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Abstract—The controller area network (CAN) is the
most widely used intra-vehicular communication network
in the automotive industry. Because of its simplicity in
design, it lacks most of the requirements needed for a
security-proven communication protocol. However, a safe
and secured environment is imperative for autonomous
as well as connected vehicles. Therefore CAN security is
considered one of the important topics in the automotive
research community. In this paper, we propose a four-
stage intrusion detection system that uses the chi-squared
method and can detect any kind of strong and weak
cyber attacks in a CAN. This work is the first-ever
graph-based defense system proposed for the CAN. Our
experimental results show that we have a very low 5.26%
misclassification for denial of service (DoS) attack, 10%
misclassification for fuzzy attack, 4.76% misclassification
for replay attack, and no misclassification for spoofing
attack. In addition, the proposed methodology exhibits
up to 13.73% better accuracy compared to existing ID
sequence-based methods.

Index Terms—Controller area network, security, intra-
vehicular communication, chi-squared test, graph-theory.

I. INTRODUCTION

Autonomous or self-driving vehicles are cars or
trucks for which human interaction is not needed in
driving. Also known as driverless vehicles, they are
equipped with various types of sensors, actuators, a high-
performance computing system, and software. Although
a fully autonomous car is still not a reality, the demand
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for partially autonomous cars with various levels of self-
automation is very high. It seems that the successful
development of a fully autonomous vehicle will change
the world’s overall transportation system and economy.
Hypothetically, it will provide more safety and reduce
the accident rate, as every year many accidents occur
only because of mistakes made by the human driver.
In addition, an autonomous vehicle can be considered a
blessing for the disabled person. To turn the dream into a
reality, all the original equipment manufacturers (OEMs)
are working on this technology, and it is hoped that we
will experience the highest level of autonomous features
within the next several years.

However, the key consideration for autonomous vehi-
cles should be providing protection against cyber attack-
ers. As the autonomous vehicle will totally depend on
the software, sensors, and third-party signals to operate,
one can expect that it will catch the attention of hackers.
The impact of cyber or physical attacks performed by
intruders can include the disclosure of vehicle or driver
information like location, gender, number of passengers
currently riding, etc. In order to provide safety, it is
important to establish a strong protection mechanism
not only in vehicle-to-vehicle communication but also
in intra-vehicle communication. For an autonomous ve-
hicle, both the inter-vehicle and intra-vehicle communi-
cations are controlled by electronic control units (ECUs).
ECUs are called the brain of the self-driving car and are
responsible for taking real-time decisions, so it is impor-
tant that they exchange information among themselves
over a secured communication channel.

For the intra-vehicle communication channel, con-
troller area network (CAN) technology is considered the
de facto standard among the car embedded systems [1].
However, the CAN protocol has some serious security
breaches in its core. The protocol actually works simi-
larly to a broadcasting system, in that contains no mech-
anism for checking the identity of the sender. Several
researchers have tried to provide solutions to increase the
security of the CAN bus [2]–[5]. Most of them work for a
certain type of attack situation. Currently, the increasing
amount of research work on autonomous vehicles has
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inspired us to work on detecting anomalies in the CAN
bus for autonomous vehicles.

Several researchers have proposed different solutions
for defending against cyber attacks in a vehicular system.
An attack can be performed through either a weak or
a strong agent [6]. A weak agent can spoof the CAN
bus by injecting messages with high priority (ID 0000,
denial of service (DoS) attack [7]) or with any arbitration
ID (spoofing [8] or Fuzzy attack [3], [9]). On the other
hand, a strong agent uses two attackers at the same
time to perform attacks. In that case, one attacker tries
to suspend the targeted ECU’s communication and the
other attacker sends a CAN bus message with the tar-
geted ECU’s arbitration ID [3], [7]. Unlike conventional
methodologies, we try to find complex relationships
about CAN bus data using graph theory.

Graph-based anomaly detection techniques are used
widely in industries like finance, fraud detection, com-
puter and social networking, data center monitoring,
etc. [10], [11]. The unusual substructure of a graph
can be used as a flag or sign of an anomaly. First,
we construct a set of graphs from CAN bus data and
then search for unusual behavior to flag as an anomaly.
Our experimental results showed significant success in
detecting anomalies with this approach.

In particular, the major contributions in this work are:

• It is the first-ever graph-based cyber attack defense
system for CAN communication.

• It is the first chi-squared distribution implementa-
tion for detecting attacks in CAN communication.

• We propose a four-stage intrusion detection system
(IDS) for cyber or physical attacks on the CAN
bus. Here, we use a graph-based approach to find
out patterns in the dataset, and the median test and
chi-squared test are used to distinguish two data
distributions.

• Our proposed algorithm can detect attacks without
any change in the CAN protocol. Therefore, it is
applicable to any communication system that uses
the CAN protocol.

