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Optimized Speed Trajectories for Cyclists, Based
on Personal Preferences and Traffic Light

Information—A Stochastic Dynamic
Programming Approach

Azita Dabiri , Andreas Hegyi , Member, IEEE, and Serge Hoogendoorn

Abstract— The literature on green mobility and eco-driving in
urban areas has burgeoned in recent years, with special attention
to using infrastructure to vehicle (I2V) communications to obtain
optimal speed trajectory which minimize the economic and
environmental costs. This article shares the concept with these
studies but turns the spotlight on cyclists. It examines the problem
of finding optimal speed trajectory for a cyclist in signalised
urban areas. Unlike the available studies on motorised vehicles
which predominantly designed for pre-defined, fixed traffic lights
timing, this article uses an algorithm based on stochastic dynamic
programming to explicitly address uncertainty in traffic light
timing. Moreover, through a comprehensive set of simulation
experiments, the article examines the impact of the speed advice’s
starting point as well as the cyclist’s willingness for changing
his/her speed on enhancing the performance. The proposed
approach targets various performance metrics such as minimising
the total travel time, energy consumption, or the probability of
stopping at a red light. Hence, the resulting speed advice can
be tailored according to the personal preferences of each cyclist.
In a simulation case study, the results of the proposed approach
is also compared with an existing approach in the literature.

Index Terms— Speed advice, cycling, energy consumption,
travel time, stochastic dynamic programming.

I. INTRODUCTION

T IME loss, stress, and air and sound pollution are only a
few items of the long list of adverse effects caused by the

abundant use of motorised vehicles in big cities. By choosing
bikes over motorised vehicles, in addition to health benefits,
citizens can contribute in mitigating these effects. Obviously,
this is a great incentive for policy makers to look for ways
that raise public interest for cycling.

The level of convenience that the users of motorised vehicles
can benefit from, is a strong motivation for them to favour car
over bicycle for their daily commuting. An approach to shift
the public interest in favour of cycling is to introduce policies
that make cycling more appealing. Such policies are followed
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by policy makers in for instance the Netherlands, Denmark and
Germany and include provision of cycling facilities, careful
integration with public transport, and assigning expensive toll
and parking fees for cars in city centers [1]. That being
said, measures that assist cyclists to choose the route and
speed profiles that meet their cycling preferences have no less
significance [2].

The technological advances have opened up a wide range of
design possibilities for providing assistance to cyclists. In most
of these designs, computer acts as a passive player and the
assistance is limited to a form of advice in e.g. navigation or
change in speed. The advice may be given through the rider’s
mobile display [3], a display on the bike’s handlebar [4], a pro-
jection on the road surface [5] or even through an audio assis-
tance connected to a smart cycling insole [6]. With increasing
the popularity of electric bikes (ebikes), more variation of
assistance systems have been designed that are not passive
and by exploiting the actuation possibilities may provide a
physical assistance to the riders through adjusting the engine of
the ebike [7]–[9]. Understanding the cyclists’ perception when
having this interactive experience with a smart bike as such is
extensively addressed in [7]. In light of these recent devel-
opment in the design of suitable human-machine interface
for cyclists, this article aims at developing an algorithm that
gives speed advice to the cyclist while optimising the metric,
or possibly combination of various metrics, that represent the
rider’s interest when cycling in signalised urban areas.

Research shows that in their daily trips, cyclists may detour
the shortest path and choose a longer path with fewer sig-
nalised intersections [10]. Without any advice, cyclists may
make wrong decisions while approaching an intersection due
to their incomplete knowledge of the traffic light timing. Such
decisions may result in waste of time and energy. For example,
when the cyclist sees green light at the junction, he/she usually
accelerates, hoping to reach the intersection while the light is
still green. If he/she fails, the cyclist has used unnecessary
energy without passing the intersection. Moreover, full stop
at junctions due to red light is undesirable for some of the
riders, especially the elderly, as it is more difficult for them to
get off and on the bike if they stop for the red light. Riders
also need to use extra energy to reach the speed they had
before their stop at the intersection. In cities like Copenhagen
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and Amsterdam, the timing of some traffic lights is designed
in favour of cyclists. With these approaches, if cyclists keep
their speed at a certain value, they can enjoy a green-wave
while passing multiple intersections [1]. However, favouring
bikes over motorised vehicles is not always possible and can
raise some concerns, as it may contribute in higher congestion
of vehicles. Moreover, creating green waves for cyclists is not
possible everywhere since it may conflict with public transport
priorities in cities.

One way to proceed is to use the traffic light phase and
timing information and advise the cyclists to adjust their speed
accordingly, in order to increase their chance of catching green
or to optimize for other personal preferences. Although the
research on speed advisory systems for cyclists in signalised
areas is limited [7], [11], [12], algorithms and methods to
find the optimal trajectory for motorised vehicles in signalised
urban areas have been extensively explored in the literature.
These approaches may differ due to e.g. their difference in
the utilised control method, the control objectives, the type of
vehicles, the level of vehicle’s connectivity, and the level of
autonomy of vehicles considered in the problem. The problem
is addressed for single motorised vehicle by using e.g. model
predictive control [13]–[15], dynamic programming [16],
[17] or other optimization-based algorithms [18], [19]. Var-
ious driver assistant systems have been also field tested in
[20]–[22]. More recently, driver assistant systems for con-
nected and autonomous vehicles and mixed traffic are studied
as well [23]–[29]. A platoon-based strategy for cooperation
between human-driven vehicles and automated vehicles is
developed in [27] and model predictive control is deployed
to minimise the platoons’ fuel consumption. In [28], platoons
are reorganised to maximise the number of vehicles that pass
the intersection during the current green phase while safety,
passenger comfort and fuel consumption are considered. Con-
nected vehicles are grouped based on their estimated arrival
time to the intersection into different clusters in [29] where
eco-driving is achieved by the cooperation between the leader
of each cluster with the leaders of the platoons within the
cluster.

Due to the increasing market penetration of electrical vehi-
cles (EV) and hybrid electrical vehicles (HEV), studies on
the energy efficiency of these types of vehicles in signalised
urban areas have gained a lot of attention in recent years
as well. In [30], the green light optimal speed advisory
system (GLOSA) algorithm is combined with a fuel con-
sumption map of a HEV and genetic algorithm is used to
find the optimal speed for HEV that minimize the total
equivalent fuel consumption of the vehicle while passing the
intersections. An algorithm is suggested in [31] that in addition
to traffic light state, vehicle queues at the intersection are
communicated to HEVs in order to plan the vehicle trajectory
that minimize fuel consumption and keep the jerk value of
the vehicles low. A multi-stage optimisation algorithm is
formulated in [32] to optimise the overall energy consump-
tion for an EV traveling through a corridor consisting of
multiple signalized intersections while taking into account
the state of the traffic light and also the state of vehicles
queue at each intersection. Model predictive control is used

in [14] to achieve eco-driving in a HEV using traffic signal
information.

