correspond to different costs.

A vehicle can realize several journeys from different orders
without being returned, and thus the vehicle can realize several
paths in order to realize the related journeys. As defined in
Section[I] a path [L1] is a combination of successive journeys
to be scheduled as a unit to a vehicle. All the journeys of a
path are realized by a vehicle in a sequential manner without
returning the vehicle back to its original location. At the end
of each path, the vehicle should be returned back to its original
location. In addition, a vehicle can realize multiple paths
sequentially. For instance, after it is returned after realizing
all the journeys in a path, a vehicle can start realizing the
journeys of another path.

Journey scheduling is the process that maps each journey
to a vehicle, which generates a scheduling plan. The time
to generate a scheduling plan is called scheduling time. A
scheduling plan defines which vehicle will realize which
journey and whether the vehicle is returned back to its original
location after realizing the journey.

We summarize the symbols used in this paper in Table [I|

B. Time Constraints

A scheduling plan should meet three time constraints.

1) The first one (Formula is that different scheduled
journeys should not have overlapping time periods if they
are assigned to the same vehicle. For instance, journey j; is
scheduled to vehicle v;. Then, the start time stj; and end
time etj; of another journey j; that is scheduled to vehicle v;
should meet the following constraint: stj; is later than etj; or
etj; is earlier than stjj, which is defined in Formula [I] with
“>” representing later than and “<” representing earlier than.

Y two journeys ji € Ji, jx € Ji, 1
stj; > etji or etj; < sStjk @

2) The second time constraint (Formula is that the
intervals of any two successive journeys in the same path
should be long enough to move the vehicle from the end

TABLE I: Symbols used in our cost model.

Symbol Meaning

J Set of journeys (indexed by % or k)

14 Set of vehicles (indexed by 1)

P Set of paths (indexed by r or u)
SP A scheduling plan defined by a n * m matrix
Spi.1 Scheduling decision for journey j;, vehicle v;

n Number of journeys in J

w Number of vehicles in V'

m Number of paths in P
stj; Start time of journey j;
ety; End time of journey j;
stpy Start time of path p,
etp, End time of path p,

Jp Set of journeys scheduled to vehicle v;

P, Set of paths scheduled to vehicle v;
slj; Start location of journey j;
elj; End location of journey j;

ol; Original location of vehicle v;
slpy- Start location of path p,
elp, End location of path p,

to — 11 The amount of time between ¢; and to
loc; A location with the index i

location of the former journey (j;) to the start location of the
later journey (ji,). Formula 2] ensures that there is enough time
between two journeys, e.g., journeys j; and ji, in the same
path to drive the vehicle from the end location and the end
time of journey j; to the start location of journey j; before
the start time of journey ji. In Formulas 2] and [3] function
Time represents the amount of time that it takes to drive the
vehicle from one location to another.
V two successive journeys ji, jir € path,)
stjr — etj; > Time(els, sli) 2
3) The third time constraint (Formula [3)) is that the intervals
of any two successive paths scheduled to the same vehicle
should be long enough to return the vehicle from the end
location of the former path to its original location and to drive
the vehicle from its original location to the start location of
the following path.
V two successive paths pr, p. € P,

3
stpy — etpr > Time(elpr,ol;) + Time(oli, slpy))

C. A Motivating Example

Let us assume that there are m vehicles distributed at
different locations, n journeys ordered by travellers, and a
scheduling plan. When a set of journeys is scheduled to
a vehicle, the scheduled journeys and corresponding paths
should meet the time constraints given in Section The
vehicle should drive the travellers from the start location to
the end location of each journey. We assume that a vehicle is
capable of transporting the travellers from the start location
to the end location within the required time of each journey.
A path starts from an earliest journey that does not need to
return the vehicle and ends at a journey that needs to return
the vehicle back to its original location. The vehicle is driven
back to its original location after realizing the last journey

in a path. The last journey is the journey that has the latest
end time in all journeys of the path. Afterwards, the vehicle
continues realizing the following paths until all its scheduled
paths are realized.

The total cost of a vehicle is the cost to realize all the paths.
The cost to realize a path is the cost of each journey and that of
returning the vehicle to its original location (when the vehicle
is rented for a short time, e.g., one day, there is some extra
cost incurred for returning the vehicle at a different location
than the original location [27], [28]]). The cost corresponding
to a journey includes the cost to drive the vehicle to the start
location of the journey and the cost to transport the travellers
from the start location to the end location of the journey.
The time to rent a vehicle is counted from the time when
the vehicle starts being driven to the start location of the first
journey in the path to the time when the vehicle is returned
back to its original location. The first journey is the journey
that has the earliest start time in all journeys of the path. The
cost to return the vehicle to its original location can be ignored
when the renting time is longer than a limit, e.g., 3 months
(vehicle agencies can offer a discount on the price of returning
vehicles when the renting time is longer than a limit, because
they earn enough money). The vehicles of different types have
different original locations and may have different costs to
move from one location to another.

Different scheduling plans can incur different costs. In this
paper, we address the problem of how to efficiently generate a
scheduling plan in order to reduce the total cost. Let us assume
that there are three vehicles distributed at Amsterdam (vehicle
A), Brussels (vehicle B) and Calais (vehicle C) as shown in
Figure |1} If we do not consider the Cost to Return vehicles
to their Original Location (CROL), then we could schedule
journey 1 to vehicle A, journey 2 to vehicle B and journey
3 to vehicle C (scheduling plan sp;). In this case, there will
be the cost to return vehicle A back to Amsterdam, vehicle B
back to Brussels and Vehicle C back to Calais, in reality. If we
schedule the three journeys with time constraints and CROL,
e.g., journeys 1, 2, 3, to the vehicle at Amsterdam (vehicle
A) (scheduling plan sps), there will not be the cost to return
the vehicle back to Amsterdam. It is obvious that sp, is better
than sp; as spo reduces the cost to return vehicles in reality.
In fact, reusing vehicle A for journeys 2 and 3 is transforming
the cost to return vehicle A after journey 1 to the cost to
realize journeys 2 and 3. In this paper, we propose a two-
phase journey scheduling approach to generate a scheduling
plan similar to sps in order to reduce the total cost.

D. Cost Model

The cost of all journeys can be calculated using Formula 4
where the total cost of all orders is composed of the cost of
each vehicle with the scheduled journeys.

TotalCost(SP) = Z Costi(SP) ()
v eV

In Formula [4 SP represents a scheduling plan, which is
defined by a matrix of scheduling decision variables, i.e., a
matrix of sp;;. TotalCost(SP) represents the cost of the
scheduling plan SP. Cost;(SP) represents the cost of vehicle

vy according to the scheduling plan SP. j — v represents that
vehicle v is assigned to journey j. The decision variable sp;
is defined as

Spi,l = {

The total cost (Formula [) of a vehicle is composed of
the total cost of all the paths of the vehicle. In Formula [6]
PathCost,;(SP) represents the total cost to realize Path p,
using vehicle v; according to scheduling plan SP.