The rest of the paper is organized as follows: Sec-
tion II discusses the existing CAN; statistical hypoth-
esis testing, especially the chi-squared test; and graph
properties. At the end of this section, we present the
related work on anomaly detection in the CAN bus
as well as graph-based anomaly detection techniques.
Section III describes our proposed solution. Section IV
and Section V present details about the experimental
results and conclusion, respectively.

II. BACKGROUND AND RELATED WORKS

The broadcasting nature of a CAN communication
system confirms that all the messages that are transmitted
in the network are accessible by all the connected ECUs.
After receiving a CAN message, each ECU translates
the bit sequence and extracts the necessary components
like arbitration ID, data, cyclic redundancy check (CRC),
etc., and finally the ECU decides whether to receive
the CAN message or not based on the arbitration ID.
Apart from indicating the sender of a particular CAN
message, the arbitration ID of a CAN message is used as
a priority during a collision between two or more CAN
messages. For conflict resolution between two CAN
messages, carrier-sense multiple access with collision
avoidance is used in the CAN bus protocol [3]. Although
the arbitration ID is used to define the priority and the
source to resolve conflict, it is incapable of authenticating
the origin of that CAN message. This security flaw can
be used by the inside attacker (who already has access
to the CAN bus) and the outside attacker (who can gain
access using the cellular communication network, etc.)
to corrupt the CAN system.

These attackers can initiate different kinds of attacks
on the CAN bus, and we can generalize them as follows:

• Fabrication attack: Through an in-vehicle ECU
compromised by a strong attacker, the adversary
fabricates and injects messages with forged ID,
data length code, and data. Figure 1(a) shows an
example of the fabrication attack. The objective of
this attack is to override any periodic messages sent
by a legitimate safety-critical ECU so that their
receiver ECUs get distracted or become inoperable.
DoS [7], spoofing [8], and fuzzy attacks [3] are
some examples of fabrication attacks [7].

• Suspension attack: To mount a suspension attack,
the adversary needs only one weakly compromised
ECU, and that becomes a weak attacker. The ob-
jective of this attack is to stop/suspend the weakly
compromised ECUs message transmission, thus
preventing the delivery/propagation to other ECUs
of the information it acquired [12]. Figure 1(b)
shows an example of the suspension attack, where
a weak attacker suspends ECU A’s operation. As
a result, this attack affects the performance of
various ECUs that utilize certain information from
other ECUs to function properly. Therefore, the
suspension attack can harm not only the (weakly)
compromised ECU itself but also other receiver
ECUs.

• Masquerade attack: To mount a masquerade at-
tack [7], the adversary needs to compromise two
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Fig. 1: CAN monitoring-based attack mechanisms: (a) in a fabrication attack, the attacker uses a compromised
ECU to inject a message with a forged ID; (b) in a suspension attack, the intruder suspends the communication of
a compromised ECU; and (c) in a masquerade attack, the intruder uses a weak attacker to suspend one ECU’s data
communication and uses a strong attacker to send messages mimicking the suspended ECU’s ID and frequency.

ECUs, one as a strong attacker and the other as
a weak attacker, as shown in Figure 1(c). The
adversary monitors and learns which messages are
sent at what frequency by the weakly attacked ECU,
and then the strong attacker transmits the message
with the ID of the compromised ECU at the same
frequency. Examples of this attack are replay or
impersonation attacks [13].Moore

A. Chi-Squared Test

In our proposed methodology, we use the chi-squared
test to detect the anomalous CAN data. The chi-squared
independence test [14] is a statistical procedure to test
if two categorical distributions belong to the same pop-
ulations or not. It uses the frequency of each category
as a factor for distinguishing two distributions. In other
words, it is called the chi-square goodness of fit because
in this test, the expected frequencies of all the features of
one data distribution are extracted and then the findings
are compared with the observed frequencies of all the
features of the second distribution. If the two distribu-
tions are significantly different, we will call it a reject
hypothesis; otherwise, we will call it a null hypothesis
(if the distributions are the same). The chi-squared test
can be described by the following equation,

X2
DoF =

DoF∑
i=0

(Oi − Ei)
2

Ei
(1)

where DoF is the degree of freedom, X2
DoF is the value

we will compare against a threshold, O is the observed
frequency, and E is the expected frequency. The degree

of freedom in the chi-squared test actually specifies the
shape of the distribution. It is a numerical value and can
be represented by following equation,

DoF = (i− 1)× (j − 1) (2)

where i is the number of categories and j is the number of
rows used in that test. The degree of freedom is important
for finding out the threshold value from the chi-square
table of significance. In general, the chi-squared test
works well in a categorical larger data set, which is
our primary motivation for using this test for comparing
CAN bus-based data distribution.