All of the aforementioned methods, for single vehicle and
connected vehicles, are based on the presumption that the
traffic light at the intersection follows a fixed-time regime.
An available alternative in the literature that takes the stochas-
tic nature of traffic signal timing into account is [16], where
the probability of green in the future is predicted based on the
current colour of the traffic light and the average timing data.
This probability prediction is embedded in a cost function and
deterministic dynamic programming is used to find the optimal
speed advice. In this article, a method based on stochastic
dynamic programming is suggested that improves the results
of [16] and is also applicable for traffic lights with variable
cycle time.

The unique contribution of this article is the use of stochas-
tic dynamic programming to provide speed advice for cyclists,
taking into account the stochastic nature of traffic light timing
and also different personal preferences that a cyclist has. The
developed algorithm in this article is a general framework and
can be used for various junction signalisation types, varying
from fixed-time to traffic-responsive controllers. It extends our
preliminary results presented in [11] on three main aspects.
First, the phase transition is extended by including amber
phase in addition to red and green phases, which make the
simulation more close to the reality. Second, the optimal
speed advice generated by the proposed algorithm for various
preferences of cyclists is compared in multiple illustrative case
studies. Third, the simulation case studies are complemented
by comparison between the proposed method and the approach
suggested in [16].

The rest of the article is organised as follows. In Section II,
kinematics of a cyclist and dynamics of the traffic light phase
and timing are explained. Cyclist preferences and the corre-
sponding reward function are detailed in Section III, which is
followed by problem formulation in Section IV. For solving
the optimization problem a stochastic dynamic programming
approach is adopted, which is detailed in Section V. Compre-
hensive simulation case studies are presented in Section VI.
Section VII discusses the implementation and future research
directions, and Section VIII highlights this article’s key con-
clusions.

II. PROCESS DESCRIPTION

This section is focused on the modelling of the longitudinal
movement of a cyclist and its environment. By the environ-
ment, we refer to the control structure and timing of the
traffic light towards which the cyclist is moving. While the
kinematics of the bike follows a set of deterministic rules,
as explained in the following, we allow uncertainty in the
evolution of the traffic light state. Such formulation allows to
describe a wide variety of traffic signal timing types, including
the fixed-time and the traffic-responsive controllers.

A. Cyclist’s Kinematics

We use a discrete-time description with the discretisation
time �t (s) and the corresponding counter k, denoting the
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Fig. 1. Speed advice for cyclist moving towards an intersection with uncertain
signal timing.

time t = k�t , to describe the movement of a cyclist depicted
in Figure 1. In time step k, the bike is characterised by its
speed v(k) (m/s), and its position x(k) (m) with respect to the
upstream end of the road that leads to the intersection. Hence,
we can describe the kinematics of the bike by the following
set of discrete-time equations:

x(k + 1) = x(k)+ v(k)�t + 1

2
u(k)�t2,

v(k + 1) = v(k)+ u(k)�t, (1)

where u(k) (m/s2) is the acceleration of the bike that is
bounded as:

umin ≤ u(k) ≤ umax. (2)

Let us define the cyclist’s state in time step k as Sc
k ∈ Sc

where

Sc = {(v, x)|0 ≤ v ≤ vmax, 0 ≤ x ≤ xmax} (3)

and

Sc
k =

(
v(k), x(k)

)
, (4)

where xmax is the distance between the start and the end point
and vmax denotes the maximum speed of the bike. The state
of the cyclist in the time step k + 1 will evolve according
to (1) and as a result of acceleration u(k). As it will be of
use in the following sections, let us choose another way to
represent (1), by defining the transition probability Pa

scs ′c
. With

this term, we express the transition probability of going from
state sc to state s′c by taking the acceleration a and respecting
the dynamics in (1):

Pa
scs ′c = P [Sc

k+1 = s′c | Sc
k = sc, u(k) = a]

=
{

1, If (1) is respected,

0, otherwise
(5)

B. Modeling of the Traffic Light Phase and Timing

An intersection is composed of multiple streams (also
called movements), where each stream is defined as a unique
combination of an incoming and a leaving travel direction.
Depending on these directions, some combination of streams
are conflicting, and consequently they are not allowed to have
green at the same time. Phase control of traffic lights deter-
mines the sequence and the time duration that each stream is

Fig. 2. An intersection and its flow diagram.

TABLE I

BLOCKS AND THE ASSOCIATED STREAM PAIRS

assigned to use the conflict area. Take the intersection depicted
in Figure 2a as an example. The intersection has 6 streams,
coded according to the Dutch standard. For this intersection,
a flow diagram such as the one depicted in Figure 2b describes
the allowed transitions from one block to another block in one
cycle time, where each block in the flow diagram corresponds
to a set of non-conflicting streams (in this example each block
consists of two streams). Table I enumerates each block with
the associated streams and their corresponding light colour.
To have a general description, in this article, the sequence
of blocks that get served in one cycle time is allowed to
be stochastic. In other words, the transition from one block
to the other and the time that this transition happens is not
deterministic but described by a transition probability. As an
example, from Figure 2b, it is clear that B4 can be reached
either via B1, B2 or B3. Depending on whether the stream 8 or
2 ends earlier in block B1, one of the conflicting streams 3 or
9 can be given green before B4 starts. In practice, the transition
probability of going from one block to the other can be a
function of, e.g, traffic demand on the road or queue length.
As explained in more detail in the following, in this article,
we assume that this transition probability is known from the
historical data and is a function of the elapsed time of the
streams that are currently green.

In order to explicitly model the yellow lights for the streams
of which the green time has passed, we include intermediate
blocks. Having the intermediate blocks defined as in Table II,
Figure 3 depicts the possible transitions between all the
blocks (including the intermediate ones) in one cycle time
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TABLE II

INTERMEDIATE BLOCKS AND THE ASSOCIATED STREAMS’ PAIRS

Fig. 3. Main and intermediate block transitions in one cycle time.

for the intersection shown in Figure 2a. The same logic used
in Figure 2b can be used to interpret Figure 3.

