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Abstract—Due to the widespread applications in real-world
scenarios, metro ridership prediction is a crucial but challenging
task in intelligent transportation systems. However, conventional
methods either ignore the topological information of metro
systems or directly learn on physical topology, and cannot fully
explore the patterns of ridership evolution. To address this
problem, we model a metro system as graphs with various
topologies and propose a unified Physical-Virtual Collabora-
tion Graph Network (PVCGN), which can effectively learn the
complex ridership patterns from the tailor-designed graphs.
Specifically, a physical graph is directly built based on the
realistic topology of the studied metro system, while a similarity
graph and a correlation graph are built with virtual topologies
under the guidance of the inter-station passenger flow similarity
and correlation. These complementary graphs are incorporated
into a Graph Convolution Gated Recurrent Unit (GC-GRU)
for spatial-temporal representation learning. Further, a Fully-
Connected Gated Recurrent Unit (FC-GRU) is also applied to
capture the global evolution tendency. Finally, we develop a
Seq2Seq model with GC-GRU and FC-GRU to forecast the future
metro ridership sequentially. Extensive experiments on two large-
scale benchmarks (e.g., Shanghai Metro and Hangzhou Metro)
well demonstrate the superiority of our PVCGN for station-level
metro ridership prediction. Moreover, we apply the proposed
PVCGN to address the online origin-destination (OD) ridership
prediction and the experiment results show the universality
of our method. Our code and benchmarks are available at
https://github.com/HCPLab-SYSU/PVCGN,

Index Terms—Metro system, ridership prediction, graph con-
volutional networks, physical topology, virtual topology.

I. INTRODUCTION

ETRO is an efficient and economical travel mode in
metropolises, and it plays an important role in the
daily life of residents. By the end of 2018, 35 metro systems
have been operated to serve tens of millions of passengers
in Mainland Chinaﬂ For instance, over 10 million metro trip
transactions were made per day in 2018 for Beijinf] and
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Shanghaﬂ Such huge metro ridership poses great challenges
for urban transportation and any carelessness of traffic man-
agement may result in citywide congestions. For improving the
service efficiencies of metro systems, a fundamental problem
is how to accurately forecast the ridership (e.g., inflow and
outflow) of each station, which is termed as station-level
metro ridership prediction in this work. Due to its potential
applications in traffic dispatch and route planning, this problem
has become a hotspot research topic [[1]-[6] in the community
of intelligent transportation systems (ITSs).

Over the past decade, massive efforts have been made
to address the traffic states (e.g., flow, speed and demand)
prediction. In early works [7]-[9]], the raw data of traffic
states at each time interval was usually transformed to be
a vector/sequence and the time series models [[8]], [[10] were
applied for prediction. However, this data format failed to
maintain the spatial information of locations and the topolog-
ical connection information between two locations. In recent
years, deep neural networks (e.g., Long Short-term Mem-
ory [11] and Gated Recurrent Unit [[12]]) have been widely used
for citywide traffic prediction [13]-[[19]. These works usually
partitioned the studied cities into regular grid maps on the
basis of geographical coordinate and organized the collected
traffic state data as Euclidean 2D or 3D tensors, which can
be straightway fed into convolutional networks for automatic
representation learning. Nevertheless, this manner is unsuitable
for metro systems, since their topologies are irregular graphs
and their data structures are non-Euclidean. Although the
transaction records of a metro system can be rendered as a
grid map [20], it is inefficient to learn ridership evolution
patterns from the rendered map, which is very sparse and can
not maintain the connection information of two stations.

In general, the challenges of metro ridership prediction
lie in how to efficiently model the non-Euclidean structures
of metro systems and fully capture the ridership evolution
patterns. Although the emerging Graph Convolution Networks
(GCN [21]-[23]]) have been proven to be general for non-
Euclidean data embedding, how to construct the reasonable
graphs in GCN still is an open problem and the construction
strategy is varying in different tasks [24]-[27]]. Some recent
works [28]]-[34] have applied GCN to traffic prediction and
most of them directly build geographical graphs based on
the physical topologies of the studied traffic systems. How-
ever, this simple strategy is suboptimal for metro ridership
prediction, since it only learns the local spatial dependency

3https://en.wikipedia.org/wiki/Shanghai_Metro
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of neighboring stations and can not fully capture the inter-
station flow patterns in a metro system. Therefore, except
for the physical topologies, we should construct some more
reasonable graphs with human domain knowledge, such as:

o Inter-station Flow Similarity: Intuitively, two metro
stations in different regions may have similar evolution
patterns of passenger flow, if their located regions share
the same functionality (e.g., office districts). Even though
these stations are not directly linked in the real-world
metro system, we can connect them in GCN with a virtual
edge to jointly learn the evolution patterns.

« Inter-station Flow Correlation: In general, the rider-
ship between every two stations is not uniform and the
direction of passenger flow implicitly represents the cor-
relation of two stations. For instance, if (i) the majority of
inflow of station a streams to station b, or (ii) the outflow
of station a primarily comes from station b, we argue that
the stations a and b are highly correlated. Under such
circumstances, these stations could also be connected to
learn the ridership interaction among stations.

Based on the above observations, we propose a unified
Physical-Virtual Collaboration Graph Network (PVCGN) to
predict the future metro ridership in an end-to-end manner.
To fully explore the ridership evolution patterns, we utilize
the metro physical topology information and human domain
knowledge to construct three complementary graphs. First, a
physical graph is directly formed on the basis of the realistic
topology of the studied metro system. Then, a similarity
graph and a correlation graph are built with virtual topologies
respectively based on the passenger flow similarity and cor-
relation among different stations. In particular, the similarity
score of two stations is obtained by computing the warping
distance between their historical flow series with Dynamic
Time Warping (DTW [35]), while the correlation ratio is
determined by the historical origin-destination distribution
of ridership. These tailor-designed graphs are incorporated
into an extended Graph Convolution Gated Recurrent Unit to
collaboratively capture the ridership evolution patterns. Fur-
thermore, a Fully-Connected Gated Recurrent Unit is utilized
to learn the semantic feature of global evolution tendency.
Finally, we apply a Seq2Seq model [36] to sequentially
forecast the metro ridership at the next several time inter-
vals. To verify the effectiveness of our PVCGN, we conduct
extensive experiments on two large-scale benchmarks (i.e.,
Shanghai Metro and Hangzhou Metro) and the evaluation
results show that our approach outperforms existing state-of-
the-art methods under various comparison circumstances. For
verifying the universality of our method, we further employ
the proposed PVCGN to forecast the online origin-destination
(OD) ridership and the experiment results also demonstrate the
effectiveness of PVCGN for OD ridership prediction.

In summary, our major contributions are four-fold:

e We develop a unified Physical-Virtual Collaboration
Graph Network (PVCGN) to address the station-level
metro ridership prediction. Specifically, PVCGN incorpo-
rates a physical graph, a similarity graph and a correlation
graph into a Graph Convolution Gated Recurrent Unit to

facilitate the spatial-temporal representation learning.

o The physical graph is built based on the realistic topology
of a metro system, while the other two virtual graphs
are constructed with human domain knowledge to fully
exploit the ridership evolution patterns.

« Extensive experiments on two real-world metro ridership
benchmarks show that our PVCGN comprehensively out-
performs state-of-the-art methods for station-level rider-
ship prediction.

e As a general model, our PVCGN can be directly em-
ployed for online origin-destination ridership prediction
and also achieves superior performance.

The remaining parts of this paper are organized as follows.
We first investigate the deep learning on graphs and some
related works of traffic states prediction in Section The
proposed PVCGN is then introduced systematically in Sec-
tion We conduct extensive comparisons for station-level
metro ridership prediction in Section and extend PVCGN
to forecast online OD ridership in Section Finally, we
conclude this paper and discuss future works in Section

II. RELATED WORK
A. Deep Learning on Graphs

In machine learning, Euclidean data refers to the sig-
nals with an underlying Euclidean structure [37]-[43] (such
as speeches, images, and videos). Although deep Convolu-
tional/Recurrent Neural Networks (CNN/RNN) can handle
Euclidean data successfully, it is still challenging to deal with
non-Euclidean data (e.g., graphs), which is the data structure
of many applications. To address this issue, Graph Convolution
Networks (GCN) have been proposed to automatically learn
feature representation on graphs. For instance, Brunaat et
al. [21] introduced a graph-Laplacian spectral filter to gen-
eralize the convolution operators in non-Euclidean domains.
Defferrard et al. [44] presented a formulation of CNN with
spectral graph theory and designed fast localized convolutional
filters on graphs. Atwood and Towsley [45]] developed a
spatial-based graph convolution and regarded it as a diffusion
process, in which the information of a node was transferred
to its neighboring nodes with a certain transition probability.
Velivckovic et al. [46] assumed the contributions of neigh-
boring nodes to the central node were neither identical, thus
proposed a Graph Attention Network. Wu et al. [47] reduced
the complexity of GCN through successively removing non-
linearities and collapsing weight matrices between consecutive
layers. Seo et al. [48] incorporated graph convolution and
RNN to simultaneously exploit the graph spatial and dynamic
information for structured sequences learning.