The chi-squared test is considered one of the most reli-
able statistical tests now available. Researcher have been
relying on the chi-square test for more than a hundred
years. Previously, the chi-square test was applied in data
correlation [15], experimental and theory-based proba-
bility relationship [16], and chiropractic and osteopathic
data analysis [14]. In recent years, the chi-squared test
has been applied in text classification [17], and in an IDS
with a multi-class support vector machine (SVM) [18]. It
is a trustable method and has been proven in sectors like
medical [19], anomaly-detection [11], and other kinds of
data-analysis problems [17]. Other researchers have used
the chi-squared test for real-time detection of navigation
system soft failures [20]. However, to the best of our
knowledge, no previous work used the chi-squared test
for anomaly detection in a vehicular network.

B. Graph Properties

A graph is a non-linear data structure consisting of
vertices and edges. It actually allows representation of
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TABLE I: The proposed methodology uses common
graph properties; for example, an edge represents a
sequence of CAN messages, while degree represents the
number of arbitration IDs sequential with the current ID.

Properties Significance In Can bus data

Vertex Node of the graph Arbitration ID

Edge Link between nodes Arbitration ID sequence

Degree How many neighbours How many arbitration IDs
are sequential with current ID

Cycle Loop in the graph Loop between the
sequential arbitration IDs

Root Starting of the graph The first CAN message

the relationship between two vertices. We can easily
understand the relationship between two vertices from a
graph. Over the years, researchers extensively used graph
properties to solve various problems in computer science,
operating systems, Google maps, social media, etc. Ta-
ble I presents graph properties and their significance.

C. Related Works

Due to the widespread use of CAN, there has been
a significant amount of work on CAN security [2]–
[9], [12], [21]–[27]. Researchers incorporate conven-
tional validation techniques to identify invalid CAN
ID [21]. To identify anomaly, researchers build a reg-
ular model either considering internal CAN messages
or vehicle specifications. However, this method can be
easily evaded by using existing fabrication attacks. Other
researchers proposed a decision tree-based detection
system considering eight physical and cyber features [6].
This method uses small-scale robotics vehicle to validate
the proposed methodology; however, has high detection
latency. Another exciting work introduced an FPGA-
based IDS for vehicular systems. Yet, this method is
specified for the FPGA platform only, which limits its
application to other CPU and GPU-based systems [22].

Other researchers use the periodicity of CAN’s mes-
sage to detect anomaly [2], [26]. Empirically, ECUs
generates CAN message at a specific frequency. As a
result, it is possible to detect anomalies in inter-arrival
time when an external attacker injects messages. Another
frequency-based IDS uses a one-class support vector
machine to detect anomalies with high accuracy [23].
However, real CAN message prone to variation, and
often exhibits inconsistent inter-arrival time, reduces the
reliability of these schemes.

Some researchers used information theory and pro-
posed an entropy-based IDS to detect CAN attacks.
The basic idea of these systems is normal attack-free
CAN messages will have standard or stable entropy. On

the other hand, the attacked CAN messages will have
unstable behavior [24], [25]. Another exciting approach
and closest to our proposed method is arbitration ID
sequencing-based IDS [27]. This method builds a transi-
tion matrix using a standard CAN dataset and compares
attacked CAN message ID sequence to detect an attack.
This method can detect simple impersonate-type attacks;
however, it could not detect replay attacks.

III. PROPOSED METHODOLOGY

In this paper, we propose an IDS to secure the CAN
bus communication system. The proposed methodology
uses statistical analysis as a basis for detecting anomalies
and is divided into several steps. The steps are (i)
transferring a CAN bus message to a more meaningful
graph structure, (ii) extracting graph-based features to
import for anomaly characterization, (iii) constructing a
hypothesis based on the safe population window, and (iv)
comparing the test population window to the base popu-
lation. This section is organized as follows: Section III-A
contains the proposed algorithms and Section III-A2
contains the exploratory data analysis.

A. Proposed Intrusion Detection Methodology

In this section, we will first define two terms used
in our proposed algorithm and then detail our proposed
methodology. The terms are:
• Window: A range of raw CAN bus messages will

be called a single window. In our proposed method-
ology, we consider 200 messages to be window size.
In the results section, we will discuss it in detail.

• Population Window: A population window is a
set of windows. It actually represents a distribution
of windows and is used by our methodology to
perform hypothesis testing.

1) Constructing a Graph Using CAN Messages:
In [27], the authors propose an IDS based on recurring
sequential message IDs, but this model is vulnerable
to intelligent attacks. We consider this a starting point
for our methodology and incorporate graph theory to
build a solid IDS platform. We divide the CAN bus
messages into a number of windows and then try to
derive the relationships among all the arbitration IDs for
each window.

Empirically, graphs are a common method to indicate
the relationships among data. Their purpose is to present
data that are too complicated to express using simple text
or other forms of data structure. For that reason, they
have now turned into one of the most popular fields of
research. As graph theory can represent complex rela-
tionships of data in a very simple manner, we leverage
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graph data structure to represent CAN bus data windows
in a meaningful structure.