To put the evolution of signal phase and timing in math-
ematical terms, let us first define some notations. We use
Bb to represent the b-th block and index L to represent
the total number of blocks (including the intermediate ones)
used to describe the traffic light control structure of the
intersection. For instance, L is equal to 12 in the chosen
configuration in Figure 3. Moreover, n j

b(k) for j ∈ {1, . . . J }
indicates the elapsed time steps of the light in the stream code
corresponding to the j -th stream of Bb at time step k where
J is the total number of streams included in Bb. Note that to
enforce the maximum green or yellow time for each stream,
n j

b(k) can not exceed N j
Bb

. If the state Sl of the traffic light
is defined as:
Sl = {

(Bb, n1
b, . . . , n J

b ) | Bb ∈ B, n1
b ∈ N 1

b , . . . , n J
b ∈ N J

b

}
(6)

where,

B = {B1, B2, . . . , BL}, (7)

N 1
b = {1, 2, . . . N1

Bb
}, b ∈ {1, . . . L}, (8)

N J
b = {1, 2, . . . N J

Bb
}, b ∈ {1, . . . L}, (9)

then Sl
k ∈ Sl defined as follows to represent the state of the

traffic light at time step k:

Sl
k =

(
B(k), n1

b

(
k
)
, . . . n J

b

(
k
))

. (10)

Let us use an example to make the (10) more clear. All the
blocks in Figure 3 have two streams and hence, J for all of
the blocks is equal to 2. Moreover, the triple sl = (B3, 10, 5)
refers to the state that the pair of streams (8,9) (corresponding
to B3 in Table I) have been green for 10 and 5 time steps
respectively.

Given the state definition in (10), we describe the evolution
of the traffic signal time and phase by specifying the transition
probability Psl s ′l :

Psl s ′l = P [Sl
k+1 = s′l | Sl

k = sl ], ∀sl , s′l ∈ Sl . (11)

Note that the one-step dynamics (11) displays the Markov
property of the process as it enables us to predict the next
state of the traffic light independently of the past and by only
knowing the current state.

C. Model of the Whole Process

Knowing the kinematics of the bike through (5) and the
evolution of the traffic signal by (11), let us define the state
of the whole process at time step k with

Sk = (Sl
k, Sc

k ) ∈ S, S = {(sl, sc)|sl ∈ Sl , sc ∈ Sc}. (12)

Then the dynamics of the process can be described through the
transition probability Pa

ss ′ which is obtained by the following
equation:

Pa
ss ′ = Psl s ′l Pa

scs ′c . (13)

Note that the process described above, inherits the Markovian
property.

III. CYCLIST PREFERENCES AND OBJECTIVE FUNCTION

Knowing the instantaneous state of the process described
in (12), our goal is to recommend the optimal acceleration to
each cyclist at each time step k that minimises a metric of their
whole trip, such as energy consumption, travel time, probabil-
ity of stoping due to a red light, or some careful combination
thereof. The performance metric may vary for each cyclist
as it represents the personal cycling preferences of each rider.
Hence, before making a concise problem formulation, we need
to categorise the cycling preferences and assign a function to
quantify each of them. We should note that it is assumed that
there is a platform such as an app such that the cyclist can enter
his/her preferences for his/her cycling experience. In general,
the cyclist’s preferences may be identified from data and using
e.g., learning algorithms. However this topic is not in the scope
of this article.

To quantify a cyclist’s preferences, let us define the fol-
lowing function as the summation of multiple normalised
terms, corresponding to various cycling needs and interests.
If Sk = s = (B, n1, n2, v, x), u(k) = a, and Sk+1 = s′ =
(B ′, n′1, n′2, v ′, x ′), then the quality of the transition from state
Sk to Sk+1 can be quantified by rk+1 which is expressed as:

rk+1 = W f F f (s, s′, a)+W i F i(s)

+W c Fc(s, s′, a)+W d Fd(s, a)+ W s Fs(s, s′, a)

+W t F t(s)+W e Fe(s, a), (14)
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where W∗, ∗ ∈ {f, i, c, d, s, t, e} is used to assign a proper
weight for the terms in (14), which correspond to safety,
avoiding instability, having smooth moneouver, cycling at the
desired speed, avoiding stop, travel time, and energy consump-
tion respectively. Thanks to these weights, it is possible to
carefully express tradeoffs between the terms in (14). The
higher value of rk+1 expresses a more desired transition cost.
The remainder of this section presents each term in (14) in
more detail. In the following, in addition to s, a, and s′
defined earlier, we make use of two terms namely x s and Bs

to respectively denote the location of the stop light and the
set of all blocks in Tables I and II that don’t contain green for
the stream that the cyclist will use to cross the intersection.

1) Safety: Clearly the advice given to the cyclist should
not result in unsafe manoeuvres like passing the red light.
To prevent such advices, function F f(s, s′, a) is defined as
follows to assign a negative value −Rf < 0 as a penalty for
actions that results in unsafe manoeuvres:

F f(s, s′, a) =
{
−Rf , if (s, s′) ∈ S f

0, else
(15)

where

Sf = {(s, s′)| x ≤ x s, x ′ > x s, B ∈ Bs}
∪{(s, s′)|x < x s, x ′ = x s, B ′ ∈ Bs} (16)

Note that in (16), the first term corresponds to red light running
though we do not penalise if the light gets yellow while
passing the intersection. Moreover, through the second term,
we penalise the hazardous situations of being exactly at the
stop line when the traffic light is red.

2) Avoiding Instability: Cyclists may feel unstable if they
cycle in a very low speed. Hence, by use of a speed-dependent
function F i(s′), the algorithm should discourage actions lead-
ing to such situation. F i(s′) should be chosen to have respec-
tively higher absolute value in lower speed. We have selected
the following function for F i(s′) in this article where κ is a
constant parameter and v i denotes the minimum speed that the
cyclist feels stable when cycling.

F i(s′) =
⎧⎨
⎩
−κ

v ′ + κ
, if 0 < v ′ < v i

0, else
(17)

3) Smooth Manoeuvre: To reflect on the user’s comfort,
the advice given to the cyclist must avoid severe deceleration
or harsh acceleration. For that purpose, if umax denotes the
maximum possible acceleration, Fc is introduced in the reward
function (14) to penalise an action that its resulting speed
trajectory is not smooth:

Fc(s, s′, a) = − (v − v ′)2

(umax�t)2 . (18)

4) Cycling at the Desired Speed: Cyclist find it uncom-
fortable if the speed advice differs very much from his/her
desired speed vd. Function Fd (s, a) imposes penalty when
such deviation happens. A possible choice for Fd (s, a) is the
quadratic function defined as follows:

Fd(s, a) = − (v + a�t − vd)2

α
, (19)

where α is used for the normalisation and is defined as:
α = max

(
(vd)2, (vmax − vd)2). (20)

5) Avoiding Any Stop: As it is mentioned earlier, stopping
in front of the red light is one of the sources of frustration
for some cyclists. The annoyance is not limited to the need
for getting off and on the bike for each stop. Cyclists may
also find it inconvenient when they have to use a lot of power
to reach the speed they had before they needed to stop at the
junction. Function Fs(s, s′, a) defined as follows penalises the
advice that results in a stop for the cyclist, including stoping
at the red light:

