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Bayesian Automatic Relevance Determination
for Utility Function Specification in

Discrete Choice Models
Filipe Rodrigues , Nicola Ortelli, Michel Bierlaire,

and Francisco Camara Pereira , Member, IEEE

Abstract— Specifying utility functions is a key step towards
applying the discrete choice framework for understanding the
behaviour processes that govern user choices. However, iden-
tifying the utility function specifications that best model and
explain the observed choices can be a very challenging and time-
consuming task. This paper seeks to help modellers by leveraging
the Bayesian framework and the concept of automatic relevance
determination (ARD), in order to automatically determine an
optimal utility function specification from an exponentially large
set of possible specifications in a purely data-driven manner.
Based on recent advances in approximate Bayesian inference,
a doubly stochastic variational inference is developed, which
allows the proposed MNL-ARD model to scale to very large
and high-dimensional datasets. Using semi-artificial choice data,
the proposed approach is shown to be able to accurately recover
the true utility function specifications that govern the observed
choices. Moreover, when applied to real choice data, MNL-ARD
is able discover high quality specifications that can outperform
previous ones from the literature according to multiple criteria,
thereby demonstrating its practical applicability.

Index Terms— Discrete choice models, automatic relevance
determination, automatic utility specification, doubly stochastic
variational inference.

I. INTRODUCTION

D ISCRETE choice models (DCM) provide a powerful
framework for understanding user behaviour. By mod-

elling user choices as functions of the alternative-specific
attributes and user characteristics, DCMs allow researchers to
predict users’ future choices given a set of discrete alterna-
tives and understand the behaviour process that governs their
choices. Hence, it is without surprise that DCMs have become
a widely adopted framework in various domains ranging from
psychology to economics, thus making them one of the main
work-horses for understanding user travel behaviour, consumer
behaviour, and many other kinds of user choices.

In practice, a fundamental part of applying the DCM
framework consists in specifying the utility function for each

Manuscript received May 15, 2020; revised August 23, 2020; accepted
October 14, 2020. The Associate Editor for this article was J. Xun.
(Corresponding author: Filipe Rodrigues.)

Filipe Rodrigues and Francisco Camara Pereira are with the Technical
University of Denmark (DTU), 2800 Lyngby, Denmark (e-mail: rodr@dtu.dk).

Nicola Ortelli and Michel Bierlaire are with the École Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TITS.2020.3031965

alternative in the choice set, which are generally assumed
to be known a priori. For the sake of interpretability, these
utility functions are typically assumed to be functions of a
set of explanatory variables that are linear in parameters.
Although limiting at first sight, this linear framework can be
made rather powerful by exploring variable transformations
(e.g. log-transformations, Box-Cox transformations), one-hot
encodings, piecewise linear representations, discretizations,
interactions between variables, etc. However, all these mod-
elling choices quickly raise the number of possible utility func-
tion specifications beyond manageable values for the modeller.
On the other hand, given the central role of the utility functions
in DCMs, it is essential to determine good specifications, at the
risk of obtaining misspecified models and biased parameter
estimates [1]. As a consequence, a modeller often spends large
portions of time seeking the “best” specification according to
different criteria (e.g. convergence, log-likelihood, p-values),
typically through a combination of trial-and-error and domain
knowledge (e.g. economic theories).

In this paper, we focus on the Multinomial Logit (MNL)
model, and we propose leveraging the Bayesian framework
in order to automatically determine an optimal utility func-
tion specification from an exponentially large set of possible
specifications in a purely data-driven manner. Although the
proposed approach is not meant to be a replacement for expert
intuition and domain knowledge, it is shown to provide key
insights about the data that can help the modeller determine the
utility function specification that best represents the observed
choice data, which can ultimately lead to new understandings
about the way people make choices in certain contexts.

Based on the principle of Automatic Relevance Determi-
nation (ARD), as developed by [2] in the context of the
Relevance Vector Machine and as widely used in the Gaussian
Processes literature [3], we propose the use of a hierarchical
prior on the preference parameters of each utility function in
order to automatically determine their relevance for explaining
the observed choice data. The key idea consists in jointly
estimating the posterior distribution over the preference para-
meters, as well as the optimal values for the variances of
the Gaussian priors over each possible explanatory variable to
be included in each utility function specification. In order to
ensure consistency among the selected variables, i.e. that either
all or none of the dimensions corresponding to the representa-
tion of a given explanatory variable are selected, we propose
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tying the variance parameters of the Gaussian priors over
the parameters that correspond to the same representation
of a given choice attribute. Given the estimated optimal
values for the variances of the Gaussian priors for a very
large set of possible variable representations, a modeller can
easily determine the most relevant attributes and corresponding
representations for explaining a dataset of observed choices by
simply selecting the variables for which the estimated prior
variances are non-zero.

Since exact Bayesian inference in the proposed MNL-ARD
model is intractable, we propose the use of the variational
inference framework. Namely, we develop an efficient approx-
imate inference algorithm using doubly stochastic variational
inference (DSVI) [4]. By combining the theory of variational
inference with the theory of stochastic optimization, the pro-
posed inference algorithm is able to approximate the true
posterior distribution over the preference parameters with a
tractable distribution and jointly estimate the optimal Gaussian
prior hyper-parameters, while being able to scale to very large
datasets with a very high number of dimensions. Although
we focus on Multinomial Logit (MNL) models, the proposed
approach can be extended to more complex models such as
Mixed and Latent Class Logit models.