Cost;(SP) = Z PathCost,,(SP)
prEP

1) Cost of A Path: The total cost of a path (Formula
is composed of the cost to realize all the scheduled
journeys, the time cost to use the vehicle for each path
and the cost to return the vehicle from the end location
of the last journey to its original location. In Formula [/}
Y iiep, 2ovev JourneyCost; ; * [sp; | represents the cost to
realize all the journeys in p, according to SP. journeyCost; ;
represents the cost to realize j; using v;. If j; is scheduled
to vy, |spiy| is 1. TimeCost, ;(SP) represents the renting
cost to use the vehicle for the path. The renting time starts
from the time to drive the vehicle to the start location of
the first journey of the path and ends at the time when the
vehicle is returned to its original location. TimeCost, ;(SP)
can be calculated based on Formula 11} ReturnCost, (SP)
represents the cost to return the vehicle from the end location
of its last scheduled journey in p, to the original location of
v;. When the renting time of a vehicle for the path is longer
than a limit, ReturnCost, ;(SP) can be ignored and the total

cost of a path can be calculated based on Formula [§]

PathCost, (SP) = Z Z journeyCost; i * |sp; il
Ji€pr viEV
+ TimeCost,;(SP)
+ ReturnCost, (SP)
PathCost, (SP) = Z Z journeyCost; i |spii|
Ji€pr vi €V (8)
+ TimeCost,;(SP)

2) Cost of A Journey: The cost to realize a journey (For-
mula [9) is composed of the cost to drive the vehicle to the
start location of the journey and the cost to drive the travellers
from the start location to the end location of the journey. In
Formula E], journeyCost; represents the cost to realize the
journey j; using vehicle v;. idle DrivingCost; represents the
cost to drive the vehicle without passengers per time period,
e.g., hour. Time(Loc(vy), slj;) represents the time to drive the
vehicle to the start location of a journey. Loc(v;) represents
the location of vehicle v;. The location of the vehicle is
determined by whether j; is the first journey in a path. If
it is the first journey, the location of vehicle v; is the original
location of v;. Otherwise, the location is the end location of the
previous journey that is scheduled to v;. This can be calculated
based on SP. drivingCost; represents the cost to drive the
vehicle with a group of passengers per time period, i.e., hour.
Time(slj;, elj;) represents the time to drive the vehicle with
the group of passengers from the start location of j; to the end
location of j;, which can be calculated based on Formula [E}

1, if ji — v with returning v
-1, if ji — v without returning v 5)
0, if ji is not scheduled to v,

(6

@)

journeyCost;; = idleDrivingCost; * Time(Loc(v;), slj;)

9
+ drivingCost; * Time(slj;, elj;) ©)

In Formula Distance(loc;, loc;) represents the distance
to drive vehicle v from one location to another. averageSpeed
is configured by the user of the scheduling algorithm. The
calculation of the time considers that the vehicle can be driven
in the daily time and that the driver should have a rest every
three hours. This is applied in the AdaptTime function of
Formula In addition, we assume that there is always an
available driver to drive the vehicle according to a scheduling
plan. The distance between two locations can be calculated
based on Baidu maps [29]], Google maps [30] or formulas of
orthodromic distance [31]], which is outside of the scope of
this paper. ()
Distance(loc;, loc;

averageSpeed) 10

3) Renting Cost of A Path: The renting cost of a path is
calculated based on Formula [T1] rentingCost; represents the
cost to rent v; per day. PathTime(p,) represents the time of
path p,., which is calculated based on Formula [I2] or [T3]

TimeCostr 1 (SP) = rentingCost; x PathTime(py) (11)

Formula[I2]represents the time of a path, which is composed
of the time for the journeys in the path, the time to drive the
vehicle to the start location of the first journey and the time to
return the vehicle. The time for the journeys in the paths starts
from the start time of the first journey, e.g., j;, to the end time
of the last journey, e.g., ji. The time to drive the vehicle to
the start location of the first journey and the time to return
the vehicle can be calculated based on Formula [I0] When the
renting time for the journeys (etji — stj; + Time(ol;, slj;)) is
longer than a time limit, e.g., 3 months, the time to return the
vehicle can be ignored and the time of a path can be calculated
based on Formula [T3]

PathTime(pr) = etji — stj; + Time(oly, slj;)
+ Time(eljx, oly) (12)
PathTime(pr) = etji — stj; + Time(oly, slj;) (13)

4) Cost to Return: The cost to drive the vehicle from the
end location of the last journey of a path to its original loca-
tion is calculated based on Formula ReturnCost, (SP)
represents the cost to drive the vehicle from its end location
of the last journey of path p, to its original location. In
Formulas [T4] and 0] idle DrivingCost; represents the cost to
drive Vehicle v; without passengers per time period, e.g., hour.
Time(elp,.,ol;) represents the time to drive v; from the end
location of p, to its original location. The end location of p,
is the end location of the last journey in p,, which can be
calculated based on SP. Time(elp,,ol;) can be calculated
based on Formula [[Q

ReturnCost,(SP) = IdleDrivingCost; x Time(elp,ol;)
(14)

Time(loc;, loc;) = AdaptTime(

E. Problem Formulation

The scheduling problem we address in this paper is how
to schedule each journey to an available vehicle in order
to minimize the total cost for all journeys. The problem is

formulated as: how to calculate a decision variable matrix SP

in order to
gnap TotalCost(SP)

1), @), 3
s:t. { i,l , —1,0},Vsp;, € SP

We call this problem the original scheduling problem. Each
decision variable contains three possible choices. The size
of the search space of this problem is very large. We can
reduce this search space by decomposing the problem into
two sub-problems, i.e., the decomposed problem. The first
sub-problem, i.e., path generation problem, is how to group
the journeys in a small number of paths in order to minimize
the cost of all journeys. The second problem, i.e., scheduling
problem, is how to schedule the paths to vehicles in order to
minimize the total cost.

1) Path Generation Problem: The first sub-problem is how
to calculate a path generation plan in order to achieve the
objective defined in Formula[16] T'otalCost(PGP) represents
the total cost to realize the journeys in a set of paths, which
does not contain the cost to return back the vehicles to the
original locations. PGP represents a path generation plan.
The time cost to use the vehicle from the start time of a path

to the end time of a path is calculated based on Formula [T8]
Isngl TotalCost(PGP)

s.t. { ’

15)

(16)
pgpir € {0,1}, ¥V pgpi, € PGP

where PGP is defined by a matrix of binary decision variables

pgpi,r, and pgp; , is defined in Formula

pgpw:{ fiji€p

0 otherwise

PGP can be represented by a set of paths P. The total
cost of P is calculated based on Formula journeyCost;
represents the cost to realize a journey. We assume there is
a vehicle v;, whose idleDrivingCost;, drivingCost; and
rentingCost is the average cost of all the available vehicles.
Although v; is a vehicle with fixed parameters, we keep index
L in order to have consistency with Formula[9} PathTime(p,)
represents the time of renting the vehicle, which is calculated
based on Formula

TotalCost(PGP) = Z (Z journeyCost; | * pgp;,r
prEP jiEpr
+ rentingCost; x PathTime(p:))
2) Path Scheduling Problem: The second sub-problem is
how to schedule each path to a vehicle in order to minimize
the total cost, which is given in Formula PSP represents
the scheduling plan of paths, which is defined by a matrix of
binary scheduling decision variables psp,; defined in Formula
TotalCost(PSP, PGP) represents the total cost of all
paths, which is calculated based on Formula
rSn¥1 TotalCost(PSP, PGP)

an

(18)

@) (19)
s.t.
pspry € {0,1}, V pspr,l € PSP
The binary scheduling decision variables psp,.; are defined
as follows.

pspr = {

1if pr is scheduled to v;

0 otherwise (20)

Time

Time

(== = 5]

‘ (=< [c=¢] [e=4A]

((o>A] [A>C] [c>8])

[A>B] [A->C] [c>8] ’

L Path
’ Generation

[Asc] [c>8] [B5A]

[D>A] [B>C] [c>D] _

Journey from X to Y :] A path
Fig. 2: Path generation. Journeys are combined to generate
paths. Each journey belongs to only one path. The journeys
in the same path can only be sequentially realized.

