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Abstract—Electric vehicles (EVs) endow great potentials for 

future transportation systems, while efficient charge scheduling 

strategies are crucial for improving profits and mass adoption of 

EVs. Two critical and open issues concerning EV charging are 

how to minimize the total charging cost (Objective 1) and how to 

minimize the peak load (Objective 2). Although extensive efforts 

have been made to model EV charging problems, little 

information is available about model properties and efficient 

algorithms for dynamic charging problems. This paper aims to 

fill these gaps. For Objective 1, we demonstrate that the 

greedy-choice property applies, which means that a globally 

optimal solution can be achieved by making locally optimal 

greedy choices, whereas it does not apply to Objective 2. We 

propose a non-myopic charging strategy accounting for future 

demands to achieve global optimality for Objective 2. The 

problem is addressed by a heuristic algorithm combining a 

multi-commodity network flow model with customized bisection 

search algorithm in a rolling horizon framework. To expedite the 

solution efficiency, we derive the upper bound and lower bound 

in the bisection search based on the relationship between 

charging volume and parking time. We also explore the impact of 

demand levels and peak arrival ratios on the system performance. 

Results show that with prediction, the peak load can converge to 

a globally optimal solution, and that an optimal look-ahead time 

exists beyond which any prediction is ineffective. The proposed 

algorithm outperforms the state-of-the-art algorithm, and is 

robust to the variations of demand and peak arrival ratios.  
Index Terms—Electric vehicle; Online charging; Time-of-use 

pricing; Peak load; Prediction; Heuristic. 

I. INTRODUCTION 

ITH the increasing penetration of electric vehicles, the 

charging demand will dramatically increase at charging 
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stations [1]. Since the parking time of a vehicle usually 

accounts for more than 90% of a day [2], parking lots have 

played an important role for charging EVs, especially for 

workplaces, shopping centers and entertainment areas. The 

high penetration of EVs will have a significant impact on the 

electric grid. In particular, uncoordinated EV charging will 

result in an increase in charging costs and system peak loads. 

According to the time-of-use (TOU) electricity price, the 

pricing in peak hours is approximately two or three times that 

of in off-peak hours. In the context of TOU pricing, the 

charging schedule has a great impact on charging costs. 

Generally, the parking time (e.g., duration of working hours) is 

longer than the minimum required charging time. This 

provides opportunities for commercial aggregators or charging 

service providers to charge EVs flexibly to reduce the energy 

procurement costs and maximize their profit. Therefore, one of 

the problems is how to coordinate EV charging so as to 

minimize the total charging cost. On the other hand, 

uncoordinated EV charging would increase the peak-time 

demand and overload the grid, which imposes higher strains 

on the generation units and transmission and distribution 

systems. This may lead to unexpected voltage drops and poor 

power quality [3]-[5]. To ensure a level of operational security, 

more costly peaking generators are required to overcome the 

challenges of peaking power needs. Therefore, another critical 

issue for EV charging is how to reduce the peak load. The 

purpose of this paper is to address dynamic EV charging 

problems with two aforementioned objectives: (1) minimizing 

the total charging cost; and (2) minimizing the peak load. With 

regard to Objective 2, two schemes are studied depending on 

whether the anticipated future vehicle arrivals are taken into 

account.  

The successful large-scale implementation of dynamic EV 

charging largely depends on developing efficient solution 

algorithms. Tang et al (2016) [6] provided an overview of 

online EV charge scheduling algorithms under various 

conditions and highlighted the importance of future data. From 

the modeling perspective, the dynamic charging schedule 

problem has a more complex structure than the respective 

static versions. Unlike the static versions, in the dynamic 

counterpart, the arrival times and charging information of the 

vehicles are not known in advance. A common solution to 

handle the dynamic variant is to construct a sequence of 

instances in a rolling horizon framework, where each sequence 

is treated as a static problem. However, this would greatly 
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increase computational burden and hinder the implementation 

of a real-time optimal charging solution, especially when the 

number of instances is sufficiently large. Therefore, a critical 

challenge to address the dynamic charging problem is how to 

achieve globally optimal solution in a reasonable amount of 

time. Although a variety of intelligent algorithms have been 

proposed in the literature [7], little evidence is provided about 

the model properties and efficient algorithms for dynamic 

charging problems. It is well recognized that the greedy 

algorithm, though it will not necessarily achieve a global 

optimum, is more advantageous in terms of computational 

efficiency than other algorithms since it only makes a locally 

optimal choice at each stage. A problem is characterized by the 

greedy-choice property if a globally optimal solution can be 

achieved by making locally optimal choices. In other words, 

we can make whatever choice seems best at the moment and 

then solve the subproblems that arise later. In this way, the 

computational efficiency could be improved significantly.  

Previous studies on EV charge scheduling optimization 

have not investigated the greedy-choice property, which limits 

the improvement of algorithm’s efficiency and operational 

flexibility. Meanwhile, the collective effects of coordinated 

charging control are closely related to the traffic demand, 

while in practice the mobility patterns and traffic conditions 

are very complex. With an expectation that a variety of factors 

(e.g., charging demand, arrival patterns) may exert an 

influence on the charging system, there is an imminent need to 

comprehensively evaluate how these factors affect the system 

performance, such as algorithmic efficiency and energy 

savings. Such an understanding is important for the design 

optimization of human-energy-mobility systems. This paper 

aims to fill the aforementioned methodological gaps and 

assess the impacts. 

The remainder of the paper is organized as follows. In the 

next section, literature review is given. In Section III, the 

model formulations, model properties and solution algorithms 

are provided. Section IV performs experiments to verify the 

effectiveness of our models. Finally, Section V provides 

conclusions and future works. 
TABLE I  

PRIMARY NOTATIONS USED IN THIS ARTICLE 

Notation Description    Charging volume of vehicle       Maximum power limit of vehicle       Arrival time of vehicle       Departure time of vehicle            1 if vehicle    is parking during time window  ; 
otherwise it is 0    Length of the time window   Number of time windows   Number of vehicles    Required charging time of vehicle        Charging end time of vehicle       Cost for vehicle      Electricity unit price in time window      The load in time window   without accounting for 

current vehicle (and future vehicles) 

   The load in time window    accounting for current 

vehicle (and future vehicles)    Optimal result for the peak load    Upper bound of        Lower bound of        opt. variable, Charging power available in time 

window   for vehicle   

II. LITERATURE REVIEW 

Generally, EV charging strategies can be divided into two 

categories: decentralized strategies and centralized strategies. 

In the former strategy, EV owners can determine the charging 

time and power. The network operator can impose certain 

price incentives to achieve peak shaving and valley infilling 

[8]-[10]. Although EV owners are provided with more 

flexibility under such a strategy, the solutions may not be 

optimal from a system perspective. For the centralized 

strategy, the aggregator or service provider determines the 

charging schedule for all EVs to achieve an optimal system.  

