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Optimization of Two-Phase Sampling Designs With
Application to Naturalistic Driving Studies

Henrik Imberg , Vera Lisovskaja, Selpi , Member, IEEE, and Olle Nerman

Abstract— Naturalistic driving studies (NDS) generate
tremendous amounts of traffic data and constitute an important
component of modern traffic safety research. However, analysis
of the entire NDS database is rarely feasible, as it often requires
expensive and time-consuming annotations of video sequences.
We describe how automatic measurements, readily available in
an NDS database, may be utilized for selection of time segments
for annotation that are most informative with regards to
detection of potential associations between driving behavior and
a consecutive safety critical event. The methodology is illustrated
and evaluated on data from a large naturalistic driving study,
showing that the use of optimized instance selection may reduce
the number of segments that need to be annotated by as much
as 50%, compared to simple random sampling.

Index Terms— Case-control studies, naturalistic driving stud-
ies, optimal design, pseudo-likelihood, safety critical event,
unequal probability sampling.

NOMENCLATURE

ND Naturalistic driving
NDS Naturalistic driving studies
SCE Safety critical event
SD Standard deviation
SRS Simple random sampling
WMLE Weighted maximum likelihood estimator

I. INTRODUCTION

IN RECENT years, naturalistic driving studies (NDS),
including naturalistic field operational tests, have been

employed all around the globe, providing an important source
of data for analysis and enabling a better understanding of
driver behavior and traffic safety, for example 100-car [1],
[2] and SHRP2 in the U.S.A. [3], [4], euroFOT [5], PRO-
LOGUE [6], and UDRIVE [7] in Europe, as well as NDS
in Australia [8] and in Japan [9]. In NDS, data is collected
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automatically for all driving sessions in a large fleet of vehicles
for several months. These automatic recordings include vehicle
data such as speed and direction; environmental conditions,
lane position, location and surrounding traffic recorded by
radar, video and other external instrumentation; and video
recordings of the drivers face, pedal, and eye movements. The
data provided by the NDS design thus offer many opportunities
for analysis of both normal driving and safety critical events,
and is richer than more traditional data sources such as crash
databases [10], [11].

Despite recent advancements and investments into naturalis-
tic data sources, there are many challenges remaining, largely
related to the huge amount of heterogeneous and sometimes
noisy data generated by NDS. For instance, the SHRP2 project
collected more than a million hours of driving data, including
both video and recordings of vehicle kinematics [12]. Thus,
the sheer volume of data poses a major challenge in analysis
of naturalistic driving (ND) data. On top of this comes issues
with data quality, including data losses and errors in recorded
vehicle kinematics [13] and challenges in the annotation of
video recordings [14]. To address the data quality issue,
the SHRP2 study employed a rigorous procedure for quality
assurance and quality control [12]. Others have proposed using
the Geographic Information System for quality control in
NDS, for example to understand missing data due to existence
of tunnels or to understand speed profile in relation to the
road profile [13], [15]. Thus, there is a need for rigorous and
efficient procedures to ensure high-quality data to be extracted
from NDS.

In order to handle the large amounts of data pro-
duced by NDS, data thinning or subsampling is commonly
employed. For example, [16] proposed a matched case-
crossover approach to extract event and control information
from the video part of ND data, while [10] used random base-
line sampling method. Sampling based approaches become of
even greater relevance when the analyses rely on information
derived from the video data: the great cost associated with
video annotation implies that statistical analyses based on
video sequences must be restricted to only a limited subset of
the original database. Thus, choosing this subset in a manner
that captures as much of the available information as possible
is essential.

In this paper, we address the issue of appropriate subset
selection: we present an inferential framework that enables a
flexible selection of video fragments for annotation from an
NDS database, and show how this selection may be optimized
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using information readily available in the database through
automatic recordings of vehicle maneuver data. The method-
ology is illustrated using data collected in Sweden as part
of the European large scale field operational test (euroFOT)
study [5]. We demonstrate that a variance reduction of up to
50% compared to simple random sampling can be achieved.
In other words, optimal sampling can lead to a performance
on par with that of ordinary methods with up to 50% less
annotation demand.

In the next section, we start by presenting a motivating
example. We then review a common procedure for analysis
of complex, two-phase, samples in Section III, and show
in Section IV how the sample selection may be optimized.
The application of the methodology to the euroFOT data,
collected using Volvo cars in Sweden, can be found in
Sections V and VI.

II. MOTIVATING EXAMPLE

A. An Embedded Experiment

Consider a traffic situation involving two vehicles, the vehi-
cle taking part in the NDS study (the index car) and a
front car. The two are driving at similar speeds, when the
front car brakes. This scenario describes a situation where
a potential safety critical event (SCE) can occur, namely a
rear-end collision. Of interest is the question of whether the
glancing behavior of the driver of the index car, namely
whether he/she looks at the car in front when braking is
initiated, the speed of the vehicles and time gap between the
two cars at this initiation, have an impact on the likelihood that
a safety critical event will occur. Mathematically, we could
explore this relationship through e.g. an application of a
logistic regression model, with presence, or absence, of an
SCE being the dichotomous response, and speed at brake light,
time gap at brake light and glancing away at brake light as
explanatory variables.

B. Definition of Events

Explicitly, we define an instance to be a time segment
initiated by the turning on of the brake lights of the front
car and ending with the driver of the index car returning
to normal driving after braking. It is also the turning on of
the brake lights that define the timepoint at which braking
is initiated. As collisions are rarely observed in naturalistic
driving data, other safety critical events are often used as proxy
endpoints; these SCEs are typically defined by a combination
of kinematic triggers that identifies SCE candidates, and a
visual review of videos, classifying the SCE candidates by
whether they are relevant for traffic safety or not [2], [17].
Specifically, we are interested in the safety critical event
characterized by the presence of a surprised reaction of the
driver of the index car, commonly referred to as an “oops
reaction” [18], [19]. Thus, the following information requires
video annotation in order to be obtained: the timepoint at
which the brake light turns on, whether the driver looks
on or off road at this timepoint, and whether the event is

safety critical with the driver displaying a subsequent surprised
reaction after looking back on road.

