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Graph Neural Network for Robust Public Transit
Demand Prediction

Can Li, Lei Bai, Wei Liu, Lina Yao and S Travis Waller

Abstract—Understanding and forecasting mobility patterns
and travel demand are fundamental and critical to efficient
transport infrastructure planning and service operation. How-
ever, most existing studies focused on deterministic demand
estimation/prediction/analytics. Differently, this study provides
confidence interval based demand forecasting, which can help
transport planning and operation authorities to better accom-
modate demand uncertainty/variability. The proposed Origin-
Destination (OD) demand prediction approach well captures and
utilizes the correlations among spatial and temporal information.
In particular, the proposed Probabilistic Graph Convolution
Model (PGCM) consists of two components: (i) a prediction
module based on Graph Convolution Network and combined
with the gated mechanism to predict OD demand by utilizing
spatio-temporal relations; (ii) a Bayesian-based approximation
module to measure the confidence interval of demand prediction
by evaluating the graph-based model uncertainty. We use a
large-scale real-world public transit dataset from the Greater
Sydney area to test and evaluate the proposed approach. The
experimental results demonstrate that the proposed method is
capable of capturing the spatial-temporal correlations for more
robust demand prediction against several established tools in the
literature.

Index Terms—Probabilistic Demand Prediction, Public Transit,
Graph Convolution Network, Bayesian Inference

I. INTRODUCTION

With the development of information and communication
technology, growing big data sources (e.g., smart public transit
cards with location information, social media platform data)
provide new opportunities to identify and understand travel
patterns (e.g., travel demand profile [1], travel time distribution
[2], and travel patterns analysis [3]). In particular, smart transit
card usage records are continuously generated in many cities
around the world (e.g., Opal card in Sydney, Octopus card in
Hong Kong, Oyster card in London), which provide valuable
data sources for estimating/forecasting public transit demand.
The travel demand and mobility patterns are often the most
critical inputs to transport infrastructure/services planning and
operation optimization problems (e.g., dedicated bus lanes,
bus/rail lines, scheduling), which further determine efficiency,
reliability, and attractiveness of public transit services.

Travel demand and mobility patterns vary from time to
time and exhibit a strong level of uncertainty. Understanding,
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forecasting, and incorporating the demand uncertainty are both
important and necessary to optimally determine, e.g., bus
fleet size, vehicle size, public transit lines and networks, and
scheduling. Besides, uncertainties in public transport can result
in bus bunching and unbalanced waiting flows across different
stations or stops. Although there have been fruitful studies on
predicting passenger demand for public transport [4], existing
studies often focused on deterministic demand forecasting or
mobility analytics. The confidence interval or precision level
of the estimates has received much fewer attention [5]. This
paper aims to explicitly consider the confidence interval for
demand prediction or alternatively speaking, quantify the pre-
cision level of demand prediction. The proposed “confidence
interval” is an estimated interval for the demand, which is as-
sociated with a target confidence level and computed based on
the observed data. It can be helpful in future service planning
and operation optimization problems since it provides a more
reliable representation of demand, which directly relates to and
affects the robustness of the planning and operation decisions.
Robust service design is useful to reduce the negative effects
of demand variations and service disturbance [6].

In particular, this study proposes a Probabilistic Graph
Convolution Model for forecasting Origin-Destination (OD)
demand in the public transit system with a target confidence
interval. The proposed model is able to capture and take
advantage of the underlying spatio-temporal correlations in
the dataset. As mentioned earlier, we propose the “confidence
interval” for demand prediction, which incorporates the vari-
ability of travel demand and reflects the precision level of the
demand prediction.

Specifically, we divide the whole city into multiple re-
gions based on the postcodes (which define administrative
regions). The setting of origins and destinations is based on
this partitioning or division of the city. Note that different
sizes or types of regions can be readily considered (e.g., we
also test station-to-station demand prediction). Our numerical
experiments mainly consider the administrative region level
demand predictions, which can be useful in practice for policy
making at the region-level since many relevant planning and
management activities are administrative-region-based.

Given the setting of origins and destinations, we can define
the OD demand vector, where one OD pair corresponds
to one element of this vector. Then we construct a graph-
based network with nodes and edges, where a node in the
graph corresponds to one OD pair, and an edge is added
between two nodes (two nodes in the graph correspond to
two different OD pairs) if the demand patterns for these two
OD pairs exhibit sufficient similarities. A series of gated graph
convolution layers are then applied to capture the spatial and
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temporal correlations in the demand profile simultaneously.
Moreover, we utilize the Bayesian-based module to quantify
the uncertainty associated with the proposed graph-based
model. The graph-based model uncertainty is the uncertainty
due to imperfections made in the model formulations [7].
And the model uncertainty can often be linked to prediction
uncertainty [8], which can be utilized to produce the proposed
“confidence interval” for demand prediction with a target level
of confidence.

The main highlights of this paper are summarized in the
following:
1) This study adopts a graph convolution deep network to

capture the spatial-temporal correlations for public tran-
sit OD demand forecasting. Most existing methods often
utilized Recurrent Neural Network (RNN) based models
or its variants to analyze time-series features for demand
prediction. However, this often consumes a large number
of iterations and can yield large accumulative errors in
the forecasting process since the previous time steps often
directly influence the prediction in the next time step [9].

