
740 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2022

Survey of Deep Reinforcement Learning for Motion
Planning of Autonomous Vehicles

Szilárd Aradi , Member, IEEE

Abstract— Academic research in the field of autonomous
vehicles has reached high popularity in recent years related
to several topics as sensor technologies, V2X communications,
safety, security, decision making, control, and even legal and
standardization rules. Besides classic control design approaches,
Artificial Intelligence and Machine Learning methods are present
in almost all of these fields. Another part of research focuses on
different layers of Motion Planning, such as strategic decisions,
trajectory planning, and control. A wide range of techniques in
Machine Learning itself have been developed, and this article
describes one of these fields, Deep Reinforcement Learning
(DRL). The paper provides insight into the hierarchical motion
planning problem and describes the basics of DRL. The main
elements of designing such a system are the modeling of the
environment, the modeling abstractions, the description of the
state and the perception models, the appropriate rewarding, and
the realization of the underlying neural network. The paper
describes vehicle models, simulation possibilities and computa-
tional requirements. Strategic decisions on different layers and
the observation models, e.g., continuous and discrete state repre-
sentations, grid-based, and camera-based solutions are presented.
The paper surveys the state-of-art solutions systematized by the
different tasks and levels of autonomous driving, such as car-
following, lane-keeping, trajectory following, merging, or driving
in dense traffic. Finally, open questions and future challenges are
discussed.

Index Terms— Machine learning, motion planning,
autonomous vehicles, artificial intelligence, reinforcement
learning.

I. INTRODUCTION

MOTION planning for autonomous vehicle functions is
a vast and long-researched area using a wide variety of

approaches such as different optimization techniques, modern
control methods, artificial intelligence, and machine learn-
ing. This article presents the achievements of the field from
recent years focused on Deep Reinforcement Learning (DRL)
approach. DRL combines the classic reinforcement learning
with deep neural networks, and gained popularity after the
breakthrough article from Deepmind [1], [2]. In the number of

Manuscript received January 28, 2020; revised July 2, 2020; accepted
September 8, 2020. Date of publication September 30, 2020; date of current
version February 2, 2022. This work was supported in part by the Hungarian
Government and in part by the European Social Fund through the project
”Talent management in autonomous vehicle control technologies” under Grant
EFOP-3.6.3-VEKOP-16-2017-00001. The Associate Editor for this article was
J. W. Choi.

The author is with the Department of Control for Transportation and Vehicle
Systems, Budapest University of Technology and Economics, 1111 Budapest,
Hungary (e-mail: aradi.szilard@mail.bme.hu).

Digital Object Identifier 10.1109/TITS.2020.3024655

Fig. 1. Web of science topic search for “Deep Reinforcement Learning” and
“Autonomous vehicles (2020.01.17.)”.

research papers about autonomous vehicles and the DRL has
been increased in the last few years (see Fig. 1.), and because
of the complexity of the different motion planning problems,
it is a convenient choice to evaluate the applicability of DRL
for these problems.

A. The Hierarchical Classification of Motion Planning for
Autonomous Driving

Using deep neural networks for self-driving cars gives
the possibility to develop “end-to-end” solutions where the
system operates like a human driver: its inputs are the travel
destination, the knowledge about the road network and various
sensor information, and the output is the direct vehicle control
commands, e.g., steering, torque, and brake. However, on the
one hand, realizing such a scheme is quite complicated, since it
needs to handle all layers of the driving task, on the other hand,
the system itself behaves like a black box, which raises design
and validation problems. By examining the recent advantages
in the field, it can be said that most researches focus on solving
some sub-tasks of the hierarchical motion planning problem.
This decision-making system of autonomous driving can be
decomposed into at least four layers, as stated in [3] (see
Fig.2.). Route planning, as the highest level, defines the way-
points of the journey based on the map of the road network,
with the possibility of using real-time traffic data. Though
optimal route choice has a high interest among the research
community, papers dealing with this level do not employ

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6811-2584

ARADI: SURVEY OF DRL FOR MOTION PLANNING OF AUTONOMOUS VEHICLES 741

reinforcement learning. A comprehensive study on the subject
can be found in [4].

The Behavioral layer is the strategic level of autonomous
driving. With the given way-points, the agent decides on the
short term policy, by taking into consideration the local road
topology, the traffic rules, and the perceived state of other
traffic participants. Having a finite set of available actions for
the driving context, the realization of this layer is usually a
finite state-machine having basic strategies in its states (i.e.,
car following, lane changing, etc.) with well-defined transi-
tions between them based on the change of the environment.
However, even with the full knowledge of the current state
of the traffic, the future intentions of the surrounding drivers
are unknown, making the problem partially observable [5].
Hence the future state not only depends on the behavior
of the ego vehicle but also relies on unknown processes;
this problem forms a Partially Observable Markov Decision
Process (POMDP). Different techniques exist to mitigate these
effects by predicting the possible trajectories of other road
users, like in [6], where the authors used gaussian mixture
models, or in [7], where support vector machines and artificial
neural networks were trained based on recorded traffic data.
Since finite action POMDPs are the natural way of modeling
reinforcement learning problems, a high amount of research
papers deal with this level, as can be seen in the sections of
the paper. To carry out the strategy defined by the behavioral
layer, the motion planning layer needs to design a feasible
trajectory consisting of the expected speed, yaw, and position
states of the vehicle on a short horizon. Naturally, on this
level, the vehicle dynamics has to be considered, hence classic
exact solutions of motion planning are impractical since they
usually assume holonomic dynamics. It has long been known
that the numerical complexity of solving the motion planning
problem with nonholonomic dynamics is Polynomial-Space
Algorithm (PSPACE) [8], meaning it is hard to elaborate
an overall solution by solving the nonlinear programming
problem in real-time [9]. On the other hand, the output
representation of the layer makes it hard to directly handle
it with “pure” reinforcement learning, only a few papers deal
solely with this layer, and they usually use DRL to define
splines as a result of the training [10], [11].

At the lowest level, the local feedback control is respon-
sible for minimizing the deviation from the prescribed path
or trajectory. A significant amount of papers reviewed in
this article deals with the aspects of this task, where lane-
keeping, trajectory following, or car following is the higher-
level strategy. Though at this level, the action space becomes
continuous, and classical approaches of RL can not handle
this. Hence discretization of the control outputs is needed,
or - as in some papers - continuous variants of DRL are
used.

B. Reinforcement Learning

As an area of Artificial Intelligence and Machine Learning,
Reinforcement learning (RL) deals with the problem of a
learning agent placed in an environment to achieve a goal.
Contrary to supervised learning, where the learner structure
gets examples of good and bad behavior, the RL agent must

discover by trial and error how to behave to get the most
reward [12]. For this task, the agent must percept the state of
the environment at some level and based on this information,
and it needs to take actions that result in a new state.
As a result of its action, the agent receives a reward, which
aids in the development of future behavior. To ultimately
formulate the problem, modeling the state transitions of the
environment, based on the actions of the agent is also a
necessity. This leads to the formulation of a POMDP defined
by the functions of (S,A, T, R,�, O), where S is the set
of environment states, A is the set of possible actions in
that particular state, T is the transition function between the
states based on the actions, R is the reward for the given
(S,A) pair, while � is the set of observations, and O is the
sensor model. The agent in this context can be formulated
by any inference model whose parameters can be modified
in response to the experience gained. In the context of Deep
Reinforcement Learning, this model is implemented by neural
networks.

The problem in the POMDP scenario is that the current
actions affect the future states, therefore the future rewards,
meaning that for optimizing the behavior for the cumulative
reward throughout the entire episode, the agent needs to
have information about the future consequences of its actions.
RL has two main approaches for determining the optimal
behavior: value-based and policy-based methods.

The original concept using a value-based method is
the Deep-Q Learning Network (DQN) introduced in [1].
Described briefly, the agent predicts a so-called Q value for
each state-action pair, which formulate the expected immediate
and future reward. From this set, the agent can choose the
action with the highest value as an optimal policy or can use
the values for exploration during the training process. The
main goal is to learn the optimal Q function, represented by a
neural network in this case. This can be done by conducting
experiments, calculating the discounted rewards of the future
states for each action, and updating the network by using the
Bellman-equation [13] as a target. Using the same network
for value evaluation and action selection results in unstable
behavior and slow learning in noisy environments. Meta-
heuristics, such as experience replay, can handle this problem,
while other variants of the original DQN exist, such as Double
DQN [14] or Dueling DQN [15], separating the action and
the value prediction streams, leading to faster and more stable
learning.

Policy-based methods target at choosing the optimal behav-
ior directly, where the policy π� is a function of (S,A). Rep-
resented by a neural network, with a softmax head, the agent
generally predicts a normalized probability of the expected
goodness of the actions. In the most natural implementation,
this output integrates the exploration property of the RL
process. In advanced variants, such as the actor-critic, the agent
uses different predictions for the value and the action [16].
Initially, RL algorithms use finite action space, though, for
many control problems, they are not suitable. To overcome
this issue in [17] introduced the Deep Deterministic Policy
Gradients (DDPG) agent, where the actor directly maps states
to continuous actions.

742 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2022

Fig. 2. Layers of motion planning.

Fig. 3. The POMDP model for deep reinforcement learning based autonomous driving.

For complex problems, the learning process can still be long
or even unsuccessful. It can be soluted in many ways:

• Curriculum learning describes a type of learning in which
the training starts with only easy examples of a task and
then gradually increase difficulty. This approach is used
in [18]–[20].

• Adversarial learning aims to fool models through mali-
cious input. Papers using variants of this technique
are: [21], [22]

• Model-based action choice, such as the MCTS based
solution of Alpha-Go, can reduce the effect of the prob-
lem of distant rewarding.

Since reinforcement learning models the problem as a
POMDP, a discrete-time stochastic control process, the solu-
tions need to provide a mathematical framework for this
decision making in situations where outcomes are partly
random and partly under the control of a decision-maker,
while the states are also partly observable [23]. In the case of
motion planning for autonomous or highly automated vehicles,
the tuple (S,A, T, R, O) of the POMDP is illustrated in Fig. 3
and can be interpreted as follows:
S,A, T, and R describe the MDP, the modeling environ-

ment of the learning process. It can vary depending on the
goals, though in our case it needs to model the dynamics
of the vehicle, the surrounding static and dynamic objects,
such as other participants of the traffic, the road topology,

lane markings, signs, traffic rules, etc. S holds the current
actual state of the simulation. A is the possible set of actions
of the agent driving the ego-car, while T , the so-called state-
transition function updates the vehicle state and also the states
of the traffic participants depending on the action of the
vehicle. The different levels of abstraction are described in
section II-A. Many research papers use different software
platforms for modeling the environment. A brief collection
of the used frameworks are presented in section II-B. R is the
reward function of the MDP, section II-D gives a summary on
this topic.

� is the set of observations the agent can experience in the
world, while O is the observation function giving a possibility
distribution over the possible observations. In more uncompli-
cated cases, the studies assume full observability and formulate
the problem as an MDP, though in many cases, the vehicle
does not possess all information. Another interesting topic is
the representation of the state observation, which is a crucial
factor for the architecture choice and performance of Deep
RL agents. The observation models used in the literature are
summarized in section II-E.

C. Multiagent Reinforcement Learning

As mentioned before, the lower layers of motion plan-
ning, like trajectory following or simple control tasks do
not require interactions with agents, whose reaction depends

ARADI: SURVEY OF DRL FOR MOTION PLANNING OF AUTONOMOUS VEHICLES 743

on the behavior of the ego-vehicle. However, on the higher
levels, where the vehicle is placed in complex situations, like
racing, passing intersections, merging, or driving in traffic,
the other participants’ reactions strongly affect the avail-
able choices and possible outcomes. This leads to the area
of Multiagent Systems (MAS) [24], which if handled with
RL techniques are called Multiagent (Deep) Reinforcement
Learning (MARL or MDRL in different sources) [25]. One
modeling approach to MARL is the generalization of the
original POMDP, by extending it with multiple actions and
observation sets for each agent, or even various rewards in case
different agents have different goals. This approach is called
decentralized partially observable Markov decision process
(DEC-POMDP) [26], [27].

Naturally, some of the problems in this domain can still
be handled by single-agent approaches, where one embeds all
other agents in a previously defined model with predefined
or rule-based behaviors and create an independent learning
environment for a single agent; or even with totally inde-
pendent learners, where all other agents are just part of the
environment of the actual learner. This comes with the danger
that the policies found can overfit to the environment agents’
strategies and hence not generalize well [28].