Fs(s, s′, a) =
{
−Rs , if (s, s′) ∈ Ss

0, else
(21)

where,

Ss = {(s, s′)| x = x ′}, (22)

and −Rs < 0 is a constant negative number.
6) Minimising Total Travel Time: A gain in the travel time

for a cyclist is expected when the cyclist can travel faster
(than normally) at the right moments, e.g., just before the
traffic light gets red, to catch the end of green, or just before
the end of red, when the rider knows that he/she does not
have to slow down, or can accelerate in advance because the
light will be green when he/she reaches to the intersection.
To incorporate the travel time in the optimisation problem,
function Ft is introduced as follows to imposes penalty with
constant negative number −Rt at every time step:

F t(s) = −Rt. (23)

7) Minimising Energy Consumption: The rate of energy
usage or the cycling power Pcyc produced by the cyclist is
composed of four terms associated with the acceleration Pac,
tire rolling resistance Ptr, aerodynamic drag Pdr, and also the
road slope Prd [33]. Hence, if the effective headwind speed
at time k is vw(m/s), the simplified equation of output power
required for cycling at speed v and having acceleration u takes
the following form:
Pcyc(v, a) = (m + mw)a v︸ ︷︷ ︸

Pac

+Ctrmgv︸ ︷︷ ︸
Ptr

+ 0.5ρv
(
v + vw

)2
Cdr Af︸ ︷︷ ︸

Pdr

+mgve︸ ︷︷ ︸
Prd

, (24)

where m (kg) is the mass of the bicycle and the rider, mw (kg)
is the effective rotational mass of the wheels and the tires, g
(m/s2) is the acceleration due to gravity, Af (m2) is the frontal
surface, ρ (kg/m3) is the density of the air, e is the slope of the
road, and Cdr and Ctr are the coefficients of the aerodynamic
drag, and rolling resistance respectively. To generate a speed
trajectory which takes into account the energy consumption of
the cyclist, in the reward function, we can use (24) to penalise
energy consumption in each time interval as follows:

Fe(s, a) = �t
Pcyc(v, a)

Pmax , (25)
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where Pmax is defined for normalisation as:
Pmax = (m + mw)umax vmax + Ctrmgvmax

+0.5ρvmax(vmax + vmax
w

)2
Cdr F + mgvmaxe. (26)

It should be noted that the power generation ability of a
cyclist, or the cyclist’s maximum possible speed or accelera-
tion is assumed to be unchanged during his/her trip. Moreover,
although there are research results suggesting that under
certain circumstances, such as in cycling races, the fatigue
of the cyclists plays a critical role [34], compared to cycling
races, the role of fatigue for urban non-racing trips may be
less. Having that said, the modular nature of the proposed
framework allows for the inclusion of a dynamic fatigue model
if necessary.

IV. PROBLEM FORMULATION

Given the description of the process in Section II and
the performance metric of interest detailed in Section III,
we have all the required ingredients to formulate our problem
concisely. Knowing the instantaneous state of the cyclist as
well as the traffic light’s state, our goal is to recommend
optimal acceleration to the cyclist at each time step k that
maximises the expected return, in terms of the personalised
performance metric of that cyclist for his/her trip. To achieve
that, we examine the following optimization problem for all
Sk ∈ S, k ∈ {0, 1, . . . , T }:

max
π

E

[T−1∑
m=k

γ m−k

rm+1︷ ︸︸ ︷
R
(
Sm, π(Sm), Sm+1

)∣∣∣Sk = s
]

s.t . Equation (13)

Sm ∈ S, ∀m ∈ {k, k + 1, . . . , T }
π(Sm) ∈ A, ∀m ∈ {k, k + 1, . . . , T } (27)

where T denotes the time step that the cyclist reaches the
end point in Figure 1 and π(s) is the policy to determine
the control action in each state, i.e. u(k) = π(Sk). Given the
process state Sk , the optimization objective in (27) consists
of the instantaneous performance metric rm+1, discounted
with the discount factor γ , accumulated over time, and aver-
aged due to the stochastic transition of the process’s states
as expressed in (13)). In optimizing this objective, three
constraints need to be respected: 1) the process dynamics
described by (13) 2) the constraint on the admissible set of
states described in (12), and 3) the constraint on the admissible
set of control input. As the result of this optimization problem,
we will achieve the optimal policy π∗(s) that would assign
the optimal acceleration at each time step k, given the state Sk

i.e. u∗(k) = π∗(Sk).
Since the state transition probabilities of the process

are assumed to be known, Stochastic Dynamic Program-
ming (SDP) is an appropriate method for solving the opti-
mization problem in (27).

V. STOCHASTIC DYNAMIC PROGRAMMING

This section presents the stochastic dynamic programming
approach used for solving the optimisation problem presented

in Section IV. SDP is a powerful tool that has advantages over
algorithms such as Monte Carlo simulation or Genetic Algo-
rithm methods because it can give the exact optimal strategy
for all possible state without using sampling or approximation.
We will make use of the value iteration algorithm to compute
the optimal policy π∗(s). An essential prerequisite to do so,
is to define V π(s) which quantify the value of state s under
policy π . If each state transition at time step k is evaluated
by the instantaneous reward rk+1, then V π(s) represents how
good it is, in terms of the expected cumulative reward, to be
in state s and follow policy π thereafter until reaching to the
terminal state at time step T:

V π(s) = Eπ

[l=∞∑
l=0

γ l rk+l+1 | Sk = s
]
. (28)

Note that without loss of generality in our problem, we allow
T = ∞, assuming that when the system reaches the terminal
point, it stays there forever and is not receiving any more
reward. Moreover, the term γ is the discount factor through
which the current value of the future reward can be altered.
The discount factor ensures that the cumulative reward remains
finite over infinite time horizon.

Compared to any other policy, the optimal policy π∗(s)
is the policy that if taken, results in the highest sate value
(or expected rewards) among all possible policies. If V ∗(s)
indicates the optimal value function of state s achieved by the
optimal policy, the following Bellman optimality equation will
be held that shows how the optimal value function of states
in the state set S relates with each other,

V ∗(s) = max
a∈A

∑
s ′∈S

Pa
ss ′

(
Ra

ss ′ + γ V ∗(s′)
)
, (29)

where

Pa
ss ′ = P [Sk+1 = s′ | Sk = s, u(k) = a], (30)

Ra
ss ′ = [rk+1 | Sk = s, Sk+1 = s′, u(k) = a]. (31)

In general, no closed-form solution exists for solving the
Bellman optimality equation, but various iterative algo-
rithms including the value iteration algorithm described in
Algorithm 1 can be used to find V ∗(s) and the optimal policy
π∗(s) in all the states [35].

Initialisation of V (s) may vary for each problem. In this
article, V (s) is initialised to zero for all states. Moreover,
the value function of the states that corresponds to the end
point of the trip do not change.