C. Poisson Sampling

Due to financial constraints, only part of the relevant
instances in an NDS database can be annotated; typically all
the identified SCEs (cases) and some of the instances with no
SCE associated (controls) [10]. A simple way of choosing
controls to be annotated would be to toss a hypothetical
weighted coin for each of the available non-SCE instances,
a process referred to as Bernoulli random sampling in [20].
A somewhat more complex alternative would be a hypothetical
sequence of tosses of different weighted coins, the so called
Poisson random sampling. In this paper we will describe how
the weights in such a sampling procedure can be chosen in a
way that maximizes the information that could potentially be
provided by this smaller sub-sample, ideally approaching the
precision of estimation that would have been present were the
whole data set (i.e. all the instances) analyzed.

D. Data

In the examples that follow, we use data from the euro-
FOT study, containing data from 100 Volvo cars collected
during one year. All vehicles were supplied with specialized
equipment, including video cameras and external radars. Thus,
driver actions, environmental conditions, vehicle data and
vehicle maneuvers were continuously recorded and stored.
Additional details can be found from [21].

For the purpose of demonstrating the sampling approach
described in this paper, 49 instances with an SCE and 500 ran-
domly selected instances without an SCE were identified in
the database. The subset from which these were selected
constituted more than 1,000 driving hours of suitable filtered
instances for the rear-end conflict described above.

Video review revealed data quality issues in 65 of the
500 control candidates, including no video (n = 13), poor
video quality (n = 12), external factors hindering video
annotation (e.g. poor light conditions or driver wearing glasses,
n = 26) or the control candidate being judged as irrelevant for
the event of interest (e.g. due to lane change or lead vehicle
not braking, n = 14). The remaining 435 controls and 49 SCEs
were fully annotated.

In brief, the length of the annotated events ranged from
20 to 30 seconds. The mean (SD) vehicle speed was 53.0 km/h
(16.0) and time gap was 1.8 (0.8) seconds. Glances off road
at brake light were present in 21 (42.9%) of the cases and
63 (14.5%) of the controls.

III. WEIGHTED ESTIMATION FROM COMPLEX SAMPLES

With the motivating example above in mind, consider a
statistical model fθ (y|x) relating a response variable Y to a set
of explanatory variables X , indexed by a parameter vector θ

(e.g. a logistic regression modeling the probability of an SCE).
Consider also a collection D of instances (e.g. time segments
started by the frontal car initiating a brake), for which the
responses yi and the explanatory variables xi are registered.
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For each instance in D, two types of variables can be available:
the ones that are measured automatically (e.g. acceleration)
and the ones that require video annotation in order to obtain
them (e.g. glancing behavior of the driver). We will denote
the former by Z and the latter by W . In the model fθ (y|x),
both Y and X can, at least partly, belong to this latter class of
measurements that require annotations.

Suppose that each instance i ∈ D is assigned a positive
probability πi of being sampled, and that a subset S of D has
been sampled and annotated; consequently, complete records
(xi , yi ) are observed for this subset only. Since different
instances can have different sampling probabilities, as is the
case for Poisson sampling, the ordinary maximum likelihood
estimation, which assumes an independent and identically dis-
tributed sample, is generally not applicable. Instead, one may
consider a weighted maximum likelihood estimator (WMLE),
defined by:

θ̂π := arg max
θ

�̂π (θ) , (1)

�̂π (θ) :=
∑
i∈S

wi log fθ (yi |xi ) , (2)

where the weights wi may be taken as wi = 1/πi .
In the survey sampling literature, the WMLE (1) is known

as a pseudo maximum likelihood estimator [22], and the sum
(2), with weights taken as wi = 1/πi , as a Horvitz-Thompson
estimator [23] of the log-likelihood

�0(θ) :=
∑
i∈D

log fθ (yi |xi ) , (3)

i.e. the log-likelihood we would have obtained if all data had
been annotated. In particular, �̂π (θ) is an unbiased estimator of
�0(θ) provided that all sampling probabilities are strictly posi-
tive. Furthermore, it holds under general regularity conditions,
as the size of the sample S gets large, that the distribution of
θ̂π under repeated subsampling from D converges to a normal
distribution with mean θ0 and covariance matrix �(θ0) [22],
[24], where θ0 is the maximizer of the log-likelihood (3) and

�(θ) = H(θ)−1V (θ)H(θ)−1 , (4)

H(θ) = ∂2�0(θ)

∂θ∂θT
, (5)

V (θ) =
⎡
⎣∑

i∈D

1 − πi

πi
si sT

i +
∑

i, j∈D

πi, j − πiπ j

πiπ j
si sT

j

⎤
⎦ ,

where πi, j is the probability of selecting both instances i
and j , si = si (yi , xi , θ) is the column vector defined by
si = ∇θ log fθ (yi |xi ) (i.e. the score), and H(θ) is the
Hessian matrix of the log-likelihood �0(θ) given in (3). Hence,
the WMLE θ̂π may be regarded as an estimator of the
finite population parameter θ0, i.e. the maximum likelihood
estimator we would have obtained if the entire database D
had been annotated.

The WMLE (1) may be obtained by standard software
routines by supplying the sampling weights to the estima-
tion procedure, e.g. using the weights option in the glm
function in the R language for statistical computing [25].
Obtaining appropriate standard errors of the estimates does,

however, require software routines specialized for inference
from complex samples. This is available e.g. through the
svyglm function in the survey package in R [26]–[28].
Formulas for variance estimation may also be found in e.g.
[29, Chapter 6.5].

We point out that the properties of θ̂π given above are stated
with respect to the sampling mechanism, taking the database
D as fixed. The additional uncertainty arising from the random
process generating the initial database may be accounted for
by adding a term −H(θ)−1 to the covariance matrix (4), which
is the usual covariance matrix of the maximum likelihood
estimator θ0 [29]. Since we are considering the problem of
sample selection from a specific database we will ignore this
term in the remaining part of the paper, as it is unaffected by
the subsampling procedure.

For the special case of Poisson sampling, each instance
i ∈ D is sampled independently, leading to πi, j = πiπ j and
a simplification of the covariance matrix (4) of the WMLE to

H−1

(∑
i∈D

1 − πi

πi
si sT

i

)
H−1 .