As defined in Formula 21} TotalCost(PSP, PGP) is the
sum of the costs to realize each path.
TotalCost(PSP, PGP) =

Z Z PathCosty(getSP(PSP, PGP)) * pspr,
prEPv eV
21

where PathCost,;(getSP(PSP, PGP)) represents the cost
to realize p, using v;. The function getSP(PSP, PGP) to
infer the scheduling plan SP used in Formula[7] or [§] is based
on Formula [22] Then, the cost of each path can be calculated
based on Formula [7] or Bl

1, if pgpir = 1 and pspr; = 1 and j; is not
the last journey in p,
Spi L = —1, if pgpi,r = 1 and pspr; = 1 and j; is the

last journey in p,
0, if pgpir = 0or pspry = 0
(22)

These two sub-problems have a linear objective function
and inequality constraints. Some of the variables are binary,
e.g., path generation plan and path scheduling plan, while the
rest are real. Thus, the two sub-problems are Mixed-Integer
Linear Program (MILP) problems [32]. These problems are
not easy to solve since the search space is complex and this
space increases exponentially with the number of journeys, the
number of vehicles and the number of paths.

3) Search Space Analysis: Let us assume that there are
n journeys, w vehicles and m paths. The size of the search
space of the original scheduling problem is 3“*™. The size of
the search space of the decomposed problem is 2*™ x m",
where 2"*™™ is the size of the search space to schedule paths
to vehicles and m" is the size of the search space to generate
paths. In most cases, e.g., the cases except Baseline presented
in Section the size of the search space of the original
scheduling problem is bigger than that of the decomposed
problem according to Lemma [[IL1]

Lemma IIl1.1. The search space of the decomposed problem
is smaller than that of the original scheduling problem when
m<=nand m < (3/2)".

Proof: When m < (3/2)", we have 2* x m < 3". Then,
(2¥sxm)™ < (3)", which equals to 2¥*"xm™ < 3“*". When
m <=mn, we have 2V*™ <= 2"*" Thus, 2*™ xm'™ < 3",

|

IV. TWO-PHASE JOURNEY SCHEDULING

We propose two-phase journey scheduling to address the
journey scheduling problem defined in Formula [T3] This
approach first groups the journeys to generate paths as shown

Time

(= =8)E=D) |

) Ea E=E
e = BN

L Path
Scheduling
A= e 0]

[X=>Y] Journey from Xto Y (] Apath ([l A vehicle

Fig. 3: Path scheduling. Each path is scheduled to a vehicle.
The scheduled paths of the same vehicle should meet the time
constraints presented in Section |[II-B|

in Figure [2] and then schedules the generated paths to vehicles
as shown in Figure 3] Grouping the journeys to paths addresses
the first sub-problem defined in Formula[I6]and scheduling the
generated paths to vehicles addresses the second sub-problem
defined in Formula [I9] Algorithm [I] describes the process of
two-phase journey scheduling. In this algorithm, Line 1 first
generates paths based on the journeys while achieving the
minimum total cost. When grouping the journeys, we use an
average cost of all the buses to calculate the cost of each path.
Line 2 schedules different paths to different vehicles in order
to achieve a small total cost.

Algorithm 1 Journey scheduling

Input: journeys: a set of journeys; V: a set of vehicles
Output: SP: a scheduling plan that assigns each journey to
a vehicle
paths < Generate Paths(journeys)
SP <« SchedulePathsToV ehicles(paths, V)

We can use different methods to generate paths and schedule
paths to vehicles, which we present in this section. The
calculation of cost is based on Formula 2] and the cost model
presented in Section [[II-D

A. Path Generation

In this section, we adapt A-Star [33] for path generation
and propose two methods to generate paths, i.e., Simple
Near Optimal (SNO) and Reset Near Optimal (RNO). In
addition, we take a baseline method to compare our proposed
approaches. The baseline path generation algorithm simply
encapsulates each journey to a path.

1) Adapted A-Star: Inspired by [33], the A-star algorithm
can be used to search for the shortest path from a start point
to an end point. We can adapt the A-star algorithm to generate
paths based on a set of journeys, as shown in Algorithm [2]

The goal of our Adapted A-Star is to generate paths in order
to reduce the total cost. Algorithm [2] has two loops. Lines
2-16 generate all the possible paths based on the journeys.
Line 4 gets the earliest start time in the journeys that are not
added to generated paths, i.e., the earliest start time in all the
journeys. Line 5 gets the start location corresponding to the
earliest start time in Line 4. Lines 6-14 add all the journeys
to a path. Line 7 selects the suitable journey that requires
the smallest additional cost to be added to the path according
to Formula [T8] In addition, the selected journey should meet
the second time constraint defined in Formula 2] (see details in
Section [[lI-A)). The start time of the selected journey should be
late enough so that there is enough time to drive the vehicle
from the end location of the last journey in the path to the

start location of the selected journey before the start time of
the selected journey. The time constraint is verified in the
getSmallestCost function. If the interval between the end
time of the path and the start time of the selected journey is
longer than three days, we stop adding new journeys (Lines 8-
10). Line 11 adds the journey to the path. Lines 12-13 update
the end time and the start location of the path.

Algorithm 2 Adapted A-Star

Input: J: a set of journeys

Output: P: a set of paths
1. P+
2: while not all journeys in J are added in a path do
3: path < ()

4: endTime = earliestStartTime(J)

5: startLocation = firstStartLocation(J)

6: while at least a journey in J can be added to path do

7: journeyToAdd —
getSmallestCost(endTime, start Location, J)

8: if Interval(journeyToAdd, path) > limit then

9: break

10: end if

11: path < path U journeyToAdd

12: endTime = endTime(journeyToAdd)

13: startLocation = endLocation(journeyT oAdd)

14: end while

15: P+ P Upath
16: end while

2) Near Optimal Algorithm: Inspired by the ActGreedy
scheduling algorithm [12]], we propose a near optimal algo-
rithm to generate a set of paths, which is presented in Algo-
rithm 3] The idea of this algorithm is to reuse a vehicle when
there is a journey, whose start location is in the surrounding
of the destination of the previous journey in the near future,
in order to transform the cost to return vehicles to the cost of
realizing other journeys so that the total cost is reduced.