Recently, GCN has been widely applied to address various
tasks and the graph construction strategy varied in different
works. For instance, in computer vision, Jiang et al. [49]]
utilized the co-occurrence probability, attribute correlation and
spatial correlation of objects to build three graphs for large-
scale object detection. Chen et al. [27] constructed a semantic-
specific graph based on the statistical label co-occurrence for
multi-label image recognition. In natural language processing,
Beck et al. [50] used source dependency information to built
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a Levi graph [51]] for neural machine translation. For semi-
supervised document classification, Kipf and Welling [23]
introduces a first-order approximation of spectral graph [44]]
and constructed their graphs based on citation links. In data
mining, the relations between items-and-items, users-and-users
and users-and-items were usually leveraged to construct graph-
based recommender systems [52]. In summary, how to build
a graph is an open problem and we should flexibly design the
topology of a graph for a specific task.

B. Traffic States Prediction

Accurately forecasting the future traffic states is crucial
for intelligent transportation systems and numerous models
have been proposed to address this task [S3]-[55]. In early
works [7]-[9], [56], [57], mass traffic data was collected
from some specific locations and the raw data at each time
interval was arranged as a vector (sequence) in a certain order.
These vectors were further fed into time series models for
prediction. A representative work was the data aggregation
(DA) model [58]], in which the moving average (MA), expo-
nential smoothing (ES) and autoregressive MA (ARIMA) were
simultaneously applied to forecast traffic flow. However, this
simple data format was inefficient due to the lack of spatial
information, and these basic time series models failed to learn
the complex traffic patterns. Therefore, the above-mentioned
works were far from satisfactory in complex traffic scenarios.

In recent years, deep neural networks have become the
mainstream approach in this field. For instance, Zhang et
al. [[13]] utilized three residual networks to learn the closeness,
period and trend properties of crowd flow. Wang et al. [59]]
developed an end-to-end convolutional neural network to au-
tomatically discover the supply-demand patterns from the car-
hailing service data. Zhang et al. [18]] simultaneously predicted
the region-based flow and inter-region transitions with a deep
multitask framework. Subsequently, RNN and its various vari-
ants are also widely adopted to learn the temporal patterns.
For instance, Yao et al. [[14] proposed a Deep Multi-View
Spatial-Temporal Network for taxi demand prediction, which
learned the spatial relations and the temporal correlations
with deep CNN and Long Short-Term Memory (LSTM [11]))
unit respectively. Liu et al. [60] developed an attentive con-
volutional LSTM network to dynamically learn the spatial-
temporal representations with an attention mechanism. In [[17],
a periodically shifted attention mechanism based LSTM was
introduced to capture the long-term periodic dependency and
temporal shifting. To fit the required input format of CNN
and RNN, most of these works divided the studied cities into
regular grid maps and transformed the raw traffic data to be
tensors. However, this preprocessing manner is ineffective to
handle the traffic systems with irregular topologies, such as
metro systems and road networks.

To improve the generality of the above-mentioned methods,
some researchers have attempted to address this task with
Graph Convolutional Networks. For instance, Li et al. [2§]]
modeled the traffic flow as a diffusion process on a directed
graph and captured the spatial dependency with bidirectional
random walks, while Zhao et al. [32] proposed a temporal

graph convolutional network for traffic forecasting based on
urban road networks. Guo et al. [61] and Zheng et al. [34]]
introduced attention mechanisms into spatial-temporal graph
networks to dynamically model the impact of various factors
for traffic prediction. Wu et al. [62]] developed an adaptive
dependency matrix with node embedding to precisely capture
the hidden spatial dependency. Bai et al. [[63] utilized a hier-
archical graph convolutional structure to capture both spatial
and temporal correlations for multi-step passenger demand
prediction. Song et al. [64] developed a Spatial-Temporal Syn-
chronous Graph Convolutional Networks (STSGCN), which
captured the complex localized spatial-temporal correlations
through a spatial-temporal synchronous modeling mechanism.
Recently, GCN has also been employed to metro ridership
prediction. In [[65]], graph convolution operations were applied
to capture the irregular spatiotemporal dependencies along
with the metro network, but their graph was directly built
based on the physical topology of metro systems. In constant,
we combine the physical topologies information and human
domain knowledge to construct three collaborative graphs with
various topologies, which can effectively capture the complex
patterns.

The most relevant work to ours is ST-MGCN [31]], which
incorporated a neighborhood graph (NGraph), a transportation
connectivity graph (TGraph), and a functional similarity graph
(FGraph) for ride-hailing demand prediction. The differences
between our PVCGN and ST-MGCN are two-fold. First,
ST-MGCN relied heavily on the extra information of road
networks (e.g., motorway and highway) and Point of Interests
(POI) for graph construction. However, this information is
inaccessible in many scenarios. In contrast, our PVCGN does
not require any external information, and our graphs can be
directly built with the spatial topology information and the
historical ridership data. Thus our method is more flexible
and universal for traffic prediction. Second, ST-MGCN paid
more attention to building the physical graphs (i.e., NGraph
and TGraph) based on real-world topologies and only built a
virtual graph (i.e., FGraph) with the external POI information.
In contrast, except for the physical graph, our PVCGN fully
explores the potential traffic patterns (such as inter-station flow
similarity and OD correlation) for virtual graph construction.
Therefore, our method can learn more comprehensive and
knowledgeable representation for traffic prediction.

C. Traffic Origin-Destination Prediction

Traffic origin-destination (OD) prediction is a challenging
task, which aims to forecast the traffic flow or demand be-
tween any two positions. Some early works [[66]—[68]] usually
employed time series models (e.g., Kalman filter) to estimate
the OD flow, while recent works developed various deep
neural networks to forecast the OD matrices. For instance,
Liu et al. [16] proposed a Contextualized Spatial-Temporal
Network that incorporated local spatial context, temporal
evolution context, and global correlation context to forecast
taxi OD demand. Chu et al. [[69] developed a Multi-Scale
Convolutional LSTM Network for taxi OD flow prediction.
Wang et al. [70] developed a Grid-Embedding based Multi-
task Learning framework that applied graph convolutions
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Fig. 1. Tllustration of the proposed physical-virtual graphs. In this figure, we take a metro system with six stations as an example to illustrate the construction
strategy of our physical-virtual graphs. First Row: (a) is the physical graph built based on the physical topology of the studied metro system. We perform

row normalization on the physical connection matrix (b) to obtain the edge
determined by the station pairs with high similarity scores in the matrix (e).

weights (c). Second Row: (d) is the built similarity graph and its edges are
The edge weights (d) are computed by conducting row normalization on the

similarity scores of the selected station pairs. Third Row: (g) is the built correlation graph. We compute the correlation ratio matrix (e) by measuring the

origin-destination distribution of ridership and select the station pairs with hi

gh correlation ratios to construct edges. The edge weights (i) are obtained by

conducting row normalization on the correlation ratios of the selected station pairs. Note that the origin is the top left corner for all matrices.

among geographical and semantic neighbors to model the
OD transferring patterns. Shi et al. [71] utilized long short-
term memory units to extract temporal features for each
OD pair and then learned the spatial dependency of origins
and destinations by a two-dimensional graph convolutional
network. In the aforementioned ride-hailing applications, the
origin and destination of a passenger are known once a taxi
request is generated. However, in online metro systems, the
destination of a passenger is unknown until it reaches the
destination station, so we can not obtain the complete OD
distribution immediately to forecast the future OD demand.
To address this issue, Gong et al. [[72]] used some indication
matrices to mask and neglect the potential unfinished metro
orders. In our work, we apply the proposed PVCGN to handle
this task by learning a mapping from the historical incomplete
OD demands to the future complete OD demands, and more
details can be found in Section [V]

III. METHODOLOGY

In this work, we propose a novel Physical-Virtual Col-
laboration Graph Network (PVCGN) for station-level metro
ridership prediction. Based on the physical topology of a metro
system and human domain knowledge, we construct a physical

graph, a similarity graph and a correlation graph, which are
incorporated into a Graph Convolutional Gated Recurrent Unit
(GC-GRU) for local spatial-temporal representation learning.
Then, a Fully-Connected Gated Recurrent Unit (FC-GRU)
is applied to learn the global evolution feature. Finally, we
develop a Seq2Seq framework with GC-GRU and FC-GRU to
forecast the ridership of each metro station.