2) This study applies a Bayesian-based method to capture the
model uncertainty and produce an interval of the predicted
demand. This provides a powerful tool to incorporate
demand variability and helps address planning and oper-
ation issues related to demand uncertainty and decision
robustness. To the best of our knowledge, this is the first
work to predict the demand interval through measuring the
uncertainty of the graph-based model.

3) This study tests and evaluates the developed method on
a large-scale real-world public transit system dataset col-
lected in a large metropolitan area (Greater Sydney area)
and demonstrates the effectiveness of the method against
several baseline methods and state-of-the-art strategies.

The rest of this paper is organized as follows. Section II
introduces related works in the literature and Section III
defines the OD demand prediction problem. Then, Section IV
presents the Probabilistic Graph Convolution Model and corre-
sponding techniques. The test and evaluation of the proposed
method and comparison with other methods are presented in
Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

In this section, we review relevant works on demand pre-
diction/estimation and Bayesian-based models.

A. Demand Prediction

Conventional OD matrices estimation by transport scientists
often focused on demand prediction with limited observations
or no direct observation of OD demand [10]. For example,
many studies used traffic counts on a small number of road
links to infer OD demand, where one may adopt Maximum
Entropy approach [11], Generalized Least Squares approach
[12], or Bayesian updating approach [13]. These approaches
often assumed that travellers followed certain rules (e.g.,
shortest path) when choosing routes and then computed the
OD demand patterns that will likely result in the observed link

flow patterns. Differently, this paper focuses on forecasting OD
demand based on the true observations of OD demand.

With real demand observations, traditional time series re-
gression models such as Autoregressive Integrated Moving
Average (ARIMA), Kalman Filter, and their variants [4],
[14]–[17] have been widely used for forecasting passenger
demand. For example, Kalman-filter-based models [14], [15]
were employed to estimate the traffic flow under various traffic
situations. Similarly, Seasonal ARIMA (SARIMA) model cou-
pled with the Kalman filter was adopted in [16], which helped
achieve good-quality demand predictions. More recently, an
Interactive Multiple Model-based Pattern Hybrid (IMMPH)
approach was utilized in [4] to predict short-term passenger
demand based on different temporal relevant pattern time
series. A Local Ensemble Transformed Kalman Filter by
extending the Kalman Filter theory was proposed by [17] for
dynamic demand forecasting. However, these strategies were
often less capable of capturing the non-linear temporal and/or
spatial correlations in the data for demand prediction purpose.

Recently, deep neural networks are adopted to better capture
the non-linear effects/correlations in the data for passenger
demand forecasting. RNN, Long Short-Term Memory Model
(LSTM) and their variants were used to capture non-linear
temporal correlations and predict demand [18]–[20]. For in-
stance, LSTM was applied to predict future taxi requests
in [18], where additional relevant information (i.e weather,
time) is incorporated. These studies often focused on capturing
temporal relations for demand prediction but ignored spatial
information, which is related to the demand distribution and
can be helpful in demand forecasting. Therefore, in more re-
cent studies, Convolution Neural Network (CNN) was further
utilized to capture the spatial correlations and combined with
temporal models for demand forecasting [1], [21]–[25]. For
example, an end-to-end multi-task model for demand predic-
tion was proposed in [21], where CNN is used to extract spatial
correlations and external factors such as weather conditions are
incorporated to enhance the prediction accuracy. A hexagon-
based ensemble mechanism with CNN was developed in [1]
to enhance demand prediction performance for on-demand
services. The spatio-temporal recurrent convolutional networks
(SRCNs) were also proposed for predicting long-term and
short-term large-scale network traffic, which utilized LSTM
to learn the temporal dynamics and CNN to learn the spatial
dependencies of network-wide traffic [23]. More recently,
a contextualized spatial-temporal network for OD demand
forecasting by utilizing CNN to learn spatial dependencies
and Convolutional LSTM to analyze demand evolution was
proposed in [24].

The CNN-based models often assume that the adjacent
areas have similar demand features so they only modeled the
Euclidean relationships among regions. Motivated by the pro-
posal of graph convolution for signal processing in frequency
domain [26] and vertex domain [27], Graph-Convolution-
based models were further developed to capture the non-
Euclidean spatial correlations [28]–[35]. For instance, based
on a directed graph, a data-driven method was proposed for
OD matrix estimation, which combined the PCA method to
constrain the solution space for large networks and the neural
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network to achieve a robust prediction accuracy [29]. The
grid embedding method for both geographical and semantic
neighborhoods was illustrated to capture spatial correlations by
[31]. The model was also combined with LSTM to capture the
temporal trends for predicting OD demand. The combination
of Graph Convolution Network (GCN) and GRU for road traf-
fic forecasting was explored in [30]. Similarly, [33] proposed
a framework named Spatio-Temporal Graph Convolutional
Networks (STGCN) for traffic forecasting tasks that modeled
the traffic network by a general graph and employed a fully
convolutional structure on the time axis to handle the inherent
deficiencies of recurrent networks.

Although previous works showed encouraging performance
in terms of demand forecasting, OD demand predictions
coupled with confidence intervals have received very limited
attention in the literature. This motivates the current study.
Moreover, as mentioned earlier, different from previous deep-
learning-based studies that relied on RNN-based models to
capture temporal correlations, this study adopts a set of gated
graph convolution layers to model the spatial and temporal
correlations simultaneously. Doing so avoids potential large
accumulative errors associated with RNN-based models.