With respect to the objectives, some efforts were made to 

minimize the total cost and maximize the profit of operators, 

while the others focused on reducing the peak load and grid 

congestion by filling the valleys. He et al [11] proposed both 

globally and locally optimal scheduling schemes for EV 

charging and discharging, in an aim to minimize the total cost. 

Sundstrom and Binding [12] optimized the charging plan to 

avoid distribution grid congestion considering the imperatives 

of EV owners. Maigha and Crow [13] investigated the 

charging coordination for valley filling and charging cost 

reduction. Bandpey and Firouzjah [14] presented a two-stage 

charging strategy for plug-in electric vehicles to reduce the 

load peak considering the nonlinear dynamic behavior of 

batteries. Robu et al (2013) [15] developed an online resource 

allocation method and applied it to EV charging, where the 

agents need to report the marginal valuation function and 

maximum consumption rate upon arrival. Jian et al [16] 

developed an efficient valley-filling strategy for centralized 

coordinated charging for large-scale EVs. Alinia et al (2019) 

[17] developed a social welfare maximization problem for 

online EV charge scheduling with the charging station 

capacity and uncertain EV arrivals, considering the on-arrival 

commitment and group-strategy-proofness. Yang et al [18] 

investigated the charge scheduling optimization problem for a 

wirelessly charged electric bus system, with the objective to 

minimize the operating electricity cost. Zhang et al [19] 

investigated delay-optimal charge scheduling for a charging 

station under long-term cost constraint. Ammous et al [20] 

considered joint delay and cost optimization of on-demand EV 

charge scheduling. 

There is also some literature that investigates the use of 

multi-objective optimization to make the trade-offs between 

different interests. For example, Kang et al [21] presented an 

EV charging scheduling system with the objective of 

minimizing negative impacts to the power grid while meeting 

the users’ charging requirements. Zakariazadeh et al [22] 

considered both minimization of total operational costs and 

emissions in the charging scheduling problem. Zhan et al [23] 

proposed a decentralized method to schedule EV charging 

loads to fill load valleys. Hajforoosh et al [5] proposed 
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algorithms that minimize the costs with related to energy 

generation and grid losses while maximizing the power 

delivered to EVs. Wu et al [24] proposed a battery swapping 

station model to determine the optimal charging scheme for 

incoming batteries, with the objective of maximizing the 

battery stock level in the station and minimizing the average 

charging damage. In addition to charging scheduling problems 

from the supply side, there also exist a handful of works on the 

management of power systems through economic incentives 

(e.g., adaptive pricing) and charging behavior from the 

demand side. For example, Zhang et al [25] proposed a pricing 

scheme to minimize the service dropping rate of charging 

stations via queuing theory.  

The mass adoption of online EV charging largely depends 

on the efficiency of solution algorithms. However, a critical 

issue of previous studies on EV charge scheduling 

optimization is that the greedy-choice property has not been 

investigated, which hinders the improvement of the algorithm 

efficiency and operational flexibility. In addition, how traffic 

conditions (e.g., charging demand, arrival patterns) exert 

influence on the system performance remains unclear. 

Distinctly from prior research, we investigate the model 

properties for these two objectives in dynamic charging 

problems. Commendably, we further propose efficient 

algorithms based on the theoretical properties, enabling the 

models’ applicability in large-scale scenarios. We also 

investigate the impact of traffic conditions (e.g., charging 

demand, arrival patterns) on the system performance. This 

research is expected to provide managerial insights for 

efficient coordinated charging control. 

To summarize, the contributions of our study include, but 

are not limited to: 

 We prove that in the ordinary sense, the dynamic 

charging problem with Objective 1 has the greedy-choice 

property that a globally optimal solution can be assembled by 

making locally optimal greedy choices, whereas the problem 

with Objective 2 cannot achieve global optimality with greedy 

choices. 

 To achieve global optimality with Objective 2, we 

propose a non-myopic charging model accounting for 

anticipated future charging requests. The model is addressed 

by a heuristic algorithm that combines a multi-commodity 

network flow model with a customized bisection search 

algorithm in a rolling horizon framework. In particular, we 

derive a set of valid inequalities for the bisection search 

algorithm to expedite the solution speed. 

 We conduct extensive numerical experiments to test 

the performance of our solution approach and derive 

significant managerial insights. In particular, our results show 

the following: 

-The demand levels and peak arrival ratios considerably 

affect the system performance.  

-With the non-myopic prediction-based strategy, the peak 

load can converge to the global optimal solution, and there is 

an optimal look-ahead time beyond which the improvement of 

any prediction is trivial. 

-The algorithm efficiency is quite good and robust to the 

variations of demand and peak arrival ratios. 

-The prediction-based strategy is robust to prediction 

uncertainty particularly under a high peak arrival ratio, which 

is very applicable to workplace charging which features 

commuting demand. 

III. MODEL DEVELOPMENT 

A. Problem Description 

With the summary of notations in Table I, we present the 

system model. We consider a time-slotted system model where 

the time horizon is divided into a number of equidistant time 

windows of length   . Each EV   is characterized by                  indicating its arrival time, departure time, 

maximum power limit, and charging volume. This information 

is available once the vehicle plugged into the system. We 

assume that there are sufficient number of chargers for all 

arrival vehicles and sufficient energy for charging. This 

assumption makes sense since in practice vehicles will not be 

allowed to enter a full parking station, and the charging lots are 

usually opened according to the design power capacity. The 

charging system creates a schedule (i.e., the charging time and 

the corresponding power for each vehicle) to achieve certain 

goals. In this study, we address two different objectives: (1) 

minimizing total charging cost and (2) minimizing the peak 

load. In practice, EVs arrive at parking lots at different times, 

such that the arrival time and other information of the vehicles 

(e.g., the charging volume and power limit) are not known in 

advance. Thus, in essence, the problem should be addressed in 

a dynamic manner. 

A rolling-horizon optimization framework is proposed in 

this study for dynamic EV charging. The research paradigm is 

shown in Fig. 1. The framework consists of two major 

components: a time window model and an optimization model. 

The inputs to the model include the vehicle arrival time, 

expected departure time, charging volume and power limit. 

The time window model calculates the number of time 

windows and numbers them according to when a vehicle 

arrives. Then, the information of time windows is passed to the 

optimization model which outputs the charging schedule for 

the arriving vehicle. 

The rolling-horizon optimization framework is event-based, 

and is triggered every time a vehicle is plugged into the system. 