We first define some notations of ridership prediction before
introducing the details of PVCGN. The ridership data of
station 4 at time interval ¢ is denoted as X} € R2, where
these two values are the passenger counts of inflow/outflow.
The ridership of the whole metro system is represented as a
signal X; = (X}, X2,.., XN) € R¥*N where N is the
number of stations. Given a historical ridership sequence, our
goal is to predict a future ridership sequence:

Xt+1, Xt_;,_Q, ceey Xt+m = P\/CGN()(t_n_;,_l7 Xt—n+27 ceey Xt)

(1
where n refers to the length of the input sequence and m
is the length of the predicted sequence. For the convenience
in following subsections, we also denote the whole historical
ridership of station i as a vector X’ € R?”, where T is the
number of time intervals in a training set.
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A. Physical-Virtual Graphs

In this section, we describe how to construct the physical
graph and two virtual graphs. By definition, a graph is com-
posed of nodes, edges as well as the weights of edges. In
our work, the physical graph, similarity graph and correlation
graph are denoted as G, = (V,&,,W,), Gs = (V, &, W)
and G. = (V, &, W.), respectively. V is the set of nodes
(|V] = N) and each node represents a real-world metro station.
Note that these three graphs share the same nodes, but have
different edges and edge weights. &,, £ and &, are the edge
sets of different graphs. For a specific graph G, (o = p, s, ¢),
W, € R¥XN denotes the weights of all edges. Specifically,
Wa(i, ) is the weight of an edge from node j to node i.

1) Physical Graph: G, is directly built based on the
physical topology of the studied metro system. An edge is
formed to connect node ¢ and j in &,, if the corresponding
station ¢ and j are connected in real world. To calculate the
weights of these edges, we first construct a physical connection
matrix P € RV*N . As shown in Fig(a,b), P(i,j) = 1if
there exists an edge between node i and j, or else P(i,5) = 0.
To avoid the repetitive computation of graph self-loop, each
diagonal value P(i,1) is directly set to 0 and the self-loop
would be uniformly computed once for multi-graphs in Eq[7]
Finally, the edge weight W), is obtained by performing a linear
normalization on each row (See Figl[T}c). Specifically, W), (i, j)
is computed by:

P(i, j)
chvzl P(iv k)

2) Similarity Graph: In this section, the similarities of
metro stations are used to guide the construction of Gi.
First, we construct a similarity score matrix § € RV*N by
calculating the passenger flow similarities between every two
stations. Specifically, the score S(,j) between station ¢ and
j is computed with Dynamic Time Warping (DTW [35]):

Wi, j) = 2

S(i,j) = exp(~DWT(X", X7)), 3)

where DTW is a general algorithm for measuring the distance
between two temporal sequences. Note that S(i,4) is also
directly set to 0. Based on the matrix .S, we select some station
pairs to build edges &. The selection strategy is flexible.
For instance, these virtual edges can be determined with a
predefined similarity threshold, or be built by choosing the
top-k station pairs with high similarity scores. More selection
details can be found in Section Finally, we calculate
the edge weights W by conducting row normalization on S

S(i,5)
SO S(iy k) - L(Esyiy k)

Wi(i,j) = “4)

where L(&;,i,k) =1 if & contains an edge connecting node
i and k, or else L(&s,i,k) = 0. A toy example of similarity
graph is shown in Fig[T}(d,e,f) and we can observe that matrix
S is symmetrical, but matrix W, is asymmetrical due to the
row normalization.

3) Correlation Graph: We utilize the origin-destination
distribution of ridership to build the virtual graph G.. First, we
construct a correlation ratio matrix C' € RY*V . Specifically,
R(i,7) is computed by:

_ D(,j)
Soeey D(i k)

where D(%, j) is the total number of passengers that traveled
from station j to station ¢ in the whole training set. Note
that C(i,) is computed, since there are a small number of
passengers that entered and exited at the same station in the
real world. We use the similar selection strategy described in
Section to select some station pairs for edge construc-
tion. Finally, the edge weights W, is calculated by:

_ )
Sy O k) - L(Ee,i, k)

C(i, ) S

We(i, 7) (6)
One example of correlation graph is shown in Fig[T}(d,e.f) and
we can see that G, is a directed graph, since R(%,j) # R(j,1).

B. Graph Convolution Gated Recurrent Unit

As an alternative of LSTM [11]], Gated Recurrent Unit has
been widely used for temporal modeling and it was usually im-
plemented with standard convolution or full-connection. In this
section, we incorporate the proposed physical-virtual graphs
to develop a unified Graph Convolution Gated Recurrent Unit
(GC-GRU) for spatial-temporal feature learning.

We first formulate the convolution on the proposed physical-
virtual graphs. Let us assume that the input of graph convolu-
tionis I; = {I}, I2,...,I)N'}, where I} can be the ridership data
X or its feature. The parameters of this graph convolution are
denoted as ©. By definition of convolution, the output feature
f(I}) € R of I} is computed by:

fn=eli+ Y Wy(i.j) ©6pl
JENP ()
+ Y Wi(ij) @ 6.0 o
JENS ()
+ > We(i,j) © 0.1,
JEN(1)
where © is Hadamard product and © = {©;,0,,0,,0.}.
Specifically, ©;I} is the self-loop for all graphs and ©; is
the learnable parameters. ©, denotes the parameters of the
physical graph G, and N, (i) represents the neighbor set of
node ¢ in G,. Other notations Oy, ©., N (i) and N.(i)
have similar semantic meanings. d is the dimensionality of
feature f(I}). In this manner, a node can dynamically receive
information from some highly-correlated neighbor nodes. For
convenience, the graph convolution in Eq[7] is abbreviated as
I; % © in the following.

Since the above-mentioned operation is conducted on spatial
view, we embed the physical-virtual graph convolution in
a Gated Recurrent Unit to learn spatial-temporal features.
Specifically, the reset gate R, = {R},R% ., RN}, up-
date gate Z; = {Z}, Z2% ...,ZN}, new information N; =
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Fig. 2. Overview of Physical-Virtual Collaboration Graph Network (PVCGN) for station-level metro ridership prediction. PVCGN consists of an encoder and
a decoder, both of which contains two Collabora}ive Ga}ed Recurrent Modules (CGRMs). The encoder takes { X¢—rn+1, Xt—n+2,..., Xt} as input and the
decoder forecasts a future ridership sequence {X¢+1, X¢42, ..., Xt4+m } with fully-connected (FC) layers.
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Fig. 3. TIlustration of Collaborative Gated Recurrent Module (CGRM) for
local and global feature fusion. Specifically, our CGRUs consists of a Graph
Convolution Gated Recurrent Unit (GC-GRU) and a Fully-Connected Gated
Recurrent Unit (FC-GRU). FC denotes a fully-connected layer.

{N}, N2, ..., NN} and hidden state H, = {H}, HZ,..., HN}
are computed by:

Ry = U(@rx * Iy + erh * Hy 1 + br)

Zt = U(sz * It —+ ("‘)Zh * Ht—l —+ bz)

Nt = tanh{@nw * It + Rt O] (enh * Ht—l + bn)}

Hi=01-2Z)ON+Zy © H1
where o is the sigmoid function and H;_; is the hidden state
at last iteration. O, denotes the graph convolution parame-
ters between H; and X;, while O, denotes the parameters
between R; and H;_;. Other parameters O,,, O.;, ©,, and
O, have similar meanings. b,., b, and b,, are bias terms. The

feature dimensionality of R:, Z{, N; and H] are also set to
d. For convenience, we denote the operation of Eq[] as:

Ht == GC'GRU(If7 Ht—l)

(®)

€))

Thanks to this GC-GRU, we can effectively learn spatial-
temporal features from the ridership data of metro systems.

C. Local-Global Feature Fusion

In previous works [S[, [16], global features have been
proven to be also useful for traffic state prediction. However,
the proposed GC-GRU conducts convolution on local space

and fails to capture the global context. To address this issue, we
apply a Fully-Connected Gated Recurrent Unit (FC-GRU) to
learn the global evolution features of all stations and generate
a comprehensive feature by fusing the output of GC-GRU
and FC-GRU. The developed fusion module is termed as
Collaborative Gated Recurrent Module (CGRM) in this work
and its architecture is shown in Fig[3]

Specifically, the inputs of CGRM are I; and H,_,, where
H,_; is the output of last iteration. For GC-GRU, rather than
take the original H; as input, it utilizes the accumulated in-
formation in ﬁt_l to update hidden state, thus EqEI becomes:

H, = GC-GRU(I,, H,_,) (10)

For FC-GRU, we first transform /; and ﬁt_l to an embedded
I € R and H} ; € R? with two fully-connected (FC)
layers. Then we feed I and Hf ; into a common GRU [12]
implemented with fully-connection to generate a global hidden
state f{f € R4, which can be expressed as:

I¢ =FC(I;), Hf ,=FC(H; ),

(1m)
H{ = FC-GRU(I{, H ),

Finally, we incorporate H; and h[tg to generate a compre-
hensive hidden state H; = {H}, H?,...,H} with a fully-
connected layer:

H{ = FC(H] @ HY), (12)

where @ denotes an operation of feature concatenation. H,
contains the local and global context of ridership, and we has
proved its effectiveness in Section

D. Physical-Virtual Collaboration Graph Network

In this section, we apply the above-mentioned CGRUs
to construct a Physical-Virtual Collaboration Graph Network
(PVCGN) for station-level metro ridership prediction. Fol-
lowing previous works [34f], [63], [73]-[76], we also adopt
the Seq2Seq architecture to develop our framework, whose
architecture is shown in Fig[2]

Specifically, PVCGN consists of an encoder and a decoder,
both of which contain two CGRMs. In encoder, the rider-
ship data {X;_,+1, X¢—n+2, ..., Xt } are sequentially fed into
CGRMs to accumulate the historical information. At iteration
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TABLE I

THE OVERVIEW OF SHMETRO AND HZMETRO DATASETS. “# STATION”
DENOTES THE NUMBER OF METRO STATIONS. “M” AND “MIN” ARE THE
ABBREVIATIONS OF “MILLION” AND “MINUTE”, RESPECTIVELY.