This simplification allows obtaining a closed form solution
to the optimal choices of πi for certain optimality criteria,
as is detailed in the next section. Note that we, from now on,
write the Hessian (5) of the log-likelihood (3) as H = H(θ),
leaving the dependence on the parameter θ implicit to simplify
the notation.

IV. OPTIMAL SAMPLING SCHEMES

We will now describe how sample selection in NDS with
the use of Poisson sampling may be optimized for a class of
optimality criteria known as linear optimality criteria, which
aims to minimize the average variance of a collection of
linear combinations of the parameter θ . The motivation for
this particular choice of optimality criterion is threefold: first,
it is a natural optimization criterion in many studies where
the individual or simultaneous effect(s) of one or multiple
covariates are of primary interest; second, it leads, when
considered together with Poisson sampling, to an optimization
problem that is numerically tractable with a simple closed-
form solution for the optimal choice of sampling probabilities;
third, as we will show, it may be used as a building-block for
more complex non-linear optimization criteria.

We start with a single linear combination (c-optimality) and
continue with the general case with multiple linear combina-
tions (L-optimality). This includes, as a special case, mini-
mizing the average variance of the parameters (A-optimality).
We then show how this may be extended to optimization with
respect to non-linear optimality criteria, such as to minimize
prediction variance (V-optimality) [30].

A. Linear Optimality Criteria

Consider first a linear combination of the model parameters
of a regression model aT θ = a1θ1 + a2θ2 + . . . apθp, where θ

is the parameter vector and a is a column vector of linear
coefficients. Such a linear combination may represent the

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on January 25,2021 at 04:16:20 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

effect of a single covariate, or the effect associated with
a simultaneous change in multiple covariates. Conditionally
on D, i.e. considering the variation due to subsampling from
the database D, the variance of the WMLE of such a linear
combination is given by

Var(aT θ̂π |D) = aT Var(θ̂π |D)a , (6)

which for Poisson sampling becomes

Var(aT θ̂π |D) = aT H−1

(∑
i∈D

1 − πi

πi
si sT

i

)
H−1a

=
∑
i∈D

ci

πi
+ k ,

where

ci = (aT H−1si )
2 (7)

and k is a constant not depending on the πi ’s. Thus, the optimal
sampling scheme in terms of minimizing the variance (6) is
obtained by choosing

πi ∝ √
ci , (8)

normalized so that
∑

i∈D πi equals the desired sample size
(Proposition 1, Appendix B). As this may result in sampling
probabilities greater than one, a simple adjustment described in
Algorithm 1 in Appendix A may be necessary. The optimality
of the sampling scheme after this modification is governed by
Proposition 2 in Appendix B.

More generally, we may consider a collection of parameter
combinations captured by an r × p matrix L, where each
row aT

k of L defines a linear combination as described above.
Thus, the matrix L may be defined to capture several relevant
evaluations and comparisons of interest. Using the total vari-
ance of the linear combinations specified by the matrix L as
optimality criterion, the result in Equation (7) generalizes to:

ci = vT
i vi ,

(9)
vi = L H−1si .

The special case where L is the p × p identity matrix corre-
sponds to minimizing the average variance of the parameters
in the vector θ̂π , commonly referred to as A-optimality [30].

B. Non-Linear Optimality Criteria

The results of the previous section can also be applied
to optimization with respect to certain classes of non-linear
optimality criteria where the optimization criterion can be
expressed in terms of a differentiable function h(θ). For
instance, considering a logistic regression model, we may
optimize the sample selection with respect to the variance of
estimators of absolute risks and smooth functions of those,
rather than the estimators of log-odds ratios, as would other-
wise commonly be the case. To see this, we have, by the use
of the Delta method [31], that the variance of h(θ̂π ) may be
approximated by

∇θh(θ )T Var(θ̂π )∇θh(θ) ,

provided that ∇θh(θ)
∣∣
θ=θ0

�= 0. Hence, minimizing the aver-

age variance of r such functions h1(θ̂π), . . ., hr (θ̂π ) translates
into a linear optimality criterion discussed above with L to be
a matrix with rows equal to ∇θ hk(θ)T .

C. Maximizing the Expected Log-Likelihood

Another important example of a non-linear optimality crite-
rion is obtained when the linear coefficient matrix L is taken
as L = H1/2, where H1/2 is a square root of the matrix H
such that H1/2 H1/2 = H , leading to a simplification of (9)
to

ci = sT
i H−1si . (10)

As we show in [32], the resulting sampling scheme satisfies
the optimality criterion

max
π

E
[
�0(θ̂π)

]
, (11)

with expectation taken with respect to the sampling mecha-
nism. In words, this means that the sampling scheme derived
from (10) (using Algorithm 1 in Appendix A) optimizes the
generalization performance of the estimator θ̂π in the sense
of maximizing, in expectation, the total log-likelihood (3).1

Compared to the other optimization criteria discussed above,
the criterion (11) has the advantage of not requiring explicit
specification of the linear coefficient matrix L; instead, it is
specified implicitly with respect to the geometry of the model
space. The corresponding optimal sampling scheme is also
invariant to linear transformations and non-singular re-codings
of the design matrix, and implicitly accounts for the relevance
of the variables in terms of their anticipated contribution to
the log-likelihood.

D. Using Auxiliary Information

A practical complication in optimal design theory is the fact
that the optimal design typically depends on unknown quanti-
ties, such as the actual value of the parameter θ . In particular,
the optimal design does in our case depend on the Hessian H
and score vectors si , which in turn depend on the parameter
θ , outcomes yi and explanatory variables xi , some of which
are unknown. Consequently, the optimal sampling scheme
can not be evaluated, and we must resort to approximations.
In NDS, the availability of auxiliary information in the form
of automatically measured variables provides an opportunity
to derive such an approximation by minimizing the expected
variance under an assisting auxiliary model for the distribution
of the unknowns.