VI. SIMULATION CASE STUDIES AND RESULTS

Through three case studies, this section analyzes the prop-
erties of the proposed SDP approach by comparing its per-
formance against a baseline acceleration policy as well as an
existing approach in the literature. For all the case studies,
we simulate a cyclist traveling in the direction of stream 02
(from East to West) towards the junction shown in Figure 2a.
The total travel distance is assumed to be 290 meters and
the intersection is located 250 meters downstream of the start
point. The 40 meters downstream of the intersection will be
enough for the cyclist to accelerate and cruise in his desired
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Algorithm 1: Value Iteration Algorithm for Solving the
Bellman Optimality Equation (29)

Initialize the value function V (s), ∀s ∈ S;
δ = 10(−8),� =∞;
while � > δ do

� = 0;
forall s ∈ S do

V̄ ← V (s);
V (s)← max

a∈A
∑

s ′∈S
Pa

ss ′
(
Ra

ss ′ + γ V (s′)
)
;

�← max(�, |V̄ − V (s)|)
end

end
forall s ∈ S do

π∗(s) = argmax
a∈A

∑
s ′∈S

Pa
ss ′

(
Ra

ss ′ + γ V (s′)
)

end

TABLE III

WEIGHTS USED IN THE THREE TYPES OF POLICIES

speed before reaching the end point. This allows for a fair
comparison of energy and travel time between trajectories
where the cyclist has to or doesn’t have to stop at the
traffic signal.The state of the traffic light, denoted as sl and
defined in (11), is assumed to follow the transition probabilities
described in Tables VII-X in Appendix B. In general, these
transition probability can be obtained from historical data.

In the case studies, we focus on three types of policies,
namely NoStop-Prf, Time-Prf, and Energy-Prf, where each
policy is associated with a cycling preference: minimizing the
chance of stop during the trip, the travel time, and the energy
consumption, respectively. Each policy has been generated by
deploying the numerical scheme described in Section V and
are distinguished from each other due to the use of different
set of weights in (14). The weights chosen for generating
each type of policy are given in Table III. Note that two
variations are used for each policy type to account for the
level of the cyclist’s willingness to keep his desired speed.
The lower value of W d associates with less resistance from
the cyclist in deviating from his desired speed vd .

In the remainder of this section, we first describe the
baseline model with which we benchmark the performance of
the three aforementioned policies. The baseline model is used
to describe the cyclist’s manoeuvre towards an intersection

with no speed advice to follow. Next, in three case stud-
ies, we analyse the performance of the three SDP-generated
policies and compare it with the policy generated from the
baseline model, with each other, and also with the most
relevant approach available in the literature.

A. Baseline Model

If cyclist is within human-vision distance Dh from a traffic
light, we assume that the traffic signal status will have an effect
in the cycling behaviour. However, no model could be found
in the literature that describes and calibrates the deceleration
and acceleration of cyclists in response to the colour of the
traffic light. That being the case, to have a baseline model for
comparison with the proposed control approach, the following
description is used for cyclists. As explained in Appendix A,
if d j (k) denotes the distance between the cyclist and traffic
light at time step k, and Cs(k) denotes the number of required
time steps in order to fully stop before the intersection,
we allow the interaction of a cyclist with the traffic light by
defining the cyclist’s acceleration/deceleration in the baseline
model as follows:

ū(k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
− v(k)

Cs(k)�t
, If Case 1 (32)

0, If Case 2 (33)

u′
(

1−
(

v(k)

vd

)2)
, Otherwise (34)

where

Cs(k) = max
(

1, 
 2d j (k)

v(k)�t
�
)
, (35)

u′ is the comfortable acceleration of the cyclist, and

Case 1:0 < x s − x(k) < Dh , B ∈ Bs, (36)

Case 2:0 < x s − x(k) < Dh , B �∈ Bs, v > vd. (37)

According to (32)-(34), in the human-vision zone, while
the light is red, the cyclist decelerates according to (32) until
he eventually stops. Note that decelerating according to (32)
prevents negative speed and guarantees full stop of the cyclist
at or upstream of the traffic light. If the light gets green while
the cyclist is in the human vision distance to the intersection,
the cyclist keeps his current speed, unless it is lower than his
comfortable speed. In the latter case, he accelerates according
to (34) to reach the comfortable speed vd.

In the following sections, this baseline acceleration policy,
hereinafter referred to as NoControl policy (NC), will be
used for benchmarking against the policies generated by the
SDP approach. The simulation parameters used to generate
the experiments are given in Table IV. Moreover, the speed,
distance and acceleration are discretised with the steps of 0.25,
0.5, and 0.25 respectively.

B. Case Study I - The Monte Carlo Simulations

The aim of this case study is threefold: 1) to benchmark
the performance of the SDP-generated policies against the
NoControl policy, by investigating their average results in
randomly generated runs of experiments, 2) to examine the
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TABLE IV

SIMULATION PARAMETERS

Fig. 4. Percentage of case where the cyclist can pass the light without stopping for the NoControl policy (yellow bar) and NoStop-Prf policies for variation
of vd. The red bar associated with NoStop-Prf I and the green bar associated with NoStop-Prf II policy. The rate in NoStop-Pref policy vary depending on
from where the optimal advice is given (dd ).

impact of the cyclists’ desired speed on the performance, and
3) to analyze the distance over which a speed advice improves
the performance.

To achieve these goals, in the first step, for each desired
speed vd ∈ {3, . . . , 7} (m/s), all six variations of policies

(NoStop-Prf-I&II, Time-Prf-I&II, and Energy-Prf-I&II) are
generated. In other words, for each vd, we have six different
policies corresponding to three different cycling preferences,
in accordance with Table III. Then, in order to address the third
goal of the case study, we vary the location that we start giving
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Fig. 5. Energy consumption cost for NoControl policy (yellow bar) and Energy-Prf policies for variation of vd. The red bar and the green bar associated
with the energy consumed from the point that the cyclist gets the advice and follow Energy-Prf I and Energy-Prf II policy respectively. The grey bar indicates
the amount of energy consumed by the cyclist from the start point until he receives the advice. The cost of Energy-Prf policy vary depending on from where
the optimal advice is given (dd ).

the advice to the cyclist. To be more specific, for each dd ∈
{30, 40, . . . , 250} meters, we let the cyclist cycle at his desired
speed and only starts to follow each of these policies if he is at
dd meters far from the intersection. With 6 alternative forms in
policy, 5 variations in the desired speed vd, and 23 variations in
the start location of giving advice, we will have 690 different
experiments. We run each of these experiments 10000 times
where in each run, the initial state of the traffic light when
the cyclist start to receive the advice is randomly generated
in accordance with the transition probabilities. The average
result of these experiments is depicted in Figures 4-6. Let us

analyse the performance of the three types of SDP-generated
policies and the impact factor of vd and dd on the performance
improvement in each of these policies separately:

1) NoStop-Prf Policies: It can be seen from Figure 4
that by following NoStop-Prf-I policy, with 98% chance and
regardless of his favourite speed, the cyclist who starts to get
the optimal advice in dd > 110 can reach to the final point
without any stop. That is to say, if the aim is to travel with no
stop, the performance of NoStop-Prf-I policy does not improve
if the cyclist starts to receive the optimal advice in distance
far more than 110 meters from the intersection.
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Fig. 6. Travel time for NoControl policy (yellow bar) and Time-Prf policy for variation of vd. The red bar and the green bar associated with the travel time
from the point that the cyclist gets the advice and follow Time-Prf I and Time-Prf II policy respectively. The grey bar indicates the time that takes the cyclist
before he receives the advice. The travel time in Time-Prf policy varies with dd .