B. Bayesian-based Networks

This work aims to capture the variability/uncertainty of the
neural network model, in order to utilize this information
to provide confidence interval based demand predictions. In
recent years, different algorithms were proposed to estimate
model uncertainty based on Bayesian Neural Networks (BNN)
[36]–[39]. The Bayesian method provides an uncertainty es-
timation in the form of a probability distribution [40]. Bayes
by back-propagation was proposed in [37] to regularize the
weights of neural networks by minimizing a compression
cost and thus improve the predictive uncertainty. Probabilistic
back-propagation (PBP) was presented for learning BNN by a
product of Gaussians to approximate the posterior for weights
in BNN, which can deal with large network sizes [36].
More recently, the multiplicative normalizing flows (MNFs)
were introduced to interpret multiplicative noise for BNN for
augmenting the approximated posterior [38].

The aforementioned strategies often rely on different spe-
cific training methods, which should be tested in order to
provide useful forecasting or predictions. In this study, in order
to approximate the uncertainty of the model to obtain the
confidence interval of the demand prediction without relying
on the training methods, we adopt Bayesian approximation
through Monte Carlo (MC) dropout training, which was firstly
proposed by [39]. As discussed in [39], when dropout is ap-
plied before every weight layer, a neural network with arbitrary
depth and non-linearities will be mathematically equivalent to
an approximation to the probabilistic deep Gaussian process.

III. PRELIMINARY

In this section, we describe the basic settings for the demand
prediction problem, including city partition, the definition of
the OD demand, and the approximation of prediction interval
with a target level of confidence.

(a) Morning Demand (b) Evening Demand

Fig. 1. Illustration of Regions and OD Demand

A. City Partition

Many existing studies on demand forecasting divided the
whole city/area in concern into multiple squares, triangles,
or hexagons grids, e.g., [1]. This can be readily done with
the model proposed in this study. However, differently, in the
experiments of this study, we consider the administrative areas
for demand prediction based on the postcodes. Smaller region
sizes or types can be considered (e.g., we also test station-to-
station demand for three regions in Section V-D). In practice,
many relevant planning and management activities are indeed
administrative-region-based. Estimating the demand at the
administrative region level can be useful in many occasions
and can provide evidence for policy making at the region-
level. For example, demand information at the administrative
region level will be useful for inter-region bus service network
design.

It is also noteworthy that administrative regions often have
their unique features or functionalities (e.g., land use and
demographic attributes). In practice, urban features partially
govern traffic patterns [24], and thus further governs Origin-
Destination demand patterns. In particular, the city/area in con-
cern is partitioned into Q regions based on postcodes. Figure 1
shows an example of OD demand based on administrative
areas, where the land use and its functions largely affect the
demand pattern. In this figure, Region A and Region B are
residential regions while Region C is an industrial region.
This means that Region B has similar land use attribute to
Region A rather than adjacent Region C. As for Region C, in
the morning rush hours as shown in Figure 1(a), the demand
DA−C (from A to C) and DB−C (from B to C) are high.
On the contrary, in the afternoon rush hours as shown in
Figure 1(b), the demand DC−A (from C to A) and DC−B
(from C to B) will be high.

B. Origin-Destination Demand

The Origin-Destination demand is defined as the number
of trips from one region (the origin) to another region (the
destination) in each time step. We define the OD pair set as
R = {r1, r2, · · · , rn, · · · , rN}, where N is the total number
of OD pairs. Then, we denote the demand of OD pair n at
time step i as a scalar xni . Thus, time-dependent OD demand
can be represented as X ∈ RT×N×din , where T is the total
number of time steps (for the whole time horizon where have
demand data) and din is the dimension of OD and time-step
specific data. For example, if the OD and time-step specific
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data includes OD demand value and average trip distance for
this OD, then din = 2. In this study, we only use the OD
demand value, and thus din = 1. When din = 1, we can
simply consider X ∈ RT×N .

In the demand forecasting process, a demand sequence
of the observed OD pairs {X1, X2, · · · , Xi, · · · , XI} is
used instead of all historical information where Xi =
{x1i , x2i , · · · , xni , · · · , xNi } represents the demand of N OD
pairs at time step i and I is the number of time steps that
are utilized. The OD demand prediction problem is then
formulated as learning a prediction function Γ(·) to estimate
the demand of each OD pair in the future time step t + 1:
X̂t+1 = Γ (Xt−I+1, · · · , Xt−1, Xt).

C. Prediction Interval Approximation

As described in Section I, the predicted demand interval
with a target level of confidence provides a more robust way
to represent demand and better captures demand variability
and uncertainty. However, the “true” demand confidence in-
terval may never be obtained. We approximate the “true”
interval with the α-level prediction interval based on a normal
distribution. Specifically, the interval can be formulated as:
[µ̂ − zα/2η̂, µ̂ + zα/2η̂], where µ̂ and η̂ are the mean and
standard deviation of the estimated demand X̂t+1, respectively,
and zα/2 is a coefficient for the standard deviation such that
µ̂− zα/2η̂ and µ̂+ zα/2η̂ correspond to the lower and upper
α/2 quantiles of a standard Normal distribution, respectively.
These values can be obtained based on quantifying the graph-
based model uncertainty through Mote Carlo dropout training.

IV. PGCM FRAMEWORK

In this section, we propose a Probabilistic Graph Convo-
lution Model (PGCM) for OD demand prediction and de-
mand interval approximation. The architecture of the proposed
model consists of two components: the Origin-Destination
Demand Prediction Module based on Graph Neural Network
(i.e., a set of gated graph convolution layers to capture spatio-
temporal correlations for further forecasting) and the Bayesian
Approximation Module based on Monte Carlo dropout. The
overall structure of the proposed model is illustrated in Fig-
ure 2 and these modules will be explained in detail in the
following.