Dataset SHMetro HZMetro
City Shanghai, China Hangzhou, China
# Station 288 80
# Physical Edge 958 248
Ridership/Day 8.82 M 235 M
Time Interval 15 min 15 min

Training Timespan
Validation Timespan
Testing Timespan

7/01/2016 - 8/31/2016
9/01/2016 - 9/09/2016
9/10/2016 - 9/30/2016

1/01/2019 - 1/18/2019
1/19/2019 - 1/20/2019
1/21/2019 - 1/25/2019

i, the bottom CGRM takes X;_,; as input and its output
hidden state is fed into the above CGRM for high-level feature
learning. In particular, the initial hidden states of both CGRMs
at the first iteration are set to zero. In decoder, at the first
iteration, the input data is also set to zero and the final hidden
states of encoder are used to initialize the hidden states of the
decoder. The future ridership X ++1 is predicted by feeding the
output hidden state of the above CGRM into a fully-connected
layer. At iteration ¢ (i > 2), the bottom CGRM takes X i1
as input data and the above CGRM also applies a fully-
connected layer to forecast X’Hi. Finally, we can obtain a
future ridership sequence {XHLXHQ, ey )A(Hm}.

IV. EXPERIMENTS

In this section, we first introduce the settings of experi-
ments (e.g., dataset construction, implementation details, and
evaluation metrics). Then, we compare the proposed PVCGN
with eight representative approaches under various scenarios.
Finally, we conduct extensive internal analyses to verify the
effectiveness of each component in our method.

A. Experiments Settings

1) Dataset Construction: Since there are few public bench-
marks for metro ridership prediction, we collect a mass of
trip transaction records from two real-world metro systems
and construct two large-scale datasets, which are termed as
HZMetro and SHMetro respectively. The overviews of these
two datasets are summarized in Table [l

SHMetro: This dataset was built based on the metro system
of Shanghai, China. A total of 811.8 million transaction
records were collected from Jul. 1st 2016 to Sept. 30th 2016,
with 8.82 million ridership per day. Each record contains
the information of passenger ID, entry/exit station and the
corresponding timestamps. In this time period, 288 metro
stations were operated normally and they were connected by
958 physical edges. For each station, we measured its inflow
and outflow of every 15 minutes by counting the number of
passengers entering or exiting the station. The ridership data
of the first two months and that of the last three weeks are
used for training and testing, while the ridership data of the
remaining days are used for validation.

HZMetro: This dataset was created with the transaction
records of the Hangzhou metro system collected in January
2019. With 80 operational stations and 248 physical edges, this

system has 2.35 million ridership per day. The time interval
of this dataset is also set to 15 minutes. Similar to SHMetro,
this dataset is divided into three parts, including a training set
(Jan. 1Ist - Jan. 18th), a validation set (Jan. 19th - Jan. 20th)
and a testing set (Jan. 21th - Jan. 25th).

2) Implementation Details: Since the physical graph has a
well-defined topology, we only introduce the details of the two
virtual graphs in this section. In SHMetro dataset, to reduce the
computational cost of GCN, for each station, we only select the
top ten stations with high similarity scores or correlation rates
to construct virtual graphs, thereby both the similarity graph
and correlation graph have 2880 edges. In HSMetro dataset, as
its station number is much smaller than that of SHMetro and
the computational cost is not heavy, we can build more virtual
edges to learn the complex patterns. Specifically, we determine
the virtual edges by setting the similarity/correlation thresholds
to 0.1/0.02, and the final similarity graph and correlation graph
have 2502 and 1094 edges respectively.

We implement our PVCGN with the popular deep learning
framework PyTorch [77]. The lengths of input and output
sequences are set to 4 simultaneously. The input data and the
ground-truth of output are normalized with Z-score Normal-
ization E] before being fed into the network. The filter weights
of all layers are initialized by Xavier [78]. The batch size
is set to 8 for SHMetro and 32 for HZmetro. The feature
dimensionality d is set to 256. The initial learning rate is 0.001
and its decay ratio is 0.1. We apply Adam [79] to optimize
our PVCGN for 200 epochs by minimizing the mean absolute
error between the predicted results and the corresponding
ground-truths. On each benchmark, we train the proposed
PVCGN with the training set and determine the model’s hyper-
parameters with the validation set. Finally, the well-trained
model is evaluated on the testing set.

3) Evaluation Metrics: Following previous works [28]],
[32], we evaluate the performance of methods with Root Mean
Square Error (RMSE), Mean Absolute Error (MAE) and Mean
Absolute Percentage Error (MAPE), which are defined as:

1 - 2
RMSE = | — X, — X,
n;( )

Iem o
MAE = =Y X, — X; (13)
n;l E

I | X; — X4
MAPE:fE Lt
’I’Li:1 Xz

where n is the number of testing samples. X, and X; denote
the predicted ridership and the ground-truth ridership, respec-
tively. Notice that X'Z and X; have been transformed back
to the original scale with an inverted Z-score Normalization.
As mentioned in Section our PVCGN is developed to
predict the metro ridership of next four time intervals. In the
following experiments, we would measure the errors of each
time intervals separately.

4https://en.wikipedia.org/wiki/Standard_score
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TABLE II
QUANTITATIVE COMPARISON ON THE WHOLE SHMETRO DATASET. OUR PVCGN OUTPERFORMS EXISTING METHODS IN ALL METRICS.

Time [ Metric [ HA | RF | GBDT | MLP [ LSTM [ GRU [ ASTGCN | STG2Seq [ DCRNN | GCRNN | Graph-WaveNet | PVCGN
RMSE 136.97 66.63 62.59 48.71 55.53 52.04 66.49 47.19 46.02 46.09 46.98 44.97
15 min | MAE 48.26 34.37 32.72 25.16 26.68 25.91 32.29 24.98 24.04 24.26 24.91 23.29
MAPE | 31.55% | 24.09% | 23.40% | 19.44% | 18.76% | 18.87% 21.90% 23.26% 17.82% 18.06% 20.05% 16.83%
RMSE 136.81 88.03 82.32 51.80 57.37 54.02 98.76 50.58 49.90 50.12 51.64 47.83
30 min | MAE 47.88 41.37 39.50 26.15 27.25 26.39 39.28 26.17 25.23 25.42 26.53 24.16
MAPE | 31.49% | 28.89% | 28.17% | 20.38% | 19.04% | 19.20% 25.63% 26.79% 18.35% 18.73% 20.38% 17.23%
RMSE 136.45 118.65 113.95 57.06 60.45 56.97 133.28 52.68 54.92 54.87 58.50 52.02
45 min | MAE 47.26 50.91 49.14 27.91 28.08 27.17 46.59 26.75 26.76 26.92 28.78 25.33
MAPE | 3127% | 41.34% | 40.76% | 22.20% | 19.61% | 19.84% 29.45% 28.49% 19.30% 19.81% 21.99% 17.92%
RMSE 135.72 143.5 137.5 63.33 63.41 59.91 154.95 56.81 58.83 58.67 65.08 55.27
60 min | MAE 46.40 59.15 57.31 29.92 28.94 28.08 51.33 28.22 28.01 28.18 30.90 26.29
MAPE | 30.80% | 5291% | 52.60% | 23.96% | 20.59% | 21.03% 32.35% 34.30% 20.44% 21.07% 24.36% 18.69%
TABLE III

QUANTITATIVE COMPARISON ON THE WHOLE HZMETRO DATASET. OUR PVCGN OUTPERFORMS EXISTING METHODS IN ALL METRICS.