Algorithm 3 Near Optimal Algorithm

Input: J: a set of journeys
Output: P: a set of paths
: P« @
sort AccordingT oStartTime(J)
for Each journey in J do
path « getPathWithSmallestCost(P, journey)
path < path U journey
end for
for Each path in P do
for Each journey in path do
if The cost can be reduced by splitting the path

R A A ol s

then
10: P + merge(P, split(path, journey))
11: end if
12: end for
13: end for

In Algorithm [3] we first sort the journeys according to their
start time (Line 2). Then, for each journey, we assign it a
path that corresponds to the smallest additional cost, i.e., the
difference between the total cost after adding the journey and

that before adding the journey (Lines 3-6). In Line 4, if there is
no available path in P to add journey journey, an empty path
is created and returned. In addition, the newly created path is
putinto P in the get PathWithSmallestCost function. Then,
for each path, we split it into multiple paths in order to reduce
the total cost (Lines 8-12) by reducing the useless renting time.
The journeys in a path are in ascending order of start time,
i.e., path = {j1, Jas-es Jis Jit1s - Jn} With the start time of j;
earlier than that of j;;;. When splitting a path at j; (Function
split), the path is split into path; and paths with path, =
{j1, Jor- Ji} and pathg = {jit1, - Jn}. pathy is returned
and put into P and the original path (path) is replaced by
pathsy in the merge function (Line 10).

While adding a journey to the path (Line 4), we have two
situations. The first situation is that the start time and the
end time of the journey cannot be modified. In this situation,
we directly add the journey to the path. We call this method
Simple Near Optimal (SNO). The second situation is that
we can adjust the start time and the end time of the journey
J; in order to reduce the total cost for the following journeys.
We call this adjustment method Reset Near Optimal (RNO).
RNO can postpone the start time or bring the end time forward,
ie., stji >= stj; or etj, <= etj;, in order to reduce the
cost according to a temporary path generation plan. Note that
as the original time period includes the adjusted time period
for a journey, the travellers should value the adjusted journey
times as highly as the original one. After adjustment, the
journey should be able to be realized within the start time
and the end time from the start location to the end location as
defined in Formula In Formula etjl — stji represents
the time period of J;, after adjustment, and T'ime(slj;, elj;)
represents the time to drive the travellers from the start location
of the journey to the end location of the journey, which can
be calculated based on Formula [T0l

etj; — stj; > Time(slji,elj;) (23)

3) Path Generation Algorithm Complexity: Let n denote
the number of journeys. The complexity of Baseline is O(n).
The complexity of Adapted A-Star is O(n?) (the complexity
of Function getSmallestCost is O(n) as it needs to iterate on
all the remaining journeys). This complexity is much bigger
than the baseline approach and corresponds to long scheduling
time. The complexity of SNO and RNO depends on the sorting
algorithm, which can be O(nlogn) using TimSort [34], [33].
This complexity is much smaller than that of Adapted A-Star
and is slightly bigger than that of Baseline while it corresponds
to small total cost as presented in Section

B. Path Scheduling

Once the paths are generated, they can be scheduled to
different vehicles with small total cost. In this section, we
present three basic methods, i.e., Random [36], Nearest [9]
and Economic [9]], and propose one greedy schedule method.
When a path is scheduled to a vehicle, all the journeys in the
path are scheduled to the vehicle. In addition, when a path
is scheduled to a vehicle, the vehicle is able to take all the
travellers in each journey of the order.

TABLE II: Parameters in average case (A). Costs are in Euro.
Number represents the number of vehicles. Cost represents the
cost to rent a vehicle per day. Idle cost (ICost) represents the
cost to drive the vehicle without passengers per hour. Driving
cost (DCost) represents the cost to drive the vehicle with a
group of passengers per hour in Euro.

Type | Cost | Location | Number | ICost | DCost
1 350 Porto 2 5 10
2 370 Porto 2 5 10
3 300 Lodz 2 5 10
4 330 | Warsaw 2 5 10
5 290 | Athens 1 5 10
6 500 Paris 100 5 10

The Random method schedules each path to a random
available vehicle after sorting the paths according to their
total cost based on an average cost of all the vehicles, which
is similar to OLB. The Nearest method schedules each path
to a vehicle that has the nearest location to its start location
after sorting. This method tries to reduce the cost to drive the
scheduled vehicle to its start location. The Economic method
schedules the path to the vehicle that has the smallest renting
cost. This method intends to reduce the cost for long paths.
However, it does not consider the overall total cost.

We propose a greedy path scheduling (Greedy) algorithm
to schedule each path to a vehicle in order to reduce the total
cost, which is described in Algorithm] Line 2 sorts the paths
according to their total cost based on an average cost of all
the vehicles. Then, for each path, Line 4 chooses the vehicle
that takes the smallest total cost to realize the path according
to Formula 271

Algorithm 4 Greedy Path Scheduling

Input: P: a set of paths; V: a set of vehicles
Output: PSP: a path scheduling plan
: pspry =0 for V psp,.; € PSP
sortAccordingT oT otalCost(P)
: for Each p, in P do
vy < getVehicleWithSmallestCost(V, p,)
psprg = 1
end for

AN AT

The complexity of Random is O(m), with m representing
the number of paths. The complexity of Nearest and Economic
is the same, i.e., O(m * w) with w representing the number
of types of vehicles. Although the complexity of Nearest and
Economic is bigger than Random, they can generate better
scheduling plans as presented in Section [V] The complexity
of Greedy is O(mlogm) (when logm is bigger than w) or
O(m*w) (when log m is smaller than w), which is the same
(for O(m * w)) or slightly bigger (for O(mlogm)) than the
other scheduling methods while generating a better scheduling
plan with small total cost (see Section |V|for details).

V. EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation of
our approach. We first present the experimental setup. Then,
we show the experiments. Finally, we summarize the main
experimental results.

A. Experimental Setup

The vehicles and the journey information is synthetically
generated based on real-world data from a bus sharing startup,
i.e., TUDING. We consider a dataset with 649 journeys and
the vehicles originally distributed at five locations, i.e., Porto,
Lodz, Warsaw, Athens and Paris. There are at most 46 journeys
that cover the same time period. This means that at least 46
vehicles can realize all the 649 journeys.

For setting the parameters of the vehicles, we consider
three cases, i.e., Average (A), Limited (L) and General (G).
In case A, vehicles of different types have different renting
costs, original locations and numbers of vehicles while other
parameters, i.e., idle cost and driving cost, are the same. In
case L, vehicles of different types have different renting costs
and different original locations while other parameters, i.e.,
number of vehicles, idle cost and driving cost, are the same.
In case G, vehicles differ in all the parameters, i.e., number
of vehicles, location, idle cost and driving cost.