For any given raw CAN dataset, the proposed Algo-
rithm 1 constructs graphs for every 200 messages (to
which we refer as a window) and finally returns the
overall constructed graph lists. From Line 4 to Line 8, all
the necessary variables are initialized. Then we compute
the total number of messages in the given CAN dataset
in Line 9. In Line 10, a loop is used to iterate over
every CAN bus message from the CAN bus dataset.
As our methodology considers the arbitration ID as the
node of a graph, so we need to extract the arbitration ID
from each CAN message in the dataset. From Line 11
to Line 14, we extract the adjacent CAN messages and
their corresponding IDs. Then the algorithm constructs
an adjacency list from the arbitration IDs extracted from
two sequential CAN messages in Line 15.

2) Extracting Graph-Based Features: The graph data
structure has several basic properties like the number
of edges, the number of nodes, the in-degree, the out-
degree, etc. In this step, our proposed method will
characterize each of the message windows and then
will build the population window by extracting graph
properties. In order to extract graph properties from a
graph constructed using a window of CAN messages, our
methodology uses the outcome of step 1 of the proposed
Algorithm 1. In Algorithm 1, Line 17 to Line 19 extracts
the node number, edge number, and maximum degree
from the single constructed graph and stores them in
the list of graph properties in Line 20 using the method
fetchGraphProperties(). After iterating through 200 mes-
sages, we initialize the adjacency list and the current
graph in Line 21 and Line 22, respectively. In Line 25,
we return the whole graph list, which is the population
window in our methodology.

3) Proposed Hypothesis Based on Safe Population
Window: In this step of our proposed intrusion detection
methodology, we try to build a hypothesis based on
the information of the population window. We have
used the popular chi-squared statistical test to build
the hypothesis [28]. Using this statistical analysis, we
compute a threshold value. The threshold value helps
us in the next step to detect the anomalous population.
Besides, we introduce a conventional median test to
detect a strong replay attack.

Algorithm 2 represents the chi-squared test on our
population window. It takes two lists of graphs as inputs
and then outputs a boolean value. Out of the two inputs,
one is the attack-free graph population and the other
is the graph population under test. The boolean value
in the output represents whether there is any attack
happening or not. In between Line 4 to Line 13 we

Algorithm 1 Graph building algorithm
1: Input: CANMessageList[Msg1,Msg2, . . . ,Msgn] .

Raw CAN bus data array
2: Output: GrapList[GP1, GP2, . . . , GPn] . Graph array

of CAN bus data
3:
4: Initialize: GraphList← [ ]
5: PreviousID ← −1
6: CurrentGraph← {} . Start with an empty graph
7: adjacencyList← {} . A dictionary for adjacency list
8: graphCount← 1
9: N ← length(CMsgList[Msg1,Msg2, . . . ,Msgn])

10: for index in range (0, N − 1) do . Loop through all
the CAN messages

11: CANSingleMsg1← CMsgList[index]
12: CANSingleMsg2← CMsgList[index+ 1]
13: arbitrationID1← ExtractID(CANSingleMsg1)

. Extraction of Arbitration ID from raw CAN data
14: arbitrationID2← ExtractID(CANSingleMsg2)

15: adjacencyList ←
linkGraphNodes(CANSingleMsg1, CANSingleMsg2)

. Create link between the two graph Nodes
16: if (length(adjacencyList) == 200 then . If

it true then adjacencyList is a graph built from 200 CAN
messages

17: nodeNumber ←
countNodeNumber(adjecencyList) . Count number
of nodes in the current graph

18: edgeNumber ←
countEdgeNumber(adjecencyList) . Count number
of edges in the current graph

19: Maxdegree← countDegree(adjecencyList) .
Count maximum degree of each ID from the current graph

20: currentGraph ←
fetchGraphProperties(adjacencyList)

21: adjecencyList← {}
22: currentGraph← {}
23: end if
24: end for
25: return GraphList

initialize the variables that are needed for our proposed
methodology. After that, the algorithm extracts the edges
of each graph from the graph list from Line 14 to Line 16
for safe attack-free distribution. Finally, a hypothesis is
constructed for the safe edge distribution in Line 20.

4) Comparing Test Population Window to the Base
Population Window: This step of our proposed intrusion
detection methodology consists of two functionalities.
The first one is to calculate the chi-square value for
the test population window and then compare the value
with the threshold. The latter one is to calculate the
median value for the test population window and then
compare the value with the outlier. By using Equation 3
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Algorithm 2 Proposed attack detection algorithm
1: Input: GrapListBase[GP1, GP2, . . . , GPn] .