At each event, the number of time windows and their indexes 

are updated. For the objective of minimizing the total charging 

cost (Fig. 1a), the only input required is the information of 

current vehicle. This is enough to optimize the solution 

globally, as will be proven in Section III.C.2). Unlike the first 

objective, to minimize the peak load (Fig. 1b), an input of the 

system load state is needed in addition to the current vehicle 

information. The input may also include future vehicles’ 
information depending on whether a prediction is incorporated. 

Then, the system load state will be updated recursively with 

the charging schedule. In the following, we first introduce the 

uncoordinated model, followed by models for two objectives. 
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a) minimizing total charging cost                                                              b) minimizing the peak load 

Fig. 1 Research paradigm of the models

B. Uncoordinated Mode 

To demonstrate the benefit of optimal charging schedules, 

the uncoordinated mode is used as the benchmark for 

comparisons, which is also commonly used in 

state-of-the-practice [15]. In this mode, the vehicle will be 

fully charged with the maximum power once plugged into the 

system. The actual end time depends on whether the fully 

charged time is larger than the due time.  

The required charging time and the charging end time of 

vehicle   are formulated as follows:          (1)                      (2) 

C. Objective 1: Minimizing the total charging cost 

Under Objective 1: minimizing the total charging cost, the 

EVs are required to charge as much as possible during 

low-price periods in order to save charging costs. Here, we 

introduce the concept of a moving time window. 

Time

Vehicle 2

 

Interval 1

Vehicle index

Vehicle 1
Interval 2 Interval 3 Interval 4

Interval 1 Interval 2 Interval 3

.

.

.

Vehicle k

.

.

.

Interval 1 Interval 2

T  
Fig. 2 Illustration of moving time windows 

As shown in Fig. 2, the time horizon is divided into a 

number of identical time windows of length   . The charging 

power in an interval is kept constant. Therefore, the number of 

time windows within the range between the vehicle arrival 

time     and departure time     is:                     (3) 

where     is the notation of the ceiling function. 

Since an EV will start being charged only at the start time of 

a time window, additional holding time may be induced. On 

the other hand, a vehicle might leave before the end time of the 

last time window, which leads to a waste of energy. Since the 

charging power in an interval remains constant, more 

flexibility could be provided when the length of the time 

window is relatively short. In this study, the length of the time 

window (  ) was taken as 1 minute. 

1) Model Formulation 

Since the pricing and arrival time of each EV are 

independent, the charging schedule of the preceding vehicles 

would not affect that of vehicles that arrive in the future. As 

such, the greedy algorithm can be used to solve the problem. 

That is, the overall schedule can be optimized by optimizing 

the charging schedule for individual vehicle (see Section 

III.C.2) for detailed proof). The formulation is given as 

follows: 

                             (4) 

where Eq. (4) specifies that the minimum total cost over all of 

the whole period equals the summation of the minimum 

charging cost for each vehicle. As a result, the optimization 

problem for vehicle   can be formulated as follows: 

                     (5) 

s.t.                    (6) 

                   (7) 

The objective function (5) minimizes the charging cost for 

vehicle  , and is defined as the sum of the product of the 

energy demands in each time window and the corresponding 

prices. Eq. (6) ensures that the charging power does not exceed 

the upper limit. Eq. (7) expresses that the charging volume of 

vehicle   is the sum of the energy demands in each time 

window.  

2) Model Properties 

The purpose of this section is to prove that the minimum 

charging cost problem has an optimal substructure and the 

greedy-choice property. This indicates that a globally optimal 

solution can be assembled by making locally optimal greedy 

choices. In other words, the charge schedule that minimizes 

the charging cost of each individual vehicle ensures the 
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minimization of total charging cost. 

Lemma 1. The minimum charging cost problem has an 

optimal substructure: Let     denote the minimum charging 

cost problem for vehicle  , vehicle    , …, and vehicle  . 

The optimal solution is                                  , and the 

corresponding objective function value is        . Then for 

the subproblems     and        , their optimal solutions are                     and                       , respectively, and the 

corresponding objective function values are         and          , respectively. 

Lemma 2. The minimum charging cost problem has a 

greedy-choice property: for any nonempty subproblem    , 

let {     } denote the charging schedule of vehicle   in 

chronological order, then      belongs to one of the solution sets. 

Proposition 1. The minimum charging cost problem has the 

greedy-choice property which means that a globally optimal 

solution can be assembled by making locally optimal greedy 

choices. 

D. Objective 2: Minimizing the peak load 

As discussed above, uncoordinated EV charging would 

increase the peak-time demand and overload the grid, which 

imposes higher strains on the generation units, and 

transmission and distribution systems. As such, another 

objective, which is very relevant to EV charging, is to 

minimize the peak load. The principle is to transfer the 

charging load from the peak hours to off-peak hours to achieve 

load valley-filling and reduce the peak demand load. 

In line with Section III.C, the studied period is divided into 

a number of time windows with a length of   . Let      denote 

the system load vector across time windows, in which the 

value of each component is set to 0 initially. Given a newly 

arriving vehicle and the corresponding charging schedule     , 

the system load state will be updated as follows. 

                 (8) 

1) Model Formulation 

Similar to Section III.C, we develop an optimization model 

for vehicle   with the objective of minimum peak load, which 

can be formulated as follows: 

                  (9) 

s.t.                    (10) 

                   (11) 

                    (12) 

Eq. (9) is the objective function for minimizing the peak 

load. Eq. (10) calculates the load of each time window. Eq. (11) 

specifies that the total charging volume of vehicle   equals the 

summation of the charging volumes of each time window. Eq. 

(12) ensures that the charging power     does not exceed the 

power limit of vehicle  .    represents the load in time 

window   accounting for vehicle  .    denotes the load in time 

window   without accounting for vehicle  , which is also a 

component of the system load vector     .     is a component of 

the charging vector     .  

2) Model properties 

Proposition 2. The minimum peak load problem does not 

have the greedy-choice property. 

E. A non-myopic prediction-based charging strategy for 

Objective 2 

Proposition 2 indicates that the problem cannot be 

optimized globally by making greedy-choices for each vehicle. 

Taking Fig. 18 as an example, if the information of vehicle 2 

can be known in advance or predicted, and vehicle 1 is charged 

with a relatively larger power as shown in Fig. 18(b) before 

vehicle 2 arrives, more idle power capacity could be available 

for later arriving vehicles. In this way, global optimality could 

be achieved. The commuting patterns, particularly on 

workdays, are quite regular and can be reproduced to a certain 

extent. This opens up more opportunities for optimal charging 

via prediction. Motivated by this observation, we propose a 

non-myopic charging strategy, which accounts for anticipated 

future requests, to achieve a globally optimal solution with 

Objective 2. 

Time

Vehicle 

k+1

Interval 1

Vehicle index

Vehicle

k

Interval 2 Interval 4 Interval 5 Interval 6

.

.

.