A. Origin-Destination Demand Prediction Module

The OD demand prediction module is composed of a series
of Gated Graph Convolution Layers (GGCLs) to extract the
spatial-temporal correlations for demand forecasting. Before
formulating the GGCL, the construction of the graph based
on OD demand is introduced first. Then, how to utilize the
GGCLs to construct the prediction module will be introduced.

Some previous studies [1], [21] assumed that spatially ad-
jacent areas may have similar OD demand patterns. However,
OD demand is not only related to the geographical location
(i.e latitude and longitude) but also relies heavily on the non-
Euclidean features such as demographic attributes (i.e income,
age distribution) and land use (i,e Point of Interest) of origins

and destinations. Graph-based deep models are able to process
the data with non-Euclidean structure and effectively extract
the features from OD demand data. Following [9], we define an
undirected graph G = (V,E,A) (as will be introduced below,
an edge in the graph reflects the correlation between two OD
pairs and has no direction, which has nothing to do with the
OD directions in Figure 1) and adopt a gated mechanism for
the graph convolution layers, where V is the set of nodes, E
is the set of edges that does not change with time, and A is the
adjacency matrix. The adjacency matrix is used to indicate the
adjacent relationship between nodes (reflecting whether there
is an edge between any two nodes).

An OD pair is represented by a node in the graph con-
structed, i.e., a node in the graph defined (as a part of the deep
learning model) is different from the “node” usually defined in
a physical transport network. An edge between two nodes in
the graph is used to indicate the correlation/similarity between
the demand patterns of two OD pairs. If the demand patterns
of two OD pairs (two nodes in the graph) are correlated to or
above a certain extent (a threshold is defined), we add an edge
between the two nodes in concern and set the corresponding
value in the adjacency matrix as one (otherwise zero).

More specifically, in the graph, vn ∈ V is denoted as a node
and en1n2 = (vn1 , vn2) ∈ E is denoted as an edge. Then, we
use Pearson Correlation Coefficient to measure the similarity
sn1n2

= Pearson(xn1
0∼t, x

n2
0∼t) between the historical demand

patterns of two OD pairs (OD pair n1 and OD pair n2) where
xn0∼t represents the historical passenger demand sequence for
OD pair n from time period 0 to t. The adjacency matrix
A ∈ RN×N is determined by the demand similarity between
two OD pairs:

An1n2 =

{
1 sn1n2

> ε

0 sn1n2
≤ ε

(1)

where ε is a threshold used to decide whether a sufficient
strong correlation exists between two OD pairs. The threshold
governs the sparsity of the adjacency matrix. In practice, the
threshold values chosen for different datasets and the corre-
sponding sparseness of adjacency matrix may be different. We
will conduct a sensitivity analysis on the value of the threshold
and sparsity.

To capture the spatial-temporal dependency, graph convo-
lution layers are adopted in the module based on the graph
G. We first denote the graph Laplacian matrix as L ∈ RN×N

where L = UΛUT . U ∈ RN×N is the matrix for eigenvectors
and Λ ∈ RN×N is the diagonal matrix for eigenvalues of L.
Then, based on the graph convolution in frequency domain
[26], following [30], [41], a signal x ∈ RN filtered by a filter
gθ can be written as:

x ∗ gθ = Ugθ(Λ)UTx (2)

Suggested by [42], we approximate the filter function gθ(Λ)
with Chebyshev polynomials Tk(x). Following [41], the order
is set to K = 1, Equation (2) then can be approximated by:

x ∗ gθ = θ(IN +M− 1
2AM− 1

2 )x (3)
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Fig. 2. The Architecture of Probabilistic Graph Convolution Model (PGCM). xji is the demand of jth OD pair at ith time step. I is the number of time steps,
N is the total number of OD pairs, din is the dimension of the input data, dl is the dimension of the data in emitted from lth GGCL, do is the dimension
of the output data emitted from the last GGCL, m is the number of time steps used in one gated graph convolution layer, δ is the sigmoid function. The
number of gated graph convolution layers is I−1

m−1
. And the number of learnable GGCL parameters is I−1

m−1
× 2 (bias is omitted for simplicity).

where M represents the diagonal matrix of node degrees and
Mii =

∑
j Aij . Therefore, the result of Graph Convolution

Layer (GCL) can be calculated as:

X l+1 = (M̃− 1
2 ÃM̃− 1

2 )X lW (4)

where IN + M− 1
2AM− 1

2 is replaced by M̃− 1
2 ÃM̃− 1

2 , and
Ã = A + In, M̃ii =

∑
j Ãij . X

l denotes the demand-like
input in the lth GCL. Note that the step in Eq. (4) does not
contain any non-linear operation.