Dealing with MARL raises multiple additional questions
above single-agent RL problems, as it is numerically and
technically more complex and has many conceptual issues to
deal with [29]. The first is the nature of the “game”, whether it
is cooperative or competitive, which highly affects the credit
assignment, i.e., the calculation and distribution of rewards.
Zero-sum games usually lead to competitive scenarios, since
one agent can only benefit the other’s loss. Among the prob-
lems of vehicle motion planning, racing is one example of such
a MAS problem. Also, there are clearly cooperative problems
when only the success of all participants is acceptable. Some
traffic scenarios can be considered from both perspectives. For
example, in intersection or highway driving situations, one can
train agents for shortest individual travel time, or the average
travel time of all agents. Even though when the intentions are
clear, credit assignment is not trivial and can lead to different
learning dynamics or unintended results [30].

The heterogeneity of the agents’ knowledge or tasks is
also a design aspect. It is not trivial that all agents have to
behave similarly, even if their individual goals are the same.
Furthermore, in some scenarios, like merging into traffic,
the agents have distinct tasks: the ones already traveling in
the target lane should decide to adjust the gap for the merging
vehicle, and its agent is supposed to navigate into this target
gap.

This leads to the last significant difference compared to
single-agent systems that in MAS, the agents have the oppor-
tunity to communicate through messages [31] or by memory
sharing [32]. This setting usually assumes a partially observ-
able environment and cooperative agents [33], and could serve
two purposes: one is the transfer of observations, that are
hidden from the other agents, and the second is to transfer
intended behavior to achieve better joint performance. Both
make sense in driving scenarios. For example, considering a
highway platoon, the radar of each vehicle can only sense

the closest car in front. However, they could react better,
having information about all the cars ahead, and also the
knowledge on their intended braking or acceleration could
help. Communication in MAS is a relatively new field with
promising results, though it has many open questions [34].

And finally, there are different training-schemes for MARL.
Its main classes are the following. The first is the centralized
controller approach, where there is a joint model for all
of the observations and actions of all agents. In the first
place, this could be an optimal approach, though it is a
single agent controlling multiple agents. On the other hand,
with the growth of the number of agents, the complexity
of the action space grows exponentially, making exploration
extremely hard [35]. An opposite to this is the concurrent
learning, where each agent has an individual policy, with pri-
vate observation and action space. Heterogeneous tasks would
rationalize this approach, though it also has its drawbacks. The
first is that each agent has its own learning process, hence the
overall learning resource requirements (memory, calculations)
grow linearly with the number of agents. The second is
that since the agents adjust their policies to the behavior of
the others, the dynamics of the learning can become cyclic,
like in a naive rock-paper-scissors game [36]. The third and
less resource-intensive approach is parameter sharing, where
the agents develop a common policy, with all their unique
experiences. This does not mean the same behavior since the
state and observation of each agent can differ.

II. MODELING FOR REINFORCEMENT LEARNING

A. Vehicle Modeling

Modeling the movement of the ego-vehicle is a cru-
cial part of the training process since it raises the trade-
off problem between model accuracy and computational
resource. Since RL techniques use a massive number of
episodes for determining optimal policy, the step time of the
environment, which highly depends on the evaluation time
of the vehicle dynamics model, profoundly affects training
time. Therefore during environment design, one needs to
choose from the simplest kinematic model to more sophis-
ticated dynamics models ranging from 2 Degree of Freedom
(2DoF) lateral model to the more and more complex models
with a higher number of parameters and complicated tire
models.

At rigid kinematic single-track vehicle models, which
neglect tire slip and skip, lateral motion is only affected by
the geometric parameters. Therefore, they are usually limited
to low-speed applications. More details about the model can
be found in [37]. The simplest dynamic models with longi-
tudinal and lateral movements are based on the 3 Degrees
of Freedom (3DoF) dynamic bicycle model, usually with a
linear tire model. They consider (Vx , Vy, �̇) as independent
variables, namely longitudinal and lateral speed, and yaw rate.
A more complex model is the four-tire 9 Degrees of Freedom
(9DoF) vehicle model, where amongst the parameters of the
3DoF, body roll and pitch (�̇, �̇) and the angular velocities
of the four wheels (ω f l , ω f r , ωrl , ωrr) are also considered,
to calculate tire forces more precisely. Hence the model takes

744 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2022

into account both the coupling of longitudinal and lateral slips
and the load transfer between tires.

Though the kinematic model seems quite simplified, and as
stated in [38], such a model can behave significantly different
from an actual vehicle, though for the many control situations,
the accuracy is suitable [37].

According to [38], using a kinematic bicycle model with
a limitation on the lateral acceleration at around 0.5g or less
provides appropriate results, but only with the assumption of
dry road. Above this limit, the model is unable to handle
dynamics. Hence a more accurate vehicle model should be
used when dealing with higher accelerations to push the
vehicle’s dynamics near its handling limits.

Regarding calculation time, based on the kinematic model,
the calculation of the 3DoF model can be 10 . . . 50 times
higher, and the precise calculation of a 9DoF model with
nonlinear tire model can be 100 . . . 300 times higher, which is
the main reason for the RL community to use a low level of
abstraction.

Modeling traffic and surrounding vehicles is often per-
formed by using unique simulators, as described in section II-
B. Some authors develop their environments, using cellular
automata models [39]. Some use MOBIL, which is a general
model (minimizing overall braking induced by lane change)
to derive lane-changing rules for discretionary and mandatory
lane changes for a broad class of car-following models [40];
the Intelligent Driving Model (IDM), a continuous micro-
scopic single-lane model [41].

B. Simulators

Some authors create self-made environments to achieve
full control over the model, though there are commercial
and Open-source environments that can provide this feature.
This section briefly identifies some of them used in recent
researches in motion planning with RL.

In modeling the traffic environment, the most popular
choice is SUMO (Simulation of Urban MObility), which
is a microscopic, inter- and multi-modal, space-continuous
and time-discrete traffic flow simulation platform [42]. It can
convert networks from other traffic simulators such as VISUM,
Vissim, or MATSim and also reads other standard digital road
network formats, such as OpenStreetMap or OpenDRIVE.
It also provides interfaces to several environments, such as
python, Matlab,.Net, C++, etc. Though the abstraction level,
in this case, is microscopic, and vehicle behavior is limited,
its ease of use and high speed makes it an excellent choice for
training agents to handle traffic, though it does not provide any
sensor model besides the ground truth state of the vehicles.

Another popular microscopic simulator that has been used
commercially and for research also is VISSIM [43]. In [44]
it is used for developing car-following behavior and lane
changing decisions.

Considering only vehicle dynamics, the most popular choice
is TORCS (The Open Racing Car Simulator), which is a
modern, modular, highly portable multi-player, multi-agent car
simulator. Its high degree of modularity and portability render
it ideal for artificial intelligence research [45]. Interfacing

with python, the most popular AI research environment is
comfortable and runs at an acceptable speed. TORCS also
comes with different tracks, competing robots, and several
sensor models.

It is assumed that for vehicle dynamics, the best choices
would be the professional tools, such as CarSIM [46] or
CarMaker [47], though the utilization of these softwares can
not be found in the reinforcement learning literature. This may
be caused by the fact that these are expensive commercial plat-
forms, though more importantly, their lack of python interfaces
and high precision, but resource-intensive models prevent them
from running several episodes within a reasonable time.

For more detailed sensor models or traffic, the authors
usually use Airsim, Udacity Gazebo/ROS, and CARLA:

AirSim, used by a recent research in [48], is a simulator
initially developed for drones built on Unreal Engine now
has a vehicle extension with different weather conditions and
scenarios.

Udacity, used in [49], is a simulator that was built for
Udacity’s Self-Driving Car Nanodegree [50] provides various
sensors, such as high quality rendered camera image LIDAR
and Infrared information, and also has capabilities to model
other traffic participants.

Another notable mention is CARLA, an open-source sim-
ulator for autonomous driving research. CARLA has been
developed from the ground up to support the development,
training, and validation of autonomous urban driving systems.
In addition to open-source code and protocols, CARLA pro-
vides open digital assets (urban layouts, buildings, vehicles)
that were created for this purpose and can be used freely. The
simulation platform supports flexible specification of sensor
suites and environmental conditions [51].

Though this section provides only a brief description of the
simulators, a more systematic review of the topic can be found
in [52].

C. Action Space

The choice of action space highly depends on the vehi-
cle model and task designed for the reinforcement learning
problem in each previous research. Though two main levels
of control can be found: one is the direct control of the
vehicle by steering braking and accelerating commands, and
the other acts on the behavioral layer and defines choices on
strategic levels, such as lane change, lane keeping, setting
ACC reference point, etc. At this level, the agent gives a
command to low-level controllers, which calculate the actual
trajectory. Only a few papers deal with the motion planning
layer, where the task defines the endpoints (x, y, θ), and the
agent defines the knots of the trajectory to follow represented
as a spline, as can be seen in [11]. Also, few papers deviate
from vehicle motion restrictions and generate actions by
stepping in a grid, like in classic cellular automata microscopic
models [53].

Some papers combine the control and behavioral layers by
separating longitudinal and lateral tasks, where longitudinal
acceleration is a direct command, while lane changing is a
strategic decision like in [54].

ARADI: SURVEY OF DRL FOR MOTION PLANNING OF AUTONOMOUS VEHICLES 745

The behavioral layer usually holds a few distinct choices,
from which the underlying neural network needs to choose,
making it a classic reinforcement learning task with finite
actions.

Though on the level of control, the actuation of vehicles,
i.e., steering, throttle, and braking, are continuous parameters
and many reinforcement learning techniques like DQN and
PG can not handle this since they need finite action set, while
some, like DDPG, works with continuous action space. To
adapt to the finite action requirements of the RL technique
used, most papers discretizes the steering and acceleration
commands to 3 to 9 possibilities per channel. The low number
of possible choices pushes the solution farther from reality,
which could raise vehicle dynamics issues with uncontrollable
slips, massive jerk, and yaw-rate, though the utilization of
kinematic models sometimes covers this in the papers. A large
number of discrete choices, however, ends up in an exponential
growth in the possible outcomes in the POMDP approach,
which slows down the learning process.

D. Rewarding

During training, the agent tries to fulfill a task, generally
consisting of more than one step. This task is called an
episode. An episode ends if one of the following conditions are
met:

• The agent successfully fulfills the task;
• The episode reaches a previously defined steps
• A terminating condition rises.

The first two cases are trivial and depend on the design of the
actual problem. Terminal conditions are typically situations
where the agent reaches a state from which the actual task
is impossible to fulfill, or the agent makes a mistake that is
not acceptable. Vehicle motion planning agents usually use
terminating conditions, such as: collision with other partici-
pants or obstacles or leaving the track or lane, since these
two inevitably end the episode. There are lighter approaches,
where the episode terminates with failure before the accident
occurred, with examples of having a too high tangent angle
to the track or reaching too close to other participants. These
“before accident” terminations speed up the training by bring-
ing the information of failure forward in time, though their
design needs caution [55].

Rewarding plays the role of evaluating the goodness of the
choices the agent made during the episode giving feedback to
improve the policy. The first important aspect is the timing of
the reward, where the designer of the reinforcement learning
solution needs to choose a mixture of the following strategies
all having their pros and cons:

• Giving reward only at the end of the episode and dis-
counting it back to the previous (S,A) pairs, which could
result in a slower learning process, though minimizes the
human-driven shaping of the policy.

• Giving immediate reward at each step by evaluating
the current state, naturally discount also appears in this
solution, which results in significantly faster learning,
though the choice of the immediate reward highly affects
the established strategy, which sometimes prevents the

agent from developing better overall solutions than the
one that gave the intention of the designed reward.

• An intermediate solution can be to give a reward in
predefined periods or travel distance [56], or when a good
or bad decision occurs.

In the area of motion planning, the end episode rewards are
calculated from the fulfillment or failure of the driving task.
The overall performance factors are generally: time of finish-
ing the task, keeping the desired speed or achieving as high
average speed as possible, yaw or distance from lane middle
or the desired trajectory, overtaking more vehicles, achieve as
few lane changes as possible [57], keeping right [58], [59]
etc. Rewarding systems also can represent passenger com-
fort, where the smoothness of the vehicle dynamics is
enforced. The most used quantitative measures are the lon-
gitudinal acceleration [60], lateral acceleration [61], [62] and
jerk [10], [63].

In some researches, the reward is based on the deviation
from a dataset [64], or calculated as a deviation from a
reference model like in [65]. These approaches can provide
favorable results, though a bit tends from the original phi-
losophy of reinforcement learning since a previously known
strategy could guide the learning.