The validity of the proposed automatic utility function spec-
ification framework is empirically demonstrated using both
semi-artificial and real choice data. We begin by empirically
demonstrating the ability of the proposed approach to discover
the correct utility function specifications through an extensive
series of experiments on simulated choice data based on the
Swissmetro dataset [5]. In particular, we manually specify a
series of “artificial” (but realistic) utility function specifications
of increasing complexity and, based on the Swissmetro dataset,
we sample new artificial choices according to the manually-
specified utility functions. Our empirical results show that
the proposed MNL-ARD model is able to very accurately
recover the “true” specifications that were used to generate
the artificial choices, even in settings where the number
of variables representations and transformations considered
for each utility function is in the order of the thousands.
Lastly, our empirical results on the real choices from the
Swissmetro dataset demonstrate the potential of the proposed
framework for discovering novel utility function specifications
that can potentially outperform previous ones from the state
of the art in terms of explanatory power and generalization to
unobserved data.

In summary, the main contributions of this paper are the
following:

• We adapt the theory of ARD to the domain of DCMs,
making the modifications that are required from a choice
modelling perspective (e.g. multiple utility functions with
alternative-specific attributes, variable number of dimen-
sions and tied parameters in the hierarchical priors);

• We develop a doubly-stochastic variational inference
(DSVI) [4] algorithm for performing fast approximate
inference in the proposed MNL-ARD model;

• We empirically show (i) the ability of the the proposed
approach to recover the true utility specifications on semi-
artificial choice data, (ii) that MNL-ARD can discover

new specifications that outperform previous ones from the
literature, and (iii) that the developed DSVI algorithm is
able to scale to very large datasets and search spaces.

The remainder of this paper is organized as follows. In the
next section, we review the relevant literature for this work.
Section III presents the proposed MNL-ARD model and
derives a scalable doubly-stochastic variational inference algo-
rithm for performing fast approximate Bayesian inference on
it. The corresponding experimental results are presented in
Section IV. The paper ends with the conclusions (Section V).

II. LITERATURE REVIEW

The problem of automatically determining the relevant
variables for inclusion in a model has been studied to a
significant extent in the supervised machine learning literature
under the common title of “feature selection”. When using
feature selection techniques, the main premise is that the
considered data contain redundant or irrelevant variables,
which can therefore be removed without consequent loss
of information [6]. The numerous existing approaches are
generally classified as wrapper, filter and embedded methods
according to the strategy they employ to search for subsets
of variables [7]. Wrappers use the model of interest to
score subsets according to the predictive power they allow
to achieve. Despite being computationally intensive, wrappers
offer a simple way of addressing the problem: a plethora of
methods based on simulated annealing [8], tabu search [9],
evolutionary algorithms [10] and other combinatorial opti-
mization algorithms have already been applied successfully,
both for linear and logistic regressions. In comparison, filter
methods are independent of the model under consideration;
they use “proxy” measures such as correlation or mutual
information [11] to evaluate single features or subsets. While
being less computationally intensive than wrappers, filters
usually achieve worse results in terms of prediction power.
Finally, embedded methods are characterized by the fact that
the selection of variables and the estimation of the model
are performed simultaneously, in a single process. A good
example of such class of methods is the LASSO, initially
proposed by [12] and successfully applied both to linear [13]
and logisitic [14] regressions. Other existing embedded meth-
ods make use of mixed integer optimization [15] or decision
trees [16] to effectively incorporate feature selection as part
of the training process.

In the field of discrete choice analysis, interest has recently
emerged for methods that are able to “mitigate” the need
for presumptive structural assumptions. Two main directions
of research are explored in the existing literature: the first
substitutes DCMs with machine learning classifiers that do not
require any prior knowledge concerning the domain [17]–[19],
while the second focuses on automatizing the utility speci-
fication of DCMs by means of data-driven feature selection
algorithms [20]–[22].

A particularly elegant class of methods for performing
automatic feature selection in the statistics and machine
learning literature relies on the concept of automatic rele-
vance determination (ARD) [2], [23], [24]. The idea behind
this class of approaches consists in specifying the a-priori
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uncertainty and infer a-posteriori uncertainty about regres-
sion coefficients explicitly and hierarchically in a Bayesian
framework. However, unfortunately, Bayesian inference in
such hierarchical models quickly becomes intractable, and
effective and scalable methods are required in order to perform
approximate inference. To that end, [24] presents a type-II
maximum likelihood based on variational inference in a linear
regression context, where the hyper-parameters of the hierar-
chical priors are tuned by maximizing the marginal likelihood
of the data. This approach was later extended by [25] to a fully
Bayesian approach by further considering a normal inverse-
gamma prior over the hyper-parameters of the hierarchical
priors, and then performing variational inference to deter-
mine the corresponding posterior distributions. Furthermore,
the author also considers ARD in a binary logistic regression
context. The difficulty in the latter stems from the non-
conjugacy of the sigmoid, which required the authors to
consider an additional model-specific parametric lower bound
on the sigmoid as proposed by [26], which can raise the
computational cost and compromise accuracy. Recently, highly
efficient general-purpose black-box variational inference meth-
ods have proposed in the literature [4], [27], which allow
for approximating the required expectations using inexpensive
Monte Carlo approximations. In particular, [4] proposed a
doubly stochastic variational inference for performing ARD
in binary logistic regression. The approach proposed in this
paper builds on the work of [4] to propose an ARD framework
for discrete choice models, and to develop a corresponding
efficient variational inference algorithm.