Then, gating mechanism in [43] is adopted in the GCL
to capture the non-linearity and decide which part(s) of the
linear transformation can be passed through the gate and thus
contribute to the prediction. Moreover, residual learning in [44]
is utilized to reduce the vanishing gradient problem. These
actions complete the construction of the proposed Gated Graph
Convolution Layer (GGCL). And the structure of GGCL is
shown in Figure 2. The result of lth layer is formulated as:

X l+1 = ((M̃− 1
2 ÃM̃− 1

2 )X lW1+X l)�δ((M̃− 1
2 ÃM̃− 1

2 )X lW2)
(5)

where δ denotes the sigmoid function and is defined as:

δ(x) =
1

1 + e−x
(6)

To predict the OD demand, a series of GGCL as described
above has been applied along the temporal axis to capture
the spatial and temporal correlations simultaneously, which
requires less temporal iterative operations and avoids the error
accumulation problem for those using RNN, as discussed in
[9]. Also, following many existing studies, e.g., [43], [45],

adopting sigmoid function allows the proposed GGCL with the
gated units to capture the non-linearity. And adopting several
GGCL for demand prediction means that the model contains
more than one non-linear operations.

In detail, one GGCL has limited capability to capture long-
term temporal relations in the total number of I time steps.
Thus, we define another number m that is smaller than I .
Based on X ∈ RI×N×din , we then can define I − m + 1
different Xnew ∈ Rm×N×din , where each Xnew involve
less time steps than X . For example, if I = 5, i.e., we
have five time steps in consideration (i = 1, 2, 3, 4, 5) and
X ∈ R5×N×din , and m = 3, we then include time steps
i = 1, 2, 3 into X

(1)
new, time steps i = 2, 3, 4 into X

(2)
new and

time steps i = 3, 4, 5 into X(3)
new, i.e., I−m+1 = 5−3+1 = 3

different Xnew ∈ R3×N×din . The matrix in the lower-left
corner in Figure 2 also provides an example of Xnew for
illustration.

Such an operation discussed in the above means that one
GGCL acts on m time steps of the demand data rather than
a single time instant. It could extract the spatial correlation
among all regions within m time steps. Moreover, a number
of I −m+ 1 different Xnew ∈ Rm×N×din will be sent into
one GGCL sharing the same group of biases and weights to
capture the correlations of the data in I time steps used for
prediction. The output of lth layer is Ŷl ∈ RI−l×(m−1)×N×dl .

Therefore, only I−1
m−1 gated graph convolution layers are

needed to capture the temporal dependencies in I time steps,
which decreases the number of iterations and improves the
accuracy when compared with RNN-based models. Two pa-
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rameters W1 and W2 should be learned in each GGCL. Thus,
the total number of GGCL parameters need to be learnable
is I−1

m−1 × 2 (bias is omitted for simplicity). The output of
the set of GGCLs is Ŷ ∈ R1×N×do , where do is the output
dimension of the last gated graph convolution layer.

The proposed model is able to capture the spatial and
temporal features by the several gated graph convolution layers
before the last output layer. Thus, it is not necessary to
also use GGCL as the final prediction layer. Due to the
weights sharing mechanism of CNN as discussed in [46], CNN
needs fewer parameters than the fully connected layer. Using
the fully connected layer with more parameters will be less
efficient in terms of computation. Thus, we choose CNN as the
output layer in our model to extract the dependencies among
do dimensions’ data for prediction. The convolution layer is
composed of a filter equalling 1×1 to sweep the input matrix
and produce the prediction demand X̂t+1.

B. Bayesian Approximation Module

This section discusses how to provide a confidence interval
or a metric for prediction accuracy. As introduced by [47],
model uncertainty is used to indicate the accuracy of the pre-
diction in neural networks. The graph-based model uncertainty
in our work could be applied to approximate the forecasting
demand interval by Bayesian-based methods. For the Bayesian
methods, there are two main types of uncertainty: Aleatoric
Uncertainty and Epistemic Uncertainty. Aleatoric Uncertainty
measures the noise inherent in observations that mainly exists
in data collection methods, such as the noises caused by the
card reader machines of buses. Even if more data is collected,
the Aleatoric Uncertainty cannot be reduced and is hard to be
detected or measured by machine learning algorithms. On the
contrary, Epistemic Uncertainty is caused by the deep neural
network itself and can be measured by suitable Bayesian
Neural Networks (BNN), which is the main focus of this paper
and will be explained in the following.

Motivated by [39], Bayesian deep learning assumes that
each weight and bias should obey a certain distribution instead
of a certain value, which leads to an interval of the demand that
associates with a certain level of confidence. The Monte Carlo
dropout only involves minor changes in the neural network and
does not change the overall structure of the network, so the
prediction results are still compatible.

Given a set of values estimated by the OD demand pre-
diction module {X̂T+1, X̂T+2, · · · , X̂T+I , } and true values
{XT+1, XT+2, · · · , XT+I}, according to the Bayesian Theo-
rem, the posterior distribution P (W |X, X̂) is used to measure
the probability of the parameters over the model. As verified
by Gal et al. [39], the approximation of the Gaussian process
[48] is equivalent to a neural network with dropout. Thus, we
use Gaussian distribution qθ(W |X, X̂) to measure the poste-
rior distribution of our model by minimizing the Kullback-
Leibler divergence between them. The Gaussian process in
this paper is:

W |X, X̂ ∼ N(µ̂, η̂2) (7)

where µ̂ denotes the mean value of the demand estimation and
η̂ denotes the standard error. Then the demand intervals are
given by the Bayesian Inference.

C. Prediction Model Training and Bayesian Inference

In the training process of the OD demand forecasting
module, the objective is to minimize the error between the
true OD demand and the predicted values. The loss function is
defined as the mean squared error for I time steps formulated
as follows:

L(θ) =

T+I∑
i=T+1

||X̂i −Xi|| (8)

where θ denotes all the learnable parameters in the prediction
model. It is solved via back-propagation and Adam optimizer.