Vehicle 

k+m

Interval 3

Future 

vehicle

Current 

vehicle

Look-ahead time

 

Fig. 3 Illustration of time windows and look-ahead time 

To illustrate the prediction-based strategy, as shown in Fig. 

3, once vehicle   arrives, the system will first predict the 

relevant information for future vehicles               within the look-ahead time, such as the arrival time, 

charging volume and power limits. Subsequently, the charging 

schedule for vehicle   will be made accounting for the 

predicted information of future vehicles. 

The time windows are numbered from the arrival time of 

current vehicle   to the departure time of all vehicles predicted 

to arrive within the look-ahead time. At the instant when 

vehicle   arrives, the number of time windows is given as 

follows: 

                                         (13) 

To track the parking state of each vehicle, we introduce a 

new variable          to indicate whether vehicle                is parking during time window            . If 

the vehicle is parking,           ; otherwise,           . For example, if vehicle   is parking in interval 2, then           ; if vehicle     is not parking in interval 2, 

then               . 

Naturally, when the look-ahead time is long, more future 

vehicles can be included, and the outcome will be closer to the 

globally optimal solution. However, a longer look-ahead time 

increases the computational burden. Therefore, it is necessary 

to find the optimal look-ahead time by balancing the algorithm 

effectiveness and efficiency. 
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1) Model formulation 

For a newly arriving vehicle   and the corresponding   

vehicles within the look-ahead time, the minimum peak load 

problem can be formulated as follows: 

                  (14) 

s.t.                            (15) 

                              (16) 

                                                                                  (17) 

Eq. (14) is the objective function that minimizes the peak 

load. Eq. (15) calculates the load of each time window. Eq. 

(16) specifies that the total charging volume of each vehicle           equals the summation of the charging volume 

in each time window. Eq. (17) ensures that if vehicle   is 

parking in time window  , the decision variable     should not 

exceed the power limit of vehicle  ; otherwise, it is 0.     
represents the load in time window   accounting for vehicles      .    denotes the load in time window   without 

accounting for vehicles      .  

2) Solution method 

To solve this conundrum, we propose a heuristic algorithm 

that combines multi-commodity network flow model with a 

customized bisection search in a rolling horizon framework. 

The heuristic algorithm can be divided into two processes: (a) 

determination of system’s optimal load and (b) assignment of 

the charging power     to different time windows. In this 

heuristic algorithm,   and     are decision variables, where             is the objective function in maximum flow 

problem and the decision variable in the bisection search 

algorithm. Let us consider    be the optimal result for the peak 

load, then there are two possible outcomes. When     , then 

the charging demand of at least one vehicle cannot be satisfied; 

when     ,   is not an optional solution, although it satisfies 

the constraints. Hence, we adopt a bisection search algorithm 

to determine the optimal load    within the upper limit    and 

lower limit   . Given the load  , the charging events across 

time windows can be represented by the multi-commodity 

network flow model. The question is how to distribute the 

charging power     while satisfying the charging demands. 

O

Vehicle k

Interval 1

Interval 2

Interval 3 D

Interval N

O D Vehicle k Interval NOrigin Destination Vehicle Interval

.

.

.

Vehicle k+1

.

.

.

Vehicle k+m Interval N-1

1
( - )L D T 

2
( - )L D T 

3
( - )L D T 

1
( - )

N
L D T  

( - )
N

L D T 

k
CR T 

k
CR T 

+1k
CR T 

+1k
CR T 

k m
CR T  

k m
CR T  

k
E

1k
E 

k m
E 

 
Fig. 4 Representation of the network flow model 

 Representation of network flow 

The problem can be abstracted as a maximum flow 

problem, which involves finding a maximum flow through a 

single-source, single-sink flow network. The objective is to 

determine the charging power     given a predefined system 

load  , while satisfying the charging demands. For a newly 

arriving vehicle   and the future predicted vehicles              , the following notations are used to represent the 

flow network         : 
 The set of nodes   consists of (i) the origin of the 

network,  , (ii) the destination of the network,  , (iii) the 

vehicle nodes               , with     nodes in 

total, (iv) the time window nodes          , with   nodes in 

total. 

 The set of edges   consists of (i) the edges between the 

origin of network,  , and the vehicle nodes, which is     

edges in total, (ii) the edges between the vehicle nodes and the 

time window nodes, with no more than        edges in 

total, (iii) the edges between the time window nodes and the 

destination of network  , with   edges in total. 

Fig. 4 shows the problem representation characterized by 

the network flow model. The value on each link represents the 

flow capacity. The number of links originating from the origin 

equals the number of vehicles, and the link flow    represents 

the charging volume required by vehicle  . The time window 

nodes connected by vehicle   represent the corresponding 

charging time. The charging volume in each time window 

should not exceed the product of the maximum power limit 

and length of the time window. The link capacity from a time 

window node to the destination node specifies that in this time 

window, the total charging volume should not exceed a critical 

value, which equals the product of the time window length    

and the deviation between the maximum load and the current 

system load     . 
Obviously, the maximum flow will not exceed          . If 

the network maximum flow is equal to          , then the 
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charging demand is satisfied. On the other hand, if the 

maximum flow is less than          , then there is unmet 

charging demand. Typically, there is no closed-form solution 

for the exact    value. We can use the following bisection 

search approach to find an approximation of   , which can be 

arbitrarily close to the true optimal value. 

 Bisection search 

Given the upper and lower bound    and    (see Upper 

bound and lower bound of    in Section III.E.2)), we can use 

the following bisection method in Algorithm 1 to find the 

optimal load   . More specifically, develop a network flow 

model          given            , and solve it using 

typical maximum flow algorithm, such as the Ford-Fulkerson 

algorithm. If the charging demand is satisfied, then     ; 

otherwise,     . Through a number of iterations, there will 

exist an approximation of   close to    within a certain 

accuracy threshold. Based on this, the charging schedule for 

vehicle   can be obtained. 

Algorithm 1 The bisection method to approximate    
INPUT: upper limits   , lower limits   , accuracy 

threshold 

1:  while         accuracy threshold 

2:                ; 

3:    Develop a network flow model          given  , 

and solve it using solve it using typical maximum flow 

algorithm, such as the Ford-Fulkerson algorithm; 

4:    if the charging demand is satisfied then  

5:          ; 

6:    else 

7:          ; 

8:    end if 

9:  end while 

  RETURN: charging schedule for vehicle   

 Upper bound and lower bound of    
In this section, we derive the upper bound and lower bound 

on the peak load. We rely on these bounds in the bisection 

search algorithm to restrict the solution space. When the 

optimal load peak    is found, the charging demand is satisfied 

exactly with a maximum flow of          . In Fig. 4, the 

destination and other nodes apart from the destination can be 

treated as a cut set with a capacity of                  . 