We implemented the algorithms in Java, i.e., Baseline,
Adapted A-Star (AA-Star for short), SNO and RNO as path
generation method; Random, Nearest, Economic and Greedy
as path scheduling method. In addition, we implemented three
one-phase algorithms, i.e., ActGreedy (1-Greedy) [12l], Ge-
netic [7] and Brute force. 1-Greedy and Genetic are designed
without the consideration of the cost to return vehicles while
we implement our cost model in these two algorithms.

The experiments are carried out in a workstation with Intel
quad-core i7-3610QM CPU and 32GB RAM. We use the cost
model presented in Section to compute the total cost.

B. Experimental Results

In this section, we first present the experiments to show that
our proposed approaches are near optimal. Then, we give the
detailed results of executing the program with the 649 journeys
in case A. Afterwards, we give the total cost, scheduling time
and efficiency of the program execution in cases L and G.

1) Near Optimal: In order to show that the scheduling
plans generated by our proposed methods are near optimal,
we compare the total cost of SNO/Greedy and RNO/Greedy
with the optimal scheduling plans generated by a brute force
method without modifying start time and end time. As the
execution time of the brute force method is very long, we only
compare the results with up to 14 journeys and 1 vehicle of
Types 1-5 and 2 vehicles of Type 6 as presented in Table[Tll As
shown in Figure @] RNO/Greedy can outperform the optimal
scheduling plans without adjusting start time or end time.
SNO/Greedy can generate the scheduling plans that perform as
well as that of the optimal one, in many cases (42.9%). In all
the cases, the difference of the total cost between SNO/Greedy
and the optimal scheduling plan is less than 1.6%.

2) Average Case: In this section, we present the experiment
results based on the parameters in Table We show the
total cost, scheduling time and average efficiency of different
scheduled plans generated by different methods. When using
RNO, 431 journeys have been forced to modify their start
or end time with 339 modifications in start time and 431
modifications in end time.

50000

Brule Force lii
SNO Greedy e .

40000 F RNO Greedy

30000 -

20000 [

Total cost (Euros)

10000 -

0

Number of journeys
Fig. 4: Comparison with optimal scheduling plans.

The total cost calculated based on Formulas 21]is shown in
Figure [5a] Random has the highest total cost compared with
the other three scheduling methods. The combination of our
adapted and proposed methods, i.e., AA-Star and Greedy, SNO
and Greedy and RNO and Greedy, significantly outperforms
(by up to 24%, 26% and 62%, respectively) the combination
of Baseline and Random. Our proposed scheduling method,
i.e., Greedy, performs up to 19.0%, 19.4% and 5.4% better
compared with Random, Nearest and Economic, respectively.
This is expected as our scheduling methods consider the total
cost to realize the journeys. AA-Star outperforms Baseline up
to 17.6%. SNO and RNO perform better than AA-Star and
much better than Baseline. While generating paths, AA-Star,
SNO and RNO reduce the total cost. In addition, RNO can
significantly reduce total cost compared with SNO since it can
further adjust the start time and the end time of the journey
in order to reduce total cost. As RNO and SNO optimize the
generated paths based on total cost, which is different from
the time interval between the scheduled journeys in AA-Star,
RNO and SNO have smaller total cost compared with AA-Star.
When the system is not able to modify the start or end time
of journeys, SNO can be used, performing up to 20.7% and
3.8% better compared with Baseline and AA-Star in terms of
total cost of the generated scheduling plan. When the system
is able to modify the start and end time of journeys, RNO
can be used, performing up to 58.8% and 50.4% better in
terms of total cost of the generated scheduling plan compared
with Baseline and AA-Star. The total cost of Baseline and
Greedy is already smaller than that of 1-Greedy and Genetic.
In addition, our proposed approaches, i.e., RNO/Greedy and
SNO/Greedy, significantly outperform 1-Greedy (18.3% and
58.4%) and Genetic (20.9% and 59.7%), in terms of total cost.

Figure [5b] shows the number of generated paths. Since
Baseline encapsulates each journey into a path, it yields the
highest number of paths. By adapting the journeys according
to the ongoing scheduling plan, RNO generates the smallest
number of paths. AA-Star, SNO and RNO yield up to 60%,
71% and 84% fewer paths than Baseline.

Figure shows the total scheduling time, including the
time for path generation and path scheduling. The scheduling
time of 1-Greedy is acceptable (0.62 seconds) while the
scheduling time of genetic is very long (more than 47 seconds).
Figure shows that Baseline is much longer (up to 1.85,
13.25 and 16.1 times) than AA-Star, SNO and RNO, respec-
tively. This is reasonable since Baseline generates more paths
compared with the other methods. Although RNO takes time
to reset the start or end time of journeys, it has shorter total

scheduling time (up to 20%) since it generates fewer paths than
SNO. The total scheduling time of Nearest and Economic is
longer (up to 112% and 98%) than that of Random as they
have slightly higher complexity. The total scheduling time of
Greedy is longer than that of Random (up to 136%), Nearest
(up to 60%) and Economic (45%) while its scheduling plan
incurs the smallest total cost. Compared with the combination
of Baseline/Random, the combination of SNO/Greedy and
RNO/Greedy is respectively up to 77.3% and 78.7% better
in terms of total scheduling time. The total scheduling time
of Greedy with Baseline, SNO (up to 0.17s) and RNO (up to
0.16s) is less than 0.2 seconds, which is quite acceptable.

Figure [5d] shows the time to generate paths, i.e., path
generation time, according to different approaches. AA-Star
takes the longest time to generate paths as its complexity is
the highest (see Section [[V-AT). The path generation time of
AA-Star is up to 5.3 and 5.1 times longer than SNO and RNO,
respectively. Baseline has the shortest time to generate paths
as it has the smallest complexity. Although the path generation
time of AA-Star, SNO and RNO is much longer than Baseline,
it is much less than 1s, which is quite acceptable.

Figure [5¢| shows that the path scheduling time of Baseline
is much longer than AA-Star (up to 19 times), SNO (up to 52
times) and RNO (up to 147 times) as Baseline schedules large
number of paths. Figure [5f] zooms on the path scheduling time
of AA-Star, SNO and RNO. As AA-Star generates more paths
than SNO and RNO, it takes more time to schedule paths.
RNO yields the smallest number of paths, and its scheduling
time is the smallest among all path generation methods. As the
complexity of Random is the smallest, it yields the smallest
path scheduling time among all path scheduling methods. The
path scheduling times of Nearest and Economic are similar.
The scheduling time of Greedy is longer than Random (up
to 11 times), Nearest (up to 3 times) and Economic (up to 4
times) as it has higher complexity.