Formally, let Z denote a collection of auxiliary variables
that are automatically measured and thus readily available
for all instances in the database, and g(y, x|z) denote an
auxiliary model for the conditional distribution of the response
Y and explanatory variables X given the auxiliary variables
Z . Considering, as before, a linear coefficient matrix L,
the expected variance of the linear combinations specified by
Lθ is minimized by sampling with probability proportional to

1This follows from Proposition 2 in [32] by taking the negative log-density
− log fθ (y|x) as loss function.
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√
E[ci ], i.e. replacing ci in (7) - (10) and Algorithm 1 by its

expectation under the auxiliary model g(y, x|z).
In general, this expectation can not be obtained analytically

and numerical methods, such as Monte Carlo integration [33],
will have to be employed. An algorithmic description of such
a procedure is provided by Algorithm 2 in Appendix A.
We also present a simplified and computationally less demand-
ing version in Algorithm 3 in Appendix A, which additionally
requires a parameter guess θ∗ and Hessian matrix H∗ as
input. The auxiliary model g(y, x|z), parameter guess θ∗ and
Hessian H∗ may be obtained using e.g. a small pilot study,
prior knowledge, existing data and simulations.

V. MOTIVATING EXAMPLE, CONTINUED

A. Optimization Criteria

Re-visiting the example introduced in Section II, we con-
sider a logistic regression model for the risk of an SCE given
by

logit P(Y = 1|X) = θ0 + θ1Time gap + θ2Speed

+ θ3Glance + θ4Glance × Time gap ,

(12)

where Y is a binary indicator of the SCE, Time gap is the dis-
tance between the vehicles measured in seconds, Speed is the
speed of the index car and Glance is a binary indicator whether
the driver is having eyes-off-road at brake light. To illustrate
the proposed sampling procedure, we will consider four linear
optimization criteria directed towards estimating the effects
of time gap, vehicle speed and glancing, and a high-low risk
contrast involving all parameters, as further described below.

i) Time gap. Say that we are primarily interested in the
regression coefficient corresponding to time gap when
having the eyes on road. Explicitly, we are interested
in minimizing the variance of an estimator of θ1. In this
case, θ = (θ0, θ1, θ2, θ3, θ4)

T and the linear combination
of interest consists of one single parameter, implying
that a = (0, 1, 0, 0, 0)T .

ii) Vehicle speed. Alternatively, we might be interested in
the effect of speed, i.e. in the parameter θ2, correspond-
ing to a linear combination determined by the coefficient
vector a = (0, 0, 1, 0, 0)T .

iii) Glancing. We may also be interested in the effect of
glancing at a certain time gap to the front vehicle, say at
1, 2 and 3 s. time gap. This is described by the parameter
combinations θ3 + θ4, θ3 + 2θ4 and θ3 + 3θ4, corre-
sponding to the coefficient vectors a1 = (0, 0, 0, 1, 1)T ,
a2 = (0, 0, 0, 1, 2)T , a3 = (0, 0, 0, 1, 3)T and the
coefficient matrix

L =
⎛
⎝0, 0, 0, 1, 1

0, 0, 0, 1, 2
0, 0, 0, 1, 3

⎞
⎠.

iv) High-low risk contrast. As a final example of a linear
optimality criterion, we consider a contrast between a
hypothetical high risk and low risk scenario, defining
the high risk scenario as glancing off road when driving
at 70 km/h and 1 s. time gap, and the low risk scenario

as having eyes-on-road when driving at 30 km/h and
3 s. time gap. The parameter combination corresponding
to the high risk scenario is given by θ0 + θ1 + 70θ2 +
θ3 +θ4 and a coefficient vector ahigh = (1, 1, 70, 1, 1)T .
Similarly, the low risk scenario may be described by
alow = (1, 3, 30, 0, 0)T . The contrast between the two
is thus described by the linear combination −2θ1 +
40θ2 + θ3 + θ4, and we may take a as ahigh − alow =
(0,−2, 40, 1, 1)T .

As an example of a non-linear optimality criterion we
also consider the optimality criterion (11) introduced in
Section IV-C:

v) Maximizing the expected log-likelihood. This does not
require an explicit specification of the linear coefficient
matrix L, but simply amounts to replacing ci in (9) by
(10) in the optimization.

B. Auxiliary Information

Recall that there are three variables present in the example
model that require annotation: time gap, vehicle speed and
driver glancing behavior (eyes on/off road), at brake light.
Information about the first two can be obtained by automatic
measurements of vehicle data. Information of the latter would
ideally be obtained by automatic extraction of relevant signals
from the video sequences. Lacking such information, we pro-
ceeded using automatic measurements of vehicle data also to
predict glancing. We used data from the 49 a priori anno-
tated SCEs included in this study to derive auxiliary models,
pretending, in order to mimic a real-world scenario, that the
corresponding information for the controls was unavailable at
this stage.

Proxies for vehicle speed and time gap at brake light were
obtained as follows. Based on the deceleration profiles of
the annotated SCEs, a proxy for time of brake light onset
was first identified (Figure 1). The speed and time gap at
the predicted timepoint for brake light were consequently
used as proxies for the corresponding variables at brake light.
To identify auxiliary variables for glancing, we employed a
logistic regression model with eyes on/off road as a response
and used a stepwise search for predictors among the following
automatically measured variables: vehicle speed (km/h), time
gap (s), acceleration of vehicle ahead (m/s2), a binary indicator
whether the driver of the index car is braking, and time to
collision (s), defined as the expected time for the index car to
collide with the front car if they remain on the same path and
at the same speeds. This procedure resulted in deceleration of
vehicle ahead as the sole predictor of glancing behavior.

After auxiliary variables had been identified, we used data
from the annotated SCEs to estimate auxiliary models, using
univariate linear regression for time gap and vehicle speed,
yielding a coefficient of determination (R2) of 0.83 and 0.88,
and univariate logistic regression for glancing away from road
(Figure 2). The predictive performance of the latter was,
however, rather weak. Indeed, the auxiliary model predicted
a higher probability of having eyes-on-road with increasing
deceleration of the lead vehicle, but no such trend was actually
observed among the controls (Figure 2).
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Fig. 1. Extracting auxiliary variables from continuous measurements of the acceleration of the front vehicle, vehicle speed and time gap between vehicles.
The last time point prior to the point of maximal deceleration where the deceleration exceeded 0.8 m/s2 was used to predict brake light onset, as derived from
49 annotated cases. Vehicle speed and time gap at the predicted time point for brake light were consequently used as proxies for the corresponding variables
at brake light. To reduce noise, the signals were smoothed using a moving average.