Graph array of attack free CAN bus data,
GrapListTest[GP1, GP2, . . . , GPn] . Graph array of
test data

2: Output: isAttacked . True if the input graph is
attacked or false otherwise

3:
4: Initialize: edgeListBase ← [ ]
5: edgeListTest ← [ ]
6: ChiNull ← 0
7: ChiTest ← 0
8: MedianNull ← 0
9: MedianTest ← 0

10: σNull ← 0
11: threshold← 0
12: NBase ← length(GrapListBase[GP1, GP2, . . . , GPn])
13: NTest ← length(GrapListTest[GP1, GP2, . . . , GPn])
14: for index in range (0, NBase) do
15: edgeListBase ←

fetchEdgeNumbers(GraphListBase[index])
16: end for
17: for index in range (0, NTest) do
18: edgeListTest ←

fetchEdgeNumbers(GraphListTest[index])
19: end for
20: ChiNull ← ExtractDistribution(edgeListBase) .

Construct hypothesis using attack free graph
21: ChiTest ← ExtractDistribution(edgeListTest) .

Construct hypothesis using test data
22: threshold← FindSignificanceLevel(ChiNull) .

Find threshold using the base distribution
23: {MedianNull, σNull} ←

ExtractDistribution(edgeListBase) . Compute
median and standard deviations using attack free graphs

24: MedianTest ← ExtractDistribution(edgeListTest) .
Compute median using test data

25: if (ChiTest ≤ threshold) then
26: isAttacked← True . Attack detected
27: else if (MedianTest > (MedianNull + 3σNull)) then
28: isAttacked← True . Attack detected
29: else
30: isAttacked← False . CAN data is safe
31: end if
32: return isAttacked

and Equation 4 we can detect the anomalous population.

ChiTest <= threshold, [ChiTest = X2
c ];No attack

(3)
ChiTest > threshold, [ChiTest = X2

c ];Attack (4)

In Line 17 to Line 19 of Algorithm 2, we extract the
edges from the list of graphs that will be tested. In
Line 21, a test hypothesis is made based on the same

Fig. 2: We use real CAN message data to build a directed
graph that represents the sequence of messages.

rules as the attack-free distribution hypothesis or the
base hypothesis and the threshold is defined in Line 22
based on the details of the base hypothesis. To detect
the replay attack, we incorporate the median test [29].
For this, the Algorithm 2 compute median (MedianNull)
and standard deviation σNull using attack free data and
MedianTest of attacked data in Line 23 to Line 24.
Finally, the algorithm takes the decision about the test
distribution by comparing the test hypothesis with the
threshold or our defined outliers (MedianNull+3σNull)
from Line 25 to Line 31 and returns whether the CAN
data is safe or not in Line 32. Our assumed outliers
exhibits excellent results and we will discuss in detail in
Section III-B and Section IV-A.

B. Exploratory Data Analysis

We have chosen a real vehicle dataset provided by
the Hacking and Countermeasure Research Lab [30].
The dataset includes both attack-free and corrupted data
with various kinds of attacks. Those attacks include DoS,
fuzzy, spoofing, and replay attacks on CAN data.

First, we build graphs using Algorithm 1 with raw
CAN bus data. Figure 2 shows an example of a graph
generated using the proposed methodology. The nodes
of the graph represent arbitration IDs of the CAN bus,
and the edge between two nodes indicates CAN bus
sequential messages. The direction of the edge indicates
the order of the sequence of the messages. For example,
if node 043f has an edge with node 0440 and the
direction of the edge goes from 043f to 0440, it means
arbitration ID 0440 was followed by the message with
arbitration ID 043f .

First, we divided the real vehicular CAN bus data
into a few windows. The size of each window is 200
messages. However, this number is user-defined, and it
is possible to change depending on the design robustness.
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Fig. 3: (a) Attack-free CAN data edge distribution shows
a normal distribution, and (b) the attack-free CAN data
maximum degree distribution exhibits a regular pattern.

At a 1Mbit/sec speed, a CAN transmits about 8.7K mes-
sages/sec. Hence, designers can select how frequently
they want to authenticate the CAN. After selecting the
window size, we build the graph for each of the windows
and derive the common graph properties like edge num-
ber and maximum degree distribution for each window.
The attack-free CAN data edge distribution shows a
normal distribution, as shown in Figure 3(a). Similarly,
the attack-free CAN data maximum degree distribution
exhibits a regular pattern, as shown in Figure 3(b).

Now we will discuss the graph properties of the
dataset with different kinds of attacks. Figure 4(a) repre-
sents the distribution of edges for a DoS attack. Unlike
attack-free CAN data, the DoS-attacked data do not
exhibit a normal distribution. Figure 5(a) shows the
situation of the maximum degree for a CAN dataset
with a DoS attack. Clearly, a single arbitration ID
(0000) dominates the distribution and occupies the CAN
network with the highest-priority messages.