Furthermore, we analyse the average efficiency of different
approaches. The efficiency of a scheduling plan is the average
efficiency of all the vehicles, defined in Formula @ The
efficiency of a vehicle is the ratio between the driving time
(drivingTime(v;, SP)) and the total time of using the vehicle
(TotalTime(v;, SP)), as defined in Formula 25| In Formulas
the scheduling plan SP contains the path generation
plan and the path scheduling plan. As defined in Formula 26
the driving time of a vehicle is the sum of the driving time
of each scheduled journey. In Formula Time(slj;, elj;)
represents the time to drive the passengers for a journey, which
can be calculated based on Formula[I0] The total time of using
a vehicle is the sum of the times of all the paths scheduled to
it, which can be calculated based on Formula In Formula
PathTime(p,) can be calculated using Formula

Zvlev ef ficiency(v;, SP)

. _ 24

ef ficiency(SP) get NumberO fVehicles(SP) @9
. _drivingTime(v;, SP)

ef ficiency(vi, SP) = TotalTime(v;, SP) (25)

drivingTime(v;, SP) = Z Z Time(sljs, eljs) (26)

prE€P ji€pr

1-Greedy ——1 Baseline SNO

1-Greedy Baseline SNO

Genetic 0o AA-Star RNO 700 b

4

600

35T 500 +

w
T

400 -

25 1 300

200

(S}
T

Number of generated paths

Total cost (million euros)

n
T

Genetic RNO zzzzz3

AA-Star
251

2 |

n
T

Total execution time (s)

IS4
i

:

A 71 Nl

& O\ o S
Random Nearest Economic Greedy \‘6@6 025\0\\ Q’@sﬁ\\‘\ ?‘P{%\ $$0 QSO
Path generation method

Path scheduling method

(a) Total cost for different approaches.

(b) The number of generated paths.

L

Random Nearest Economic Greedy

Path scheduling method

(c) Total scheduling time for different approaches

. AA-Star — SNO e RNO

0.6 T T T T Baseline —— SNO i i i ‘
2 AA-Star RNO o016 [—
£ 2 .
g 05r 0.14 f
: I 2 o2t
% 047 2 15t g
e by = 01
g 03+ g EO 0.08 |

= 1 =}
F 2 T 006t
£ o2t z g
5 % 2004 f
2 =05+
z 0lr % % 0.02
8
g
m K
0 o 0

Baseline AA-Star SNO
Path generation method

RNO

(d) Path generation time for different methods

(e) Path scheduling time for different methods

Random Nearest Economic Greedy

Random Nearest Economic Greedy

Path scheduling method

Path scheduling method

(f) Path scheduling time for different methods
(zoom on AA-Star, SNO and RNO)

Fig. 5: Scheduling time for different approaches

SNO
RNO

1-Greedy ——
Genetic [0od
75

70 + ! 7 7]
65 f
60 f
55t
50
45t
40 +

i |B IR

Random Nearest Economic Greedy

Baseline
AA-Star

Efficiency for different approaches (%)

Path scheduling method

Fig. 6: Average efficiency of different approaches
TotalTime(v;, SP) = Z PathTime(pr)

preP

Figure [6] shows the efficiency of different scheduling ap-
proaches. The efficiency of 1-Greedy is much lower than
other methods (less than 32%). The combination of Baseline
and Greedy outperforms both 1-Greedy and Genetic. The
efficiency of different path scheduling methods is almost
similar (the difference is less than 8%) while it differs much
for different path generation methods. Random corresponds
to the least efficiency, as it does not have optimization in
terms of total cost. Our proposed path generation methods,
i.e., AA-Star, SNO and RNO, have higher efficiency (up to
6.2%, 7.4% and 79.5%) compared with Baseline. Note that
RNO corresponds to the highest efficiency, as it optimizes
the journeys according to the scheduling plan. Compared
with the combination of Baseline/Random, the combination
of SNO/Greedy and RNO/Greedy is up to 3.1% and 79.3%
better, respectively.

3) Limited and General Cases: In this section, we present
the results in cases L and G. In case L, the vehicles of different
types only differ in the renting cost and location, as shown in
Table [l The parameters of the vehicles (e.g., the number of

27

vehicles, the idle and the driving cost of different vehicles) are
the same among different types of vehicles. They are set to
20, 5 and 10, respectively. Figure[7a] shows the combination of
RNO/Greedy and SNO/Greedy outperforms the combination
of Baseline/Random up to 46.6% and 69.8%, 1-Greedy (14.3%
and 51.8%) and Genetic (37.5% and 64.9%) in terms of total
cost. In addition, as shown in Figure the scheduling time
of RNO/Greedy and SNO/Greedy is up to 77.6% and 80.3%,
respectively, smaller than Baseline/Random. The efficiency of
RNO/Greedy and SNO/Greedy is respectively up to 40.2% and
141.7% higher than the combination of Baseline/Random, as
shown in Figure[/c| When using RNO, 431 journeys have been
forced to modify their start or end time with 336 modifications
in start time and 431 modifications in end time.

In case G, the vehicles of different types differ in number,
idle cost and driving cost. The numbers of Types 1-6 are
respectively 5, 10, 15, 20, 25, 30; the idle costs of Types
1-6 are respectively 3, 4, 5, 6, 7, 8; the driving costs of Types
1-6 are respectively 8, 9, 10, 11, 12, 13. Figure @ shows the
combination of RNO/Greedy and SNO/Greedy outperforms
the combination of Baseline/Random up to 43.9% and 68.4%,
1-Greedy (15.6% and 52.3%) and Genetic (39.5% and 65.8%)
in terms of total cost. As shown in Figure [8b] the schedul-
ing time of RNO/Greedy and SNO/Greedy is up to 81.5%
and 84.0%, respectively, smaller than Baseline/Random. The
efficiency of RNO/Greedy and SNO/Greedy is up to 23.3%
and 123.4%, respectively, higher than Baseline/Random, as
shown in Figure When using RNO, 431 journeys have
been forced to modify their start or end time, where 339
modifications in start time and 431 modifications in end time.
As we use average cost of all the available vehicles for the
path generation, which is similar for cases A, L, and G, the
numbers of journeys modified in RNO are similar.

1-Greedy ———
Genetic [0

SNO
RNO

Baseline
AA-Star

1-Greedy ——1
Genetic

Baseline
AA-Star

SNO

1-Greedy —— RNO

Genetic [0

SNO
RNO

Baseline
AA-Star

70

4 - . 7

25
60

Total cost (million euros)

o w

[W wn
Total execution time (s)

9
T

w
T

50
40 t

L

Random Nearest Economic Greedy
Path scheduling method

(S}
T

Efficiency for different approaches (%)

2 | 1 ’7 ’7 ’7 ’7
7
a ’ 2 7 0 72} 71 71 17}

Random Nearest Economic Greedy

Random Nearest Economic Greedy .
. Path scheduling method
Path scheduling method

. . (b) Scheduling time for different approaches in case (c) Average efficiency of different approaches in
(a) Total cost for different approaches in case L L case L

Fig. 7: Experimental results in limited case (L)

1-Greedy ——— Baseline SNO 1-Greedy ——1 Baseline SNO

1-Greedy — Baseline SNO Genetic 20553 AA-Star RNO zzzzz3 Genetic oo AA-Star RNO
Genetic XA AA-Star RNO) S 70
4 ‘ _2sy 5 ? ’ 7 7
7 s 2 P
£ £
= <
£ g 15t R
= s 5}
\E/ 2.5 g i E 40 |
2 ot
S ol e S
= =] L
E 7 & 05t g 30
B st 7 2
7 7 z
% ’ L) L 0 iva) 7 ira] E 20

Random Nearest Economic Greedy

Path scheduling method

Random Nearest Economic Greedy
Path scheduling method

Random Nearest Economic Greedy

Path scheduling method

(a) Total cost for different approaches in case G (b) Scheduling time for different approaches in case (c) Average efficiency of different approaches in
G

case G

Fig. 8: Experimental results in case G

C. Concluding Remarks

While generating paths, we calculate the total cost based
on the average cost of all the vehicles, which is different
from the cost of the scheduled vehicle of each journey. Thus,
the final result may not be an optimal solution. However,
the combination of SNO or RNO and Greedy can generate a
near optimal scheduling plan (the difference is less than 1.6%
compared with the brute force method), which significantly
outperforms the baseline method and state of the art methods,
i.e., 1-Greedy and Genetic, in terms of total cost, scheduling
time and efficiency. Our proposed approach, i.e., the com-
bination of SNO/Greedy and RNO/Greedy outperforms the
combination of Baseline/Random in terms of total cost (up
to 46.6% and 69.8% respectively), scheduling time (up to
81.5% and 84.0% respectively) and efficiency (up to 40.2%
and 141.7% respectively).