E. Observation Space

The observation space describes the world to the agent.
It needs to give sufficient information for choosing the appro-
priate action, hence - depending on the task - it contains the
following knowledge:

• The state of the vehicle in the world, e.g., position, speed,
yaw, etc.

• Topological information like lanes, signs, rules, etc.
• Other participants: surrounding vehicles, obstacles, etc.
The reference frame of the observation can be absolute and

fixed to the coordinate system of the world, though as the
decision process focuses on the ego-vehicle, it is more straight-
forward to choose an ego-centric reference frame pinned to the
vehicle’s coordinate system, or the vehicle’s position in the
world, and the orientation of the road. It allows concentrating
the distribution of visited states around the origin in both
position, heading, and velocity space, as other vehicles are
often close to the ego-vehicle and with similar speed and
heading, reducing the region of state-space in which the policy
must perform. [66]

1) Vehicle State Observation: For lane keeping, navigation,
simple racing, overtaking, or maneuvering tasks, the most
commonly used and also the simplest observation for the
ego vehicle consists of the continuous variables of (|e|, v, θe)
describing the lateral position from the center-line of the lane,
vehicle speed, and yaw angle respectively. (see Fig. 4). This
information is the absolute minimum for guiding car-like vehi-
cles, and only eligible for the control of the classical kinematic
car-like models, where the system implies the motion without
skidding assumption. Though in many cases in the literature,
this can be sufficient, since the vehicles remain deep in the
dynamically stable region.

For tasks, where more complex vehicle dynamics is
inevitable, such as racing situations, or where the stability of

746 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2022

Fig. 4. Observation for basic vehicle state (source: [3]).

the vehicle is essential, this set of observable state would not
be enough, and it should be extended with yaw, pitch, roll,
tire dynamics, and slip.

2) Environment Observation: Getting information about the
surroundings of the vehicle and representing it to the learning
agent shows high diversity in the literature. Different levels of
sensor abstractions can be observed:

• sensor level, where camera images, lidar or radar infor-
mation is passed to the agent;

• intermediate level, where idealized sensor information is
provided;

• ground truth level, where all detectable and non-
detectable information is given.

The structure of the sensor model also affects the neural
network structure of the Deep RL agent since image like,
or array-like inputs infer 2D or 1D CNN structures, while
the simple set of scalar information results in a simple dense
network. There are cases where these two kinds of inputs are
mixed. Hence the network needs to have two different types
of input layers.

Image-based solutions usually use front-facing camera
images extracted from 3D simulators to represent the obser-
vation space. The data is structured in a (C x W x H) sized
matrix, where C is the number of channels, usually one for
intensity images and three for RGB, while W and H are
the width and height resolution of the image. In some cases,
for the detection of movement, multiple images are fed to
the network in parallel. Sometimes it is convenient to down-
sample the images - like (1x48x27) in [67] or (3x84x84)
in [68], [69] - for data and network compression purposes.
Since images hold the information in an unstructured manner,
i.e., the state information, such as object positions, or lane
information are deeply encoded in the data, deep neural
networks, such as CNN, usually need large samples and time
to converge [70]. This problem escalates, with the high number
of steps that the RL process requires, resulting in a lengthy
learning process, like 1.5M steps in [67] or 100M steps
in [68].

Many image-based solutions propose some kind of pre-
processing of the data to overcome this issue. In [70],
the authors propose a framework for vision-based lateral

Fig. 5. Real images from the driving data and their semantic segmentations
(source: [72]).

control, which combines DL and RL methods. To improve
the perception accuracy, an MTL (Multitask learning) CNN
model is proposed to learn the critical track features, which
are used to locate the vehicle in the track coordinate, and
trains a policy gradient RL controller to solve the continuous
sequential decision-making problem. Naturally, this approach
can also be viewed as an RL solution with structured features,
though the combined approach has its place in the image-based
solutions also.

Another approach could be the simplification of the unstruc-
tured data. In [71] Kotyan et al. uses the difference image
as the background subtraction between the two consecutive
frames as an input, assuming this image contains the motion of
the foreground and the underlying neural network would focus
more on the features of the foreground than the background.
By using the same training algorithm, their results showed
that the including difference image instead of the original
unprocessed input needs approximately 10 times less training
steps to achieve the same performance. The second possibility
is, instead of using the original image as an input, it can
be driven through an image semantic segmentation network
as proposed in [72]. As the authors state: “Semantic image
contains less information compared to the original image, but
includes most information needed by the agent to take actions.
In other words, semantic image neglects useless information
in the original image.” Another advantage of this approach
is that the trained agent can use the segmented output of
images obtained from real-world scenarios, since on this level,
the difference is much smaller between the simulated and real-
world data than in the case of the simulated and real-world
images. Fig. 5 shows the 640 × 400 resolution inputs used in
this research.

2D or 3D Lidar like sensor models are not common among
the recent studies, though they could provide excellent depth-
map like information about the environment. Though the same
problem arises as with the camera images, that the provided
data - let them be a vector for 2D, and a matrix for 3D Lidars
- is unstructured. The usage of this type of input only can be
found in [73], where the observation emulates a 2D Lidar that
provides the distance from obstacles in 31 directions within
the field-of-view of 150◦, and agent uses sensor data as its
state. A similar input structure, though not modeling a Lidar,

ARADI: SURVEY OF DRL FOR MOTION PLANNING OF AUTONOMOUS VEHICLES 747

Fig. 6. The surrounding from the perspective of the vehicle can be described
by a coarse perception map where the target is represented by a red dot
(c) (source: [78]).

since there is no reflection, which is provided by TORCS and
used in [20], is to represent the lane markings with imagined
beam sensors. The agent in the cited example uses readings
from 19 sensors with a 200m range, presenting at every 10◦
on the front half of the car returning distance to the track
edge.

Grid-based path planning methods, like the A* or various
SLAM (Simultaneous Localization and Mapping) algorithms
exist and are used widespread in the area of mobile robot
navigation, where the environment is represented as a spatial
map [74], usually formulated as a 2D matrix assigning to each
2D location in a surface grid one of three possible values:
Occupied, free, and unknown [75]. This approach can also
be used representing probabilistic maneuvers of surrounding
vehicles [76], or by generating spatiotemporal map from
a predicted sequence of movements, motion planning in a
dynamic environment can also be achieved [77]. Though the
previously cited examples didn’t use RL techniques, they
prove that grid representation holds high potential in this field.
Navigation in a static environment by using a grid map as
the observation, together with position and yaw of the vehicle
with an RL agent, is presented in [78] (See Fig.6). Grid maps
are also unstructured data, and their complexity is similar to
the semantically segmented images, since the cells store class
information in both cases, and hence their optimal handling is
using the CNN architecture.

Representing moving objects, i.e. surrounding vehicles in a
grid needs not only occupancy, but other information hence
the spatial grid’s cell need to hold additional information.
In [57] the authors used equidistant grid, where the ego-
vehicle is placed in the center, and the cells occupied by
other vehicles represented the longitudinal velocity of the
corresponding car (See Fig. 7). The same approach can also
be found in [62]. Naturally this simple representation can
not provide information about the lateral movement of the
other traffic participants, though they give significantly more
than the simple occupancy based ones. Equidistant grids are
a logical choice for generic environments, where the moving
directions of the mobile robot are free, though, in the case
of road vehicles, the vehicle mainly follows the direction of
the traffic flow. In this case, the spatial representation could
be chosen fixed to the road topology, namely the lanes of the
road, regardless of its curvature or width. In these lane-based
grid solutions, the grid representing the highway has as many
rows as the actual lane count, and the lanes are discretized
longitudinally. The simplest utilization of this approach can
be found in [39], where the length of the cells is equivalent

Fig. 7. The visualization of the HDM mapping process (source: [57]).

to the unit vehicle length, and also, the behavior of the traffic
acts similar to the classic cellular automata-based microscopic
models [79].

This representation, similarly to the equidistant ones, can
be used for occupancy, though they still do not hold any
information on vehicle dynamics. [80] is to fed multiple con-
secutive traffic snapshots into the underlying CNN structure,
which inherently extracts the velocity of the moving objects.
Representing speed in grid cells is also possible in this setup,
for that example can be found in [49], where the authors
converted the traffic extracted from the Udacity simulator to
the lane-based grid.

Besides the position and the longitudinal speed of the
surrounding vehicles are essential from the aspect of the
decision making, other features (such as heading, acceleration,
lateral speed) should be considered. Multi-layer grid maps
could be used for each vital parameter to overcome this issue.
In [10] the authors processed the simulator state to calculate
an observation tensor of size 4 x 3 x (2 x FoV + 1), where
Fov stands for Field of View and represents the maximum
distance of the observation in cell count. There is one channel
(first dimension) each for on-road occupancy, relative veloc-
ities of vehicles, relative lateral displacements, and relative
headings to the ego-vehicle. Fig.8 shows an example of the
simulator state and corresponding input observation used for
their network.

The previous observation models (image, lidar, or grid-
based) all have some common properties: All of them are
unstructured datasets, need a CNN architecture to process,
which hardens the learning process since the agent simultane-
ously needs to extract the exciting features and form the policy
for action. It would be obvious to pre-process the unstructured

748 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2022

Fig. 8. The simulator state (top, zoomed in) gets converted to a 4 x 3 x (2 x
FoV + 1) input observation tensor (bottom) (source: [10]).

data and feed structured information to the agents’ network.
Structured data refers to any data that resides in a fixed field
within a record or file. As an example, for navigating in
traffic, based on the task, the parameters of the surrounding
vehicles are represented on the same element of the input.
In the simplest scenario of car following, the agent only
focuses on the leading vehicle, and the input beside the state
of the ego vehicle consists of (d, v) as in [64] or (d, v, a)
as in [81], where these parameters are the headway distance,
speed, and acceleration of the leading vehicle. Contrary to the
unstructured data, these approaches significantly reduce the
amount of the input and can be handled with simple DNN
structures, which profoundly affects the convergence of the
agent’s performance. For navigating in traffic, i.e., performing
merging or lane changing maneuvers, not only the leading
vehicle’s, but the other surrounding vehicles’ states also need
to be considered. In a merging scenario, the most crucial
information is the relative longitudinal position and speed
2x(dx, dv) of the two vehicles bounding the target gap,
as used by [82]. Naturally, this is the absolute minimal
representation of such a problem, but in the future, more
sophisticated representations would be developed. In highway
maneuvering situations, both ego-lane, and neighboring lane
vehicles need to be considered, in [54] the authors used
the above mentioned 6x(dx, dv) scalar vector is used for
the front and rear vehicles in the three interesting lanes.
While in [83] the authors extended this information with
the occupancy of the neighboring lanes right at the side of
the ego-vehicle (See Fig. 9). The same approach can be
seen in [55], though extending the number of traced objects
to nine. These researches lack lateral information, though,
in [54], the lateral positions and speeds are also involved
in the input vector resulting in a 6x(dx, dy, dvx, dvy)
structure, logically representing longitudinal and lateral dis-
tance, and speed differences to the ego, respectively. In
a special case of handling unsignalized intersection [84]
the authors also used this formulation scheme where the
other vehicle’s Cartesian coordinates, speed and heading were
considered.

III. SCENARIO-BASED CLASSIFICATION

OF THE APPROACHES

Though this survey focuses on Deep Reinforcement Learn-
ing based motion planning research, it is essential to mention
that some papers try to solve some subtasks of automated
driving through classic reinforcement techniques. One problem
of these classic methods, that they can not handle unstructured
data, such as images, mid-level radar, or lidar sensing.

Fig. 9. Environment state on the highway [83].