III. APPROACH

A. Discrete Choice Models

Following the Random Utility Maximization (RUM) theory,
discrete choice models are based on the assumption that each
individual n ∈ {1, . . . , N} is a rational decision-maker that
aims at maximizing some utility with respect to a choice
set Cn . A key step in discrete choice modeling is then to
specify a function Uin that is able to capture the utility of
each alternative i for each individual n. The utility function
is further assumed to be partitioned into two components,
Uin = Vin + εin , where Vin is a systematic (or deterministic)
utility and εin is an i.i.d. term that captures the uncertainty
stemming from the impossibility of Vin to fully capture the
choice context. The systematic component Vin is typically
assumed to be a function linear in parameters of the observ-
able explanatory variables xin = {xdin}Di

d=1 of the utility of
alternative i for each individual n (e.g. alternative attributes,
individual’s socio-demographic characteristics, etc.):

Vin = βT
i xin =

Di∑
d=1

βdi xdin, (1)

where β i is a vector of alternative-specific preference para-
meters. This corresponds to the more general setting where
preference parameters may vary between different alternatives.
Following the same reasoning, our specification further allows
for a variable number of explanatory variables Di per alter-
native i . Under the standard Multinomial Logit assumption

that εin ∼ EV(0, 1), the probability of individual n selecting
alternative i is given by

Pn(i) = eVin∑
j∈Cn

eVjn
. (2)

Given a dataset of observed choices and corresponding
explanatory variables for a population of size N , the modeler’s
objective is to determine the preference parameters β , which
are typically estimated by maximizing the log-likelihood:

β∗ = arg max
β

N∑
n=1

∑
i∈Cn

yin log Pn(i), (3)

where yin is a one-hot encoding of the observed choice for
the nth individual and y and β are used to denote the set of
all observed choices and preference parameters, respectively.

Despite the appealing simplicity of maximum likelihood
estimation methods, in this paper we shall follow a Bayesian
approach. The latter not only allows us to infer full posterior
distributions for the preference parameters β that provide a
principled way of performing hypotheses testing [28] and
uncertainty quantification, but also enable online learning
approaches in which the posterior over the parameters is
continuously updated as more data becomes available [29].
Moreover, most importantly, it will support the development
of the automatic utility function specification approach based
on ARD proposed in Section III-B.

We begin by introducing the standard Bayesian framework
for the MNL model specified above, which will serve as the
starting point for the proposed approach in Section III-B.
To enable the Bayesian treatment of model above, we start
by placing a prior distribution over the preference parameters
for each of the alternatives:

β i ∼ N (β i |0, λI), (4)

where I denotes the identity matrix, thus making λI a diagonal
covariance matrix parametrized by λ. Making use of Bayes’
theorem, the posterior distribution over the preference para-
meters β is

p(β|y, λ) = p(β|λ)
∏N

n=1
∏

i∈Cn
(Pn(i))yin∫

p(β|λ)
∏N

n=1
∏

i∈Cn
(Pn(i))yin dβ

. (5)

However, the non-conjugacy between the prior (4) and the
MNL likelihood in (2) deems the integral in the denom-
inator intractable, thus making exact inference infeasible.
Fortunately, over recent years, we have observed very sig-
nificative improvements in the accuracy and scalability of
approximate Bayesian inference, which we shall exploit in
Section III-C.

B. Automatic Utility Function Specification

The main of focus of this paper is on leveraging the
Bayesian framework and the concept automatic relevance
determination (ARD) [2] to lift the burden of manually search-
ing for an optimal utility function specification for a given
discrete choice problem from the modeler. Namely, we wish
to automatically determine the relevant variables for the utility
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function of each alternative i , while considering also for differ-
ent non-linear transformations (e.g. log-transforms, Box-Cox
transforms), different continuous variable discretizations, inter-
actions between variables, etc. In order to allow for some of
these modeling options and, in particular, variable interactions,
let us begin by considering a more flexible parameterization of
the utility function. Letting sn be a categorical socio-economic
variable with K categories associated with individual n
(e.g. age, income, education or profession), we can allow for
interactions with the remaining variables by introducing an
unknown parameter per category β1, . . . , βK and defining the
utility function for an alternative i as

Vin =
Di∑

d=1

Kd∑
k=1

βkdi δk(sn) h(xdin), (6)

where δk(sn) is an indicator function, which takes the value
1 if the nth individual belongs to category k and 0 otherwise,
and h(·) is an arbitrary function (e.g. logarithm for a log-
transform). Kindly notice that the utility specification in (1) is
a special case of (6), when Kd = 1 and h(·) is the identity
function. Similarly, this specification also contains one-hot
encodings and discretizations of a variable d as special cases
by adapting the functions δk(·) and h(·) accordingly.