Unlike the DoS attack, the graphs with a spoofing-
attacked dataset show a bimodal distribution with two
distinct peaks, as shown in Figure 4(b). However, similar
to a DoS attack, the spoofing-attacked maximum edge
distribution has a distinguishable high occurrence of ID
0316 compared to the other IDs, as shown in Figure 5(b).

Similar to the spoofing attack, the graphs with a fuzzy-
attacked dataset show a bimodal distribution with two
distinct peaks, as shown in Figure 4(c). However, unlike
the spoofing attack, the fuzzy-attacked maximum edge
distribution has no distinct characteristics compared to
the attack-free data as shown in Figure 5(c).

Unlike other attacks, the graphs with a replay-attacked
dataset show a normal distribution, as shown in Fig-
ure 4(d). In addition, replay-attacked maximum edge
distribution has no distinct characteristics compared to
the attack-free data, as shown in Figure 5(d).

Apart from impersonation or replay attacks, the data
distributions of different attacks are not only different
from the attack-free CAN data distribution but also dif-
ferent from each other. We summarize in statistical terms
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Fig. 4: (a) The DoS-attacked CAN data edge distribution
shows a positively skewed distribution, (b) the spoofing-
attacked CAN data edge distribution shows a bimodal
distribution, (c) similar to spoofing attack, the fuzzy-
attacked CAN data edge distribution shows a bimodal
distribution, and (d) similar to attack-free CAN data, the
edge distribution of replay-attacked data shows a normal
distribution.
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Fig. 5: (a) The DoS-attacked CAN data maximum degree
distribution exhibits an irregular pattern with arbitration
ID 0000, (b) the spoofing-attacked CAN data maximum
degree distribution exhibits an irregular pattern with
arbitration ID 0316, (c) The fuzzy-attacked CAN data
maximum degree distribution exhibits a regular pattern,
and (d) similar to the attack-free CAN data, the replay
attacked maximum degree distribution exhibits a regular
pattern.
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TABLE II: In summary, we can say that among all the
attacks, impersonation or replay attack is difficult to
detect due to the symmetric edge and maximum degree
distributions compared to the attack-free data.

Analysis Attack free DoS Spoofing Fuzzy Replay

Mean (edge) 44.6 46.6 49.1 79.8 75.2

Median (edge) 44.0 45.0 49.0 46.0 75.0

Skewness (edge) Moderate High Similar Moderate Similar

Max degree ID 0140 0000 0316 0545 0164
(%) (16.9) (30.8) (46.4) (16.8) (31)

the overall situation of the data distributions in Table II.
In the exploratory data analysis, we consider the central
tendency or mean of the distribution and the asymmetry
of a probabilistic distribution. In our attack-free dataset
graph collection, the edge distribution has a mean of
44.6. On the other hand, the DoS, fuzzy, spoofing, and
replay attacks have a mean of 46.6, 49.1, 79.8, and 75.17,
respectively. In addition, we compute the median of edge
distribution which is important for outliers detection, as
shown in Table II. The attack free, DoS, fuzzy, spoofing,
and replay attacks edge distributions have a median of
44.0, 45.0, 49.0, 46.0, and 75.17, respectively.

Table II also shows the skewness of all the edge dis-
tributions for attack-free and attacked datasets. Spoofing
and replay attack edge distributions seem symmetric to
the attack-free dataset edge distribution. On the other
hand, the attack-free and fuzzy attack edge distributions
are moderately positive-skewed. Finally, the DoS attack
edge distribution is highly skewed. If we look at the
maximum degree of CAN arbitration IDs in the graph
distribution, it shows that different kinds of attack use
different IDs, resulting in dissimilar maximum degrees.

Finally, exploratory analysis proves that the conver-
sion between raw CAN data to the graph gives us a
clear indication of an attacked or attack-free CAN bus.
Using this technique, we can fetch some extraordinary
information from the converted graph. Finally, the graph
properties can be used to distinguish different attacked
and attack-free situations of the CAN bus system.

IV. EXPERIMENTAL RESULTS AND EVALUATION

In order to verify the proposed methodology, we use
a real CAN dataset and performed analysis on an Intel
Xeon(R) 3.8 GHz 8-core processor with 32 GB RAM
using our proposed algorithm in Python language. For
our analysis, we consider about 23K graphs. We divide
the result section into three parts: In Section IV-A, we
first will discuss the detection methodology for different
attacks using the proposed graph-based chi-square test

and median test. Then, in Section IV-B, we will identify
the level of significance (LoS).