TABLE I

STATE REPRESENTATION DISCRETIZATION IN [85]

The other problem comes from the need of maintaining the
Q-table for all (S,A) state-action pairs. This results in space
complexity explosion, since the size of the table equals the
product of the size of all classes both in state and action.
As an example, the Q-learning made in [85] is presented. The
authors trained an agent in TORCS, which tries to achieve a
policy for the best overtaking maneuver, by taking advantage
of the aerodynamic drag. There are only two participants in
the scenario, the overtaking vehicle, and the vehicle in front
on a long straight track. The state representation contains
the longitudinal and lateral distance of the two vehicles and
also the the lateral position of the ego-vehicle and the speed
difference of the two. The authors discretized this state
space to classes of size (6, 10, 8, 9) respectfully (see table I);
and used the minimal lateral action set size of 3, where the
actions are sweeping 1m to the left or right and maintaining
lateral position. Together, this problem generates a Q-table
with 6 ∗ 10 ∗ 8 ∗ 9 ∗ 3 = 12960 elements. Though a table
of this size can be easily handled nowadays, it is easy to
imagine that with more complex problems with more vehicles,
more sensors, complex dynamics, denser state and action
representation, the table can grow to enormous size. A possible
reduction is the utilization of the Multiple-Goal Reinforcement
Learning Method and dividing the overall problem to sub-
tasks, as can be seen in [86] for overtaking maneuver. In a
latter research, the authors widened the problem and separated
the driving problem to the tasks of collision avoidance, target
seeking, lane following, Lane choice, speed keeping, and
steady steering [87]. To reduce problem size, the authors
of [88] used strategic-level decisions to set movement targets
for the vehicles concerning the surrounding ones, and left

ARADI: SURVEY OF DRL FOR MOTION PLANNING OF AUTONOMOUS VEHICLES 749

Fig. 10. Path planning results from [89].

the low-level control to classic solutions, which significantly
reduced the action space.

An other interesting example of classic Q-learning is
described in [89] where the authors designed an agent for
the path planning problem of a ground vehicle consider-
ing obstacles with Ackermann steering by using (v, x, y, θ)
(speed, positions and heading) as state representation, and used
reinforcement learning as an optimizer (See Fig. 10).

Though one would expect that machine learning could give
an overall end-to-end solution to automated driving, the study
of the recent literature shows that Reinforcement Learning
research can give answers to certain sub-tasks of this problem.
The papers in recent years can be organized around these prob-
lems, where a well-dedicated situation or scenario is chosen
and examined whether a self-learning agent can solve it. These
problem statements vary in complexity. As mentioned earlier,
the complexity of reinforcement learning, and thus training
time, is greatly influenced by the complexity of the problem
chosen, the nature of the action space, and the timeliness and
proper formulation of rewards. The simplest problems, such as
lane-keeping or vehicle following, can generally be traced back
to simple convex optimization or control problems. However,
in these cases, the formulation of secondary control goals,
such as passenger comfort, is more comfortable to articulate.
At the other end of the imagined complexity scale, there are
problems, like in the case of maneuvering in dense traffic,
the efficient fulfillment of the task is hard to formulate, and the
agent needs predictive “thinking” to achieve its goals. In the
following, these approaches are presented.

A. Car Following

Car following is the simplest task in this survey, where the
problem is formulated as follows: There are two participants
of the simulation, a leading and the following vehicle, both
keeping their lateral positions in a lane, and the following
vehicle adjusts its longitudinal speed to keep a safe following
distance. The observation space consists of the (v, dv, ds)
tuple, representing agent speed, speed difference to the lead,
and headway distance. The action is the acceleration com-
mand. Reward systems use the collision of the two vehicles

Fig. 11. Ramp merge: (a) simulated scenario and (b) real-world location
(source: [82]).

as a failure naturally, while the performance of the agent is
based on the jerk, TTC (time to collision) [63], or passenger
comfort [44]. Another approach is shown in [64], where the
performance of the car following agent is evaluated against
real-world measurement to achieve human-like behavior.

B. Lane Keeping

Lane-keeping or trajectory following is still a simple control
task, but contrary to car following, this problem focuses on
lateral control. The observation space in these studies us
two different approaches: One is the “ground truth” lateral
position and angle of the vehicle in lane [22], [73], [90],
while the second is the image of a front-facing camera [67],
[70], [72]. Naturally, for image-based control, the agents use
external simulators, TORCS, and GAZEBO/ROS in these
cases. Reward systems almost always consider the distance
from the center-line of the lane as an immediate reward.
It is important to mention that these agents hardly consider
vehicle dynamics, and surprisingly does not focus on joined
longitudinal control.

C. Merging

The ramp merge problem deals with the on-ramp highway
scenario (see Fig. 11), where the ego vehicle needs to find the
acceptable gap between two vehicles to get on the highway.
In the simplest approach, it is eligible to learn the longitudinal
control, where the agent reaches this position, as can be seen
in [19], [58], [91]. Other papers, like [82] use full steering
and acceleration control. In [58], the actions control the lon-
gitudinal movement of the vehicle accelerate and decelerate,
and while executing these actions, the ego vehicle keeps its
lane. Actions “lane change left” as well as “lane change right”
imply lateral movement. Only a single action is executed at a
time, and actions are executed in their entirety, the vehicle is
not able to prematurely abort an action.

An exciting addition can be examined in [19], where the
surrounding vehicles act differently, as there are cooperative
and non-cooperative drivers among them. They trained their
agents with the knowledge about cooperative behavior, and

750 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2022

also compared the results with three differently built MTCS
planners. Full information MCTS naturally outperforms RL,
though they are computationally expensive. The authors used
a curriculum learning approach to train the agent by gradually
increasing traffic density. As they stated: “When training an
RL agent in dense traffic directly, the policy converged to a
suboptimal solution which is to stay still in the merge lane
and does not leverage the cooperativeness of other drivers.
Such a policy avoids collisions but fails at achieving the
maneuver.”

The most detailed description for this problem is given
by [82], where “the driving environment is trained as an
LSTM architecture to incorporate the influence of historical
and interactive driving behaviors on the action selection. The
Deep Q-learning process takes the internal state from LSTM as
the input to the Q-function approximator, using it for the action
selection based on more past information. The Q-network
parameters are updated with an experience replay, and a sec-
ond target Q-network is used to relieve the problems of local
optima and instability.” With this approach, the researchers try
to mix the possibilities from behavior prediction and learning,
simultaneously achieving better performance.

Multiagent merging scenarios usually use only longitudinal
control, to find the safe gap, and leave the lateral movements
to an underlying control scheme. From this aspect, on-ramp
merging and some intersection passing problems have a lot
in common. Therefore both on-ramp and intersection related
MARL is discussed in this section.

The first example comes from [92], where the sce-
nario is a roundabout, which is topologically similar to the
on/off-ramp problems. The research used homogeneous non-
communicating agents, with parameter sharing A3C learner.
The observation space is both ego-vehicle state and a birds’eye
view grid of the scene, representing the path-to-follow,
the topology, and the dynamic objects in three channels.
Naturally, this setup needs a heterogeneous-input NN, CNN
for the grid, and DNN for the state values, and three discrete
choices: accelerate, maintain speed and brake. An interesting
comparison can be found in [93], where the effect of delay
and the single/multi agent approaches are evaluated through
multiple scenarios, from which one is an unsignalized inter-
section, with four agents turning to the left. Delay awareness
was handled by expanding the POMDP with the set of
previous actions. The research applied continuous longitudinal
acceleration command, and the multiagent DDPG (MADDPG)
from [94], with centralized critic and decentralized actor.

In [95], a multilane intersection was examined, where
besides the longitudinal discrete action, a lane change action
was also applied. The researched used “COIN” from [96],
a parameter sharing table-based immediate reward reinforce-
ment learning approach. Though, as mentioned before, such a
problem is too complicated for a tabled-Q learner, hence the
authors used the KNN technique for functional approximation
to deal with occasional rare states whose actions have not
all been trained. Another tabled-Q is presented in [97] for
a two-agent merge scenario represented with a cell-transition
model. This representation is small enough to solve, though
its expansion and generalization are not possible.

Among the merge scenarios, the most complicated one is
the double-merge. Two multilane highway join and separate
afterward, having agents arriving from both entrances and also
leaving on both exits. The first examination for this problem is
an example of the proposed CM3 algorithm from [98], where
two AI-controlled agents perform this merge among other
surrounding vehicles in the SUMO simulator. As the double-
merge problem is quite dangerous, it is hard to solve it with
simple RL techniques. In [99], a PG based learner provides
longitudinal and lateral desired targets, though a rule-based
supervisory system ensures its safety.

D. Driving in Traffic

The most complicated scenario examined in the recent
papers are those where the autonomous agent drives in traffic.
Naturally, this task is also scalable by the topology of the
network, the amount and behavior of the surrounding vehicles,
the application of traffic rules, and many other properties.
Therefore almost all of the current solutions deal with highway
driving, where the scenario lacks intersections, pedestrians,
and the traffic flow in one direction in all lanes. Sub-tasks
of this scenario were examined in the previous sections, such
as lane-keeping, or car following. In the following, two types
of highway driving will be presented. First, the hierarchical
approaches are outlined, where the agents act on the behavioral
layer, making decisions about lane changing or overtaking and
performs these actions with an underlying controller using
classic control approaches. Secondly, end-to-end solutions are
presented, where the agents directly control the vehicle by
steering and acceleration. As the problem gets more compli-
cated, it is important to mention that the agents trained this
would only be able to solve the type of situations that it is
exposed to in the simulations. It is, therefore, crucial that the
design of the simulated traffic environment covers the intended
case [65].

Making decisions on the behavioral layer consists of at
least three discrete actions: Keeping current lane, Change to
the left, and Change to the right, as can be seen in [55].
In this paper, the authors used the ground truth information
about the ego vehicle’s speed and lane position, and the
relative position and speed of the eight surrounding vehicles
as the observation space. They trained and tested the agents
in three categories of observation noises: noise-free, mid-
level noise (%5), and high-level noise (%15), and showed
that the training environments with higher noises resulted
in more robust and reliable performance, also outperforming
the rule-based MOBIL model, by using DQN with a DNN
of 64, 128, 128, 64 hidden layers with tanh activation. In a
quite similar environment and observation space, [65] used
a widened set of actions to perform the lane changing with
previous accelerations or target gap approaching, resulting
in six different actions as can be seen in table II. They
also achieved the result that the DQN agent - using two
convolutional and one dense layer - performed on par with,
or better than, a reference model based on the IDM [41]. and
MOBIL [40] model. In the other publication from the same
author [100], the action space is changed slightly by changing

ARADI: SURVEY OF DRL FOR MOTION PLANNING OF AUTONOMOUS VEHICLES 751

TABLE II

ACTION SPACE IN [65]

Fig. 12. Flow-density relations detected by the virtual loops under different
strategies (source: [80]).

the acceleration commands to increasing and decreasing the
ACC set-points and let the underlying controller perform these
actions.

In [81], a two-lane scenario is considered to distribute the
hierarchical decisions further. First, a DQN makes a binary
decision about “to or not to change lane”, and afterward,
the other Q network is responsible for the longitudinal acceler-
ation, based on the previous decision. Hence the second layer,
integrated with classic control modules (e.g., Pure Pursuit
Control), outputs appropriate control actions for adjusting
its position. In [60], the above mentioned two-lane scenario
is considered, though the authors used an actor-critic like
learning agent.

An interesting question in automated driving is the coop-
erative behavior of the trained agent. In [80] the authors
considered a three-lane highway with a lane-based grid repre-
sentation as observation space and a simple tuple of four for
action space left, right, speedup, none, and used the reward
function to achieve cooperative and non-cooperative behaviors.
Not only the classic performance indicators of the ego vehicle
is considered in the reward function, but also the speed of the
surrounding traffic, which is naturally affected by the behavior
of the agent. The underlying network uses two convolutional
layers with 16 filters of patch size (2,2) and RELU activation,
and two dense layers with 500 neurons each. To evaluate
the effects of the cooperative behavior, the authors collected
traffic data by virtual loops in the simulation and visualized
the performance of the resulting traffic in the classic flow-
density diagram (see Fig. 12.) It is shown that the cooperative
behavior results in higher traffic flow, hence better highway
capacity and lower overall travel time.

The realism of the models could still differentiate end-
to-end solutions. For example, in [57], instead of using the

nonholonomic Ackermann steering geometry, the authors use
a holonomic robot model for the action space, which highly
reduces the complexity of the control problem. Their actions
are Acceleration, Deceleration, Change lane to the left, Change
lane to the right, and Take no action, where the first two apply
maximal acceleration and deceleration, while the two lane-
changing actions simply use constant speed lateral movements.
They use Dueling DQN and prioritized experience replay with
a grid-based observation model. A similar control method and
nonholonomic kinematics is used in [54]. The importance of
this research is that it considers safety aspects during the
learning process. By using an MPC like safety check, the agent
avoids actions that lead to a collision, which makes the training
faster and more robust.

Using nonholonomic kinematics needs acceleration and
steering commands. In [59], [83], the authors used a con-
tinuous observation space of the structured information of
the surrounding vehicles and Policy-gradient RL structure to
achieve end-to-end driving. Since the utilized method has
discrete action-space, the steering and acceleration command
needed to be quantized. The complexity of driving in traffic
with an end-to-end solution can be well examined by the
number of training episodes needed by the agent. While in
simple lane-keeping scenarios, the agents finished the task in
few hundreds of episodes, the agent used for these problems
needed 300’000.