Fig. 2. Fitted mean trends from the auxiliary models for time gap (A), vehicle speed (B) and glancing (C) using univariate linear regression (A, B) and
univariate logistic regression (C). The auxiliary models were derived from 49 a priori annotated SCEs (red solid lines). The blue dashed lines show the actual
association observed among the controls. Since we anticipated a higher proportion of off-road glances among the SCEs than among the controls, the intercept
of the logistic regression model for glancing was modified to predict 20% off-road glances among the controls, based on estimates of off-road glancing during
normal driving in [34], [35].

Finally, a guess of the value of the parameter θ was obtained
by generating 100 complete datasets by stochastic simulation
of covariate vectors x∗

i for the 500 control candidates included
in this study, using the auxiliary models for vehicle speed,
time gap and glancing. For each of the simulated data sets,
the parameters of the logistic regression model (12) were
estimated and the mean of these estimates was used as a
guess θ∗ of the value of the target parameter θ . Similarly,
we used the mean of the corresponding covariance matrices to
estimate −H−1.

C. Optimal Sampling Schemes

We used, next, the auxiliary models to compute optimal
control sampling schemes with respect to the effect of time
gap when having eyes-on-road, glancing away at 1, 2, and 3 s.
time gap, vehicle speed, and a high vs. low risk contrast,
as detailed in Section V-A. We also implemented the optimal
sampling scheme with respect to the optimality criterion (11),
i.e. maximizing the expected log-likelihood. The optimization
was implemented according to Algorithm 3 in Appendix A for
selection of 100 out of 500 controls.

Optimal control sampling schemes for the four linear opti-
mization criteria discussed above are illustrated in Figure 3.
As observed in this figure, there are substantial variations
between the sampling schemes, depending on the linear com-
bination of interest. The sampling probabilities depend on
the expected values of the covariates of interest, and, for
linear combinations involving multiple parameters, also on
their anticipated correlations, and further on the anticipated
risk of SCE. Generally, controls at high anticipated risk of SCE
should be oversampled, i.e driving at high speed, small time
gap, and with a high predicted tendency of glancing. Addi-
tionally, relatively large sampling probabilities are assigned
to controls at moderate to mild risk, constituting a subset to
which the characteristics of the cases and high risk controls
may be contrasted. Controls with low anticipated risk of
an SCE tend to be selected with low probability, as these
contribute with little information with regards to safety.

The sampling scheme optimized to maximize the expected
log-likelihood is illustrated in Figure 4. Without explicitly
specifying the linear coefficient matrix L, this sampling
scheme assigns sampling probabilities proportional to the
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Fig. 3. Optimal control sampling schemes for selection of 100 out of 500 controls, optimized for estimating the effect of time gap when having eyes-on-road
(A), glancing off road at 1, 2, and 3 s. time gap (B), vehicle speed (C), and a contrast between a hypothetical high risk and low risk scenario (D). The high
risk scenario is defined as glancing off road when driving at 70 km/h and 1 s. time gap, and the low risk scenario as having eyes-on-road when driving at
30 km/h and 3 s. time gap.

relative importance of the instances in terms of the anticipated
contribution to the log-likelihood. The sampling scheme is to
a greater extent determined by time gap than vehicle speed,
demonstrating a greater importance of the former in explaining
the risk of an SCE, according to the auxiliary models and
parameter guess θ∗.

VI. EMPIRICAL EVALUATION: EFFICIENCY

OF THE SAMPLING SCHEMES

To evaluate the performance of the presented optimiza-
tion and analysis procedure, using auxiliary information for
instance selection followed by a correspondingly weighted
analysis, we conducted an empirical evaluation by repeated
subsampling from the cohort of 49 cases and 500 control
candidates, as further described below.

A. Methods

Sample scheme optimization was performed according to
the optimality criteria described in Section V-A and V-C, using
the auxiliary models and parameter guess from Section V-B.
For each of the optimization criteria, optimal control sam-
pling schemes were computed according to Algorithm 3 in

Appendix A, and a sample of controls was selected accord-
ingly, using Poisson sampling. Thus, cases were selected with
probability 1. A weighted analysis was then performed, and
the estimated parameter vector was stored. The procedure
was repeated 104 times for control samples of expected size
n = 50, 100, 150 and 200. For each sample size, the standard
deviations (SD) of the estimated parameters and linear com-
binations of interest were calculated and stored. For targets
including multiple parameter combinations, the square root
of the average variance was instead computed. Two analy-
ses were conducted for comparison: a complete information
analysis using the entire study cohort, and an analysis based
on a sub-sample chosen using simple random sampling of
n = 50, 100, 150 and 200 controls. Ordinary non-weighted
logistic regression was used for both of these approaches,
as commonly is done in logistic regression analysis of case-
control studies [36], [37].

B. Results
1) Complete Information Analysis: The result of a logistic

regression analysis of the full study cohort, after exclusion of
non-relevant controls (n = 14) and controls with missing data
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Fig. 4. Optimal control sampling scheme for selection of 100 out of 500 controls vs time gap (A) and vehicle speed (B), optimized according to the optimality
criterion (11), i.e. to maximize the expected log-likelihood.

TABLE I

EFFECT OF VEHICLE SPEED, TIME GAP AND GLANCING BEHAVIOR ON THE PROBABILITY OF OOPS-REACTION,
USING LOGISTIC REGRESSION ANALYSIS ON THE FULL STUDY COHORT

TABLE II

EFFICIENCY OF OPTIMIZED CONTROL SAMPLING SCHEMES USING POISSON SAMPLING, COMPARED TO SIMPLE RANDOM SAMPLING (SRS)
AND COMPLETE INFORMATION ANALYSIS OF THE FULL STUDY COHORT OF 49 CASES AND 500 CONTROLS

due to no video or poor video quality (n = 51), is presented
in Table I. There was a significant increase in the risk of

an oops-reaction when glancing off road, more severely so
at small time gap to the front car. Reduced time gap to the
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front vehicle was also associated with increased risk of SCE,
and the risk increased at faster rate when having eyes-off-road.
On the other hand, increased speed alone was not significantly
associated with an increased risk of an SCE.