VI. CONCLUSION

Efficient scheduling approaches are promising to improve
people’s driving experience by reducing significantly the cost
of using vehicles to realize travellers’ orders. In this paper, we
proposed a two-phase journey scheduling approach to generate
scheduling plans while reducing total cost. This approach
includes a cost model to calculate the total cost based on
a scheduling plan, two path generation methods, i.e., SNO
and RNO, and a greedy scheduling method. We evaluated
our approach by comparing the proposed path generation
methods to a baseline method and the scheduling method to
three other methods, i.e., Random, Nearest and Economic. Our
evaluation shows that our proposed path generation methods,
i.e., SNO and RNO, outperform (up to 20.7% and 58.8%)

Baseline in terms of total cost. In addition, Greedy performs
(up to 19.0%) better than Random. The scheduling time of
our approach is smaller than 2.5 seconds, which is acceptable.
Our proposed path generation algorithms, i.e., SNO and RNO,
correspond to higher efficiency (up to 7.4% and 79.5%)
compared with Baseline. As a result, the combination of
SNO/Greedy and RNO/Greedy significantly outperforms the
combination of Baseline/Random in terms of total cost (up to
46.6% and 69.8% respectively), scheduling time (up to 81.5%
and 84.0% respectively) and efficiency (up to 40.2%/141.7%
respectively).

VII. ACKNOWLEDGEMENT

We thank Bo Hu from TUDING for his support and
help with the experimental evaluation, and Han Qiu from
LTCI, Telecom Paris for fruitful discussions and useful com-
ments. Some of the experiments in this paper were car-
ried out on Baidu Data Federation Platform (Baidu Fed-
Cube). For platform usage, please contact via {fedcube,
shubang} @baidu.com. This work was supported in part by
the Open Research Project of the State Key Laboratory of
Industrial Control Technology, Zhejiang University, China
under Grant ICT20058, and in part by the Fundamental Re-
search Funds for the Central Universities, China under Grant
2242020R10059.

REFERENCES

[11 S. An, B. Lee, and D. Shin, “A survey of intelligent transportation
systems,” in Int. Conf. on Computational Intelligence, Communication
Systems and Networks (CICSYN), 2011, pp. 332-337.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

C. Bettisworth, M. Burt, A. Chachich, R. Harrington, J. Hassol, A. Kim,
K. Lamoureux, D. LaFrance-Linden, C. Maloney, D. Perlman et al.,
“Status of the dedicated short-range communications technology and
applications: Report to congress,” vol. Tech. Report, no. FHWA-JPO-
15-218. U.S. Department of Transportation, Washington, DC, USA,
2015.

N. Agatz, A. Erera, M. Savelsbergh, and X. Wang, “Optimization for
dynamic ride-sharing: A review,” European Journal of Operational
Research, vol. 223, no. 2, pp. 295 — 303, 2012.

K. Augustin, R. Gerike, M. J. M. Sanchez, and C. Ayala, “Analysis
of intercity bus markets on long distances in an established and a
young market: The example of the u.s. and germany,” Research in
Transportation Economics, vol. 48, pp. 245 — 254, 2014.

R. Gerike and A. Schulz, “Workshop synthesis: Surveys on long-distance
travel and other rare events,” Transportation Research Procedia, vol. 32,
pp. 535 — 541, 2018.

E. E. Agency, “Focusing on environmental pressures from long-distance
transport,” vol. Europe Environment Agency (EEA) Report, no. 7/2014,
pp. 1-108, 2014.

A. Y. S. Lam, Y. Leung, and X. Chu, “Autonomous-vehicle public trans-
portation system: Scheduling and admission control,” IEEE Transactions
on Intelligent Transportation Systems, vol. 17, no. 5, pp. 1210-1226,
2016.

C. Tang, A. Ceder, S. Zhao, and Y. Ge, “Vehicle scheduling of single-
line bus service using operational strategies,” IEEE Transactions on
Intelligent Transportation Systems, vol. 20, no. 3, pp. 1149-1159, 2019.
Y. Jia, W. Xu, and X. Liu, “An optimization framework for online ride-
sharing markets,” in [EEE Int. Conf. on Distributed Computing Systems,
2017, pp. 826-835.

X. Wang, “Optimizing ride matches for dynamic ride-sharing systems,”
PhD dissertation, Georgia Institute of Technology, 2013.

M. Zhu, X. Liu, and X. Wang, “An online ride-sharing path-planning
strategy for public vehicle systems,” IEEE Transactions on Intelligent
Transportation Systems, vol. 20, no. 2, pp. 616627, 2019.

J. Liu, E. Pacitti, P. Valduriez, D. de Oliveira, and M. Mattoso, “Multi-
objective scheduling of scientific workflows in multisite clouds,” Future
Generation Computer Systems, vol. 63, pp. 76-95, 2016.

G. Cui, J. Luo, and X. Wang, “Personalized travel route recommenda-
tion using collaborative filtering based on gps trajectories,” University
Maryland, College Park, vol. 11, pp. 284-307, 2017.

Z. Wang, A. Shafahi, and A. Haghani, “Scda: School compatibility
decomposition algorithm for solving the multi-school bus routing and
scheduling problem,” Int. Journal of Digital Earth, vol. 11, no. 3, pp.
284-307, 2017.

Y. Liu, C. Liu, N. J. Yuan, L. Duan, Y. Fu, H. Xiong, S. Xu, and J. Wu,
“Intelligent bus routing with heterogeneous human mobility patterns,”
Knowledge and Information Systems, vol. 50, no. 2, pp. 383-415, 2017.
H. Slavin, Q. Yang, D. Morgan, A. Rabinowicz, J. Brandon, and
R. Balakrishna, “Lane-level vehicle navigation for vehicle routing and
traffic management,” U.S. Patent 9 964 414 B2, 2018.

N. O. Alsrehin, A. F. Klaib, and A. Magableh, “Intelligent transportation
and control systems using data mining and machine learning techniques:
A comprehensive study,” IEEE Access, vol. 7, pp. 49 830—49 857, 2019.
V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and M. Cae-
sar, “Network-aware scheduling for data-parallel jobs: Plan when you
can,” in ACM Conf. on Special Interest Group on Data Communication
(SIGCOMM), 2015, pp. 407-420.