Some papers propose a multiagent approach to the “nav-
igating in traffic” scenario also. In [103], the authors used
a simple discrete, three-lane highway model, with simple
choices, showing how the vehicle trained in a single agent
approach fails, when placed in a multiagent environment and
must deal with agents with the same policy as itself. Though
it is also shown, the single agent is a good starting network
to begin training in MARL setup.

As discussed earlier, centralized control could be a solu-
tion, though it has an exponential growth in terms of com-
plexity, as the agent number grows. In [104], [105] the
authors propose the utilization of the so-called Coordina-
tion Graph (CG) technique, which decomposes the global
payoff function into a linear combination of local payoff
functions. As an example, the I-DCG and P-DCG, an identity-
based and a position-based coordination graph separation
is shown, where the edges of the graph only deal with
the cartesian product of the corresponding agents’ actions.
In [106], the authors seek answers to the same question, using
MIT-Deeptraffic [110], a microscopic, strategic level simulator,
with a total of 20 cars inside the environment, for which
the intelligent control of up to 11 vehicles is allowed. The
remaining cars choose their actions randomly. Two scenarios
are compared: A single traffic agent’s model is applied to mul-
tiple agents (transfer learning strategy) and the pure MARL
approach.

In [107], the authors propose a periodic parameter sharing
structure, where the agents share parameters periodically, but
individual policies, which probably comes from the same
intuition as the dueling DQN. In their example, two agents
perform a cooperative static obstacle avoidance. This work
uses mixed grid and ego state observation, hence utilizing

752 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2022

TABLE III

SINGLE AGENT APPROACHES FOR MOTION PLANNING IN DIFFERENT SCENARIOS

ARADI: SURVEY OF DRL FOR MOTION PLANNING OF AUTONOMOUS VEHICLES 753

TABLE IV

MULTIAGENT APPROACHES FOR MOTION PLANNING IN DIFFERENT SCENARIOS

a CNN/DNN network. The results are compared to pure
parameter sharing and full individual training, showing that
in this particular case, this golden mean performs better than
the original agents.

There are also research groups, whose attention turns
from single RL to MARL. In [20], the authors searched
the solution for competitive overtaking in the TORCS envi-
ronment, and afterward, extended the research to multiagent
in [108]. They use one simple parameter sharing DDPG,
though train the agent for two distinct tasks. The first rewards
only lane following, though the second also rewards race
position. The “task” is injected into the observation space
as a binary information to learn the same strategy with
one agent. Hence, based on the command received in the
observation vector, the same agent acts competitively or
cooperatively.

Finally, a not clearly RL, but imitation learning is pro-
posed by [109], where Generative Adversarial Imitation Learn-
ing (GAIL) was extended with Parameter Sharing Trust Region
Policy Optimization (PS-TRPO) [35] to enable imitation learn-
ing in the multi-agent context, calling the new PS-GAIL.
For this framework, the agent needs demonstration, which
was extracted from the Next-Generation Simulation (NGSIM)
dataset [111].

E. Literature Summary
The summarization of the single-agent approaches are

given in table III, providing information on the scenario,
the utilized model or simulation environment, the observation
and action spaces, the elements considered in the reward
function, and also the type of RL agent, and the neural
network.

Table IV presents the researches with multiagent (MARL)
approaches, with similar columns, except for rewarding, where
the distribution of the reward among agents is outlined.
There could be further criteria for classifying MARL, e.g.,
heterogeneity of the agent, communication between the agents,
and cooperativeness. Though this area, the agents involved
are all homogeneous, use some kind parameter sharing or
centralized control, with one exception in [93] using MA-
DDPG from [94] which is a centralized critic, decentralized
actor scheme. Regarding competitiveness, the nature of reward
(joined, or individual) does not determine the competitiveness,
as the rewards given to agents do not add up to zero. Hence
all research deals with cooperative problem setups, again with
one exception in [108], where the scenario is racing, and race
position is part of the reward, which establishes competition
among the agents. And finally, there is modeled communica-
tions between the agents in some papers through dedicated

754 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2022

short-range communications (DSRC). However, these only
serve the purpose of establishing the observation space for the
individual agents. In terms of learning and MARL, the agents
don’t establish or develop communication to form joined
strategies. Though the elements and values used in the MDP
formulation are detailed in the paper, this section summarizes

[a] Observation space elements: (x, y) are longitudi-
nal and lateral position. (dgoal, dhead , dgap) are distances
to goal, leading vehicle, and the target gap, respectively.
(T, T T C, T T P) are Elapsed time, Time-to-collision and
Time-to-position. (vx , v

des , dv) are for longitudinal speed,
desired speed, and speed difference. � denote the heading of
the vehicle. (id, w, c, geo) are for lane id, width, curvature,
and geometry.

[b] Action Space elements: a-acceleration, th-throttle,
st-steering, st � -steering speed, ayaw - yaw rate, br - brake,
hb - handbrake stands for longitudinal acceleration, LCy and
Dir are lateral, steps are longitudinal discrete steps, T n is
action for turning in intersection. {N} shows the size of the
discrete action set, if known. For strategic decisions: (WAIT,
GO) - halts/starts the agent in intersection, ACC - acceleration,
ACCSP - ACC setpoint, DEC - deceleration, (LLC, RLC) -
Lane change left or right, NA - No action (keep state), FOL
- stay in lane and use car following rules.

[c] For single-agent rewards, the followings were consid-
ered: spe - speed, lc - lane chage (penalty), q - traffic flow,
coll- collision, clo - unsafe distance (closing), time - time
elapsed (step cost), succ - success/failure, lane - lane choice,
acc - acceleration, trav - distance traveled, head - heading, lat
- lateral distance, kright - keep right, sty - style, ayaw - yaw
rate, jerk - jerk, over - overtaking.

[d] Multiagent rewards are categorized as follows: Central-
ized rewards are given, when there is one centralized controller
for the multiagent task. “Joined” means that the agent receives
the reward based on the performance of every agent, while
“Individual” means the agent receives reward only for its
performance. This scheme does not apply to [109], since it
uses imitation learning.

IV. FUTURE CHALLENGES

The recent achievements on the field showed that different
deep reinforcement learning techniques could be effectively
used for different levels of autonomous vehicles’ motion plan-
ning problems, though many questions remain unanswered.
The main advantage of these methods is that they can handle
unstructured data such as raw or slightly pre-processed radar
or camera-based image information.

One of the main benefits of using deep neural networks
trained by a reinforcement learning agent in motion planning
is the relatively low computational requirements of the trained
network. Though this property needs a vast amount of trials
in the learning phase to gain enough experience, as mentioned
before, for simple convex optimization problems, the conver-
gence of the process is fast. However, for complex scenarios,
the training can quickly reach millions of steps, meaning that
one setup of hyper-parameters or reward hypothesis can last
hours or even days. Since complicated reinforcement learning
tasks need continuous iteration on the environment design,

network structure, reward scheme, or even the used algorithm
itself, designing such a system is a time-consuming project.
Besides the appropriate result analysis and inference, the eval-
uation time highly depends on the computational capacities
assigned. On this basis, it is not a surprise that most papers
nowadays deal with minor subtasks of the motion planning
problem, and the most complex scenarios, such as navigating
in urban traffic, can not be found in the literature. As many
heuristics, RL itself has its trade-off between performance and
resource neediness. The performance in vehicle control is not
only journey time, average speed, or passenger comfort, but
primarily safety and robustness. Reinforcement Learning has
many challenges in these two fields. In the following, these
two major problems will be outlined.

A. Safety

Using neural networks and deep learning techniques as
universal function-approximators in automotive systems poses
several questions. For example, what is the amount of training
data needed for safe driving? [112]. As stated in [113],
function development for automotive applications realized
in electronic control units (ECUs) is subject to proprietary
OEM norms and several international standards, such as
Automotive SPICE (Software Process Improvement and Capa-
bility Determination) [114] and ISO 26262 [115]. However,
these standards are still far from addressing deep learning
with dedicated statements, since verification and validation
is not a solved issue in this domain. Some papers deal
with these issues by using an underlying safety layer, which
verifies the safety of a planned trajectory before the vehicle
control system executes it. However, full functional safety
coverage can not be guaranteed in complex scenarios this
way.

The main goal of reinforcement learning is to maximize
the long-term reward statistically. Still, the primary goal is
the prevention of accidents for vehicle control tasks. Since
RL does not necessarily prevent the use of actions that cause
large negative rewards, other methods are needed to handle
the risks. The literature deals with security and risks in many
forms, for which [116] provides an excellent summary. Two
main directions can be distinguished in this area. One group
of solutions includes methods using the optimization criterion,
while the other group contains algorithms that modify the
exploration process. One also has several options for modify-
ing optimization criteria. The first is the worst-case criterion.
It addresses the problems caused by the uncertainties arising
from the stochastic volatility of the system and the para-
meter uncertainties by considering the worst-case scenarios.
The second option is the risk-sensitive criterion. In this case,
a scalar parameter is added to the loss function, the so-called
risk sensitivity parameter to control the level of risk. Finally,
it is possible to use constrained MDP, where the standard
MDP tuple is extended with a constraint set, which the policy
function must fulfill.

Modifying the exploration process is an option, contrary to
the classic exploration strategy, which assumes that the agent
learns everything from scratch. With vehicle control applica-
tions, this often leads to catastrophic situations. Furthermore,

ARADI: SURVEY OF DRL FOR MOTION PLANNING OF AUTONOMOUS VEHICLES 755

completely unintentional exploration strategies waste a lot of
time exploring the irrelevant areas of the underlying state
space, which is especially important in large and continuous
state spaces. There are two main directions. One directs the
exploration process by applying external intelligence, while
the other is using risk estimation. The first case uses a
finite set of demonstrations by a human demonstrator, which
can then be further optimized, creating a preliminary value
function. This approach resembles imitation learning. The
demonstrator can also guide the exploration online by showing
the interesting, or hazardous parts of the state space. And
finally hard constraints can be satisfied by a supervisory
control scheme, as seen in [99]. There are already some
researches dealing with RL ensuring safer driving. In [117],
the authors use DDPG algorithm combined with the artificial
potential field to develop a safe lane following and colli-
sion avoidance algorithm. An inspiring approach is presented
in [118] article, where the authors also train a mobile robot
for collision avoidance, combining exploration modification
and curriculum learning methods, starting with low-speed
maneuvers, and continuously raising the hardness of the task.
For this purpose, they proposed an uncertainty-dependent
cost function to estimate the risk of collision. The training
process was demonstrated both in a simulator and on a real
robot.

The authors of [119] provide an example of safe highway
driving, increasing security in two ways. On the one hand,
a module for learning safety patterns is created, which works
from preliminary driving data, and uses a prediction in the
distant future. Also, a heuristic hand-crafted safety module
has been developed based on common driving practice and
ensuring a minimum following distance. They demonstrate the
results in a simulation with varying traffic density.

In [120], a so-called “Parallel Constrained Policy Opti-
mization” method is presented, which is demonstrated in two
scenarios. The general actor-critic structure is extended by an
approximation of a risk function with a third neural network.
The results are presented in a lane following and intersection
crossing simulation.

Overall, the theory of safe RL is a dynamically evolving
field. In addition to the survey article quoted above, the inter-
ested reader can find theoretical details of each solution
in [121]. From the point of view of vehicle control, the impor-
tance of the topic is unquestionable, not only for safety but
also for the reduction of the state and action space. One of
the big problems with training and validation is choosing the
problematic, so-called corner cases from a vast number of
irrelevant situations.

B. Sim2Real

By examining the observation element of the recent arti-
cles, it can be stated that most researches ignore complex
sensor models. Some papers use “ground truth” environment
representations or “ideal” sensor models, and only a few
articles utilize sensor noise. On the one hand, transferring
the knowledge acquired from ideal observations to real-world
application poses several feasibility questions [122], on the

other hand, using noisy or erroneous models could lead to
actually more robust agents, as stated in [55].

The same applies to the environment, which can be exam-
ined best amongst the group of highway learners, where the
road topology is almost always fixed, and the surrounding
vehicles’ behavior is limited. Validation of these agents is
usually made in the same environment setup, which contradicts
the basic techniques of machine learning, where the training
and validation scenarios should differ in some aspects. As a
reinforcement learning agent can generally act well in the
situations that are close to those it has experience with, it is
crucial to focus on developing more realistic and diverse
environments, including the modeling level of any interact-
ing traffic participant to achieve such agents that are easily
transferable to real-world applications. This applies to vehicle
dynamics, where more diverse and more realistic modeling
would be needed. Naturally, these improvements increase the
numerical complexity of the environment model, which is one
of the main issues in these applications.