The figure also shows that in general, NoStop-Prf-II under-
performs NoStop-Prf-I policy as the advice of the former is
for the cyclist who has more resistance in deviating from his
desired speed. Though the performance difference between
the two policies is minor if the advice is given in very short
distance (dd < 60) or in long distance (dd > 160). In the
former, neither of the policies has enough time to properly
control the cyclist before reaching the intersection and in
the latter, there is enough time for both policies for efficient
control.

Moreover, for dd < 100, we observe that the chance of
catching green without any stop gets higher if the favourite
speed of the cyclist, which is the cyclist’s speed before
receiving any speed advice, is lower. The rationale behind this
observation relates to the fact that with similar deceleration,
a cyclist with lower initial speed can travel a fixed distance
in longer time. Hence, if the light is red and the cyclist starts
to receive the advice of deceleration, it is more likely that the
light gets green before the cyclist arrives at the intersection,
if his initial speed is lower. Simply because it can take him
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TABLE V

PERFORMANCE EVALUATION OF ALL THREE POLICY TYPES IN CASE STUDY I

more time before reaching the intersection and the chance that
the traffic light changes its colour gets higher. On this account,
the lower the speed, the higher the success rate and hence, both
policies, especially NoStop-Prf-II policy which has a higher
weight on cruising at the desired speed, serves a cyclist better
for dd < 100 if he has a lower desired speed.

From the figure, it can also be inferred that for all cases,
there is a distance above which the advice does not improve
the performance.

2) Energy-Prf Policies: Both of the Energy-Prf policies
outperform the NoControl policy for all values of vd in
Figure 5. The advantage of giving the optimal advice raises
when the cyclist’s favourite speed is higher and his resistance
to changing his speed is lower. This combination gives more
room for more energy-efficient travel, i.e., reducing the speed
for saving energy. From Figure 5 it is also notable that for
vd <= 5, the energy that the cyclist may save hardly changes
with dd. That is to say, for vd <= 5, it is almost equally
good if the cyclist starts to receive the advice only when he as
close as 30 meters to the intersection. Quite the contrary, for
vd > 5, the sooner the advice is given, the more benefit the
cyclist may yield, in terms of energy, by following the advice.
Note that although for many cases, the optimal advice derived
from Energy-Prf policies slows down the cyclist, this does not
hold invariably. In other word, an energy-efficient manoeuvre
is not limited to deceleration. At some situations, the cyclist
might be advised to speed up, e.g. to catch the green light,
in order to prevent consuming unnecessary energy in the future
by stoping in front of the red light and use more energy to
reach to his desired speed again. Similar to the previous case,
there is a distance above which the advice does not enhance
the performance.

3) Time-Prf Policies: As seen in Figure 6, the performance
of the Time-Prf policies surpass that of the No Control policy
for all values of vd. Moreover, the benefit of following the
Time-Prf policy type is more notable if the cyclist’s favourite
speed as well as his resistance to deviate from his favourite

speed is lower. Since the upper bound of the cyclist’s speed
is set to 7.75, compared to the the cyclist with higher vd,
the one with the lower vd has more room to increase his speed
before reaching the upper bound. Comparatively, the benefit
that the latter can receive from the Time-Prf policies is higher.
From Figure 6, it is also clear that for vd >= 6, an increase
in dd does not make a significant change in the travel time,
i.e., there is not much gain in the performance if we start to
give the advice in far distance from the intersection. On the
contrary, for lower desired speed, the earlier the advice is
started to be given, the lower the total travel time. It is
important to emphasise that although acceleration is a natural
way for saving time, the optimal advice derived from Time-Prf
is not restricted to that only. As demonstrated in the next case
study, in some situations and when the light is red, the cyclist
is advised to first decelerate or even stop at some distance
upstream of the intersection, in order to start accelerating at
the right time and catch the green light having high speed. The
figure also shows that there is a maximum distance beyond
which there is no more improvement due to the advice.

Table (V) summarizes the results of Case study I. In this
table, for each value of vd, we have compared the perfor-
mance of No Control policy with the best performance of the
SDP-generated policies that can be achieved among all values
of dd. We have also outlined the maximum enhancement
yielded by deploying the SDP-generated policies. As it is
observed from the table, the chance for traveling without stop
may raises up to 181.8 % if NoStop-Prf policy type is followed
by the cyclist. Energy-Prf policy type can help the cyclist
to save up to 62.69% energy and Time-Prf policy type may
reduce the travel time of a cyclist by 48.16%.

C. Case Study II - Personalisation in the
SDP-Generated Policies

One of the important features of the SDP-generated policies
is that they can be personalised. Knowing the personal prefer-
ences, the advice can be tailored to meet the need of individual
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Fig. 7. Position and speed of the cyclist in case study II-A with the
NoStop-Prf I, Time-Prf I, Energy-Prf I, and NC policies.

cyclists. That is to say, in similar traffic light conditions, each
policy may give an advice that is different from that of other
policies. The difference between the optimal advice generated
from each policy under similar traffic condition is illustrated
by the following two examples called Case study II-A and
Case study II-B.

The results of Case study II-A, depicted in Figure 7,
demonstrates the different resulting trajectories for a cyclist
when vd and dd is chosen as 4 (m/s) and 100 (m) repectively.
The advice is generated for three different policies namely
Time-Prf I, NoStop-Prf I, and Energy-Prf I, and is compared
with the NC policy. The proposed algorithm can predict that,
in the worst case that the upcoming green light does not
extend, there will be enough time for the cyclist to reach the
end of green if he accelerates to the highest possible speed.
This is what the cyclist is advised to do under Time-Prf I and
NoStop-Prf I policies. As seen in the figure, such manoeuvre
helps the cyclist to pass the first green light, that is the optimal
decision in terms of the two policies’ performance metric; in
the case of Time-Prf I, speeding up obviously leads to shorter
travel time, and in the NoStop-Prf I case, speeding up leads
to passing the junction with lower total cost than the slowing
down for red and aiming for catching the second green.