M. Maheswaran, S. Ali, H. J. Siegel, D. A. Hensgen, and R. F. Freund,
“Dynamic matching and scheduling of a class of independent tasks
onto heterogeneous computing systems,” in Heterogeneous Computing
Workshop, 1999, pp. 30-44.

M. Wieczorek, R. Prodan, and T. Fahringer, “Scheduling of scientific
workflows in the ASKALON grid environment,” SIGMOD Record,
vol. 34, no. 3, pp. 56-62, 2005.

E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”
Operations Research, vol. 14, no. 4, pp. 699-719, 1966.

W. Zhang, “brand and bound search algorithm and their complexity,”
USC/Information Sciences Institute, vol. Tech. Report, no. ADA314598,
pp. 1 — 31, 1996.

F. D. n, A. Babinec, M. Kajan, P. B. no, M. Florek, T. Fico, and L. J.
sica, “Path planning with modified a star algorithm for a mobile robot,”
Procedia Engineering, vol. 96, pp. 59 — 69, 2014.

M. Friedrich, M. Miiller-Hannemann, R. Riickert, A. Schiewe, and
A. Schobel, “Robustness as a third dimension for evaluating public trans-
port plans,” in Workshop on Algorithmic Approaches for Transportation
Modelling, Optimization, and Systems (ATMOS), 2018, pp. 4:1-4:17.

[25]

[26]

[27]

(28]

[29]
(30]
[31]
[32]

(33]

(34]

(35]

[36]

M. Naumann, L. Suhl, and S. Kramkowski, “A stochastic programming
approach for robust vehicle scheduling in public bus transport,” Procedia
- Social and Behavioral Sciences, vol. 20, pp. 826 — 835, 2011.

O. Cats and E. Jenelius, “Planning for the unexpected: The value of
reserve capacity for public transport network robustness,” Transportation
Research Part A: Policy and Practice, vol. 81, pp. 47 — 61, 2015.
“Charter Bus Pricing,” |https://www.metropolitanshuttle.com/pricing/,
2019, [Online; accessed 27-November-2019].

D. Henion, “Charter Bus Prices: How to Calculate Your Rental
Costs,” https://gogocharters.com/blog/charter-bus-prices/, 2019, [Online;
accessed 27-November-2019].

“Baidu Maps,” https://map.baidu.com/, [Online; accessed 28-April-
2020].

“Google Maps,” https://www.google.com/maps/, [Online; accessed 27-
November-2019].

G. Britain, “Position and direction on the earth’s surface,” Admiralty
Manual of Navigation, vol. 1, pp. 1-23, 1964.

C. S. Ma and R. H. Miller, “Milp optimal path planning for real-time
applications,” in American Control Conference, 2006, pp. 1-6.

M. Lv, T. Gao, and N. Zhang, “Research of agv scheduling and path
planning of automatic transport system,” Int. Journal of Control and
Automation, vol. 9, no. 4, pp. 1 — 10, 2016.

P. Mcllroy, “Optimistic sorting and information theoretic complexity,”
in ACM-SIAM Symposium on Discrete Algorithms (SODA), 1993, pp.
467-474.

“Sort algorithm in Java,” https://docs.oracle.com/javase/7/docs/api/java/
util/Arrays.html#sort(byte[]), [Online; accessed 27-November-2019].
D. Gavalas, C. Konstantopoulos, and G. Pantziou, “Design and manage-
ment of vehicle-sharing systems: a survey of algorithmic approaches,”
in Smart Cities and Homes. Morgan Kaufmann, 2016, pp. 261 — 289.

Ji Liu (Member, IEEE) received the B.Sc. degree
from Xidian University in 2011, the master’s degree
from Telecom SudParis in 2013, the Ph.D. degree
from the University of Montpellier and the Microsoft
Research Inria Joint Centre, Inria Zenith Team in
2016. He was a Post-Doctoral Researcher with Inria
and LIRMM, University of Montpellier, France.
He is currently a Researcher with the Big Data
Laboratory, Baidu Research, Beijing, China. He has
published several articles in international journals
and conferences on scientific workflows, big data,

and cloud computing. His research interests include big data, applied machine
learning and distributed, and parallel data management.

Carlyna Bondiombouy received the master’s de-
gree from University Cheikh Anta Diop, Dakar, in
2013, and the Ph.D. degree in computer science
from the University of Montpellier in 2017. She is
currently a Researcher with the African Center of
Excellence in Mathematical Sciences, IT, and Appli-
cations. Previously, she was a Big Data Consultant
with Ysance, Paris. She has published several arti-
cles in international journals and conferences on big
data, databases, and cloud computing. She received
the best Ph.D. thesis Award from the Congolese

Government in 2017. Her research interests include data science, big data,
and polystores.

Lei Mo (Member, IEEE) received the B.S. degree
from the Lanzhou University of Technology, China,
in 2007, and the Ph.D. degree from the South China
University of Technology, China, in 2013. He is
currently an Associate Professor with the School of
Automation, Southeast University, Nanjing, China.
Previously, he was a Researcher with Inria Rennes,
1186 France, from 2017 to 2019, Inria Nancy,
France, from 2015 to 2017, and Zhejiang University,
China, from 2013 to 2015. His current research
interests include networked control systems, cyber-

physical systems, and embedded systems.

https://www.metropolitanshuttle.com/pricing/
https://gogocharters.com/blog/charter-bus-prices/
https://map.baidu.com/
https://www.google.com/maps/
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#sort(byte[])
https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html#sort(byte[])

Patrick Valduriez is currently a Senior Researcher
with Inria, working on distributed data management.
He has authored over 300 technical articles and
several textbooks, among which Principles of Dis-
tributed Database Systems. He is an ACM fellow.
He was the recipient of the 1993 IBM Scientific
Prize in Computer Science in France, the 2014
Innovation Award from Inria—French Academy of
Science, and the Best Paper Award at VLDB 2000.
He has been an Associate Editor of major journals
such as VLDBJ and DAPD. He has served as a Pc

Chair or a General Chair of major conferences, such as EDBT, SIGMOD,

and VLDB.

	Introduction
	Related Work
	Problem Definition
	Notations and Definitions
	Time Constraints
	A Motivating Example
	Cost Model
	Cost of A Path
	Cost of A Journey
	Renting Cost of A Path
	Cost to Return

	Problem Formulation
	Path Generation Problem
	Path Scheduling Problem
	Search Space Analysis

	Two-Phase Journey Scheduling
	Path Generation
	Adapted A-Star
	Near Optimal Algorithm
	Path Generation Algorithm Complexity

	Path Scheduling

	Experimental Evaluation
	Experimental Setup
	Experimental Results
	Near Optimal
	Average Case
	Limited and General Cases

	Concluding Remarks

	Conclusion
	Acknowledgement
	References
	Biographies
	Ji Liu
	Carlyna Bondiombouy
	Lei Mo
	Patrick Valduriez