Among the research evaluated in this review, all problems
were trained in a simulated environment. There exists only
one exception in [123], where the authors taught the agent
for lane following on a real vehicle using a continuous,
model-free deep reinforcement learning algorithm DDPG, with
extensions, that enabled a significant decrease of episodes used
for training.

There are many reasons for using simulation as a training
tool for RL in this field. The first is that one can afford
many more samples since the simulations can be significantly
faster and cheaper (fuel, personnel, equipment costs) than the
real experiments. The second is safety since it can not be
guaranteed in real traffic for trial-and-error-like learning of
RL. Naturally, using simulations has its cons in RL also.
The first comes from modeling and identification. Lots of
simulators are under-modeled, usually to keep the trade-off for
computational resources. The discrepancy regarding the real
world can come either from the side of observations or vehicle
dynamics. Sensors can be too precise, too reliable, or provide
ground truth on the full state, which can not be achieved in
real-world scenarios. Or, even the contrary, can lack detail,
which is usually the case of rendered visual environments
providing camera information. As a result, policies that are
learned in simulation do not transfer to the real world, often
called the “reality gap” or the “sim2real gap”. The handling
of such problems is hard, even when the underlying MDP
assumption stands. Though when the environment becomes
partially observable, or multiple active agents appear whose
actions can not be predicted, this gap widens. In a real traffic
simulation, it is almost (if not entirely) impossible to cover
all possible circumstances. Table V summarizes the key pros
and cons of using simulation. As the reality gap is wide, real
vehicle testing of the developed algorithms can not guarantee
safety. Moreover, many feasibility questions arise, such as
costs, automation, equipment, and test site. These together
results in that most of the researches stay on simulation level,
and only a few can provide real-world application, all of them
with some limitations. In [60], the decisions of the lane choice
algorithm are shown on a two-lane highway without providing

756 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2022

TABLE V

PROS AND CONS OF USING SIMULATION FOR TRAINING RL

Fig. 13. Conceptual illustrations of three approaches for sim2real transfer
(source: [126]).

full-control to the algorithm. The parking navigation algorithm
of [78] provides an example in a closed parking place, and
the lane-change maneuver developed in [22] is evaluated in a
closed test track.

Generally, there are three approaches to close the reality
gap:

• System identification, trying to match the simulation to
reality.

• Domain adaptation, aiming at learning from a source
data distribution (simulation) a well performing model
on a different (but related) target data distribution (real-
ity). [124]

• Domain randomization, aiming at learning on a very
randomized environment (simulation), which (proba-
bly) covers the target (reality), making the agent
robust. [125]

These three concepts are illustrated in Fig. 13 The trade-
off between the fully modeled system and feasibility was
discussed before, hence system identification is not outlined
here. During Domain adaptation, one tries to find the transfer
technique between the simulated and the real representations.
As an example, for image sequences taken from a front-facing
camera, this transfer can be solved through the semantically
segmented image. In [72] the two domains meet in the middle
at the segmented level, while in [127], the authors try to create
“realistic” images for training by using generative adversarial
nets (GAN) [128]. Naturally, this approach relies on the GAN
training data and does not guarantee full coverage.

According to many research, such as [129], RL agents
usually overfit to the environments they are trained on, even
developing policies, that are totally unusable in the real appli-
cation. Domain randomization, among increasing robustness,
is a kind of generalization or regularization technique. Though
as the possible dimensions of the randomization increases,
its scalability issues are becoming serious [130]. And on the
other hand, regarding [131], too many randomizations imply
a conservative policy from the agent. Although most research

presented use some randomization (multiple tracks, random
initialization or goal, etc.), these are far from covering all
possible cases of real driving. Based on the reasons above,
sim2real is one of the critical research problems of the field
in the future.

Overall it can be said that many problems need to be solved
in this field, such as the detail of the environment and sensor
modeling, the computational requirements, the transferability
to real applications, robustness, and validation of the agents.
Because of these issues, it can be stated that reinforcement
learning is not a sufficient tool for automotive motion planning
in itself. Still, it can be very efficient in solving complex
optimization tasks by combining with other methods.

ACKNOWLEDGMENT

The research reported in this paper and carried out at the
Budapest University of Technology and Economics was sup-
ported by the “TKP2020, Institutional Excellence Program” of
the National Research Development and Innovation Office in
the field of Artificial Intelligence (BME IE-MI-FM TKP2020).

REFERENCES

[1] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013,
arXiv:1312.5602. [Online]. Available: http://arxiv.org/abs/1312.5602

[2] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015. [Online].
Available: http://www.nature.com/articles/nature14236

[3] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 33–55, Mar. 2016, doi:
10.1109/TIV.2016.2578706.

[4] H. Bast et al., “Route planning in transportation networks,” in Algorithm
Engineering (Lecture Notes in Computer Science). Cham, Switzerland:
Springer, 2016, pp. 19–80.

[5] S. Brechtel, T. Gindele, and R. Dillmann, “Probabilistic
decision-making under uncertainty for autonomous driving using
continuous POMDPs,” in Proc. 17th Int. IEEE Conf. Intell.
Transp. Syst. (ITSC), Oct. 2014, pp. 392–399. [Online]. Available:
http://ieeexplore.ieee.org/document/6957722/

[6] J. Wiest, M. Hoffken, U. Kresel, and K. Dietmayer, “Probabilistic
trajectory prediction with Gaussian mixture models,” in Proc. IEEE
Intell. Vehicles Symp., Jun. 2012, pp. 141–146. [Online]. Available:
http://ieeexplore.ieee.org/document/6232277/

[7] Y. Dou, F. Yan, and D. Feng, “Lane changing prediction at
highway lane drops using support vector machine and artificial
neural network classifiers,” in Proc. IEEE Int. Conf. Adv. Intell.
Mechatronics (AIM), Jul. 2016, pp. 901–906. [Online]. Available:
http://ieeexplore.ieee.org/document/7576883/

[8] J. H. Reif, “Complexity of the mover’s problem and gen-
eralizations,” in Proc. 20th Annu. Symp. Found. Comput.
Sci. (SFCS), Oct. 1979, pp. 421–427. [Online]. Available:
http://ieeexplore.ieee.org/document/4568037/

[9] F. Hegedus, T. Becsi, S. Aradi, and G. Galdi, “Hybrid trajectory planning
for autonomous vehicles using neural networks,” in Proc. IEEE 18th
Int. Symp. Comput. Intell. Informat. (CINTI), Nov. 2018, pp. 25–30.
[Online]. Available: https://ieeexplore.ieee.org/document/8928220/

[10] D. Mauria Saxena, S. Bae, A. Nakhaei, K. Fujimura, and M. Likhachev,
“Driving in dense traffic with model-free reinforcement learning,” 2019,
arXiv:1909.06710. [Online]. Available: http://arxiv.org/abs/1909.06710

[11] Á. Fehér, S. Aradi, F. Hegedüs, T. Bécsi, and P. Gáspár, “Hybrid DDPG
approach for vehicle motion planning,” in Proc. 16th Int. Conf. Informat.
Control, Autom. Robot., 2019, pp. 422–429.

[12] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. Cambridge, MA, USA: MIT Press, 2017.

[13] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton
Univ. Press, 1957.

[14] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proc. 13th AAAI Conf. Artif. Intell., 2016,
pp. 1–13.

http://dx.doi.org/10.1109/TIV.2016.2578706

ARADI: SURVEY OF DRL FOR MOTION PLANNING OF AUTONOMOUS VEHICLES 757

[15] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot,
and N. de Freitas, “Dueling network architectures for deep rein-
forcement learning,” 2015, arXiv:1511.06581. [Online]. Available:
http://arxiv.org/abs/1511.06581

[16] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proc. 31st Int. Conf.
Mach. Learn. (ICML), 2014, pp. 387–395.

[17] T. P. Lillicrap et al., “Continuous control with deep rein-
forcement learning,” 2015, arXiv:1509.02971. [Online]. Available:
http://arxiv.org/abs/1509.02971

[18] Z. Qiao, K. Muelling, J. M. Dolan, P. Palanisamy, and P. Mudalige,
“Automatically generated curriculum based reinforcement learning for
autonomous vehicles in urban environment,” in Proc. IEEE Intell.
Vehicles Symp. (IV), Jun. 2018, pp. 1233–1238. [Online]. Available:
https://ieeexplore.ieee.org/document/8500603/

[19] M. Bouton, A. Nakhaei, K. Fujimura, and M. J. Kochenderfer,
“Cooperation-aware reinforcement learning for merging in
dense traffic,” 2019, arXiv:1906.11021. [Online]. Available:
http://arxiv.org/abs/1906.11021

[20] M. Kaushik, V. Prasad, K. M. Krishna, and B. Ravindran,
“Overtaking maneuvers in simulated highway driving using
deep reinforcement learning,” in Proc. IEEE Intell. Vehicles
Symp. (IV), Jun. 2018, pp. 1885–1890. [Online]. Available:
https://ieeexplore.ieee.org/document/8500718/

[21] A. Ferdowsi, U. Challita, W. Saad, and N. B. Mandayam, “Robust deep
reinforcement learning for security and safety in autonomous vehicle
systems,” in Proc. 21st Int. Conf. Intell. Transp. Syst. (ITSC), Nov. 2018,
pp. 307–312.

[22] X. Ma, K. Driggs-Campbell, and M. J. Kochenderfer, “Improved
robustness and safety for autonomous vehicle control with adversarial
reinforcement learning,” in Proc. IEEE Intell. Vehicles Symp. (IV),
Jun. 2018, pp. 1665–1671.

[23] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning
and acting in partially observable stochastic domains,” Artif. Intell.,
vol. 101, nos. 1–2, pp. 99–134, May 1998. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S000437029800023X

[24] P. Stone and M. Veloso, “Multiagent systems: A survey from a machine
learning perspective,” Auto. Robots, vol. 8, pp. 345–383, Jun. 2000.

[25] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “A survey and critique
of multiagent deep reinforcement learning,” Auto. Agents Multi-Agent
Syst., vol. 33, no. 6, pp. 750–797, Nov. 2019.

[26] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein,
“The complexity of decentralized control of Markov decision processes,”
Math. Oper. Res., vol. 27, no. 4, pp. 819–840, Nov. 2002.

[27] F. A. Oliehoek and C. Amato, A Concise Introduction to Decentralized
POMDPs, vol. 1. Cham, Switzerland: Springer, 2016.

[28] M. Lanctot et al., “A unified game-theoretic approach to multiagent
reinforcement learning,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 4190–4203.

[29] Y. Shoham, R. Powers, and T. Grenager, “If multi-agent learning is the
answer, what is the question?” Artif. Intell., vol. 171, no. 7, pp. 365–377,
May 2007.

[30] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Auto. Agents Multi-Agent Syst., vol. 11, no. 3, pp. 387–434,
Nov. 2005.

[31] J. N. Foerster, Y. M. Assael, N. De Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” in Proc.
Adv. Neural Inf. Process. Syst., 2016, pp. 2137–2145.

[32] E. Pesce and G. Montana, “Improving coordination in small-scale multi-
agent deep reinforcement learning through memory-driven communica-
tion,” in Machine Learning. Cham, Switzerland: Springer, 2020, doi:
10.1007/s10994-019-05864-5.

[33] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement
learning for multiagent systems: A review of challenges, solutions,
and applications,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3826–3839,
Sep. 2020.

[34] R. Lowe, J. Foerster, Y. L. Boureau, J. Pineau, and Y. Dauphin,
“On the pitfalls of measuring emergent communication,” in Proc. Int.
Joint Conf. Auto. Agents Multiagent Syst. (AAMAS), 2019, pp. 693–701.

[35] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-
agent control using deep reinforcement learning,” in Autonomous Agents
and Multiagent Systems. AAMAS (Lecture Notes in Computer Science),
vol. 10642, G. Sukthankar and J. Rodriguez-Aguilar, Eds. Cham,
Switzerland: Springer, 2017, doi: 10.1007/978-3-319-71682-4_5.

[36] I. Lubashevsky and S. Kanemoto, “Scale-free memory model for multi-
agent reinforcement learning. Mean field approximation and rock-paper-
scissors dynamics,” Eur. Phys. J. B, vol. 76, no. 1, pp. 69–85, Jul. 2010.