Time [ Mewric [ HA | RF | GBDT | MLP [ LSTM [ GRU [ ASTGCN | STG2Seq [ DCRNN | GCRNN | Graph-WaveNet | PVCGN
RMSE 64.19 53.52 51.50 46.55 45.30 45.10 46.19 39.52 40.39 40.24 40.78 37.76
15 min | MAE 36.37 32.19 30.88 26.57 25.76 25.69 27.34 23.8 23.76 23.84 24.07 22.68
MAPE 19.14% 18.34% 17.60% 16.26% 14.91% 15.13% 15.05% 17.09% 14.00% 14.08% 14.27% 13.70%
RMSE 64.10 64.54 61.94 47.96 45.52 45.26 46.16 40.72 42.57 41.95 42.80 39.34
30 min | MAE 36.37 38.00 36.48 27.44 26.01 2593 27.74 24.72 25.22 25.14 25.48 23.33
MAPE 1931% | 21.46% | 20.49% 17.10% 15.10% 15.35% 15.56% 19.51% 14.99% 14.86% 15.23% 13.81%
RMSE 63.92 80.06 76.70 50.66 46.30 46.13 46.79 43.36 46.26 45.53 45.84 40.95
45 min | MAE 36.23 45.78 44.12 28.79 26.38 26.36 28.20 25.98 26.97 26.82 27.15 24.22
MAPE | 19.57% | 26.51% | 25.75% | 19.01% | 15.40% | 15.79% 16.48% 23.59% 16.19% 16.05% 17.34% 14.45%
RMSE 63.72 94.29 91.21 54.62 47.53 47.69 49.70 46.05 49.35 50.28 49.89 42.61
60 min | MAE 35.99 52.95 51.10 30.52 26.76 26.98 28.85 26.5 28.47 28.75 29.14 2493
MAPE | 20.01% | 37.12% | 38.10% | 22.56% 16.34% 17.20% 17.75% 27.93% 18.16% 17.89% 19.37% 15.49%

B. Comparison with State-of-the-Art Methods

In this section, we compare our PVCGN with nine basic and
advanced methods under various scenarios (e.g., the compar-
ison on the whole testing sets, comparison on rush hours and
comparison on high-ridership stations). These methods can be
classified into three categories, including: (i) three traditional
time series models, (ii) three general deep learning models
and (iii) five recently-proposed graph networks. The details of

these methods are described as following:

o Historical Average (HA): HA is a seasonal-based base-

line that forecasts the future ridership by averaging the
riderships of the corresponding historical periods. For
instance, the ridership at interval 9:00-9:15 on a specific
Monday is predicted as the average ridership of the
corresponding time intervals of the previous k£ Mondays.
The variate k is set to 4 on SHMetro and 2 on SHMetro.
Random Forest (RF): RF is a machine learning tech-
nique for both regression and classification problems that
operates by constructing a multitude of decision trees.
Sklearn is used to implement this method. The number of
trees is set to 10 and the maximum depth is automatically
expanded until all leaves are pure or until all leaves
contain less than 2 samples.

Gradient Boosting Decision Trees (GBDT): GBDT is
a weighted ensemble method that consists of a series
of weak estimators. We implement this method with
Sklearn. The number of boosting stages is set to 100 and
the maximum depth of each estimator is 4. Gradient de-
scent optimizer is applied to minimize the loss function.
Multiple Layer Perceptron (MLP): This model consists
of two fully-connected layers with 256 and 2x4xs

neurons respectively, where s is the number of stations.
It takes as input the riderships of all stations of previous
n time intervals and predicts the ridership of all stations
of the next m time intervals simultaneously. Its hyper-
parameters are the same as ours.

Long Short-Term Memory (LSTM): This network is
a simple Seq2Seq model and its core module consists
of two fully-connected LSTM layers. The hidden size of
each LSTM layer is set to 256. Its hyper-parameters are
the same as ours.

Gated Recurrent Unit (GRU): With the similar archi-
tecture of the previous model, this network replaces the
original LSTM layers with GRU layers. The hidden size
of GRU is also set to 256. Its hyper-parameters are the
same as ours.

Attention Based Spatial-Temporal Graph Convolu-
tional Networks (ASTGCN [61]): In this network,
a spatial-temporal attention mechanism and a spatial-
temporal convolution are developed to simultaneously
capture the spatial patterns and temporal patterns from
traffic data. Based on its official code, we apply this
model to metro ridership prediction.

Spatial-temporal Graph to Sequence Model (STG2Seq
[63]): This method applies a hierarchical graph convo-
lutional structure to capture both spatial and temporal
correlations simultaneously. It consists of a short-term
encoder, a long-term encoder, and an attention-based
fusion module. Based on the official code, this method is
re-implemented for metro ridership prediction.
Diffusion Convolutional Recurrent Neural Network
(DCRNN [28]): As a deep learning framework specially
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TABLE IV
QUANTITATIVE COMPARISON DURING RUSH HOURS ON SHMETRO DATASET. THE RUSH TIME REFERS TO 7:30-9:30 AND 17:30-19:30.

Time [ Metric [ HA | RF | GBDT | MLP [ LSTM [ GRU [ ASTGCN | STG2Seq [ DCRNN | GCRNN | Graph-WaveNet | PVCGN
RMSE | 255.63 108.09 100.49 64.95 75.78 69.92 91.98 66.29 67.50 66.21 68.41 65.04
15 min | MAE 96.23 56.20 53.36 36.42 39.49 37.27 47.94 38.05 37.92 37.94 39.17 36.46
MAPE | 46.74% | 20.06% | 19.20% | 14.47% | 13.87% | 13.58% 21.45% 14.90% 13.93% 14.07% 14.14% 13.16%
RMSE | 270.74 161.33 149.34 69.97 77.24 72.19 153.92 72.45 73.07 73.63 78.98 68.85
30 min | MAE 99.18 75.06 72.13 38.24 39.97 37.73 62.41 40.13 40.16 40.26 43.54 37.77
MAPE | 47.10% | 23.72% | 22.85% | 14.65% | 14.02% | 13.61% 28.03% 15.49% 14.33% 14.44% 14.79% 13.41%
RMSE | 265.61 231.29 222.53 74.30 79.05 72.70 204.12 73.04 79.42 79.88 87.66 73.85
45 min | MAE 95.56 98.57 97.18 39.58 39.77 37.33 73.06 39.79 41.92 41.65 46.26 38.84
MAPE | 4539% | 29.61% | 28.97% | 1542% | 14.45% | 14.04% 32.92% 15.64% 15.29% 15.29% 15.95% 14.06%
RMSE | 248.93 284.02 271.83 75.72 77.13 69.71 220.25 75.46 79.98 81.37 90.19 74.41
60 min | MAE 87.10 115.13 113.73 39.53 38.23 35.68 74.38 39.67 41.23 41.27 46.35 38.12
MAPE | 42.48% | 36.00% | 35.54% | 16.59% | 1527% | 14.81% 34.81% 17.09% 16.58% 16.62% 17.66% 15.08%
TABLE V

QUANTITATIVE COMPARISON DURING RUSH HOURS ON HZMETRO DATASET. THE RUSH TIME REFERS TO 7:30-9:30 AND 17:30-19:30.

Time [ Mewric [ HA | RF | GBDT | MLP [ LSTM [ GRU [ ASTGCN | STG2Seq [ DCRNN | GCRNN | Graph-WaveNet | PVCGN
RMSE 65.53 84.33 82.25 57.39 57.10 56.31 60.72 53.28 54.17 55.51 56.98 49.79
15 min | MAE 40.63 52.07 51.60 35.77 35.27 35.23 36.82 35.03 35.08 35.68 37.19 32.63
MAPE 11.51% 15.24% 15.02% 10.96% 9.99% 10.12% 11.77% 10.73% 10.37% 10.36% 10.84% 9.72%
RMSE 67.89 108.25 103.38 62.25 59.03 58.81 58.30 56.26 58.27 57.34 59.71 51.63
30 min | MAE 42.08 65.97 63.94 37.58 36.45 36.59 35.48 36.96 37.48 37.31 38.94 33.30
MAPE 11.58% 17.56% 16.95% 10.80% 10.07% 10.10% 12.15% 10.95% 10.69% 10.54% 11.04% 9.52%
RMSE 67.33 123.34 126.36 61.85 58.48 58.13 57.23 58.17 61.83 59.54 59.83 51.45
45 min | MAE 41.63 7491 75.46 37.09 35.72 35.59 34.59 37.10 37.95 37.58 38.75 32.73
MAPE | 12.22% | 19.58% | 19.36% | 11.30% | 10.55% | 10.36% 12.84% 11.72% 11.16% 11.16% 11.83% 9.88%
RMSE 67.22 136.08 132.87 61.81 57.35 57.14 59.23 57.69 59.52 58.88 59.96 51.09
60 min | MAE 40.72 75.40 74.39 36.13 34.19 34.01 33.59 35.64 36.27 35.94 37.49 31.43
MAPE 13.21% | 20.81% | 20.54% 12.16% 11.23% 11.08% 13.68% 12.25% 11.94% 11.93% 12.35% 10.43%

designed for traffic forecasting, DCRNN captures the
spatial dependencies using bidirectional random walks
on graphs and learns the temporal dependencies with an
encoder-decoder architecture. We implement this method
based on its official code.

o Graph Convolutional Recurrent Neural Network
(GCRNN): The architecture and setting of this method
are very similar to these of DCRNN. The main difference
is that GCRNN replaces diffusion convolutional layers
with K=3 order ChebNets [23|] based on spectral graph
convolutions.

o Graph-WaveNet [62]: This method develops an adap-
tive dependency matrix to capture the hidden spatial
dependency and utilizes a stacked dilated 1D convolution
component to handle very long sequences. We implement
this method with its official code.