Based on (6), the problem of automatic utility function
specification can then be defined as determining the subset
of input dimensions Si ⊆ {1, . . . , Di } that best models the
observed choices according to a dataset of observed choices,
where {1, . . . , Di } is a very large set of possible variable
transformations and representations whose usefulness to the
model we wish to test. For example, for a cost variable,
a modeler may consider including in {1, . . . , Di } the variable
itself, its log-transformed value, cost interacted with gender,
cost interacted with age, cost interacted with both gender and
age, a piecewise linear transformation, etc. The goal is then
to determine which subset Si of these should be included in
the utility function specification Vi .

The starting point for our proposed approach is the concept
of automatic relevance determination (ARD), as used for
instance in the statistical machine learning literature for the
relevance vector machine [2]. The key idea lies in realizing that
preference parameters of irrelevant dimensions d should be
pushed towards zero. However, the standard prior specification
in (4) is too restrictive to allow for some parameters to be
pushed arbitrarily close to zero, while others retain their actual
values. This restriction stems for the fact in (4), the parameters
are assumed to have independent univariate Gaussian priors
that share the same prior variance λ. Therefore, we can
make progress towards ARD in discrete choice models by
constructing a flexible hierarchical prior, in which each para-
meter is assigned an independent Gaussian prior with its own
variance, but parameters belonging to the representation of the
same variable share the same variance. Mathematically, this
corresponds to

βkdi ∼ N (βkdi |0, λdi ). (7)

Please note that the constraint of sharing the same variance
over the index k is crucial in order to ensure that the entire

Fig. 1. Graphical model representation of the proposed model.

group is treated as a whole, i.e. either all k “sub-dimensions”
of a variable d are deemed relevant by the model, or none
is and their corresponding parameters are all pushed towards
zero. The prior over all the preference parameters is then

p(β|λ) =
∏
i∈C

Di∏
d=1

Kd∏
k=1

N (βkdi |0, λdi ), (8)

where λ is used to denote the set of all λdi . While one
could further place a Gamma prior over the precisions λ−1

di ,
we refrain from doing so because (i) it would introduce a new
set of hyper-parameters to specify and (ii), as we shall see
in Section III-C, it is possible to optimize over the variance
parameters λ analytically. Hence, we shall continue by treating
the latter as point parameters rather than random variables in a
fully Bayesian setting. The generative process of the proposed
model can then be summarized as follows:

1) For each alternative i in the entire choice set C
a) For each variable d ∈ {1, . . . , Di }

i) Set preference parameter variance λdi

ii) For each category k ∈ {1, . . . , Kd }
A) Draw pref. param. βkdi ∼ N (βkdi |0, λdi )

2) For each individual n ∈ {1, . . . , N} (a)
a) Draw observed choice yn ∼ Categorical(yn|Pn)

In order to emphasize the hierarchical structure of the proposed
model, Figure 1 shows a graphical model representation.

Based on the model specification above, our goal is to be
able to jointly infer the preference parameters β and estimate
the variance parameters λdi for each explanatory variable,
in order to assess which ones should be included in each
utility function Vi . As for the “standard” MNL model in
Section III-A, performing exact Bayesian inference in the
proposed model is intractable. Therefore, we shall proceed
by developing an approximate Bayesian inference algorithm
using doubly stochastic variational inference (DSVI) [4].

C. Doubly Stochastic Variational Inference

The intractability of exact inference for the proposed model
stems from the impossibility of obtaining an analytical expres-
sion for the marginal likelihood in the denominator of (5),
which for the proposed ARD model takes the form

p(y|λ) =
∫

β

(∏
i∈C

Di∏
d=1

Kd∏
k=1

N (βkdi |0, λdi )
) N∏

n=1

∏
i∈Cn

Pn(i)yin .

In order to obtain an efficient and scalable approximate
inference algorithm that is able to cope with large datasets
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and with very high dimensionalities Di , we propose the use
of the variational inference framework [30].

Variational inference, or variational Bayes, constructs an
approximation to the true posterior distribution p(β|y) by con-
sidering a family of tractable distributions q(β), which can be
obtained by relaxing some constraints in the true distribution.
In this case, we shall assume the variational distribution q(β)
to be a fully-factorized (mean-field) approximation:

q(β|μ, c) =
∏
i∈C

Di∏
d=1

Kd∏
k=1

N (βkdi |μkdi , ckdi ), (9)

with variational parameters μ and c. The goal is then to
find the parameters of the variational distribution so that the
approximation becomes as close as possible to the true poste-
rior, thereby reducing inference to an optimization problem.

The closeness between the approximate posterior
q(β|μ, c) and the true posterior p(β|y) can be
measured by the Kullback-Leibler (KL) divergence [31]:
KL(q(β|μ, c)||p(β|y)). Unfortunately, this KL divergence
cannot be minimized directly. However, we can find a
function that we can minimize, which is equal to it up to an
additive constant, as follows:

KL(q(β|μ, c)||p(β|y))

� Eq

[
log

q(β|μ, c)
p(β|y)

]

= Eq [log q(β|μ, c)] − Eq [log p(β|y)]
= −(Eq [log p(β, y)] − Eq [log q(β|μ, c)]︸ ︷︷ ︸

L(μ,c,λ)

) + log p(y)︸ ︷︷ ︸
const.

.