In order to check whether it is reasonable to approximate
the OD demand interval by Bayesian Inference as Gaussian
distribution, we visualize the distribution of demand at a
certain clock time on weekdays (or weekends) for a specific
OD pair. Note that we only have one demand observation for
each OD pair at a specific time step on a specific date, but the
demand patterns on weekdays (or weekends) may be similar
(e.g., May 09, 2017 is a weekday, and demand during 8:00 am
- 8:30 am on weekdays might be similar to that on May 09,
2017). We find that the distributions of demand at a certain
clock time on weekdays (or weekends) for a specific OD pair
can be well approximated by the Gaussian distribution.

In the Bayesian Inference of the approximation module, the
algorithm consists of three steps. First, we randomly dropout
some neural units with probability p before each layer, conduct
the forward passes through the network, and obtain the demand
prediction X̂s

t+1. Then, we repeat the first step for S times, and
we can get a set of predicted results {X̂1

t+1, X̂
2
t+1, · · · , X̂S

t+1}.
At last, the average value µ̂ and standard error η̂ are used to
approximate the demand interval:

µ̂ =
¯̂
Xt+1 = 1

S

∑S
s=1 X̂

s
t+1

η̂2 = 1
S

∑S
s=1(X̂s

t+1 − µ̂)2
(9)

The Bayesian inference based on MC dropout was listed in
Algorithm 1. With the help of Standard Normal Distribution
table, we can obtain the demand interval [µ̂−zα/2η̂, µ̂+zα/2η̂]
with a target level of confidence α.

V. PERFORMANCE EVALUATION

In this section, we first introduce the dataset used in our
experiments to test the proposed model. Then, experiment
settings are given. In the next, we present the experimental
results from two perspectives: the prediction accuracy and
prediction confidence interval coverage ratio among existing
strategies and our proposed model based on three different
time resolutions for demand predictions (1 hour, 30 minutes,
and 15 minutes). The prediction accuracy is reflected by
three evaluation metrics (MAE, RMSE, and MAPE). The
prediction confidence interval coverage ratio is defined as
the proportion of the true values falling into the demand
prediction interval (i.e., the proposed “confidence interval”)
for the testing samples. Moreover, we also test and evaluate
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Algorithm 1 Bayesian Inference Algorithm
Require:

Mobility Forecasting Module Γ
Number of Iteration S
Dropout Probability p
True Demand X

Ensure:
Mean Value µ̂
Standard Error η̂

1: for s in S do
2: Dropout units based on p of Model Γ
3: Conduct the forward passing of Γ and otain the pre-

dicted demand value X̂s

4: end for
5: Calculate µ̂ =

¯̂
X = 1

S

∑S
s=1 X̂

s

6: Calculate η̂2 = 1
S

∑S
s=1(X̂s − µ̂)2

7: end procedure

Fig. 3. An Example of the Bus Lines and Stations in Sydney

our method for station-to-station demand forecasting based on
the station-level data. The last part in this section focuses
on parameter sensitivity analysis on a number of factors or
settings (e.g., the learning rate, the threshold, and the sparsity
of the adjacency matrix).

A. Dataset

The dataset is collected from Sydney covering main public
transportation services (buses, trains, ferries, and light rails)
from 01/Apr/2017 to 30/Jun/2017 covering 6.37 million users.
We focus on forecasting the demand of buses in this study.
To have a more intuitive understanding of the bus operation,
we give an example of the bus lines and stations in a region
which is shown in Figure 3 (https://transportnsw.info/travel-
info/ways-to-get-around/bus/bus-operator-maps). The partition
of Sydney based on postcode is shown in Figure 4 and the ar-
eas shaded in purple are the study units (as origin/destination)
of our study. Different regions have different sizes and the
average value is about 7.8km2. In order to protect the privacy
of users, the data does not involve personal information that
can be used to identify the individuals.

B. Experimental Setting

Dataset Setting. In the experiments, we choose all bus lines
information including tap-on and tap-off location, time, cor-

Fig. 4. City Partition based on Postcodes

responding administrative area, and the number of passengers
getting on and off. We divide the whole dataset into three
mutually exclusive sub-sets, i.e., the first seventy days’ data are
used for training (training set), the last ten days’ data are used
for testing (testing set), and the rest for validation (validation
set).

The demand data is normalized by Min-Max normalization
for training and re-scaled for evaluating the prediction accu-
racy. We implement the model in Python with Pytorch 1.1.0.
In the experiments, we have tested three different lengths of
time step for demand prediction, i.e., 1 hour, 30 minutes,
and 15 minutes. Furthermore, we exclude the OD pairs with
extremely small demand since they are not the focus of
demand prediction in this paper. In particular, we exclude the
OD pairs with an average demand less than 3 persons per time
step when the time step length is one hour or 30 minutes,
and exclude the OD pairs with an average demand less than
2 persons per time step when the time step is 15 minutes.
Thus, when the time step set to 1 hour, the number of OD
pairs/nodes in the experiment is 634. When the time step set
to 30 minutes and 15 minutes, the number of OD pairs/nodes
in the experiment are 266 and 94, respectively. The number
of time steps I is set to 12.
Network Implementation. In all deep-learning based model,
the batch size is set to 64. And they are tuned with the
learning rate from 0.001 to 0.011 with a step size of 0.001.
In the proposed model, the size of hyperparameter m is 3.
If the value of m is too small, too many layers have to be
generated. The over-deep neural network will easily lead to
gradient disappearance or gradient explosion. On the contrary,
if the value of m is too large, it will yield too few layers which
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might not be able to well capture the temporal correlations.
Moreover, the number of Gated Graph Convolution Layers is
six. It is tuned with the number of hidden units (16, 32, 64) for
six layers. The chosen output dimensions of the hidden layers
are 32, 32, 64, 64, 64, and 64. In the Bayesian Approximation
Module, the dropout probability p is set to 0.15. And the
amount of repeat times is set to 1000 for Bayesian Inference.
Evaluation Metrics. To test the effectiveness of the proposed
OD demand forecasting model, three evaluation metrics are
used to evaluate it: Root Mean Square Error (RMSE), Mean
Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE). For Bayesian Approximation, we calculate the range
of the prediction interval and the proportion of the true value
falling into the interval.