1) Comparison on the Whole Testing Sets: We first com-
pare the performance of all comparative methods on the whole
testing sets (including all time intervals and all metro stations).
Their performance on SHMetro and HZMetro datasets are
summarized in Table [l and Table [T, respectively. We can
see that the baseline HA obtains unacceptable MAPE at all
time intervals (about 31% on SHMetro and 20% on HZMetro).
Compared with HA, RF and GBDT can get better results at the
first time interval. However, with the increment of time, their
MAPEs gradually become worse and even larger than that of
HA, since these two traditional models have weak abilities
to learn the ridership distribution. By automatically learning
deep features from data, those general neural networks (e.g.,
MLP, LSTM and GRU) can greatly improve the performance.
For example, LSTM obtains a MAPE 18.76% on SHMetro

and 14.91% on HZMetro when predicting the ridership at the
first time interval, while GRU obtains a MAPE 21.03% on
SHMetro and 17.20% on HZMetro for the prediction of the
fourth time interval. Thanks to the advanced graph learning,
DCRNN and GCRNN achieve competitive performance by
reducing the MAPE to 17.82% on SHMetro and to 14.00% on
HZMetro. However, these methods directly construct graphs
based on physical topologies. To fully capture the rider-
ship complex patterns, our PVCGN constructs physical/virtual
graphs with the information of physical topologies and human
domain knowledge, thereby achieving state-of-the-art perfor-
mance. For example, our PVCGN improves at least 1% in
MAPE at different time intervals on SHMetro dataset. On
HZmetro, PVCGN outperforms the existing best-performing
models DCRNN, GCRNN and Graph-WaveNet with a large
margin in all metrics. This comparison well demonstrates the
superiority of the proposed PVCGN.

2) Comparison on Rush Hours: In this section, we focus
on the ridership prediction of rush hours, since the accurate
prediction results are very crucial for the metro scheduling
during such time. In this work, the rush time is defined as
7:30-9:30 and 17:30-19:30. The performance of all methods
are summarized in Table [[V] and Table [V] We can observe that
our PVCGN outperforms all comparative methods consistently
on both datasets. On SHMetro, our PVCGN obtains a MAPE
13.16% for the ridership prediction at the first time interval,
while the MAPE of DCRNN and GCRNN are 13.93% and
14.07%, respectively. Other deep learning methods (such as
MLP, LSTM and GRU) are relatively worse. For forecasting
the ridership at the fourth time interval, our PVCGN achieves
a MAPE 15.08%, outperforming DCRNN and GCRNN with
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a relative improvement of at least 9.04%.

There exists a similar situation of performance comparison
on HZMetro. For example, obtaining a MAPE 9.72% for the
ridership at the first time interval, our PVCGN is undoubt-
edly better than DCRNN and GCRNN, the MAPE of which
are 10.37% and 10.36%, respectively. When predicting the
ridership at the fourth time interval, our PVCGN achieves a
very impressive MAPE 10.43%, while DCRNN and GCRNN
suffer from serious performance degradation. For instance,
their MAPE rapidly increase to 11.94% and to 11.93%, re-
spectively. In summary, the extensive experiments on SHMetro
and HZMetro dataset show the effectiveness and robustness of
our method during rush hours.

3) Comparison on High-Ridership Stations: Except for
the prediction during rush hours, we also pay attention to
the prediction of some stations with high ridership, since the
demand of such stations should be prioritized in real-world
metro systems. In this section, we first rerank all metro stations
based on their historical ridership of training set and conduct
choose comparison on the top 1/4 high-ridership stations. The
performance on SHMetro is summarized in Table and we
can observe that our PVGCN ranks the first place in per-
formance among all comparative methods. When forecasting
the ridership during the next 15 minutes, PVGCN achieves
an RMSE 74.80 and a MAPE 10.62%. By contrast, the best
RMSE and MAPE of other methods are 80.72 and 12.23%.
As the prediction time increases to 60 minutes, our PVGCN
can still obtain the best result (e.g., 13.61% in MAPE), while
the MAPE of GCRNN significantly increases to 18.16%.

As shown in Table our PVGCN also achieves im-
pressive performance on HZMetro dataset. For the ridership
prediction at the first time interval, the RMSE and MAPE of
our PVCGN are 60.56 and 9.97%, while the RMSE and MAPE
of the existing best-performing method GCRNN are 65.29
and 10.59%. When forecasting the ridership at the fourth time
interval, our PVCGN has minor performance degradation. For
example, its RMSE and MAPE respectively increase to 69.25
and 12.54%. In the same situation, the RMSE and MAPE
of GCRNN increase to 80.34 and 14.74%. Therefore, we can
conclude that our PVCGN is not only effective but also robust
for the prediction on high-ridership stations.

4) Efficiency Comparison: Finally, we compare the infer-
ence efficiencies of five deep learning methods. Note that all
methods are run on the same NVIDIA Titan-X GPU and their
running time are summarized in Table It can be seen that
LSTM and GRU are the most efficient models, while GCRNN
and GCRNN cost 0.0121~0.0156 seconds for each inference.
With three graphs, our PVCGN can still achieve practical ef-
ficiencies. Specifically, PVCGN only requires 0.2298 seconds
on SHMetro and 0.0503 seconds on HZMetro to forecast the
citywide metro ridership in the next hour. In summary, all
methods can run in real time and the inference efficiency is
not the bottleneck of this task.

C. Component Analysis

1) Effectiveness of Different Graphs: The distinctive char-
acteristic of our work is that we incorporate a physical graph

and two virtual graphs into Gated Recurrent Units (GRU) to
collaboratively capture the complex flow patterns. To verify
the effectiveness of each graph, we implement five variants of
PVCGN, which are described as follows:

o P-Net: This variant only utilizes the physical graph to
implement the ridership prediction network;

o P+S-Net: This variant is developed with the physical
graph and the virtual similarity graph;

e P+C-Net: Similar with P+S GRU, this variant is built
with the physical graph and the correlation graph;

e S+C-Net: Different with above variants that contain the
physical graph, this variant is constructed only with the
virtual similarity/correlation graphs;

e P+S+C-Net: This network is the full model of the
proposed PVCGN. It contains the physical graph and the
two virtual graphs simultaneously.

The performance of all variants are summarized in Table
To predict the ridership at the next time interval (15 minutes),
the baseline P-Net obtains a MAPE 19.04% on SHMetro and
14.84% on HZMetro, ranking last among all the variants. By
aggregating the physical graph and any one of the proposed
virtual graphs, the variants P+S-Net and P+C-Net achieve ob-
vious performance improvements over all evaluation metrics.
For instance, P+S-Net decreases the RMSE to from 50.45 to
47.38 on SHMetro and from 41.80 to 38.89 on HZMetro, while
P+C-Net reduces the RMSE to 46.18 and 39.46. Moreover,
we observe that the variant S+C-Net can also achieve very
competitive performance, even though it does not contain the
physical graph. On SHMetro dataset, S+C-Net obtains an
RMSE 46.52, outperforming P-Net with a relative improve-
ment of 7.8%. On HZMetro dataset, S+C-Net also achieves a
similar improvement by decreasing the RMSE to 39.92. These
phenomenons indicate that the proposed virtual graphs are
reasoning. Finally, the variant P+S+C-Net can obtain the best
performance by incorporating the physical graph and all virtual
graphs into networks. Specifically, P+S+C-Net gets the lowest
RMSE (44.97 on SHMetro, 37.73 on HZMetro) and the lowest
MAPE (16.83% on SHMetro, 13.72% on HZMetro). This
significant improvement is mainly attributed to the enhanced
spatial-temporal representation learned by the collaborative
physical/virtual graph networks. These comparisons demon-
strate the effectiveness of these tailor-designed graphs for the
single time interval prediction.