The log p(y) term does not depend on the variational parame-
ters and thus can be ignored. Minimizing the KL divergence is
then equivalent to maximizing L(μ, c,λ), which is referred to
as the evidence lower bound (ELBO). We can further rewrite
L(μ, c,λ) as a function of simpler terms by exploiting the
factorization of the joint and prior distributions, yielding

L(μ, c,λ)

=
∑
i∈C

Di∑
d=1

Kd∑
k=1

Eq(β)[logN (βkdi |0, λdi )]

+
N∑

n=1

∑
i∈Cn

yinEq(β)[log Pn(i)]

−
∑
i∈C

Di∑
d=1

Kd∑
k=1

Eq(β)[logN (βkdi |μkdi , ckdi )]. (10)

Our goal is then to find the variational parameters {μ, c} and
the hyper-parameters λ that maximize L(μ, c,λ). However,
due to the log-sum-exp term resultant from the denominator
of the MNL kernel, the expectation Eq(β)[log Pn(i)] in (10)
is still intractable. While some authors proposed the use of
complex approximations to further bound this term [32], [33],
we shall rely on a more efficient and scalable approximation
based on the theory of stochastic optimization. In order to
enable it, we begin by reparameterizing our approximate
distribution in (9). Consider a random variable z ∼ N (z|0, 1).

We can change the mean and variance by applying an invert-
ible transformation β = cz +μ and making use of the change
of variables formula for a random vector, which states that for
a given function f (x), and given an invertible transformation
y = h(x), we have that f (y) = f (h(x))|Jh−1|, where
|Jh−1 | denotes the determinant of the Jacobian matrix of the
inverse transformation h−1. Hence, given the transformation
β = cz + μ and its inverse z = c−1(β − μ), we can rewrite
the approximate distribution in (9) as

q(β|μ, c)=
∏
i∈C

Di∏
d=1

Kd∏
k=1

1

|ckdi |N (c−1
kdi (βkdi −μkdi )|0, 1). (11)

By plugging (11) into (10) and changing variables according
to z = c−1(β − μ), we can rewrite L(μ, c,λ) as follows:

L(μ, c,λ)

= EN (z|0,I)[log p(y|c ◦ z + μ)] +
∑
i∈C

Di∑
d=1

Kd∑
k=1

log ckdi

−1

2

∑
i∈C

Di∑
d=1

Kd log λdi − 1

2

∑
i∈C

Di∑
d=1

Kd∑
k=1

c2
kdi + μ2

kdi

λdi
(12)

where ◦ is used to denote the element-wise product and
we made use of the factorization of the joint distribution.
A detailed derivation of the ELBO is provided as supplemen-
tary material.1 The key insight is that, through the change
of variables, the variational parameters have been transferred
inside the loglikelihood, thus enabling stochastic optimization
by sampling gradients from it and taking optimization steps
in the direction pointed by those noisy gradients. We note that
this would not be possible if the expectation in (12) was with
respect to the variational distribution q(β|μ, bc).

Regarding the variance hyper-parameters λ, it is possible to
optimize them analytically. This contrasts with other applica-
tions of ARD, where the prior variances are estimated using
Expectation-Maximization (EM) - a procedure that can exhibit
slow convergence due to the strong dependency between the
variational parameters {μ, c} and the hyper-parameters λ [4].
Taking derivatives of L(μ, c,λ) w.r.t. λdi and setting them to
zero yields the following optimum:

λ∗
di = 1

Kd

Kd∑
k=1

(c2
kdi + μ2

kdi ). (13)

Substituting back these optimal values in L(μ, c,λ) gives the
optimized evidence lower bound

L(μ, c) = EN (z|0,I)[log p(y|c ◦ z + μ)] +
∑
i∈C

Di∑
d=1

Kd∑
k=1

log ckdi

−1

2

∑
i∈C

Di∑
d=1

Kd log
Kd∑

k=1

(c2
kdi + μ2

kdi ). (14)

In order to fit the variational distribution to the true poste-
rior, we must optimize the lower bound in (14) w.r.t. μ and c
by taking derivatives. See the supplementary material for

1Supplementary material available at: https://fprodrigues.com/DCM-ARD.
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TABLE I

DESCRIPTION OF THE VARIABLES IN THE SWISSMETRO DATASET

a detailed derivation of these gradients. The lower bound
L(μ, c) can then be optimized by first sampling a set of
preference parameters β = c ◦ z + μ, z ∼ N (0, I), and using
the stochastic gradients above to update the all variational
parameters μ and c in parallel:

μ(t) = μ(t−1) + ρt∇μL(μ, c) (15)

c(t) = c(t−1) + ρt∇cL(μ, c) (16)

Following the theory of stochastic optimization [34], using
a schedule of the learning rates {ρt } such that

∑
ρt = ∞,∑

ρ2
t < ∞, iterating these updates will converge to a local

maxima of the bound in (14) or to the global maximum when
this bound is concave. At convergence, we can assess the
relevancy of each explanatory variable d in the utility function
for alternative i by evaluating the magnitude of the estimated
variance parameter λdi using (13).

Lastly, we can further scale-up the variational inference
algorithm described above by introducing a second type of sto-
chasticity as proposed by [35]. This second type of stochastic
stems from using “mini-batches” of data to compute the sto-
chastic gradients rather then the entire dataset at once, hence
resulting in a doubly stochastic variational inference algorithm.
The final procedure is summarized in Algorithm 1 in the
supplementary material.