2) Subsampling Study: A comparison of the sampling vari-
ability in the estimated parameters between different control
sampling procedures is presented in Table II. Poisson sampling
optimized for a specific linear combination of parameters
generally resulted in increased precision of the corresponding
parameter estimates, as compared to simple random sampling,
the gain in precision increasing with the size of the control
sample. With n = 50 controls, the standard deviation (SD)
of the estimator for the effect of time gap was reduced by
14% using instance selection optimized for this particular
parameter, compared to simple random sampling. The corre-
sponding precision loss, measured as increase in SD compared
to analyzing the entire database, was 73%. At n = 200,
the results were improved further to an SD reduction of 24%
compared to simple random sampling (SRS). In this case,
using 40% of the database resulted in only 25% loss of
precision. Similar results were observed for optimization with
respect to the effect of vehicle speed.

For the high-low risk contrast, improvement compared to
SRS was observed first at n = 150 controls, yielding an SD
reduction of 6%, which was further improved to 13% reduction
when n = 200. The effect of glancing, on the hand, was poorly
estimated with all sampling schemes, particularly at small
sample sizes. In a sensitivity analysis where we artificially
created a new proxy for glancing, we found that explaining
only 10% of the variability in glancing behavior would suffice
to achieve a performance equal to simple random sampling.
With a further increase to explaining 20% of the variability
in glancing, an SD reduction of more than 20% was observed
(data not shown).

Optimization with respect to one parameter combination
sometimes resulted in loss of precision for the other parame-
ters: at n = 100 controls, the greatest loss was an SD increase
of 93% compared to SRS, as was observed for the estimating
the effect of glancing when the sampling scheme was opti-
mized with respect to the effect of vehicle speed (Table II).
In contrast to the linear optimality criteria, optimization with
respect to the expected log-likelihood generally performed
well with respect to all parameters, producing a simultaneous
SD reduction of approximately 10% for vehicle speed, time
gap and the high-low risk contrast when n = 200.

VII. CONCLUSION

A. Summary of Main Results

We have presented an inferential framework for analysis of
large databases in which complete data annotation is costly,
and shown how instance selection in naturalistic driving data
may be optimized by use of auxiliary information readily
available for all instances in an NDS database. We have fur-
thermore illustrated through a case study how such sampling
designs may be implemented in practice, and demonstrated
that a substantial gain in statistical efficiency may be achieved.
Specifically, we were able to achieve almost 50% variance

reduction in estimating the effect of vehicle speed and time
gap when optimizing for the corresponding parameters, and
up to 20% simultaneous variance reduction in all parameters
except glancing when optimizing with respect to the expected
log-likelihood.

B. Explanations and Interpretations

For a successful implementation of the analysis pipeline,
the availability of auxiliary information and proxies for the
study variables on interest that require annotation is crucial.
In our case study, vehicle speed and time gap at brake light
were well approximated by the corresponding automatically
recorded signals at the predicted timepoint for brake initiation.
Consequently, optimization with respect to the corresponding
model parameters resulted in substantial increase in precision.
Driver glancing behavior, on the other hand, was poorly
predicted by the automatically measured variables available
in this study. In this case, non-uniform instance selection
actually resulted in loss of precision. This may partially be
explained by the loss of optimality in the optimization when
no or little auxiliary information is available, partially by
increased variability when using a random size design such
as Poisson sampling, and partially by increased variability
when using a weighted estimator, as compared to ordinary
non-weighted logistic regression. Nevertheless, a sensitivity
analysis revealed that an auxiliary model explaining only
10-20% of the variability in the variables of interest may
be sufficient to guarantee performance on par with that of
simple random sampling, when the model also included some
variables for which good auxiliary information was available.

Although the focus of this paper is on estimation uncertainty
in terms of variance, all results could equivalently have been
stated in terms of mean squared error since the bias of our
estimator, seen as an estimator of the maximum likelihood
estimate we would have obtained if the entire database had
been annotated, vanishes at a faster rate than the variance as
the size of the annotated subsample increases [24].

C. Limitations and Directions of Future Research

Due to the need of good auxiliary information when imple-
menting the optimization procedure, effort should be made
to find good proxies for the variables of interest. Finding
good auxiliary variables that normally require video annotation
remains a challenging task. Attempts to develop algorithms for
automated detection of driver glancing behavior from video
sequences have been made [19], [38]–[42]. Further develop-
ment and application of such algorithms could increase the
benefit of optimized sample selection with respect to analysis
of driver behavior, as predictions of such algorithms could
be used as auxiliary information for driving tasks. Similar
results to those obtained for time gap and vehicle speed could
then potentially be achieved also for estimating the effect of
glancing and other driver tasks.

Another direction of improvement could be to collect data
sequentially, as outlined in [43]. The auxiliary models may
then be derived from a pilot sample and updated as more
data is collected, thus reducing the need of prior knowledge.
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For case-control analyses using logistic regression, further
variance reduction of weighted estimators may also be
achieved by re-scaling the weights in the control sample, see
e.g. [44]–[48]. Implementation of such procedures for NDS is
a possible direction of future research.

In practice, both the implementation and performance of the
optimization procedure may be affected by data quality issues
such as data losses in kinematic measurements and video
derived features. Nonetheless, we were able to demonstrate
substantial improvements to standard sampling procedures in
a small but realistic case study.

D. Choosing an Optimization Criterion

We have focused in this paper on linear optimality cri-
teria, and shown how these results may be extended also
to smooth non-linear functions of the parameter of interest.
Comparing the results obtained by the linear optimization
criteria and optimization with respect to the expected log-
likelihood, the former achieved a better precision in the par-
ticular linear combination of interest, but the latter performed
better with respect to multiple parameters and thus serves
as a better general-purpose criterion. While the restriction to
linear optimality criteria offers a numerically tractable solution
to the optimal sample selection problem, it would be an
interesting topic of further research to investigate whether
similar procedures could be developed also for other classes
of optimality criteria such as D and E-optimality [30].