Moreover, we find that these collaborative graphs are also
effective for the ridership prediction of continuous time in-
tervals. As shown in the bottom nine rows of Table [IX]
all variants suffer from performance degradation to some
extent, as the number of time intervals increases from 2 to
4. For instance, the RMSE is rapidly increased to 73.06 on
SHMetro and 56.32 on HZMetro, when the baseline P-Net
is applied to forecast the ridership at the fourth time interval
(60 minutes) of the future. By contrast, P+S-Net and P+C-Net
achieve much lower RMSE (about 60 on SHMetro and 44 on
HZMetro), since the proposed virtual graphs can prompt these
variants to learn the complex flow patterns. Incorporating all
physical/virtual graphs, P+S+C-Net can further improve the
performance with an RMSE 55.27 on SHMetro and 42.51 on
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TABLE VI
QUANTITATIVE COMPARISON OF THE TOP 1/4 HIGH-RIDERSHIP STATIONS ON SHMETRO DATASET. WE RERANK ALL METRO STATIONS ON THE BASIS OF
THEIR RIDERSHIPS AND CHOOSE THE TOP 1/4 STATIONS FOR COMPARISON.

Time | Metric | HA | RF | GBDT | MLP | LSTM | GRU | ASTGCN | STG2Seq | DCRNN | GCRNN | Graph-WaveNet | PVCGN
RMSE | 24287 | 11131 | 10394 | 8072 | 9474 | 8740 | 11477 86.19 84.04 86.00 76.93 74.80
I5min | MAE | 9638 | 60.65 | 5747 | 4531 | 4929 | 47.09 62.96 47.06 44.98 45.89 4331 4138
MAPE | 27.82% | 1524% | 1480% | 1223% | 1239% | 12.23% | 17.20% | 1592% | 13.76% | 14.12% 11.68% 10.62%
RMSE | 242.68 | 152.10 | 14145 | 8646 | 9802 | 91.25 | 17470 9358 8852 89.89 8423 79.43
30 min | MAE | 9583 | 7566 | 7231 | 47.58 | 5052 | 4827 78.83 49.6 4680 | 47.50 4632 43.05
MAPE | 28.08% | 2025% | 20.08% | 13.62% | 13.19% | 13.32% | 21.84% | 18.06% | 14.47% | 14.82% 13.12% 11.46%
RMSE | 24222 | 20891 | 20L.11 | 96.13 | 10388 | 9689 | 23682 9528 97.75 96.81 9635 8732
45min | MAE | 9484 | 9556 | 93.02 | 5163 | 5254 | 50.19 95.53 50.8 49.84 50.08 50.76 45.67
MAPE | 28.11% | 3472% | 3540% | 1637% | 14.12% | 14.54% | 27.08% | 21.98% | 16.32% | 16.70% 15.50% 12.48%
RMSE | 24127 | 255.64 | 24541 | 107.53 | 109.64 | 10281 | 27541 10863 | 10603 | 10293 109.26 9359
60 min | MAE | 9341 | 11277 | 11044 | 5642 | 5464 | 5250 | 106.60 55.46 5330 52.79 55.74 48.02
MAPE | 27.80% | 53.09% | 54.37% | 19.48% | 15.70% | 1641% | 31.06% | 27.99% | 17.89% | 18.16% 18.27% 13.61%
TABLE VII

QUANTITATIVE COMPARISON OF THE

TOP 1/4 HIGH-RIDERSHIP STATIONS ON HZMETRO DATASET. WE RERANK ALL METRO STATIONS ON THE BASIS OF

THEIR RIDERSHIPS AND CHOOSE THE TOP 1/4 STATIONS FOR COMPARISON.

Time | Mewic | HA | RF | GBDT | MLP | LSTM | GRU | ASTGCN | STG2Seq | DCRNN | GCRNN | Graph-WaveNet | PVCGN
RMSE | 11126 | 8298 | 7923 | 7707 | 75.19 | 7457 75.10 65.41 66.18 6529 65.87 60.56
15 min | MAE 7030 | 5473 | 5228 | 4595 | 4528 | 4481 4878 40.97 41.22 40.93 40.72 38.29
MAPE | 1636% | 1447% | 13.80% | 11.68% | 11.49% | 11.45% | 12.42% 10.88% | 10.72% | 10.59% 10.39% 9.97%
RMSE | 11101 | 9984 | 9527 | 7930 | 7548 | 74.75 74.99 66.94 6936 6729 68.92 63.77
30 min | MAE 70.19 | 6459 | 6202 | 47.80 | 4586 | 4524 4932 43.02 43.92 43.07 4321 39.93
MAPE | 16.52% | 17.49% | 16.80% | 12.31% | 11.73% | 11.80% | 12.80% 1190% | 1151% | 11.42% 11.40% 10.34%
RMSE | 110.64 | 12547 | 119.12 | 8286 | 7680 | 76.12 75.49 71.95 75.16 242 72.96 65.99
45 min | MAE 69.86 | 79.09 | 7598 | 5036 | 4662 | 46.17 49.76 45.68 46.99 45.93 45.71 4175
MAPE | 1693% | 22.69% | 21.97% | 1443% | 12.09% | 12.42% | 13.59% 13.90% | 12.74% | 12.46% 13.32% 11.28%
RMSE | 11034 | 14845 | 14535 | 8947 | 7927 | 79.11 79.80 7833 79.79 8034 79.70 69.25
60 min | MAE 69.44 | 9223 | 8936 | 5396 | 4748 | 47.60 50.55 48.11 49.50 49.40 49.77 43.16
MAPE | 17.64% | 33.21% | 32.26% | 20.03% | 13.41% | 14.25% | 14.99% 1697% | 15.00% | 14.74% 16.56% 12.54%
TABLE VIII can boost the performance to a certain degree. For example,

RUNNING TIME (SECONDS) OF DIFFERENT METHODS. ALL METHODS CAN
ACHIEVE PRACTICAL EFFICIENCIES.

Model | SHMetro [ HZMetro

LSTM 0.00057 0.00050

GRU 0.00047 0.00050
DCRNN 0.0121 0.0156
GCRNN 0.0102 0.0126
PVCGN 0.2298 0.0503

HZMetro, which shows that these graphs are complementary.

2) Influences of Local and Global Feature: As described
in Section a Graph Convolution Gated Recurrent Unit
(GC-GRU) is developed for local feature learning, while a
Fully-Connected Gated Recurrent Unit (FC-GRU) is applied
to learn the global feature. In this section, we train two variants
to explore the influence of each type of feature for metro
ridership prediction. The first variant only contains GC-GRU,
and the second variant consists of GC-GRU and FC-GRU.
The results of these variants are summarized in Table [XI We
can observe that the performance of the first variant is very
competitive. For example, when predicting the ridership of
the next 15 minutes, the first variant obtains an RMSE 45.64
on SHMetro and 38.46 on HZMetro. For the prediction of the
fourth time interval, with a MAE 26.50 on SHMetro and 25.36
on HZMetro, this variant is slightly worse than the full model
of PVCGN. This competitive performance is attributed to the
fact that we can effectively learn the semantic local feature
with the customized physical/virtual graphs. By fusing the
local/global features of GC-GRU/FC-GRU, the second variant

when predicting the ridership of the second time interval,
the RMSE is decreased from 48.79 to 47.83 on SHMetro.
Through these experiments, we can conclude that the local
feature plays a dominant role and the global feature provides
ancillary information for ridership prediction.

3) Stability Verification: Following [17]], [64]], we also
examine the stability of the proposed PVCGN. Except for the
formal model fully-evaluated in Section we implement
another four models of PVCGN, because some random factors
(e.g., parameter initialization, sample shuffle) may affect the
final results. Due to the space limitation, the detailed perfor-
mance of these extra models is shown in our supplementary
material. The mean and standard deviation of all implemented
models are summarized in Table [XI We can observe that the
mean performance is very close to that of the formal model and
the deviation is very small on both benchmarks. Moreover, the
worst model of our PVCGN still outperforms other compared
methods. This experiment shows that PVCGN is stable.

V. APPLY TO ONLINE ORIGIN-DESTINATION PREDICTION

In this section, we employ the proposed PVCGN to forecast
the online metro origin-destination (OD) ridership on the
SHMetro dataset. Compared with taxi OD demand predic-
tion [[16], metro OD ridership prediction is more challenging,
because the complete OD distribution can not be obtained
immediately in online metro systems [72]. For example, as
shown in Figl] there were 385 passengers entered at the
i-th station in the past 15 minutes and 244 of them have
arrived at their destinations by now. The destinations of
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TABLE IX
PERFORMANCE OF DIFFERENT VARIANTS OF OUR PVCGN. THE PHYSICAL GRAPH, SIMILARITY GRAPH AND CORRELATION GRAPH IS ABBREVIATED AS
“P”, “S” AND “C” RESPECTIVELY.