IV. EXPERIMENTS

In this section, an empirical evaluation of the proposed
MNL-ARD for automatic utility function specification is per-
formed based on both semi-artificial and real choice data. For
both sets of experiments, the dataset used is the Swissmetro
(SM) dataset described in [5]. This publicly-available dataset
consists of survey data collected on the trains between St.
Gallen and Geneva, in which the respondents provided infor-
mation in order to analyze the impact of the construction
of the Swissmetro. respondents were asked to state their
favorite transportation mode among three alternatives - train,
Swissmetro and car (for car owners only) - in nine different
hypothetical situations. After discarding respondents for which
some variables were not available (e.g. age, purpose), a total
of 10692 responses from 1188 individuals were used for the
experiments. Table I gives a brief description of the subset of
variables used in the context of this study; a more detailed and
complete description of the dataset and its collection procedure
may be found in [5].

The proposed MNL-ARD model and its corresponding
doubly-stochastic variational inference (DSVI) algorithm were

implemented in Matlab. Source code for the implementation
and for reproducing all experiments in this paper is publicly
available at: https://github.com/fmpr/DCM-ARD.

A. Semi-Artificial Choice Data

In order to empirically demonstrate the ability of the
proposed approach to discover the correct utility function
specifications, we began by conducting an extensive series
of experiments on semi-artificial choice data based on the
Swissmetro dataset. We manually specified a set of “artifi-
cial” (but realistic) utility function specifications of varying
complexity based on the input and suggestions from domain
experts. Then, based on the Swissmetro dataset, we sampled
new artificial choices for the respondents according to the
manually-specified utility functions. This was done by fitting a
standard DCM with the manually-specified utility function to
the original data using maximum likelihood estimation and,
based on the learned parameters β∗, we then sampled new
choices yn ∼ Categorical(yn|Pn).

We consider two experimental settings for the application
of MNL-ARD:

• an experimental setting with a medium-sized utility
function search space, in which the number of possi-
ble variables to be included in the utility functions is
252; these include the original variables (e.g. alternative-
specific constants “ASC”, travel-time “TT”, cost “CO”
and headway “HE”), their log-transformations, and inter-
actions of both the original variables and their logarithms
with trip purpose (“pur”, 9 categories), respondent age
(“age”, 5 groups) and annual season ticket availability
(“ga”, binary). Kindly note that, although this results
in 252 variables that can be included in the specification,
the dimensionality of the utility function search-space
includes all combinations of possible utility functions
that can be generated using these variables and therefore
grows exponentially with this number. For example, con-
sidering just the subset of all utility functions with only
10 variables results in

(252
10

) = 2.4 × 1017 possible utility
functions to be considered;

• an experimental setting with a large utility function search
space; besides the variables in the medium-sized search
space, this search space also considers Box-Cox trans-
formations, variable segmentations based on K-means
clustering, and interactions of the original variables with
respondent income (“inc”, 5 groups), luggage (“lug”:
none, one piece or multiple pieces) and who pays for the
trip (“who”: unknown, self, employer or half-half). This
results in a total of 602 possible variables to be included
in the utility function specifications.

Based on these two search spaces, we manually defined
9 artificial utility function specifications as shown in Table II.
Specifications S1-S6 are based on the medium-sized search
space, while specifications S7-S9 are based on the large search
space. However, in order to verify that MNL-ARD is able to
discover the true utility function specification used to generate
the choice data regardless of how large the search space
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TABLE II

MANUALLY-DEFINED UTILITY FUNCTION SPECIFICATIONS USED TO
GENERATE THE SEMI-ARTIFICIAL CHOICE DATA

considered is, we also test specifications S1-S3 with the large
search space.2

Given the semi-artificial choice data generated based on the
manually-defined utility function specifications from Table II,
our goal is to test the ability MNL-ARD to recover the correct
utility function specifications in a purely data-driven way.
Table III shows the top-K variables selected by MNL-ARD
for the medium-sized search space (i.e. specifications S1-S6)
ranked according to their respective learned λ values. In order
to simplify the analysis of the results, the variables deemed
relevant by MNL-ARD are highlighted in bold. Irrelevant
variables are expected to have λ ≈ 0. As these results demon-
strate, the proposed MNL-ARD is able to discover the true
specifications almost perfectly, with all the truly “irrelevant”
variables being assigned a λ value of approximately zero. The
only minor exceptions can be found in specifications S4 and
S5. In the learned utility function for S4, we can observe that
cost (“CO”) is assigned a λ value of zero for the utility of
car despite the fact that it was part of the true specification
that was used to generate the semi-artificial data. We believe
this to be a consequence of the inclusion of the interaction
between “CO” and purpose (“pur”) in the true specification
for car. Since there is a total of 9 different purposes and
some of them have an extremely low number of observations,
the effect of “CO” alone can be captured by the baseline and
therefore its presence in the specification is essentially not
required from a pure data perspective. As for S5, the headway
variable (“HE”) in the SM utility was assigned a rather low
value of λ (λ = 0.001), despite the fact that it should be clearly
identified by MNL-ARD as a relevant variable, since it was
part of the true specification of S5.3

Let us now consider the large search space. The top of
Table IV shows the top-K variables with higher λ value

2We further tested other specifications, but omitted their results for con-
ciseness (they lead to similar conclusions). However, they are available at:
https://github.com/fmpr/DCM-ARD.

3Due to space constraints, an analysis of the convergence of the derived
DSVI algorithm and the sparsity induced by the hierarchical prior that
MNL-ARD uses is provided as supplementary material.