E. Implications

In our empirical study, we found an SD reduction of 10-
30% compared to simple random sampling when optimizing
the sampling procedure for a particular parameter combination,
and a simultaneous reduction of 10% in multiple parameters
when optimizing for the expected log-likelihood. Translating
the gain in efficiency in terms of SD reduction into power
to detect possible associations between the variables of inter-
est, a reduction in the standard deviation of an estimator
by 10% roughly corresponds to a sample size reduction of
1 − 0.92 ≈ 20% [49, Chapter 9.2.4]. Similarly, with 30%
SD reduction, the sample size could be reduced by ≈ 50%
without loss of power. Thus, the use of optimized instance
selection implies that fewer instances need to be annotated,
as compared to simple random sampling, potentially reducing
the annotation demands by as much as 50%. Considering the
high cost associated with manual video annotation, and the
loss of information induced by having to restrict the analysis
to a subset of the collected data, our proposed inferential
framework provides a viable approach to reduce the cost of
the analysis of naturalistic driving data.

APPENDIX A
COMPUTATION OF OPTIMAL POISSON SAMPLING SCHEMES

We present in Algorithm 1 a procedure for computation of
Poisson sampling schemes that ensures that valid probabilities
0 < πi ≤ 1 are obtained. A proof of its optimality is provided
by Proposition 2 in Appendix B. A Monte Carlo procedure
to approximate the optimal sampling scheme of Algorithm 1
using auxiliary information is presented in Algorithm 2, and

a simplified version, replacing step 5 and 6 in Algorithm 2
by pre-computed estimates or guesses of the parameter θ and
Hessian H , is provided in Algorithm 3.

Algorithm 1 Optimal Poisson Sampling Scheme
Input: Index set D, coefficients {ci }i∈D , sample size n.
Initialization: Let M be the empty set. Let m := |M| = 0.
1: for i ∈ D do
2: Compute π∗

i = n
√

ci∑
j∈D

√
c j

.

3: end for
4: while any π∗

i > 1 do
5: Let M be the collection of elements in D with π∗

i ≥ 1.
6: Update m = |M|, the number of elements in M.
7: Set π∗

i = 1 for all i ∈ M.
8: For i ∈ D \ M, update π∗

i according to

π∗
i = (n − m)

√
ci∑

j∈D\M
√

c j
. (A.1)

9: end while
Output: Optimal sampling probabilities {π∗

i }i∈D .

Algorithm 2 Optimal Auxiliary Variable Assisted Poisson
Sampling Scheme
Input: Index set D, auxiliary variables {zi }i∈D , auxiliary
model g(y, x|z), linear coefficient matrix L, number of
Monte Carlo simulations M , sample size n.
1: for m = 1, . . . , M do
2: for i ∈ D do
3: Simulate (y∗

i , x∗
i ) from g(yi , xi |zi ).

4: end for
5: Compute parameter guess θ̂

∗
as

θ̂
∗ = arg max

θ

∑
i∈D

log fθ (y∗
i |x∗

i ) .

6: Compute Hessian matrix H∗ as

H∗ = ∂2

∂θ∂θT

∑
i∈D

log fθ (y∗
i |x∗

i ) ,

evaluated at θ = θ̂
∗
.

7: for i ∈ D do
8: Compute s∗

i = ∇θ log fθ (y∗
i |x∗

i )
∣∣
θ=θ̂

∗ .

9: Compute c∗
i,m = s∗T

i H∗−1 LT L H∗−1s∗
i .†

10: end for
11: end for
12: for i ∈ D do
13: Compute ĉi = 1

M

∑M
m=1 c∗

i,m .
14: end for
15: for i ∈ D do
16: Compute π∗

i using Algorithm 1,
taking D, {ĉi }i∈D and n as input.

17: end for
Output: optimal sampling probabilities {π∗

i }i∈D .

† For the optimality criterion (11) in Section IV-C, i.e.
maximizing the expected log-likelihood, this expression
should be replaced by c∗

i,m = s∗T
i H∗−1s∗

i .
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Algorithm 3 Optimal Auxiliary Variable Assisted Poisson
Sampling Scheme, Simplified
Input: Index set D, auxiliary variables {zi }i∈D , auxiliary model
g(y, x|z), parameter guess θ∗, Hessian matrix H∗, linear
coefficient matrix L, number of Monte Carlo simulations M ,
sample size n.
1: for i ∈ D do
2: for m = 1, . . . , M do
3: Simulate (y∗

i , x∗
i ) from g(yi , xi |zi ).

4: Compute s∗
i = ∇θ log fθ (y∗

i |x∗
i )

∣∣
θ=θ∗ .

5: Compute c∗
i,m = s∗T

i H∗−1 LT L H∗−1s∗
i .†

6: end for
7: Compute ĉi = 1

M

∑M
m=1 c∗

i,m .
8: end for
9: for i ∈ D do

10: Compute π∗
i using Algorithm 1,

taking D, {ĉi }i∈D and n as input.
11: end for
Output: optimal sampling probabilities {π∗

i }i∈D .

† For the optimality criterion (11) in Section IV-C, i.e. maxi-
mizing the expected log-likelihood, this expression should be
replaced by c∗

i,m = s∗T
i H∗−1s∗

i .

APPENDIX B
THEOREMS AND PROOFS

We provide below two propositions with proofs of the
optimality of the sampling schemes proposed in Equation (8)
(Proposition 1) and Algorithm 1 (Proposition 2).

Proposition 1: Let π = (π1, . . . , πN ) and consider the
function

f (π) =
N∑

i=1

ci

πi
, ci > 0

subject to the constraints

N∑
i=1

πi = n ,

πi > 0 , i = 1, . . . , N ,

for some n > 0. Then, f (π) is minimized by choosing πi

according to

π∗
i = n

√
ci∑N

j=1
√

c j
, i = 1, . . . , N .

Proof of Proposition 1: Using the method of Lagrange
multipliers [50, Chapter 5], we introduce the auxiliary function

�(π, λ) = f (π) + λh(π) , h(π) =
N∑

i=1

πi − n .

Critical points of the Lagrangian are found by solving the
equation system

∇�(π , λ) = 0 ⇔
{

h(π) = 0

−∇π f (π) = λ∇π h(π)
.

Since ∂ f (π)
∂πi

= −ci/π
2
i and ∂h(π t )

∂πi
= 1, this implies that

λ = c1/π
2
1 = . . . = cN /π2

N , and further that

πi ∝ √
ci .