Time Metric SHMetro HZMetro
P [ P+S [ P+C | S+C [ P+S+C P [ P+S [ P+C | S+C [ P+S+C
RMSE 50.45 47.38 46.18 46.52 44.97 41.80 38.89 39.46 39.92 37.73
15 min | MAE 25.89 24.16 23.88 23.74 23.29 24.81 23.23 23.34 23.84 22.69
MAPE | 19.04% | 17.13% | 17.12% | 16.94% | 16.83% 14.84% | 13.93% | 14.08% | 14.38% | 13.72%
RMSE 58.09 50.86 50.29 50.18 47.83 4531 40.63 41.26 41.59 39.38
30 min | MAE 28.13 25.28 25.13 24.74 24.16 26.63 24.22 24.22 24.59 23.35
MAPE | 20.19% | 17.712% | 17.73% | 17.32% | 17.23% 15.50% | 14.49% | 14.36% | 14.60% | 13.83%
RMSE 65.81 55.98 55.54 54.45 52.02 50.26 42.63 43.96 4481 40.88
45 min | MAE 30.51 26.90 26.68 26.01 25.33 29.02 25.31 25.42 2591 24.23
MAPE | 21.65% | 18.66% | 18.44% | 18.03% | 17.92% 16.76% | 15.35% | 15.26% | 1523% | 14.48%
RMSE 73.06 60.08 60.59 58.93 55.27 56.32 44.46 44.93 45.49 42.51
60 min | MAE 32.55 27.92 27.94 27.14 26.29 31.41 26.16 26.13 26.54 24.90
MAPE | 2343% | 19.56% | 19.30% | 18.87% | 18.69% 18.33% | 1631% | 16.32% | 16.69% | 15.48%
TABLE X \ l
EFFECT OF LOCAL FEATURE AND GLOBAL FEATURE. IN OUR PVCGN, A o1 N /) 41
GRAPH CONVOLUTION GRU IS USED TO LEARN LOCAL FEATURE AND A 47 % / 0
FULLY-CONNECTED GRU IS USED TO LEARN GLOBAL FEATURE. \ /
42 \ / 29
Time Metric [ SHMetro [ HZMetro ,| 385 | = | 141 | + | 244 k
[ Local | Local + Global || Local | Local + Global 35 /! Entered Unfimished  Finished 24
RMSE 45.64 44.97 38.46 37.76 /) ntere ntinishe Inished
15min | MAE | 2351 23.29 23.00 22.68  Orders Orders Orders |
MAPE | 17.23% 16.83% 13.86% 13.70% 61 |/ \| 31
RMSE 48.79 47.83 39.65 39.34 A
30 min | MAE 24.48 24.16 23.78 23.33 Complete OD Incomplete OD
%ﬁ]lgz‘g 1572579(()% 1;223;70 1::132;70 120891;7/0 Fig. 4. Tllustration of the incomplete origin-destination (OD) distribution.
45 min | MAE 25:58 25:33 5 4:60 24:22 In online metro systems, the complete OD distribution can not be obtained
MAPE | 18.16% 17.92% 14.88% 14.45% immediately. Suppose there were 385 passengers entered at the ¢-th station
RMSE 36,56 5537 311 1261 in the past 15 minutes and 244 of them have arrived at their destinations by
60 min | MAE 26.50 26.29 25.36 24.93 now. The destinations of remaining passengers are unaware. In this case, we
MAPE | 18.64% 18.69% 16.06% 15.49% can only construct an incomplete OD vector from the finished orders.
TABLE XI

MEAN AND STANDARD DEVIATION OF FIVE IMPLEMENTED MODELS OF
PVCGN ON THE WHOLE TESTING SETS.

Time Metric SHMetro HZMetro
RMSE 45.09+0.22 37.8340.24
15 min | MAE 23.2740.05 22.7440.08
MAPE | 17.05£0.38% | 13.534+0.29%
RMSE 48.161+0.24 40.05+0.43
30 min | MAE 24.1940.06 23.6640.20
MAPE | 17.21£0.12% | 13.8740.28%
RMSE 51.90+0.20 41.82+0.56
45 min | MAE 25.3040.05 24.6640.25
MAPE | 18.04£0.23% | 14.554+0.38%
RMSE 55.4640.56 42.65+0.38
60 min | MAE 26.284+0.09 25.1340.16
MAPE | 18.69£0.10% | 15.4640.65%

remaining passengers are unaware. Thus we can only construct
an incomplete OD vector X/~ for station i based on the
finished orders. Moreover, since the OD distribution is very
sparse, we only consider the ridership from station ¢ to the
top ten stations where its passengers are most likely to reach,
as well as the total ridership to the remaining stations. Thus
the length of OD vectors is 11. Specifically, X/-(j) is the
ridership to the j-th most relevant station, while X/-*(11) is
the ridership to the remaining stations. for convenience, the
incomplete OD ridership of all stations at time interval ¢ is
denoted as X/=(X/-1, X{-2,..., X]-N) € RM*N_ Given a
historical sequence of incomplete OD ridership, our goal is to

forecast a future sequence of complete OD ridership:
XSG, Xy oy XE, = PVCON(X /i1, X iy oo XP)
where X< =(XS, XG0 XEHY) € RMWXN and X
is the predicted complete OD ridership of station i. The
sequences’ lengths n and m are set to 4. As in the previous
section, RMSE, MAE and MAPE are the evaluation metrics.
When evaluating MAPE, we follow [14] to further filter some
OD pairs with ground-truth ridership less than ten, since
MAPE is sensitive to the small ridership and we also do not
care about such low-ridership scenarios.

We compare our PVCGN with a baseline (i.e., Historical
Average, HA) and four deep learning-based methods for
online OD ridership prediction. As shown in Table our
PVCGN achieves superior performance at all time intervals
and outperforms other methods with a substantial margin.
Especially at the fourth interval, PVCGN decreases the MAPE
to 24.52% and has a relative improvement of 28.7%, compared
with the baseline HA. This is because our PVCGN can also
learn the OD patterns effectively from our physical and virtual
graphs. This experiment shows the universality of our PVCGN
for online OD ridership prediction.

VI. CONCLUSION

In this work, we propose a unified Physical-Virtual Collabo-
ration Graph Network to address the station-level metro rider-
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TABLE XII
QUANTITATIVE COMPARISON FOR ONLINE ORIGIN-DESTINATION RIDERSHIP PREDICTION ON THE WHOLE TESTING SET OF SHMETRO.

Time | Metic | HA | LSTM | GRU | DCRNN | GCRNN | PVCGN
RMSE | 29.17 | 2467 | 23.06 | 16.26 16.29 15.54
I5min | MAE | 576 5.47 5.30 4.69 4.69 454
MAPE | 34.63% | 25.50% | 2537% | 24.56% | 24.56% | 23.63%
RMSE | 201 | 2449 | 2344 | 1788 17.66 16.51
30 min | MAE | 5.68 5.47 5.37 4.83 4.79 4.63
MAPE | 34.57% | 25.57% | 25.54% | 24.88% | 24.78% | 23.87%
RMSE | 2898 | 2453 | 2366 | 196 19.08 17.7
45 min | MAE | 5.59 5.47 5.42 4.93 4.91 4.77
MAPE | 34.48% | 25.55% | 25.71% | 25.28% | 25.13% | 24.20%
RMSE | 2875 | 2471 | 2375 | 20.88 206 18.61
60 min | MAE | 5.48 5.49 5.42 5.10 5.08 4.87
MAPE | 34.40% | 25.57% | 25.67% | 25.78% | 25.66% | 24.52%

ship prediction. Unlike previous works that either ignored the
topological information of a metro system or directly modeled
on physical topology, we model the studied metro system as
a physical graph and two virtual similarity/correlation graphs
to fully capture the ridership evolution patterns. Specifically,
the physical graph is built on the basis of the metro re-
alistic topology. The similarity graph and correlation graph
are constructed with virtual topologies under the guidance of
the historical passenger flow similarity and correlation among
different stations. We incorporate these graphs into a Graph
Convolution Gated Recurrent Unit (GC-GRU) to learn spatial-
temporal representation and apply a Fully-Connected Gated
Recurrent Unit (FC-GRU) to capture the global evolution ten-
dency. Finally, these GRUs are utilized to develop a Seq2Seq
model for forecasting the ridership of each station. To verify
the effectiveness of our method, we construct two real-world
benchmarks with mass transaction records of Shanghai metro
and Hangzhou metro and the extensive experiments on these
benchmarks show the superiority of the proposed PVCGN.

In future works, we would pay more attention to the online
origin-destination ridership prediction and several improve-
ments should be considered. First, the data of unfinished or-
ders can also provide some useful information and we attempt
to estimate the potential OD distribution of unfinished orders.
Second, the metro ridership evolves periodically. For instance,
the ridership at 9:00 of every weekday is usually similar.
Therefore, we should also utilize the periodic distribution of
OD ridership to facilitate representation learning. Last but
not least, some external factors (such as weather and holiday
events) may greatly affect the ridership evolution and we
should incorporate these factors to dynamically forecast the
ridership.
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