TABLE III

RESULTS FOR MEDIUM-SIZED SEARCH SPACE. * IS USED TO INDICATE
VARIABLES THAT ARE PRESENT IN THE CORRESPONDING TRUE

UTILITY FUNCTION SPECIFICATIONS DEFINED IN TABLE II

according to MNL-ARD for S1, S2 and S3. As the obtained
results show, MNL-ARD is still able to recover the true
specifications that were used to generate the data regardless of
the significantly larger search space (602 variables considered,
instead of 252 for Table III). However, since the number
of variables considered is substantially larger, the execution
time of the proposed DSVI algorithm naturally increased from
approximately 10 minutes to close to 1 hour on a standard
2.3 GHz dual-core laptop with 16 GB of RAM.

The remaining of Table IV shows the top-K variables
deemed relevant by MNL-ARD for inclusion in the utility
function specifications for S7, S8 and S9. By comparing these
results with the true specifications from Table II, one can
again observe that MNL-ARD is able to discover the true
specifications almost exactly. The only differences are the fact
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TABLE IV

RESULTS OF MNL-ARD FOR LARGE SEARCH SPACE. * IS USED
TO INDICATE VARIABLES THAT ARE PRESENT IN THE

CORRESPONDING TRUE UTILITY FUNCTION

SPECIFICATIONS DEFINED IN TABLE II

that MNL-ARD selected “logTT” instead of “boxTT” in the
utility function of train in S7, and the fact that it missed
the interaction between “CO” and “luggage” in the utility
function of car in S8. While we could not find an obvious
explanation for the latter, the former can be easily explained
by an analysis of the results of the Box-Cox transform, which
uses a maximum likelihood approach to fit the parameters of
the transformation. In the particular case of train travel time,
we could immediately observe that the transformed values
produced by the Box-Cox transformation are almost perfectly
correlated with to the ones produced by the log-transformation
(correlation coefficient of 0.998), thus leading us to conclude

TABLE V

PREDICTION ACCURACY AND LOG-LIKELIHOOD ON HELD-OUT DATA

that both lead to equivalent utility function specifications for
the train alternative.

As a further test of scalability and robustness of the
proposed approach, we also considered an extremely large
search space, which was obtained by expanding the large space
space described above with variables that consist of Gaussian
random noise, until a total of 1000 variables per alternative
was reached (total of 3000 variables). Using the semi-artificial
choice data corresponding to specification S2 we were able to
verify that, despite the expected increased computational run
time (approximately 5 hours), the proposed MNL-ARD was
still able to perfectly recover the true specification of S2.

So far we have only been considering the ability of
MNL-ARD to infer the correct utility function specifications.
However, one can also evaluate MNL-ARD in terms of its
prediction accuracy on held-out data. Table V shows the
prediction accuracy of MNL-ARD when trained only on 70%
of the dataset and tested on 30% held-out data for the different
semi-artificial specifications. By comparing these results with
the accuracy of a standard MNL model that considers all
the variables from the search space as input (“MNL”), one
can verify that thanks to the additional flexibility of the
proposed hierarchical prior and the sparsity-inducing proper-
ties, MNL-ARD is able to generalize better to held-out data,
thus resulting in significantly higher prediction accuracies.
In fact, is most cases, MNL-ARD achieves almost as good
prediction performance as a MNL model estimated using the
true specifications that were used to generate the semi-artificial
choices (“MNL-TRUE”). On the other hand, a MNL fitted with
maximum likelihood estimation with such a high number of
input variables is very likely to severely overfit.

B. Real Choice Data

We will now consider the application of MNL-ARD to
perform automatic utility function specification on the real
choice data from the Swissmetro dataset. Table VI shows the
top-20 variables selected by MNL-ARD for inclusion in the
utility functions using the medium-sized search space. Since
in this case the correct specification is unknown, we instead
evaluate the quality of the MNL models that the specifications
inferred by MNL-ARD produce. With this purpose, we devel-
oped a series of specifications of increasing complexity based
on the results of Table VI. We begin by considering a rather
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TABLE VI

RESULTS OF MNL-ARD FOR REAL SM DATA

TABLE VII

UTILITY FUNCTION SPECIFICATIONS FOR TRUE SM DATA

simplistic specification based only on travel time and
cost (R1). We then start adding variables to it according to
the results of MNL-ARD in descending order of importance
according to the learned values of λ. The complete set of
specifications considered is show in Table VII. Kindly note
that the last specification (R7), already includes almost all
the variables in the top-20 ranking shown in Table VI, and
that other additional variables were assigned a λ value of
zero (or very close to zero), thus being deemed irrelevant
by MNL-ARD. Also, since including both a variable and
its log-transform could compromise the interpretability of the
MNL models, we decided to include only the version with
the higher value of λ in the cases where MNL-ARD selected
both variants.4 Also, due to the fact that the purpose variable

4We note that, according to empirical evidence, including both variants does
tend to lead to models that fit better the data, including the held-out data.

TABLE VIII

RESULTS FOR DIFFERENT SPECIFICATIONS ON SM DATA

has 9 categories, with some of them having only a couple
of observations, we further grouped the trip purposes into:
commuting, shopping and leisure.