C. Overall Comparison
This subsection includes two parts, the comparison of

the predicted accuracy among the proposed method PGCM
and various previous studies and the coverage proportion of
predicted demand interval.

1) Accuracy of Prediction: To test the effectiveness of
the proposed model, we first compare the proposed method
with three traditional baselines and four deep-learning-based
methods, which are briefly summarized in the following.

• Autoregressive Integrated Moving Average (ARIMA):
It is one of the most common statistic models used for
time series prediction, which combines the autoregressive
components and the moving average method. In detail,
the order of the autoregressive model equals 2, the degree
of differencing equals zero, and the order of the moving-
average model equals one. A separate model for each OD
pair is developed.

• Linear Regression (LR): Ordinary least squares Linear
Regression is tested, which minimizes the sum of the
squares of the errors. We regard the date and time of data
as one-hot input features and develop a separate model
for each OD pair.

• Historical Average (HA): It utilizes the average values
of historical demand values at the same time step of every
day as the predicted demand.

• Gate Recurrent Unit (GRU) [49]: It has a similar
structure with LSTM but has fewer parameters than
LSTM such as the output gate, which may yield better
performance in some circumstances. It is tuned with the
number of hidden units (32, 64, 100, 128), where 100 is
chosen as it yields better performance.

• Graph Convolutional Recurrent Network (GCRN)
[28]: It combines CNN on graphs to identify spatial
structures and RNN to find temporal patterns for precise
demand forecasting. It is tuned with the number of hidden
units (32, 64, 100, 128) and the threshold of the adjacency
matrix (from 0.001 to 0.01 with a step size of 0.01). And
the chosen number of units in the graph convolution layer
is 64 while the chosen number of units in LSTM layer is
128. The chosen threshold is 0.005. These chosen values
produce better performance than others.

• Long- and Short-term Time-series network (LSTnet)
[50]: It leverages a novel recurrent structure, i.e.,

recurrent-skip network to capture very long-term depen-
dence patterns and convolutional layers to discover the
local dependency patterns for forecasting. The window
size is 12 while the skip length is 3. It is tuned with
the number of hidden dimensions (32, 64, 100, 128). The
chosen hidden dimensions of the Recurrent layer and
Convolutional layer are 100.

• Spatio-Temporal Graph Convolutional Networks
(STGCN) [33]: It combines graph convolutional layers
and convolutional sequence learning layers to model spa-
tial and temporal dependencies for traffic flow forecast-
ing. According to their hyperparameter setting, both the
graph convolution kernel size and temporal convolution
kernel size in our experiments are set to 3. It is tuned with
the number of channels of three layers (32, 64, 100, 128)
and the threshold of the adjacency matrix (from 0.001 to
0.01 with a step size of 0.01). The chosen numbers of
channels for three layers are all set to 64 and the chosen
threshold is 0.003.

Table I summarizes the results regarding prediction accuracy
for the proposed method and the aforementioned tools in
the literature under different time resolutions for demand
forecasting. We test different settings of hyperparameters for
the compared strategies based on the validation set. The setting
of hyperparameters that yields the best performance is then
utilized to conduct testing and comparison based on the testing
set (which has not been used before in training or validation
process).

Several observations are made based on the results, which
are discussed below.

First, the three traditional machine learning methods
(ARIMA, LR, and HA) have relatively large RMSE, MAE,
and MAPE. This is partially due to their inability to capture
non-linear relations among spatial and temporal information
for the OD demand forecasting. These results imply that there
exist non-linear spatio-temporal relationships in the demand
dataset that non-deep learning methods can not capture well.

Second, ARIMA yields relatively poor performance. A
possible explanation is that ARIMA involves several param-
eters (the order of the autoregressive model, the degree of
differencing, and the order of the moving-average model). It
is not straightforward to obtain the optimal setting of these
parameters (i.e., the optimal setting is not always guaranteed).
These indeed have been reported in some previous works [51],
where ARIMA yields relatively poor performance.