A. Attack Detection

For detecting an attack using the chi-squared test, we
build a base hypothesis using the exploratory attack-free
CAN data. We define it as a base distribution. Then,
any distribution can be compared with the base hypoth-
esis and differences can be found easily. Figure 6(a)
is a visual representation of our chi-squared test on
an attack-free distribution. The distribution colored as
green represents the safe distribution, and on the other
hand, the blue distribution represents the distribution
under the test. According to our analysis, any attack-
free test data exhibit a similar pattern to our base
hypothesis, as shown in Figure 6(a). After that, we
built test distributions using DoS-, fuzzy-, spoofing, and
replay-attacked datasets. Figure 6(b), Figure 6(c), and
Figure 6(d) show the chi-squared test on DoS-, fuzzy-
, and spoofing-attacked distributions compared with our
base hypothesis, respectively.

Among all the CAN monitoring-based attacks, the
replay-attacked edge distribution (i.e., Figure 4(d)) shows
no difference from the attack-free distribution (i.e., Fig-
ure 3(a)). As a result, the chi-squared test can only
achieve up to 66% accuracy. Because of this issue,
we incorporate the median test by defining outliers,
considering median and 3× (standard deviation) values.
Our prediction accuracy increases significantly using
this technique. Clearly, we can easily detect any of
those CAN-monitoring-based attacks using the proposed
methodology. For this analysis, we consider only edge
distributions.

Figure 7 shows the confusion matrix of the proposed
methodology. We clearly achieve excellent accuracy in
detecting all kinds of attacks described in this section
when they are individually tested. The misclassification
rate is very low. According to our analysis, the mis-
classification rate is 5.26%, 10%, 0%, and 4.76% for
DoS, fuzzy, spoofing, and replay attacks, as shown in
Figure 7(a), Figure 7(b), Figure 7(c), and Figure 7(d),
respectively. For fuzzy-, spoofing-, and replay-attacks,
we are able to classify all of the test cases successfully.
Overall, the proposed methodology has only 4.76% mis-
classification rate DoS-, spoofing-, fuzzy-, and replay-
attacked CAN data.

We also measure the robustness of the proposed
methodology when multiple intruders attack the CAN,
simultaneously. For this analysis, we consider simultane-
ous DoS and fuzzy attacks and DoS, fuzzy, and spoofing
attacks. The misclassification rate is 13.16% for com-
bined DoS and fuzzy attacks, as shown in Figure 8(a).
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Fig. 6: We used a chi-squared test and built a base-hypothesis using attack-free data: (a) expectedly, the attack-
free test distribution and base distributions are identical; (b) chi-squared test easily distinguishes the base normal
distribution and bimodal distribution of DoS-attacked data; (c) chi-squared test detects the fuzzy attack compared
with the base hypothesis; and (d) chi-squared test easily distinguishes the base normal distribution and bimodal
distribution of spoofing-attacked data.
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Fig. 7: The proposed methodology has only a 5.26%,
10%, 0%, and 4.76% misclassification rate for DoS,
fuzzy, spoofing, and replay attacks, respectively, result-
ing in only 4.76% overall misclassification rate.
The misclassification rate is 9.84% for combined DoS,
fuzzy, and spoofing attacks, as shown in Figure 8(b).

B. Level of Significance Tuning

The LoS is the probability of rejecting a hypothesis.
It is critical for any decision, since the threshold value
changes depending on the level of significance and DoF .
We compute the DoF using Equation 2. In our case, we
have two rows, one for the reference distribution and the
other for the test distribution. The empirical rule states
that in a normal distribution, 99.7% of the data points

Combined attacks (DoS and Fuzzy)

0.44440.5556

0.96550.0345

(a)

Combined attacks (DoS, Fuzzy, and Spoofing)

0.41670.5833

0.97960.0204

(b)

Fig. 8: The proposed methodology has 13.16% and
9.84% misclassification rate for combined DoS-fuzzy
and DoS-fuzzy-spoofing attacks, respectively.

should be within (mean ± 3× (standard deviation)) of
the distribution. However, researchers have proved that
for detecting outliers, considering the median in place
of the mean gives better results [31]. In addition, both
the median and the mean signify the central tendency
of a distribution, but the median does not affected by
anomalous data. As a result, we considered the median
value and divide the reference and test distribution into
six regions starting from (mean - 3× (standard devia-
tion)) to (mean + 3× (standard deviation)) in a step of
one standard deviation. Hence, our column number is 6.
Using the chi-square table [32], we can chose the LoS
given the threshold and the degree of freedom.

Our test results show the best LoS we should choose
corresponding to the threshold value for comparing
attack-free or attacked distributions. According to our
analysis in Section III-B, the distributions of different
attacks have different patterns. Hence, we propose a dif-
ferent level for DoS, fuzzy, spoofing, and replay attacks.
Figure 9(a) suggests that a threshold value (15.086)
corresponding to a significance level of 0.01 gives us the
best prediction accuracy for a DoS attack. In terms of
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Fig. 9: We identified the best threshold value with level
of significance considering the best prediction accuracy.