Based on the specifications that were generated accord-
ing to the results of MNL-ARD (Table VI), we then fitted
standard MNL models using the PyLogit package [36] in
Python. Table VIII shows the results obtained for the different
specifications considered. As expected, one can verify that,
as we increase the complexity of the specification according to
the results of MNL-ARD, the fit of the MNL model improves
in terms of log-likelihood. However, the quality of the MNL
model also improves in terms of AIC, BIC and pseudo-R̄2.
In order to further assess the quality of the MNL-ARD
specifications in terms of generalization ability to held-out
data, we also performed a random 70/30% train/test split of the
dataset, and computed the likelihood and accuracies in both
sets. As the results in Table VIII evidence, as we move towards
the full specification inferred by MNL-ARD, the accuracy and
held-out data likelihood of the MNL model also improves.
Interestingly, it can observed that only when we include
essentially all the variables deemed relevant by MNL-ARD
we start noticing some signs of overfitting: BIC and testset
likelihood do not improve when going from specification
R6 to R7. However, indicators such as AIC and pseudo-R̄2

still improve. Furthermore, it should be noted that the variables
included from R6 to R7, already consist of variables for which
MNL-ARD assigned a relatively low relevance (i.e. low value
of λ when compared to the others).

Comparing the results of specifications R6 and R7 with
other proposed MNL specifications from the literature for
the same dataset (Table IX), it is possible to obtain a bet-
ter perspective of how good the specifications inferred by
MNL-ARD are. For example, the MNL specification proposed
in PyLogit for the Swissmetro dataset includes variables such
as travel time, cost, headway, seat configuration, luggage
and first class. However, it only achieves a loglikelihood
of −8, 061, a BIC of 16, 252 and a pseudo-R̄2 of 0.271.
Similarly, the original specification proposed by [5] achieves
a loglikelihood of just −8, 483, a BIC of 17, 050 and a
pseudo-R̄2 of 0.233. Moreover, if we consider generalization
to held-out data, Table IX also demonstrates that the both
R6 and R7 obtain better results than both baseline approaches,
thereby highlighting how MNL-ARD can be easily used to
automate the search of utility function specifications.

Lastly, Table X shows the estimated coefficients by a MNL
model with the specification R6 using PyLogit, and their
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TABLE IX

RESULTS FOR TRUE SM DATA VS. BASELINE FROM STATE OF THE ART

TABLE X

RESULTS FOR TRUE SM DATA, SPECIFICATION S6

corresponding p-values and other statistics. The full set of
results for the other specifications were omitted for brevity but
are available at https://github.com/fmpr/DCM-ARD, together
with the source code. As the results in Table X demonstrate,
the specification learned by MNL-ARD leads to a stable
MNL model in which the coefficients for all variables except
“TT x ga (Car)”, have p-values smaller than 0.001. It should
however be noted that, in two cases, the parameter estimates
are not entirely behaviourally realistic: for both Train and SM
alternatives, the sum of the parameter related to “logCO x
pur2” and the corresponding baseline (“logCO (Train)” and
“logCO (SM)”) is positive, implying that all else being equal,
increasing the travel cost of shopping trips improves their
attractiveness. Such result is obviously wrong; it indicates that
the involved parameters are erroneously capturing or omitting
some effects, most probably because the travel cost of the two
affected modes is interacted with “ga” and “pur”, but not with
both simultaneously. However, since such interactions were
not considered in the search-space, MNL-ARD is unable to
identify them as relevant. Thus, this is a great example that
highlights an important limitation of MNL-ARD: its results
are dependent of the search-space considered, and it has no

knowledge of behavioural theories. However, we reiterate that
its purpose is to assist modellers on specifying utility functions
according to data-driven knowledge, rather then serving as a
replacement for domain knowledge and modellers’ expertise.

V. CONCLUSION

This paper proposed a Bayesian framework for perform-
ing automatically utility function specification in discrete
choice models based on the idea of automatic relevance
determination (ARD). An efficient doubly stochastic varia-
tional inference algorithm was derived in order to perform
approximate Bayesian inference in the proposed MNL-ARD
model. As our empirical results using both semi-artificial and
real choice data showed, the proposed approach is able to
automatically discover good utility function specifications in a
pure data-driven manner. Even in situations where the number
of possible variables considered for inclusion in the utility
functions is very large, our proposed approach was shown
to be able to recover the “true” utility function specification
almost perfectly. The practical advantages and overall real-
world feasibility of the proposed approach were demonstrated
through an application to the popular Swissmetro dataset [5],
where MNL-ARD was shown to be capable of generating
specifications that outperform others from the state of the art
according to multiple criteria.

Despite the importance of the standard formulation of the
multinomial logit in discrete choice theory, it only corresponds
to a subset of the models that are used in practice, with
modelling approaches like mixed logits and latent class choice
models providing important ways of capturing the heterogene-
ity in preferences among the decision makers. Therefore, our
future work focuses on extending the proposed MNL-ARD
formulation for these models. Concretely, the idea consists
in placing flexible hierarchical priors on the class-specific
logit parameters in latent class choice models, and on the
population-level taste parameters in the case of mixed logit
models. Furthermore, given that a critical factor for the prac-
tical applicability of the proposed approach is computational
efficiency, future work will also look at recent advances in
approximate Bayesian inference, such as amortized variational
inference and normalizing flows [37] as proposed in [38],
in order to further improve the scalability of the proposed
approach for automatically utility function specification.
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