According to the max-flow min-cut theorem, the volume of 

any feasible flow should not exceed the capacity of any cut set. 

This is equivalent to the relaxation of constraints, see detailed 

proof in Proposition 4. Therefore, we have the following 

inequalities: 

                              (18) 

To avoid the nonnegative link, the optimal peak load    
should not be less than the system load    in each time 

window. 

                (19) 

To further reduce the computational complexity, the lower 

bound can be the greater of Eqs. (18) and (19), that is,                                                 (20) 

 For the minimization problem, the upper bound 

corresponds to the value of objective function given any 

feasible solution satisfying the constraints. If all vehicles start 

being charged at the arrival time with “minimum power” so 
that they are fully charged immediately before the departure 

time, then the charging power of vehicle   is:                                                                                 
(21) 

Evidently, such a solution satisfies all constraints. 

Substituting Eq. (21) into Eq. (15) yields the upper bound of 

the objective function as follows: 

                               (22) 

3) Model properties 

In the previous sections, we have shown that the 

prediction-based charging strategy can be abstracted as a 

network flow model that can be solved by the maximum flow 

and the bisection search method. We now investigate the 

complexity of the heuristic algorithm. 

Proposition 3. Assume that the number of bisection searches 

is   times, such a prediction-based charging strategy can be 

solved in polynomial time with complexity of        . 
Proposition 4. For the peak load minimization problem, the 

lower bound is the results under the relaxation of 

constraints.                          
4) Prediction of vehicle information 

For the prediction-based charging strategy, the information 

of future arriving vehicles within the look-ahead time should 

be provided. The charging station can have full knowledge of 

future demand. This can be realized for instance, by requiring 

that EV owners book a parking lot along with their arrival time 

and charging demand through parking reservation systems 

[17][26][27]. Before the parking reservation systems are fully 

enforced, the charging station may also gain partial knowledge 

on future demand by prediction [6]. In practice, the commuting 

patterns, particularly on workdays, are quite regular and can be 

estimated to a certain extent. Thus, the statistics of EV arrival 

process often exhibit periodicity. For example, the arrival rate 

of residential EV charging demand could have a periodicity 

where the period is one day. Given this fact, the vehicle state 

information can be estimated based on historical data.  

In this section, we propose a potential prediction approach 

for future arriving vehicles based on historic data (though 

being not the research focus of this paper). In principle, it can 

be substituted by any other methods or empirical rules, which 

would not affect the generalization of the framework. A 

prediction is triggered each time a vehicle arrives. In this study, 

the kernel density estimation model is adopted to establish a 

curve representing the historic accumulative vehicle arrivals 

versus arrival time. With the fitted curve, the arrival time and 

the number of future vehicle   within a rolling horizon can be 

estimated. This is done by moving horizontally on the diagram 

for each arriving vehicle until intersecting the cumulative 

curve and then vertically; this results in the predicted arrival 

time. Other various machine learning-based algorithms in the 

literature can also be adopted to predict vehicle arrival time, 

which is out of the scope of this study. We now discuss the 

prediction of other vehicle state information (i.e., the parking 

time, charging volume, and power limit), given that the 

predicted future vehicle arrival time.  
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Since the charging volume and parking time are continuous 

variables, it is reasonable to take the average of the historical 

data as the predicted values. In contrast, the charging power 

limit is a discrete variable. According to the principle of 

maximum likelihood, it is more reasonable to take the mode of 

the historical data as an estimate, where the mode represents 

the value that is repeated most often in the dataset. Given the 

arrival time     for vehicle   and the corresponding look-ahead 

time, the solution framework for prediction is provided in 

Algorithm 2. The validation of prediction accuracy will be 

provided in Section IV.E. 

Algorithm 2 Solution framework for predicting state 

information of future arriving vehicles 

INPUT: vehicle information                ) 

1: Obtain the arrival time for   vehicles during the 

look-ahead time,                      
2:  For the predicted vehicle                arriving 

at time    , estimate the charging volume, parking time, and 

charging power limit using historical data within a duration 

of 15 minutes. More specifically, take the average of 

charging volume and parking time, and the mode of the 

charging power limit of vehicles arriving from             to                as the estimate. 

3:  Repeat the above processes until the prediction for   

vehicles is completed. 

RETURN: prediction for   vehicles, arriving within the 

look-ahead time, of (   ,   ,    ,    (           )) 
IV. SIMULATION EXAMPLE 

A. Case Description 

The study case is the Citic Plaza, a multi-story car park in 

Guangzhou, with a total of 900 parking spaces. The historical 

vehicle arrival information is utilized to mimic the workplace 

charging, and it is found that the arrival time of commuting 

vehicles follows a normal distribution           with a mean 

of 9 (h) and a standard deviation of 0.5 (h), while the arrival 

time of other vehicles follows a uniform distribution        . 
In addition, the parking time for overall vehicles follows a 

normal distribution           with a mean of 8 (h) and a 

standard deviation of 0.5 (h). The corresponding number of 

parking spaces is assumed to be the maximum number of 

charging lots.  

 
Fig. 5 Time of use charging price 

Fig. 5 shows the commercial time-of-use electricity price 

for the parking lot. The price is the lowest from 24:00 to 08:00, 

while it is the highest in the period of 14:00 to 17:00 and 19:00 

to 22:00. Generally, an EV consumes 15 to 20 kw per 100 

kilometers. According to our survey, the average daily travel 

distance in Guangzhou is 36-40 kilometers. Then, the 

minimum and maximum power consumption can be calculated 

as                  and               , 

respectively. Therefore, the required charging volume is 

approximated as a uniform distribution         . Since there 

are a total of 900 parking spaces in the Citic Plaza, the 

numbers of arriving vehicles are taken as 900, 600, 300 under 

high, moderate, and low demand circumstances, respectively. 

B. Optimization of look-ahead time 

The look-ahead time, during which a number of future 

charging requests are taken into account, is a new feature in the 

prediction-based coordinated charging strategy (Section III, E). 

In this section, we analyze the impact of the length of the 

look-ahead time on system performance. Generally, a longer 

look-ahead time indicates that the charging decision is made 

coordinately with more information of historical vehicles is 

utilized for prediction, which may improve the prediction 

accuracy. However, a longer look-ahead time will also 

increase the computational burden. Therefore, it is imperative 

to optimize the look-ahead time by balancing the algorithm’s 

effectiveness and efficiency. 