[37] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in Proc.
IEEE Intell. Vehicles Symp. (IV), Jun. 2015, pp. 1094–1099. [Online].
Available: http://ieeexplore.ieee.org/document/7225830/

[38] P. Polack, F. Altche, B. d’Andrea-Novel, and A. de La Fortelle,
“The kinematic bicycle model: A consistent model for planning fea-
sible trajectories for autonomous vehicles?” in Proc. IEEE Intell.
Vehicles Symp. (IV), Jun. 2017, pp. 812–818. [Online]. Available:
http://ieeexplore.ieee.org/document/7995816/

[39] C. You, J. Lu, D. Filev, and P. Tsiotras, “Advanced plan-
ning for autonomous vehicles using reinforcement learning
and deep inverse reinforcement learning,” Robot. Auto.
Syst., vol. 114, pp. 1–18, Apr. 2019. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0921889018302021

[40] A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model
MOBIL for car-following models,” Transp. Res. Rec., J. Transp. Res.
Board, vol. 1999, no. 1, pp. 86–94, Jan. 2007. [Online]. Available:
http://journals.sagepub.com/doi/10.3141/1999-10

[41] M. Treiber, A. Hennecke, and D. Helbing, “Congested traf-
fic states in empirical observations and microscopic simulations,”
Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.,
vol. 62, no. 2, pp. 1805–1824, Aug. 2000. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevE.62.1805

[42] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent
development and applications of SUMO-simulation of urban mobility,”
Int. J. Adv. Syst. Meas., vol. 5, no. 3, pp. 128–138, 2012.

[43] M. Fellendorf and P. Vortisch, “Microscopic traffic flow simulator
VISSIM,” in Fundamentals of Traffic Simulation (International Series
in Operations Research & Management Science), J. Barceló, Ed. Cham,
Switzerland: Springer, 2010, pp. 63–93.

[44] Y. Ye, X. Zhang, and J. Sun, “Automated vehicle’s behavior decision
making using deep reinforcement learning and high-fidelity simulation
environment,” Transp. Res. C, Emerg. Technol., vol. 107, pp. 155–170,
Oct. 2019, doi: 10.1016/j.trc.2019.08.011.

[45] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and
A. Sumner. (2014). TORCS: The Open Racing Car Simulator. [Online].
Available: http://www.torcs.org

[46] CarSIM, Mechanical Simulation Corporation. Accessed: Jan. 17, 2020.
[Online]. Available: https://www.carsim.com/

[47] CarMaker. IPG Automotive. Accessed: Jan. 17, 2020. [Online]. Avail-
able: https://ipg-automotive.com/products-services/simulation-software/
carmaker/

[48] H. An and J.-I. Jung, “Decision-making system for lane change using
deep reinforcement learning in connected and automated driving,”
Electronics, vol. 8, no. 5, p. 543, May 2019. [Online]. Available:
https://www.mdpi.com/2079-9292/8/5/543

[49] J. Wang, Q. Zhang, D. Zhao, and Y. Chen, “Lane change
decision-making through deep reinforcement learning with rule-
based constraints,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2019, pp. 1–6. [Online]. Available: http://arxiv.org/abs/1904.00231
and https://ieeexplore.ieee.org/document/8852110/

[50] Welcome to Udacity’s Self-Driving Car Simulator. Accessed: Jan. 17,
2020. [Online]. Available: https://github.com/udacity/self-driving-car-
sim

[51] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proc. 1st Annu. Conf.
Robot Learn., 2017, pp. 1–17.

[52] F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic
review of perception system and simulators for autonomous vehicles
research,” Sensors, vol. 19, no. 3, p. 648, Feb. 2019. [Online]. Available:
http://www.mdpi.com/1424-8220/19/3/648

[53] K. Kashihara, “Deep q learning for traffic simulation in autonomous
driving at a highway junction,” in Proc. IEEE Int. Conf. Syst.,
Man, Cybern. (SMC), Oct. 2017, pp. 984–988. [Online]. Available:
http://ieeexplore.ieee.org/document/8122738/

[54] S. Nageshrao, H. E. Tseng, and D. Filev, “Autonomous
highway driving using deep reinforcement learning,” in Proc.
IEEE Int. Conf. Syst., Man Cybern. (SMC), Oct. 2019,
pp. 2326–2331. [Online]. Available: http://arxiv.org/abs/1904.00035
and https://ieeexplore.ieee.org/document/8914621/

[55] A. Alizadeh, M. Moghadam, Y. Bicer, N. K. Ure, U. Yavas, and
C. Kurtulus, “Automated lane change decision making using deep rein-
forcement learning in dynamic and uncertain highway environment,” in
Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), Oct. 2019, pp. 1399–1404.
[Online]. Available: https://ieeexplore.ieee.org/document/8917192/

http://dx.doi.org/10.1007/s10994-019-05864-5
http://dx.doi.org/10.1007/978-3-319-71682-4_5
http://dx.doi.org/10.1016/j.trc.2019.08.011

758 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 2, FEBRUARY 2022

[56] A. Feher, S. Aradi, and T. Becsi, “Q-learning based reinforcement learn-
ing approach for lane keeping,” in Proc. IEEE 18th Int. Symp. Comput.
Intell. Informat. (CINTI), Budapest, Hungary, Nov. 2018, pp. 31–36.
[Online]. Available: https://ieeexplore.ieee.org/document/8928230/

[57] Z. Bai, W. Shangguan, B. Cai, and L. Chai, “Deep reinforcement
learning based high-level driving behavior decision-making model in
heterogeneous traffic,” in Proc. Chin. Control Conf. (CCC), Feb. 2019,
pp. 8600–8605. [Online]. Available: http://arxiv.org/abs/1902.05772 and
https://ieeexplore.ieee.org/document/8866005/

[58] P. Wolf, K. Kurzer, T. Wingert, F. Kuhnt, and J. M. Zollner, “Adap-
tive behavior generation for autonomous driving using deep reinforce-
ment learning with compact semantic states,” in Proc. IEEE Intell.
Vehicles Symp. (IV), Jun. 2018, pp. 993–1000. [Online]. Available:
https://ieeexplore.ieee.org/document/8500427/

[59] S. Aradi, T. Becsi, and P. Gaspar, “Policy gradient based reinforcement
learning approach for autonomous highway driving,” in Proc. IEEE
Conf. Control Technol. Appl. (CCTA), Aug. 2018, pp. 670–675. [Online].
Available: https://ieeexplore.ieee.org/document/8511514/

[60] X. Xu, L. Zuo, X. Li, L. Qian, J. Ren, and Z. Sun, “A reinforcement
learning approach to autonomous decision making of intelligent vehicles
on highways,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 50, no. 10,
pp. 3884–3897, Oct. 2020.

[61] P. Wang, C.-Y. Chan, and A. de La Fortelle, “A reinforcement learning
based approach for automated lane change maneuvers,” in Proc. IEEE
Intell. Vehicles Symp. (IV), Jun. 2018, pp. 1379–1384.

[62] M. P. Ronecker and Y. Zhu, “Deep Q-Network based decision
making for autonomous driving,” in Proc. 3rd Int. Conf. Robot.
Autom. Sci. (ICRAS), Jun. 2019, pp. 154–160. [Online]. Available:
https://ieeexplore.ieee.org/document/8808950/

[63] M. Zhu, Y. Wang, Z. Pu, J. Hu, X. Wang, and R. Ke, “Safe, effi-
cient, and comfortable velocity control based on reinforcement learning
for autonomous driving,” 2019, arXiv:1902.00089. [Online]. Available:
http://arxiv.org/abs/1902.00089

[64] M. Zhu, X. Wang, and Y. Wang, “Human-like autonomous car-following
model with deep reinforcement learning,” Transp. Res. C, Emerg.
Technol., vol. 97, pp. 348–368, Dec. 2018.

[65] C.-J. Hoel, K. Wolff, and L. Laine, “Automated speed and lane change
decision making using deep reinforcement learning,” in Proc. 21st Int.
Conf. Intell. Transp. Syst. (ITSC), Nov. 2018, pp. 2148–2155.

[66] E. Leurent, “A survey of state-action representations for autonomous
driving,” HAL Id: hal-01908175, 2018.

[67] P. Wolf et al., “Learning how to drive in a real world sim-
ulation with deep Q-networks,” in Proc. IEEE Intell. Vehi-
cles Symp. (IV), Jun. 2017, pp. 244–250. [Online]. Available:
http://ieeexplore.ieee.org/document/7995727/

[68] M. Jaritz, R. de Charette, M. Toromanoff, E. Perot, and F. Nashashibi,
“End-to-end race driving with deep reinforcement learning,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 2070–2075.

[69] E. Perot, M. Jaritz, M. Toromanoff, and R. De Charette, “End-to-end
driving in a realistic racing game with deep reinforcement learning,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jul. 2017, pp. 474–475.

[70] D. Li, D. Zhao, Q. Zhang, and Y. Chen, “Reinforcement learning and
deep learning based lateral control for autonomous driving [applica-
tion notes],” IEEE Comput. Intell. Mag., vol. 14, no. 2, pp. 83–98,
May 2019.

[71] S. Kotyan, D. V. Vargas, and U. Venkanna, “Self Training
autonomous driving agent,” in Proc. 58th Annu. Conf. Soc.
Instrum. Control Eng. Jpn. (SICE), Sep. 2019, pp. 1456–1461.
[Online]. Available: http://arxiv.org/abs/1904.12738 and
https://ieeexplore.ieee.org/document/8859883/

[72] N. Xu, B. Tan, and B. Kong, “Autonomous driving in reality with
reinforcement learning and image translation,” 2018, arXiv:1801.05299.
[Online]. Available: http://arxiv.org/abs/1801.05299

[73] J. Lee, T. Kim, and H. J. Kim, “Autonomous lane keeping based on
approximate Q-learning,” in Proc. 14th Int. Conf. Ubiquitous Robots
Ambient Intell. (URAI), Jun. 2017, pp. 402–405. [Online]. Available:
http://ieeexplore.ieee.org/document/7992762/

[74] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, Jun. 1989. [Online].
Available: http://ieeexplore.ieee.org/document/30720/

[75] S. Thrun et al., “Stanley: The robot that won the DARPA grand
challenge,” J. Field Robot., vol. 23, no. 9, pp. 661–692, 2006,
doi: 10.1002/rob.20147.

[76] N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction of sur-
rounding vehicles with maneuver based LSTMs,” in Proc. IEEE Intell.
Vehicles Symp. (IV), Jun. 2018, pp. 1179–1184. [Online]. Available:
https://ieeexplore.ieee.org/document/8500493/

[77] T. Hegedűs, B. Németh, and P. Gáspár, “Graph-based multi-
vehicle overtaking strategy for autonomous vehicles,” IFAC-
PapersOnLine, vol. 52, no. 5, pp. 372–377, 2019. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2405896319306822

[78] A. Folkers, M. Rick, and C. Buskens, “Controlling an autonomous
vehicle with deep reinforcement learning,” in Proc. IEEE Intell.
Vehicles Symp. (IV), Jun. 2019, pp. 2025–2031. [Online]. Available:
https://ieeexplore.ieee.org/document/8814124/

[79] J. Esser and M. Schreckenberg, “Microscopic simulation of
urban traffic based on cellular automata,” Int. J. Mod. Phys.
C, vol. 8, no. 5, pp. 1025–1036, Oct. 1997. [Online]. Available:
https://www.worldscientific.com/doi/abs/10.1142/S0129183197000904

[80] G. Wang, J. Hu, Z. Li, and L. Li, “Cooperative lane changing via deep
reinforcement learning,” 2019, arXiv:1906.08662. [Online]. Available:
http://arxiv.org/abs/1906.08662

[81] T. Shi, P. Wang, X. Cheng, and C.-Y. Chan, “Driving decision
and control for autonomous lane change based on deep reinforce-
ment learning,” in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC),
Auckland, New Zealand, Apr. 2019, pp. 1–6. [Online]. Available:
http://arxiv.org/abs/1904.10171

[82] P. Wang and C.-Y. Chan, “Formulation of deep reinforcement learning
architecture toward autonomous driving for on-ramp merge,” in Proc.
IEEE 20th Int. Conf. Intell. Transp. Syst. (ITSC), Oct. 2017, pp. 1–6.
[Online]. Available: http://ieeexplore.ieee.org/document/8317735/

[83] T. Bécsi, S. Aradi, Á. Fehér, J. Szalay, and P. Gáspár, “Highway
environment model for reinforcement learning,” IFAC-PapersOnLine,
vol. 51, no. 22, pp. 429–434, 2018.