After passing the junction, the advice in the two policies
differ as one suggests to keep the high speed to minimise

Fig. 8. Position and speed of the cyclist in case study II-B with the
NoStop-Prf I, Time-Prf I, Energy-Prf I, and NC policies.

the travel time and the other one suggests to decelerate
and smoothly minimize its deviation from the desired speed.
In comparison, in Energy-Prf case, which energy consumption
comes to matter, the algorithm advises to cycle at relatively
low speed and smoothly move toward the junction and catch
the second green light. Clearly, the baseline algorithm does not
help the cyclist in catching the green and the cyclist needs to
stop at the red light and use a lot of energy to accelerate from
zero speed after the light gets green. Table VI clearly shows
that cyclist following the advice from Energy-Prf I policy uses
significantly less energy to cycle the path.

In Case study II-B, we simulate the trajectories resulting
from the four policies in a different traffic light setup shown
in Figure 8. This time, the traffic light just got red as the cyclist
starts to receive the advice in 50 meters upstream the intersec-
tion. It is interesting to see from the figure that the algorithm
suggests the cyclist to have a full stop in distance and start to
accelerate after few seconds of standstill in order to minimise
the total travel time in the case of Time-Prf I. With No-Stop-
Prf I, the cyclist needs to diverge from the desired speed as
much as necessary to guarantee catching the beginning of
green. The movement in Energy-Prf is smooth and use the
minimum amount of energy thought results in a stop at the
red light. As clearly seen in Table VI, the amount of energy
is the lowest among all if Energy-Prf I policy is followed.
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TABLE VI

PERFORMANCE OF THE FOUR POLICIES IN CASE STUDY II. Y:YES, N:NO

D. Case Study III- Comparison With the Available
Approach in the Literature

In the third case study, we compare the algorithm proposed
in this article with the one suggested in [16]. As it is already
mentioned in the introduction, the algorithm developed in [16],
hereafter we call Prob-SPAT as suggested in [16], is an
alternative algorithm in the literature that takes into account
the probabilistic prediction of traffic signal timing. Prob-SPAT
uses speed (v) and time (t) as states to describe the kinematics
of vehicle traveling towards an intersection while x is an inde-
pendent variable. With such setting, if �x = xi+1 − xi where
xi and xi+1 indicate consecutive discrete locations, is the
sampling interval, the vehicle kinematics can be described as:

vi+1 =
√

v2
i + 2ai�x (38)

ti+1 = ti + 2�x

vi +
√

v2
i + 2ai�x

, (39)

The control variable is acceleration ai , which is given to the
vehicle in each M meters. The advice aims to minimise the
following cost function, indexed over position x with index i :

J=
∑

i

w′1
ti+1−ti
�tmin

+w′2|
ai

amax
| + w′3c(xi , ti )loge(pr(xi , ti ))

(40)

where �tmin is the minimum time to complete the step if
starting and ending at the maximum velocity and is used as
a normalizing factor, ai is the constant acceleration assumed
during step i , and amax is the maximum allowed acceler-
ation. The constants w′1, w′2 and w′3 are weighting terms.
Motion constraints imposed by the traffic signal’s red time
interval, are imposed as a soft constraint by inclusion of the
term c(xi , ti )log(pr(xi , ti )) in the cost function. The value of
c(xi , ti ) = 1 if there is a traffic light at position xi , otherwise
it is zero. Moreover, pr(xi , ti ) represents the probability of
green at time ti for a light situated at position xi . Having
the current colour of the light located at position xi , [16]
suggests a method to find the probability of green light
in tp time step ahead. The optimisation problem is solved
using Deterministic Dynamic Programming but in a receding
horizon manner. Interested readers are referred to [16] for more
details. Having (38)-(40), let us outline the main differences
of the SDP-generated approach suggested in this article with
the Prob-SPAT approach in [16]:

• Unlike in Prob-SPAT, which needs the cycle time of the
traffic signal to be fixed, SDP-generated approach does
not make any assumption on the type of traffic signal tim-
ing and is suitable to be used efficiently in, e.g., fixed-time
and traffic-responsive junction signalisation alike.

• The probabilistic prediction of traffic light timing in
SDP-generated approach is not only based on the current
colour of the traffic light but also on how long the
traffic light have had this colour. The approach also
takes into account how the traffic light evolves in time.
If this information is available, the resulting advice
from SDP-generated approach may overperform that of
Prob-SPAT approach.

• SDP-generated approach pays special attention to the
personal preferences of the user and in that respect,
is significantly richer than Prob-SPAT.

• According to [16], each time the new information about
the status of traffic light is available, a new deterministic
dynamic programming is needed to be solved over the
remaining trip horizon. On contrary, in the suggested
approach presented in this article, the stochastic dynamic
programming is solved off-line and only once. Hence,
the online computational burden is much lower and there
is much more flexibility in choosing a finer discretisation
in the SDP-generated approach. It is worth to mention
that for using Prob-SPAT algorithm, it is also possible
to generate a table of all possible state combinations and
the corresponding optimal action offline, though this is
not the approach taken in [16].

• According to [16], a low-level controller verifies and
override the velocity recommendation if the planner
makes a recommendation that would pass through a
red light. Such low-level controller is not required in
the SDP-generated approach, since as explained in
Section III, any action that leads to passing a red light
is explicitly and significantly penalised.

• According to (38), in the Prob-SPAT approach, zero
acceleration is not a feasible action for a cyclist with
zero speed, i. e., if the cyclists stops, he will remain
standstill for ever. As it is demonstrated in the previous
case study, in some situations, a full stop can be the
optimal action in the SDP-generated approach.

Since in (40), the travel time is included in the cost function,
among all the SDP-generated policies, Time-Prf type policy
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Fig. 9. Comparison of the Prob-SPAT (solid line) and Time-pref (dashed
dotted line) algorithm.

is chosen as the most suitable one to be compared with Prob-
SPAT. To deploy Prob-SPAT, the duration of green and red
lights are respectively set to 14 and 30 seconds, as the result
of averaging over 1000 random runs. The value of w′1, w′2
and w′3 in (40) are chosen as 1/8, 0 and 100 respectively
and time and speed space are discretised with the step of
1 and 0.25 respectively. Moreover, M in Prob-SPAT is chosen
to be 0.5 meters, meaning that a new control input must be
calculated in each 0.5 meters.1

The simulation result is depicted in Figure 9 and clearly
shows the difference between the two methodologies through
this experiment. Since in Time-Prf I, the algorithm is aware
of how long the light has been green and how the state of
the traffic light will evolve in time, it advises the cyclist
to accelerate from the beginning and catch the first green
light. The Prob-SPAT algorithm is not equipped with such
information. The resulting advice is not helpful to catch the
first green light though is successful in advising to catch
the second green light without any stop.

VII. FURTHER DISCUSSION

This section includes discussions about the practical imple-
mentation of the algorithm and future direction of this
research.