 
Fig. 6 The peak load under different look-ahead times 

To illustrate, let us consider a case where the peak arrival 

ratio is 50%, and the demand level is low. The peak arrival 

ratio is defined as the ratio of the number of commuting 

vehicles (numerator) to the total number of vehicles 

(denominator). Generally, a higher peak arrival ratio indicates 

a more regular commuting pattern. The myopic charging 

strategy without prediction can be regarded as a special case of 

a non-myopic strategy without any look-ahead time. We 

generated 30-day datasets according to the aforementioned 

distributions. Fig. 6 shows the peak load under different 

look-ahead times using a box and whisker plot. The peak load 

decreases in an exponential manner with increases in the 

look-ahead time. This indicates that an increase in the number 

of anticipated arriving vehicles contributes to reducing the 

peak load. However, there is a cut-off point (3 h in this case) 

beyond which the reduction of peak load becomes trivial. In 

other words, there is a non-effect region for prediction. 

Therefore, to ensure algorithm effectiveness and efficiency, 

the optimal look-ahead time can be set as 3 h. 

We further investigate the optimal look-ahead time under 

various combinations of peak arrival ratios and demand levels, 
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and the results are shown in Fig. 7. The vertical lines in the 

figures represent the optimal look-ahead time. As we can see, 

the optimal look-ahead time decreases as the peak arrival ratio 

increases. This is because a higher peak arrival ratio indicates a 

more concentrated arrival time distribution for commuting 

vehicles and a weakened influence of vehicles arriving during 

off-peak hours, such that the system performance will rely 

more on the vehicles arriving in peak hours. As a result, a 

shorter look-ahead time is required to forecast the vehicle 

arrivals when the peak arrival ratio is higher. We also observe 

that the optimal look-ahead time is longer when the demand 

level is higher. One potential reason is that with a higher 

demand, the effect of future arriving vehicles becomes more 

significant. Consequently, more predicted vehicles (and thus 

longer look-ahead time) are needed to achieve a better 

performance. 

 
Fig. 7 The peak load under different look-ahead time, peak arrival ratios, and 

demand levels 

C. Computation performances of the proposed algorithm 

In this section, we analyze the computational efficiency of 

the proposed algorithm. The search times of the bisection 

search algorithm is determined by the initial upper and lower 

bounds. To reduce the accumulated errors while improving the 

computation efficiency, in this study the convergence 

threshold is set as 0.01 kW. 

 
Fig. 8 The performance of the algorithm with dynamic arriving vehicles 

Fig. 8 shows the change of initial upper bound, lower 

bound and the corresponding optimal value, as well as the 

search times with dynamic arriving vehicles over time, where 

the demand is high and the peak arrival ratio is 90%. As we can 

see, the optimal value is closer to the lower bound, and the 

optimal value begins to be identical to the lower bound after 

100-th vehicle arrives, which corresponds to the rush hour 

when the peak load happens. With the increase of arriving 

vehicles, the search times (the number of iterations) first 

increases before hitting the threshold, followed by a long 

plateau, and then decreases drastically to 0. This is because the 

heavy charging demand during the peak hours enlarges the 

difference between the upper bound and lower bound, which 

leads to more search times. During the off-peak hours, the 

(historic) peak load remains the same, and the gap between the 

upper bound and lower bound narrows down, which leads to 

the reduction of search times. The search times drops to 0 

immediately after the last vehicle arrives. Overall, the 

computational efficiency is quite good, with an average search 

times of 14. 

 
(a) with optimal look-ahead time  

 
(b) with various look-ahead time 

Fig. 9 Search times under various demand levels and peak arrival ratios  

We analyze the algorithm performance under different 

traffic conditions using the 30-day datasets. Fig. 9(a) shows 

the search times under various demand levels and peak arrival 

ratios using a box and whisker plot, given the optimal 

look-ahead time. One can see that the algorithm requires a 

larger number of iterations to reach the optimal solution as the 

demand level increases, which is expected since higher 

charging demand enlarges the difference between the upper 

bound and lower bound. On the other hand, the search times 

changes slightly with the increase of peak arrival ratio. This 
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indicates that peak arrival ratio has little influence on the 

difference between the upper bound and lower bound. 

Fig. 9(b) presents the search times under various demand 

levels and peak arrival ratios with various look-ahead time. We 

observe that the search times increases with the increase of 

look-ahead time, which is due to the increasing number of 

variables (vehicles) that are added to the calculation at each 

iteration. In addition, when the peak arrival ratio is higher, the 

impact of look-ahead time on the search times becomes less 

significant. This is because the number of vehicles involved in 

calculation is already large under high peak arrival ratio, such 

that any increase of look-ahead time contributes less to the 

search times. 

 
Fig. 10 Comparison of computational time 

In the literature, a variety of intelligent algorithms have 

been proposed to deal with EV charge scheduling problems [5]. 

To validate the advantage of algorithmic computation 

efficiency, it is imperative to compare the computational time 

of our proposed algorithm with those of the state-of-the-art 

algorithms. To be representative, we select the genetic 

algorithm (GA) as the benchmark, which is a typical type of 

intelligent algorithms with random search. The programs are 

implemented in Matlab 2018b on an Intel(R) 

Core(TM) i5-5200U CPU @ 2.20 GHz with 8.0GB DDR3. To 

illustrate, let us consider a case where the peak arrival ratio is 

10%, and the demand level is low. Fig. 10 shows the average 

CPU time for five instances (the first five arriving vehicles) 

under different look-ahead time. As we can see, the solution 

time of GA is significantly higher than that of our algorithm, 

and the gap becomes larger when the look-ahead time 

increases. More specifically, the solution time of our algorithm 

only needs less than 0.5 second in all scenarios, whereas that 

of GA increases rapidly as the look-ahead time increases, and 

consumes approximately 10 min with only a prediction 

horizon of one hour. This suggests that the proposed algorithm 

can be efficiently applicable for online charge scheduling. On 

the contrary, GA cannot be used for online scheduling since it 

is nearly impossible to obtain the optimal results in a 

reasonable time, particularly when the demand is heavy and 

the look-ahead time is long. Better still, from the error bars we 

observed that the stability of our algorithm is much stronger 

than that of GA. 

D. Model comparisons 

In this section, we compare the system performance for 

different charging strategies. Our optimization models can be 

retrofitted to include multiple objectives by using a 

lexicographic method. The principle is that after the first 

objective is optimized, the result is added to the model of the 

second objective as a constraint in the second stage. This 

ensures that the total cost is not worse than the result of the 

first stage. Since the peak load minimization is associated with 

the power capacity design, here the first objective is to 

minimize the peak load while the second objective is to 

minimize the charging cost. Taking the base case as an 

example (peak arrival ratio of 50% and a low demand level), 

we conduct simulations for the following models: 

Uncoordinated, Objective 1, Objective 2 without prediction, 

Objective 2 with prediction (under optimal look-ahead time), 

and Bi-objective. The system load and charging cost are 

selected as the evaluation indicators. 