By the constraints πi > 0 and
∑N

i=1 πi = n, we obtain

πi = n
√

ci∑N
j=1

√
c j

. (A.2)

Thus, the point (π∗, λ∗) with entries π∗
i defined according to

(A.2) and λ∗ = c1/π
∗2
1 is a stationary point of �(π , λ). Hence,

π∗ is a stationary point of f (π) under the specified constraints.
Furthermore, the Hessian of f (π) is positive definite on the
domain specified by πi > 0, so π∗ is a local minimum.
By convexity, this implies that π∗ is the global minimum of
f (π) under the specified constraints.

Proposition 2: Let D = {1, . . . , N}, π = (π1, . . . , πN ) and
consider the function

f (π) =
N∑

i=1

ci

πi
, ci > 0

subject to the constraints

N∑
i=1

πi = n ,

0 < πi ≤ 1 , i = 1, . . . , N ,

for 0 < n < N. Then, f (π) is minimized by choosing πi

according to Algorithm 1.
Proof of Proposition 2: The claim follows immediately

from Proposition 1 if

n
√

ci∑N
j=1

√
c j

< 1

for all i = 1, . . . , N . Hence, we assume that there exists some
index i for which this is not fulfilled.

We note first that Algorithm 1 terminates within a finite
number of iterations, since n < N . Indeed, a feasible solution
is obtained within at most n−1 iterations. We show below that
the achieved solution satisfies the Karush-Kuhn-Tucker (KKT)
conditions [50, Chapter 5.5.3], and that this is sufficient for
global optimality in this setting.
Introducing the constraint functions

gi (π) = πi − 1 , i = 1, . . . , N

h(π) =
N∑

i=1

πi − n ,

we may formulate the constrained optimization problem of
Proposition 2 as

min
π

f (π)

where f (π) =
N∑

i=1

ci

πi
, ci > 0

subject to πi > 0 , i = 1, . . . , N

gi (π) ≤ 0 , i = 1, . . . , N

h(π) = 0
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and introduce the Lagrangian

�(π ,μ, λ) = f (π) +
N∑

i=1

μi gi (π) + λh(π) , (A.3)

where μ = (μ1, . . . , μN ) and λ are the Lagrange multipliers.
Let us assume, without loss of generality, that the ele-

ments are ordered so that c1 ≥ c2 ≥ . . . ≥ cN , and let
π∗ = (π∗

1 , . . . , π∗
N ) denote the sampling scheme obtained

by Algorithm 1. Thus, we have for the first m instances that
π∗

1 = . . . π∗
m = 1, and for the remaining N − m instances that

π∗
i < 1. Taking

λ∗ = cN

π∗2
N

,

(A.4)

μ∗
i =

{
ci − λ∗ i = 1, . . . , m ,

0 i = m + 1, . . . , N ,

we show that the point (π∗,μ∗, λ∗) satisfies the KKT
conditions:

• Stationarity
Noting that c j/π

∗2
j = cN /π∗2

N = λ∗ for all j > m, we see
that

−∇ f (π)
∣∣
π=π∗ = −

(
− c1

π∗2
i

, . . . ,− cN

π∗2
N

)

=
(

c1, . . . , cm ,
cm+1

π∗2
m+1

. . . ,
cN

π∗2
N

)

= (
μ∗

1 + λ∗, . . . , μ∗
N + λ∗)

= μ∗ + (λ∗, . . . , λ∗)

=
N∑

i=1

μ∗
i ∇gi (π

∗) + λ∗∇h(π∗) .

Thus, (π∗,μ∗, λ∗) is a stationary point of (A.3).
• Primal feasibility

By inspection of the algorithm, we see that it produces a
solution with

i)
∑N

i=1 π∗
i = n.

ii) 0 < π∗
i ≤ 1 for all i = 1, . . . , N .

Thus, all equality and inequality constraints are fulfilled
and a feasible solution is obtained.

• Dual feasibility
To prove dual feasibility, we must show that μ∗

i ≥
0 for all i = 1, . . . , N . This is trivially fulfilled for
μ∗

m+1, . . . , μ
∗
N , since these are all zero. For i ≤ m we

have that μ∗
i = ci − λ∗, so it remains to show that this is

positive for all i ≤ m. To show this, let

π̃i = (n − m)

√
ci∑N

j=m+1
√

c j
for all i = 1, . . . , N,

(A.5)

and note that

ci/π̃
2
i = c j/π̃

2
j for all i, j, (A.6)

1 = π∗
i ≤ π̃i for i = 1, . . . , m, (A.7)

π∗
i = π̃i for i = m + 1, . . . , N. (A.8)

Here, (A.6) follows immediately from (A.5), and (A.8)
from (A.1) at the final iteration of the algorithm. To show
(A.7), note that Algorithm 1 iteratively increases the sam-
pling probabilities assigned to non-certainty selections,
meaning that the factor (n−m)∑

j∈D\M
√

c j
in (A.1) gradually

increases as more certainty selections are added to the
index set M. Thus, any instance that according to (A.1)
achieved a sampling probability exceeding 1 in any
iteration of the algorithm will also have π̃i ≥ 1 in (A.5).
Next, (A.7) implies that ci ≥ ci/π̃

2
i for i ≤ m, and (A.8)

that cN /π̃2
N = cN /π∗2

N , which for i = 1, . . . , m gives

ci − λ∗ = ci − cN

π∗2
N

≥ ci

π̃2
i

− cN

π̃2
N

= 0 .

were the first equality follows from (A.4), and the last
equality from (A.6). This gives the desired result.

• Complementary slackness
We finally note that complementary slackness

μ∗
i gi(π

∗) = 0 for all i = 1, . . . , N

is fulfilled, since

i) gi (π
∗) := π∗

i − 1 = 0 for i = 1, . . . , m.
ii) μ∗

i := 0 for i = m + 1, . . . , N .

Thus, we conclude that the point (π∗,μ∗, λ∗) with π∗ com-
puted according to Algorithm 1 and (μ∗, λ∗) taken as in (A.4)
satisfies the KKT conditions. Furthermore, since we consider a
convex optimization problem with convex inequality constraint
functions and affine equality constraints, the KKT conditions
are sufficient for global optimality [50, Chapter 5.5.3], which
completes the proof.
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