A. Real-Time Implementation

The result of the value iteration algorithm is a policy
map, which is produced offline and can be deployed with
low computation burden in real time. The policy map relates
the states of the system, defined as in (12), to the control
input (acceleration). Hence, the only on-board computational
requirement is interpolation between the map’s grid point.
By choosing the size of the grid, we can make a trade-off

1The chosen value of M in [16] is 20 meters. However, to have a fair
comparison, for Prob-SPAT, we have used the same discretization step size as
the one used in the SDP-generated approach. Note that such fine discretised
grid significantly increases the on-line computational time of Prob-SPAT and
makes Prob-SPAT impractical to be used in a receding horizon setting.

between the memory storage and the performance of the
algorithm.

B. The Choice of Discretisation Step Size

It is important to note that special care is required in
choosing the discretization step size in time/location/velocity
such that zero speed can be generated in (1). With the selected
discretisation step size in the presented case studies, the
off-line computation time of each policy on a Macbook with
1,2 GHz Intel Core M processor is 310 minutes on average.
Finer discretization step size and acceleration may improve the
efficiency but will increase the required off-line computation
time and off/on-line memory as well.

C. Extension of the MDP Model

The MDP model used in this article can be extended
to include other traffic-related events such as detector loop
actuation, priority lane events or push buttons. Such extension
may increase the accuracy of the model in describing traffic
signal timing in real world. Moreover, by defining various
sets of transition probabilities of signal timing in various time
of the day, the advice given to the cyclist can be adjusted
accordingly to be suited for, e.g., off-peak or morning/evening
peak hours.

D. The Choice of Actuator

It is still an open question that what form of actuation is the
most suitable way for communicating the advice to a cyclist.
The form of communication should be telling enough, but at
the same time should not cause a distraction for the cyclist.
Visual feedback on the road, auditive feedback using smart
phones, or haptic pushback force on the pedals, are among
the potential ways for communicating the personalised advice
with cyclists. More studies are required to investigate the level
of comfort of cyclists in response to each of these designs.

E. Alternative Form of Advice

The action set selected in this note is the set of feasible
acceleration for an average cyclist. Depending on the type
of actuation, the type of action may change as well. For
instance, for humans, probably speed advice is more intuitive,
but for e-bikes, the acceleration power can be more directly
connected to the electro-mechanical system. Even if the action
is formulated differently, similar approach can be used to find
the optimal policy and no significant changes are expected in
the results.

F. Compliance of the Cyclist

It is assumed in this work that the cyclist is able to fully
comply with the advice. In [36], the authors have addressed
the case where the cyclist may not be able, or do not wish to
follow the given advice fully. In such case, a reinforcement
learning-based architecture that combines learning and plan-
ning is proposed that learns the cyclist’s behaviour in relation
to the advice and plans the best next move of the cyclist
on-the-fly.
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TABLE VII

TRANSITION PROBABILITY p(s′l |sl ) WHEN Bb = B1

G. Speed Advisory System for a Group of Cyclists

This work can be seen as an analogy to the studies in the lit-
erature on driver assistance systems for a single vehicle, i.e., it
is assumed that the movement of a cyclist is not influenced
by other cyclists. While the literature on the design of speed
advisory systems for a group of vehicles is rich, the topic is
still novel for bicycles [37] and has not yet been addressed for
the case in signalised urban areas. It requires accommodating
bicycle following model in the problem formulation and it is
deemed an important research direction for further study.

VIII. CONCLUSION

This article puts forward a new approach that takes into
account the stochastic nature of traffic light phasing and timing
and gives optimal acceleration advice to a cyclist in regard
to his preferences in cycling. The process is formulated as
a Markov Decision Process with appropriate action set and
reward functions which reflect the personal preferences of a
typical cyclist in an urban area. These preferences include min-
imising travel time, minimising energy consumption, or min-
imising the chance of stop at the red light. Stochastic dynamic
programming or more precisely, the value iteration algorithm
is used for controlling this MDP. The results of different
control decisions based on various cycling preferences has
been compared in multiple case studies. Depending on the
chosen control objective, it shows an improvement of up to
181% in the probability of finishing the trip without any stop,
up to 62% saving in the energy and up to 48% saving in
the travel time. Moreover, for all three control objectives it
holds that there is a distance beyond which the performance
doesn’t improve anymore. Meaning that outside this region,
the cyclist doesn’t have to be controlled, and it is not needed to
determine the acceleration advice. Furthermore, this distance
depends on the objective, and the cyclist’s desired speed. In
addition, the different objectives also result in very different
cyclist trajectories, and thus personalization makes sense. The
proposed algorithm may be combined in the future with speed
advisory systems for motorised vehicles in order to find a

trade-off for serving users of various mode of transportation
in urban areas.

APPENDIX A
BASELINE MODEL

We are interested to find the required deceleration that a
cyclist should take such that he stops after traveling at most
d j meters. We are also interested to know the time that takes
the cyclist to stop. For that, let us start with (1). If v0 and u
denote the initial speed and constant acceleration of a cyclist
respectively, from (1), it is easy to show that the cyclist’s speed
after n time steps will be obtained as

v(n�t) = v0 + un�t . (41)

Hence, if the cyclist constantly decelerates with u < 0, it takes
him n time steps before he fully stops, where:

u = −v0

n�t
(42)

Note that n is a positive integer. Having (1) and (42), with
constant deceleration of u, the distance to travel before a full
stop should respect:

d j = −v2
0

2u
(43)

Hence, u must satisfy:

u = −v2
0

2d j
. (44)

Comparing (44) with (42) and knowing n ∈ Z+, let us choose

n = Cs = max
(

1, 
 2d j

v0�t
�
)
, (45)

Replacing (45) in (42), the required deceleration for a full stop
after Cs time step can be obtained as:

ũ = −v0

Cs�t
. (46)

Having such deceleration, the real traveling distance before
a full stop will be d̃ j < d j where:

d̃ j − d j = v0�t

2
(Cs − n). (47)
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TABLE VIII

TRANSITION PROBABILITY p(s′l |sl ) WHEN Bb = B2

TABLE IX

TRANSITION PROBABILITY p(s′l |sl ) WHEN Bb = B4

TABLE X

TRANSITION PROBABILITY p(s′l |sl ) WHEN Bb = B5

APPENDIX B
TRANSITION PROBABILITIES

Signal phase and timing of the intersection in the case stud-
ies are assumed to evolve based on the transition probabilities

TABLE XI

TRANSITION PROBABILITY p(s′l |sl ) WHEN Bb = B2

TABLE XII

TRANSITION PROBABILITY p(s′l |sl ) WHEN Bb = B2

in Tables VII-XII. Transition probabilities in B3 and B8 are
similar to the ones in Table VIII and Table XI respectively.
Likewise, the transition probabilities of B9, B10 and B11 are
similar to the ones in Table XII. In all of these tables, we use
n+i and nmin+ to indicate ni + 1 and nmin + 3 respectively. The
probabilities were chosen such that there are no transitions
during the minimum green times, the transition probability
increases during the rest of the green time, and is 1 when the
maximum green time has been reached.
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