LoS tuning for combined DoS and fuzzy attacks
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Fig. 10: Similar to individual attacks, we identified the
best threshold value with LoS for combined DoS-fuzzy,
and DoS-fuzzy-spoofing attacks considering the best
prediction accuracy.

spoofing and fuzzy attacks, we propose a significance
level of 0.001 (threshold 20.515) and 0.1 (threshold
9.236), as shown in Figure 9(b) and Figure 9(c), respec-
tively. Using a significance level of 0.1 and threshold
value of 9.236, the proposed chi-squared test method can
achieve up to 66% accuracy, as shown in Figure 9(d).
However, when we introduce our proposed median test,
the prediction accuracy increases up to 95.24% as shown
in Figure 7(d). Figure 10(a) suggests that a threshold
value (9.236) corresponding to a significance level of
0.1 gives us the best prediction accuracy of 86.84 for
the combined DoS and fuzzy attacks. Using an LoS of
0.1 and threshold value of 9.236, the proposed method
can achieve up to 90.16% accuracy for combined DoS,
fuzzy, and spoofing attacks, as shown in Figure 10(b).

C. Comparison to Related Work

We evaluated the efficiency of our approach to detect
an attack in CAN’s message by comparing it to one
of the state-of-the-art IDS [27]. To the best of our

TABLE III: The proposed methodology can successfully
detect all four (i.e., DoS-, fuzzy-, spoofing-, and replay)
kinds of attacks with reasonable accuracy; however,
existing ID sequence methodology can not detect any
replay attacks.

Type Method Accuracy TPR FPR TNR FNR Time
(%) (%) (%) (%) (%) (µs)

D
oS

ID sequence 100 99.12 100 0.88 0 4.2
( [27])

Proposed 94.74 100 92.86 0 7.14 217.5
(LoS = 0.01)

Fu
zz

y

ID sequence 99.04 98.97 99.39 1.03 0.61 3.2
( [27])

Proposed 100 100 0 100 0 165.7
(LoS = 0.1)

Sp
oo

fin
g ID sequence 86.23 99.3 53.93 46.07 0.7 5

( [27])

Proposed 100 100 0 100 0 258.9
(LoS = 0.001)

R
ep

la
y ID sequence – – – – – –

( [27])

Proposed 95.24 90.91 100 9.01 0 225.7
(LoS = 0.1)

knowledge, this is the only methodology that uses CAN
bus message sequence to identify CAN attacks. Our
method is also constructing a graph to find a pattern
among CAN bus message arbitration IDs and using it
to detect an attack. Therefore we implemented their
approach in the same experimental environment using
the same real vehicular CAN message dataset [30] to
estimate the effectiveness of our approach.

In the dataset, the attacker targeted the revolutions per
minute of an actual vehicle to perform a spoofing at-
tack. When we considered spoofing attack, the proposed
methodology has 13.73% better accuracy compared to
the existing method, as shown in Table III. When we
considered a fuzzy attack, the proposed method exhibits
comparable accuracy, however, for DoS attack, the pro-
posed methodology shows 5.26% lower accuracy to the
existing ID sequence method. One of the most attractive
features of the proposed method is it can detect replay
attack with 95.24% accuracy, while the existing method
could not detect any replay attacks. Figure 11 shows the
misclassification rate of proposed method compared with
the state-of-the-art [27]. The current approach requires
much lower computation time compared to the proposed
method due to the more straightforward implementation.
However, the proposed methodology requires only up to
258.9µs to detect an attack.
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Fig. 11: Considering all four-types of attacks, the pro-
posed IDS has a maximum misclassification rate of
5.26% while the state-of-the-art has 13.77% and not
applicable to replay attacks.

V. CONCLUSION

As the involvement of modern technologies in the
vehicular industry is increasing the number of cyber
threats, we very much need a robust security mechanism
to detect them. In this paper, we analyzed the character-
istics of all kinds of CAN monitoring-based attacks and
proposed a four-stage IDS with the help of graph theory,
statistical analysis, and the chi-square method.

To the best of our knowledge, this is the first graph-
based IDS for CAN bus communication. Our experi-
mental results show that we have a very low misclas-
sification rate in detecting attacks or attack free data. In
terms of DoS, it is only 5.26%; for the fuzzy attack,
it is 10%; for replay attack, it is 4.76%; and finally,
for a spoofing attack, we were able to detect all the
malicious attacks. The proposed methodology exhibits
up to 13.73% better accuracy compared to existing ID
sequence-based methods [27]. For strong replay attacks,
we clearly were not only able to find an attack when
it occurred for an infected CAN arbitration ID, but also
were able to mark the uninfected arbitration IDs as safe.
In this work, we considered only the distribution of the
edge and the maximum degree of occurrence of the graph
to identify attacks.

In the future, we would like to consider other graph
properties such as distribution of nodes, cycles, weighted
edges etc. In addition, we will apply different machine
learning algorithms in place of the chi-square test to
identify anomalies.
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