 
Fig. 11 The charging power profile under different strategies 

Fig. 11 shows the aggregated charging power under 

different strategies. As presented, the charging power first 

increases and then drops during the period from 08:00-10:00 

under the uncoordinated strategy. The charging power is 

distributed in the low-price period under Objective 1. In 

comparison, the peak load is the lowest and appears as a 

smooth hump under Objective 2 with prediction. In particular, 

compared to Objective 2 without prediction, the charging 

power reaches its peak earlier and is spread over a wider range. 

This is because with prediction, the system is able to charge 

the vehicles with a relatively larger power demand in advance, 

which reduces the future peak load. Under the bi-objective 

strategy, the peak load is identical to that of Objective 2 with 

prediction, while the charging power during evening peak 

spreads over a wider range of low tariff period. 
TABLE II  

SYSTEM PERFORMANCE UNDER DIFFERENT STRATEGIES 

Performance Uncoordinated 
Objective 

1 

Objective 

2 

Objective 

2 with 

prediction 

Bi- 

objective 

Peak load 

power (kw) 
663.90 301.76 152.10 123.14 123.10 

Total 

charging cost 

(RMB) 

1261.02 1089.70 1445.79 1424.36 1307.24 

Average 

charging cost 

(RMB/veh) 

4.20 3.63 4.82 4.75 4.36 

Solving the optimization problems for the collected 

datasets under the different strategies yields the system 

performance shown in Table II compared to the uncoordinated 

strategy, the peak load and charging cost are considerably 
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lower under Objective 1. The total cost savings for 300 

vehicles is 171.32 RMB with an average savings rate of 

13.57%. The peak load reductions under Objective 2 with and 

without prediction are 81.45% and 77.09%, respectively, at the 

expense of an increase in charging costs of 14.65% (0.62 RMB 

per vehicle) and 12.95% (0.55 RMB per vehicle), respectively. 

Compared with Objective 1, the peak load reductions under 

Objective 2 with and without prediction are 59.19%and 49.6%, 

respectively. Compared to Objective 2 with prediction, the 

total charging cost under bi-objective strategy is reduced by 

8.22% (0.39 RMB per vehicle), while maintaining the same 

peak load.  

 
Fig. 12 Charging cost savings under Objective 1 relative to the uncoordinated 

strategy 

To further verify the effectiveness of the models, a 

sensitivity analysis is conducted under various demand levels 

and peak arrival ratios. Again, the 30-day datasets are used for 

each experiment. Fig. 12 shows the cost savings under 

Objective 1 relative to the uncoordinated strategy. One can see 

that the cost savings decrease with the increases in the peak 

arrival ratio. This is because a number of vehicles arriving 

during peak hours would still be charged during the high-price 

period due to their expected departure time, such that the cost 

savings during off-peak hours is larger than that during peak 

hours. As a result, less cost savings can be expected when the 

peak arrival ratio is higher. 

Fig. 13(a) presents the peak load savings by Objective 2 

with prediction relative to the uncoordinated strategy. As we 

can see, the savings increase with the increase in peak arrival 

ratio at a decreasing rate. When the peak arrival ratio reaches 

0.4, the improvements become trivial. This is because as 

vehicles arrival become denser, the system will assign more 

vehicles to charge during off-peak hours, which contributes to 

load leveling. However, due to parking and departure time 

constraints, load leveling could become more difficult with an 

increase of the peak arrival ratio. 

Fig. 13(b) presents the peak load savings under Objective 2 

with prediction. The prediction could lead to load reduction of 

13.4%-28.8%. The savings are reduced as the peak arrival 

ratio increases, and the savings increase as the demand level 

increases. As concluded in Section IV.B, a higher peak arrival 

ratio contributes to reducing the optimal look-ahead time, 

while a higher demand level leads to a longer optimal 

look-ahead time. In other words, when the peak arrival ratio is 

higher and the demand level is lower, the effect of the 

look-ahead time is weakened such that the performance 

difference of strategies with and without prediction will 

decrease. 

 
(a) 

 
(b) 

Fig. 13 Peak load savings under Objective 2 with prediction relative to: (a) the 

uncoordinated strategy; (b) Objective 2 without prediction 

Moreover, we observe from Fig. 12 and Fig. 13(a) that the 

impact of demand levels is insignificant, particularly at high 

demand levels. For Objective 1, minimizing the total charging 

cost is effectively equivalent to minimizing the charging cost 

for each vehicle individually (Proposition 1). Since the cost 

savings for each vehicle is independent of the demand level, 

the impact of the demand level on the total cost savings would 

be limited. In contrast, the charging demand can be 

coordinated under Objective 2 with prediction, which 

mitigates the effect of the demand level to a large extent. 

In addition, according to the error bars in Fig. 12 and Fig. 

13, the savings variability generally decreases with increases 

in the peak arrival ratio or the demand level. This is because 

the vehicle arrival is a stochastic event; when the demand level 

is higher, the saving would be closer to an expected value. On 

the other hand, the commuting vehicles will account for a 

larger proportion as the peak arrival ratio increases. Since the 

arrival pattern of commuting vehicles is more regular and 

predictable, a lower variability of savings can be expected. 

E. Stability analysis of the prediction-based strategy 

While it is shown that the non-myopic charging strategy 

with prediction could reduce the peak load, it is not uncommon 

for an operator to face prediction uncertainties in practice. 
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Thus, it is imperative to verify the stability of such a strategy 

under various scenarios. In this section, using the prediction 

method proposed in Section III.E.4) (Algorithm 2) and a 

cross-validation method, the impact of the prediction error on 

the system performance is explored under different peak 

arrival ratios and demand levels. To this end, the entire 30-day 

data are divided into training data (80%, 1st-24th day) and 

testing samples (20%, 25th-30th day). 

 
Fig. 14 Prediction performance of Algorithm 1 for parking time, power limit 

and charge volume 

Fig. 14 shows the prediction performance of Algorithm 2 

for parking time, power limit (CR) and charge volume (E) 

under different scenarios. As we can see, the mean absolute 

percentage errors (MAPEs) of power limit and charge volume 

do not vary across different scenarios, whereas that of parking 

time is reduced as the peak arrival ratio increases. This is 

because the commuting demand is in the majority during rush 

hours, such that the parking time is quite regular. 

 
Fig. 15 System load profile under Objective 2 

As an illustration, let us consider a case where the peak 

arrival ratio is 50% and under low demand. The vehicle state 

information of the 25th day is forecasted using the historical 

data (1st-24th day). With the predicted information, the 

charging schedule and the corresponding power profile are 

generated. The results are compared with those of without 

prediction and perfect prediction. As shown in Fig. 15, the 

profile under prediction-based strategy reveals oscillation at 

approximately 10:00 am. The peak load with prediction error 

is higher than that with perfect prediction but lower than that 

without prediction, with a relative error of 12.8%.  