[84] M. Bouton, J. Karlsson, A. Nakhaei, K. Fujimura, M. J. Kochenderfer,
and J. Tumova, “Reinforcement learning with probabilistic guarantees
for autonomous driving,” 2019, arXiv:1904.07189. [Online]. Available:
http://arxiv.org/abs/1904.07189

[85] D. Loiacono, A. Prete, P. L. Lanzi, and L. Cardamone, “Learning to
overtake in TORCS using simple reinforcement learning,” in Proc. IEEE
Congr. Evol. Comput., Jul. 2010, pp. 1–8.

[86] D. C. K. Ngai and N. H. C. Yung, “Automated vehicle overtaking based
on a multiple-goal reinforcement learning framework,” in Proc. IEEE
Intell. Transp. Syst. Conf., Sep. 2007, pp. 818–823. [Online]. Available:
http://ieeexplore.ieee.org/document/4357682/

[87] D. C. K. Ngai and N. H. C. Yung, “A multiple-goal reinforcement
learning method for complex vehicle overtaking maneuvers,” IEEE
Trans. Intell. Transp. Syst., vol. 12, no. 2, pp. 509–522, Jun. 2011.
[Online]. Available: http://ieeexplore.ieee.org/document/5710424/

[88] C. Desjardins and B. Chaib-draa, “Cooperative adaptive cruise con-
trol: A reinforcement learning approach,” IEEE Trans. Intell. Transp.
Syst., vol. 12, no. 4, pp. 1248–1260, Dec. 2011. [Online]. Available:
http://ieeexplore.ieee.org/document/5876320/

[89] M. Gómez, R. V. González, T. Martínez-Marín, D. Meziat, and
S. Sánchez, “Optimal motion planning by reinforcement learning in
autonomous mobile vehicles,” Robotica, vol. 30, no. 2, pp. 159–170,
Mar. 2012.

[90] A. El Sallab, M. Abdou, E. Perot, and S. Yogamani, “End-to-end deep
reinforcement learning for lane keeping assist,” 2016, arXiv:1612.04340.
[Online]. Available: http://arxiv.org/abs/1612.04340

[91] P. Wang and C.-Y. Chan, “Autonomous ramp merge maneuver
based on reinforcement learning with continuous action space,” 2018,
arXiv:1803.09203. [Online]. Available: http://arxiv.org/abs/1803.09203

[92] G. Bacchiani, D. Molinar, and M. Patander, “Microscopic traffic sim-
ulation by cooperative multi-agent deep reinforcement learning,” in
Proc. Int. Joint Conf. Auto. Agents Multiagent Syst. (AAMAS), 2019,
pp. 1547–1555.

[93] B. Chen, M. Xu, Z. Liu, L. Li, and D. Zhao, “Delay-aware
multi-agent reinforcement learning for cooperative and competi-
tive environments,” 2020, arXiv:2005.05441. [Online]. Available:
http://arxiv.org/abs/2005.05441

[94] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 6379–6390.

[95] R. Kalantari, M. Motro, J. Ghosh, and C. Bhat, “A distributed, collec-
tive intelligence framework for collision-free navigation through busy
intersections,” in Proc. IEEE 19th Int. Conf. Intell. Transp. Syst. (ITSC),
Nov. 2016, pp. 1378–1383.

[96] D. Wolpert, “Theory of collective intelligence,” in Collectives and the
Design of Complex Systems, K. Tumer and D. Wolpert, Eds. New York,
NY, USA: Springer, 2004, doi: 10.1007/978-1-4419-8909-3_2.

[97] L. Schester and L. E. Ortiz, “Longitudinal position control for highway
on-ramp merging: A multi-agent approach to automated driving,” in
Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), Oct. 2019, pp. 3461–3468.
[Online]. Available: https://ieeexplore.ieee.org/document/8916951/

http://dx.doi.org/10.1002/rob.20147
http://dx.doi.org/10.1007/978-1-4419-8909-3_2

ARADI: SURVEY OF DRL FOR MOTION PLANNING OF AUTONOMOUS VEHICLES 759

[98] J. Yang, A. Nakhaei, D. Isele, K. Fujimura, and H. Zha, “CM3: Cooper-
ative multi-goal multi-stage multi-agent reinforcement learning,” 2018,
arXiv:1809.05188. [Online]. Available: http://arxiv.org/abs/1809.05188

[99] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” 2016,
arXiv:1610.03295. [Online]. Available: http://arxiv.org/abs/1610.03295

[100] C.-J. Hoel, K. Driggs-Campbell, K. Wolff, L. Laine, and M. J. Kochen-
derfer, “Combining planning and deep reinforcement learning in tactical
decision making for autonomous driving,” 2019, arXiv:1905.02680.
[Online]. Available: http://arxiv.org/abs/1905.02680

[101] W. Xia, H. Li, and B. Li, “A control strategy of autonomous vehicles
based on deep reinforcement learning,” in Proc. 9th Int. Symp. Comput.
Intell. Design (ISCID), Dec. 2016, pp. 198–201. [Online]. Available:
http://ieeexplore.ieee.org/document/7830823/

[102] D. Isele, R. Rahimi, A. Cosgun, K. Subramanian, and K. Fujimura,
“Navigating occluded intersections with autonomous vehicles using
deep reinforcement learning,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2018, pp. 2034–2039. [Online]. Available:
https://ieeexplore.ieee.org/document/8461233/

[103] R. Rădulescu, M. Legrand, K. Efthymiadis, D. M. Roijers, and
A. Nowé, “Deep multi-agent reinforcement learning in a homoge-
neous open population,” in Proc. Benelux Conf. Artif. Intell., 2019,
pp. 90–105.

[104] C. Yu, J. Hao, X. Wang, and Z. Feng, “Reinforcement learning for
cooperative overtaking,” in Proc. Int. Joint Conf. Auto. Agents Multiagent
Syst. (AAMAS), 2019, pp. 341–349.

[105] C. Yu et al., “Distributed multiagent coordinated learning for
autonomous driving in highways based on dynamic coordination
graphs,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 2,
pp. 735–748, Feb. 2020. [Online]. Available: https://ieeexplore.
ieee.org/document/8638814/

[106] M. Schutera, N. Goby, D. Neumann, and M. Reischl, “Transfer
learning versus multi-agent learning regarding distributed decision-
making in highway traffic,” 2018, arXiv:1810.08515. [Online]. Avail-
able: http://arxiv.org/abs/1810.08515

[107] S. Cicek, S. Soatto, A. Nakhaei, and K. Fujimura, “MARL-PPS:
Multi-agent reinforcement learning with periodic parameter sharing,”
in Proc. Int. Joint Conf. Auto. Agents Multiagent Syst. (AAMAS), 2019,
pp. 1883–1885.

[108] M. Kaushik, N. Singhania, P. S., and K. M. Krishna, “Parameter sharing
reinforcement learning architecture for multi agent driving,” in Proc.
Adv. Robot., Jul. 2019, pp. 1–7.

[109] R. P. Bhattacharyya, D. J. Phillips, B. Wulfe, J. Morton,
A. Kuefler, and M. J. Kochenderfer, “Multi-agent imitation learn-
ing for driving simulation,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Oct. 2018, pp. 1534–1539. [Online]. Available:
https://ieeexplore.ieee.org/document/8593758/

[110] L. Fridman, B. Jenik, and J. Terwilliger, “DeepTraffic: Driving fast
through dense traffic with deep reinforcement learning,” in Proc. Neural
Inf. Process. Syst. (NIPS) Deep Reinforcement Learn. Workshop, Mon-
treal, QC, Canada, Jan. 2019, doi: 10.5281/zenodo.2530457.

[111] J. Colyar and J. Halkias, “US highway 101 dataset,” United States
Dept. Transp. Federal Highway Admin., Washington, DC, USA,
Tech. Rep. HRT-07-030, 2007.

[112] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”
Transp. Res. A, Policy Pract., vol. 94, pp. 182–193, Dec. 2016.

[113] F. Falcini, G. Lami, and A. M. Costanza, “Deep learning in automotive
software,” IEEE Softw., vol. 34, no. 3, pp. 56–63, May 2017. [Online].
Available: https://ieeexplore.ieee.org/document/7927925/

[114] Automotive SPICE Process Assessment/Reference Model, VDA QMC
Working Group, Automot. SIG, Berlin, Germany, 2015.

[115] Road Vehicles—Functional Safety—Part 1: Vocabulary, Standard ISO
26262, 2011.

[116] J. Garcia and F. Fernandez. (2015). A Comprehensive Survey on
Safe Reinforcement Learning. pp. 1437–1480. [Online]. Available:
http://jmlr.org/papers/v16/garcia15a.html

[117] X. Xiong, J. Wang, F. Zhang, and K. Li, “Combining deep reinforce-
ment learning and safety based control for autonomous driving,” 2016,
arXiv:1612.00147. [Online]. Available: http://arxiv.org/abs/1612.00147

[118] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, and S. Levine, “Uncertainty-
aware reinforcement learning for collision avoidance,” 2017,
arXiv:1702.01182. [Online]. Available: http://arxiv.org/abs/1702.01182

[119] A. Baheri, S. Nageshrao, H. Eric Tseng, I. Kolmanovsky, A. Girard,
and D. Filev, “Deep reinforcement learning with enhanced safety for
autonomous highway driving,” 2019, arXiv:1910.12905. [Online]. Avail-
able: http://arxiv.org/abs/1910.12905

[120] L. Wen, J. Duan, S. Eben Li, S. Xu, and H. Peng, “Safe reinforce-
ment learning for autonomous vehicles through parallel constrained
policy optimization,” 2020, arXiv:2003.01303. [Online]. Available:
http://arxiv.org/abs/2003.01303

[121] P. S. Thomas, “Safe reinforcement learning,” Ph.D. dissertation,
College Inf. Comput. Sci., Univ. Massachusetts Amherst, Amherst,
MA, USA, 2015. [Online]. Available: https://people.cs.umass.edu/~
pthomas/papers/Thomas2015c.pdf

[122] Z. Szalay, T. Tettamanti, D. Esztergár-Kiss, I. Varga, and
C. Bartolini, “Development of a test track for driverless cars: Vehicle
design, track configuration, and liability considerations,” Periodica
Polytechnica Transp. Eng., vol. 46, no. 1, p. 29, Mar. 2017. [Online].
Available: https://pp.bme.hu/tr/article/view/10753

[123] A. Kendall et al., “Learning to drive in a day,” in Proc. Int. Conf.
Robot. Autom. (ICRA), May 2019, pp. 8248–8254.

[124] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and
J. W. Vaughan, “A theory of learning from different domains,” Mach.
Learn., vol. 79, nos. 1–2, pp. 151–175, May 2010.

[125] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2017, pp. 23–30.

[126] L. Weng. (2019). Domain Randomization for Sim2Real
Transfer. [Online]. Available: http://lilianweng.github.io/lil-
log/2019/05/04/domain-randomization.html

[127] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to real reinforcement
learning for autonomous driving,” in Proc. Brit. Mach. Vis. Conf., 2017,
pp. 1–13.

[128] I. J. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv.
Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[129] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quan-
tifying generalization in reinforcement learning,” in Proc. 36th Int.
Conf. Mach. Learn. (ICML), Dec. 2018, pp. 1–14. [Online]. Available:
http://arxiv.org/abs/1812.02341

[130] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull, “Active
domain randomization,” 2019, arXiv:1904.04762. [Online]. Available:
http://arxiv.org/abs/1904.04762

[131] F. Ramos, R. Carvalhaes Possas, and D. Fox, “BayesSim:
Adaptive domain randomization via probabilistic inference for
robotics simulators,” 2019, arXiv:1906.01728. [Online]. Available:
http://arxiv.org/abs/1906.01728

Szilárd Aradi (Member, IEEE) received the M.Sc.
and Ph.D. degrees from the Budapest University
of Technology and Economics, Budapest, Hungary,
in 2005 and 2015, respectively. He is currently
working with the Department of Control for Trans-
portation and Vehicle Systems, Budapest University
of Technology and Economics. Since 2016, he has
been a Senior Lecturer with the Department of
Control for Transportation and Vehicle Systems,
Budapest University of Technology and Economics.
His research interests include embedded systems,

communication networks, vehicle mechatronics, and reinforcement learning.
His research and industrial works have involved railway information systems,
vehicle on-board networks, and vehicle control.

http://dx.doi.org/10.5281/zenodo.2530457

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