 
Fig. 16 Distributions of relative errors under different look-ahead time and 

traffic conditions 
We further analyze how the traffic conditions (i.e., demand 

level and peak arrival ratio) will affect the accuracy (the gap of 

peak load between that with perfect prediction and prediction 

error). The look-ahead time is set as varying from 0.25 times to 

1 times of the optimal look-ahead time. Fig. 16 presents the 

MAPEs using a box and whisker plot. As we can see, under the 

same demand level and look-ahead time, the relative errors 

decrease as the peak arrival ratio increases. The possible 

reason is that the arrival pattern of commuting vehicles 

arriving in peak hours is more regular, such that more accurate 

prediction could be achieved. In particular, when the peak 

arrival ratio is larger than 0.7, the accuracy could be quite 

acceptable with a relative error as low as approximately 10%. 

This reveals promising application potentials for workplace 

charging where peak arrival ratio is usually high due to the 

characteristic of commuting demand. 

V. CONCLUDING REMARKS 

Efficient charge scheduling management is crucial for 

profitability and mass adoption of EVs. How to charge EVs in 

a cost-effective manner and how to mitigate overloading are 

two critical and open issues in the realm of EV charge 

scheduling. This paper investigates the model properties and 

efficient algorithm for the two objectives. For Objective 1, we 

demonstrate that the greedy-choice property applies in that a 

globally optimal solution can be assembled by making locally 

optimal greedy choices, whereas it does not apply to Objective 

2. To solve to global optimality for Objective 2, we proposed a 

prediction-based charging strategy which accounts for 

anticipated future demand within a look-ahead time. This is 

addressed by a heuristic algorithm combining a 

multi-commodity network flow model with bisection search 

algorithm in a rolling horizon framework. In particular, to 

expedite the solution speed of the bisection search algorithm, 

the upper bound and lower bound are derived based on the 

relationship between charging volume and parking time. 

The proposed strategies were tested and compared under 

different operational settings by simulations. The impact of 

demand levels and peak arrival ratios on the system 

performance were investigated. The results showed that under 

the prediction-based strategy, the peak load can converge to 
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global optimality within the effective look-ahead time. The 

prediction could lead to load reduction of 13.4%-28.8%. In 

particular, there exists an optimal look-ahead time beyond 

which any predicted information has little effect. The optimal 

look-ahead time decreases when the peak arrival ratio is higher 

or when the demand level is lower. The proposed algorithm is 

much more efficient than the state-of-the-art algorithm, and 

robust to the variations of demand and peak arrival ratios. We 

also conducted sensitivity analysis to explore the relative 

savings in charging cost and peak load by the proposed 

strategies under different peak arrival ratios and demand levels. 

In addition, we also proved experimentally through 

cross-validation that the prediction-based strategy is robust 

particularly under a high peak arrival ratio. This suggest a 

promising application potential for workplace charging, which 

is gaining increasing attention with the capability of 

overcoming the range-anxiety problem and other drawbacks of 

EVs [28]. 

This paper opens up new research directions. For example, 

future research may continue to incorporate an extended list of 

constraints under various operational settings. In addition, it 

would be interesting to refine the prediction approach to 

further improve the robustness of the prediction-based 

charging strategy. 

APPENDIX 

A. Proof of Lemma 1 

According to the principle of “cut-and-paste”: As a 
component of optimal solution for the master problem, the 

solution of each subproblem is optimal. This can be 

estabilished by proof by contradiction. Assume that there is a 

solution set                         that satisfies                 , 

then a solution set                                              can be 

constructed that satisfies the constraints for    . The objective 

function value for such a solution set is                   , 

which is less than the optimal value of    , i.e.,        . This 

contradicts the assumption that                                          is the optimal solution. 

Therefore, for the subproblem    , the optimal solution and 

the corresponding objective function value are                     
and        , respectively. Similarly, it can be proven that for 

the subproblem        , the optimal solution and the 

corresponding objective function value are                       , 
and          , respectively. 

B. Proof of Lemma 2 

Let                     denote one of the optimal solution sets 

of    , of which        is the charging schedule of vehicle   in 

chronological order. If              , then      belongs to one of 

the solution sets of    . If              , then                     
can meet the constraints of    , and the optimal value is equal 

to                    . Therefore,                     is also an 

optimal solution set of     which contains {    }. 

C. Proof of Proposition 1 

In Lemma 1, we have proven that the optimal solution of the 

minimum charging cost problem contains the optimal solution 

of its subproblem. In Lemma 2, we have proven that the 

overall optimal solution can be obtained by making a greedy 

choice in each step. Combining Lemma 1 with Lemma 2, it 

can be concluded that the optimal solutions of the subproblems 

obtained by greedy choice can be used to generate the optimal 

solution of the master problem. In other words, the optimal 

solution can be obtained by the greedy algorithm. 

D. Proof of Proposition 2 

To demonstrate this proposition, it is only required to prove 

that the statement “For minimum peak load problem, the 
globally optimal solution can be achieved by greedy algorithm” 
is not true. To this end, we use proof by contradiction. Assume 

that two vehicles arrive at different time in the period. Fig. 17 

shows the respective arrival and departure times. Their 

maximum charging power limits are both 2, and the charging 

volume is    . 

Time

Vehicle 2

Interval 1

Vehicle index

Vehicle 1

Interval 2 Interval 3 Interval 4  
Fig. 17 Arrival time and departure time 
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(a) Greedy 
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(b) Global optimal 

Fig. 18 Charging schedules of an example 

Solving the minimum peak load problem yields the 

possible solution as shown in Fig. 18(a). In this case, the 

system peak load is 2.5. However, there is a better solution that 

meets the constraints where the system peak load is 2, as 

shown in Fig. 18(b). 
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Therefore, “For the minimum peak load problem, the 

globally optimal solution can be achieved by greedy algorithm” 
is false. In other words, the proposition is true. 

E. Proof of Proposition 3 

For the network flow model, the complexity of the 

maximum flow algorithm is           .Since solving the 

network flow model requires a   bisection search, the max 

flow calculation is performed   times. Obviously, the 

complexity of the algorithm is        . This means that such 

a strategy can be solved in polynomial time. 

F. Proof of Proposition 4 

By summing up Eq. (15) we have: 

                              (23) 

    Summing up Eq. (16) yields:                                          (24) 

In essence, Eqs. (23) and (24) are the relaxation of 

constrains. For the minimization problem, the lower bound of 

the objective function can be achieved by the relaxation of 

constrains. Substituting Eq.(24) into Eq. (23), and eliminating 

the common item                 yields: 

                              (25) 

    As a result, Eq. (25) can be transformed into Eq. (18). 
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