Third, the listed remaining neural network-based strategies
including GRU, GCRN, LSTnet, and STGCN are able to
predict the OD demand more precisely which are more able
to capture the non-linear relations. Moreover, the good perfor-
mance of LSTnet is partially due to the skip connection. The
operation of the skip connection could also be adopted in other
models to enhance the forecasting performance. However,
GRU and LSTnet are less interpretable, e.g., in terms of
correlations among the OD pairs since it did not explicitly
analyse the spatial correlations. Compared to them, our model
based on the graph convolution network is more interpretable,
where the correlations among the OD pairs (nodes) based
on the adjacency matrix are identified and more intuitive.
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TABLE I
OVERALL COMPARISON OF PREDICTION ACCURACY

time step 1 hour 30 minutes 15 minutes
Index Method RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE
1 ARIMA 29.6429 20.4692 0.6065 20.3203 15.2411 0.5221 14.4282 12.5180 0.5892
2 HA 13.4791 12.1329 0.4630 10.0264 8.9477 0.4396 9.3335 7.8171 0.4086
3 LR 12.9000 10.2313 0.4011 9.5403 8.3992 0.3843 8.7148 7.6929 0.4012
4 GRU 10.1630 4.6386 0.2499 6.5868 3.5475 0.3119 4.5135 2.6724 0.3594
5 LSTnet 8.9854 4.0135 0.2515 7.0769 3.4815 0.3388 4.9903 2.6446 0.4330
6 GCRN 8.4710 4.1026 0.2765 6.8699 3.5766 0.3418 4.6497 2.7804 0.3877
7 STGCN 8.2523 4.0916 0.2882 6.5819 3.5372 0.3487 4.5968 2.6897 0.3694
8 Our 7.8741 4.0412 0.2441 6.3196 3.4804 0.3109 4.4219 2.6680 0.3475

TABLE II
COMPARISON OF PREDICTION INTERVAL PERFORMANCE

Confidence Level 94% 95% 96% 97% 98%
time step Method Span Proportion Span Proportion Span Proportion Span Proportion Span Proportion

1 hour

GRU 11.4551 50.24% 11.9545 52.59% 12.4937 55.45% 13.2014 59.09% 14.1520 63.76%
LSTnet 8.6212 46.43% 8.9854 49.09% 9.4091 52.59% 9.9421 57.03% 10.6580 62.73%
GCRN 7.8988 46.58% 8.2313 48.62% 8.6252 50.81% 9.1138 53.57% 9.7702 62.93%

STGCN 8.0900 53.66% 8.4306 55.38% 8.8340 57.36% 9.3344 59.84% 10.0066 63.06%
Our 7.0105 56.41% 7.3056 57.91% 7.6551 59.66% 8.0888 61.72% 8.6712 64.27%

30 minutes

GRU 5.7325 34.52% 5.9738 35.95% 6.2597 37.63% 6.6143 39.91% 7.0905 43.10%
LSTnet 5.1590 32.73% 5.4059 34.74% 5.7121 37.46% 6.1234 41.95% 4.9506 31.17%
GCRN 4.5875 32.23% 4.7806 33.24% 5.0093 34.28% 5.2931 35.71% 4.6742 35.12%

STGCN 4.3225 38.41% 4.4860 39.73% 4.6768 41.13% 5.0134 42.88% 5.2311 45.16%
Our 4.1310 39.84% 4.3287 41.42% 4.5739 43.30% 4.9033 45.63% 4.9642 38.50%

15 minutes

GRU 2.4089 20.99% 2.5103 22.07% 2.6304 23.37% 2.7794 25.36% 2.9795 28.46%
LSTnet 2.3836 20.49% 2.4839 21.43% 2.6028 22.91% 2.7502 25.65% 2.9483 30.35%
GCRN 2.1749 22.68% 2.2665 23.62% 2.3749 24.61% 2.5094 26.10% 2.6902 28.05%

STGCN 1.9151 34.31% 1.9958 25.22% 2.0913 26.43% 2.2097 27.78% 2.3688 29.67%
Our 1.7725 25.27% 1.8471 26.14% 1.9355 27.25% 2.0452 28.83% 2.1924 30.72%

As for GCRN and STGCN, they were modeled based on
graph convolution operation but were not designed for OD
demand forecasting which have less ability to capture the
spatial correlations among OD pairs than our model.

Fourth, for the proposed model, when the time step is set to
one hour and 15 minutes, although MAE values are slightly
larger than LSTnet, RMSE and MAPE are smaller than all
methods, which means that PGCM yields fewer big errors.

In general, the results indicate that the Probabilistic Graph
Convolution Model can capture spatio-temporal correlations
more accurately than others when predicting OD demand. In
addition, the proposed model achieves more precise results
under a larger time step.

2) Prediction Interval: First, we have checked that the
predicted values {X̂1

t+1, X̂
2
t+1, · · · , X̂S

t+1} can be well ap-
proximated as a Gaussian distribution. Then, we collect sta-
tistical results about the range of prediction interval with a
certain level of confidence, and the proportion of true values
falling into the interval based on three time steps. Table II
compares the results of the proposed model and four deep-
learning-based strategies which could combined with Bayesian
approximation: GRU, LSTnet, GCRN, and STGCN. In the
experiments, the level of confidence value α changes from
94% to 98%. Specifically, α = 95% means that the estimated
values fall within the range of 1.96 standard deviations of the
mean value. The results show that over three time periods
and five confidence levels, the proposed PGCM achieves a
higher coverage proportion within a shorter prediction interval
compared to other strategies. This means that the proposed

model can give more accurate predictions in a smaller range.
Then, in Figure 5, we provide several examples with dif-

ferent demand patterns to illustrate the predicted OD demand
intervals (when time step = 1 hour). The red lines represent
true values and the blue shaded parts are the prediction
intervals. These results indicate that the predicted intervals can
cover true values well for various ranges of demand data and
only in a small number of occasions that the true demand is
not covered by the predicted intervals.

D. Comparison with Station-level Prediction

The results from Section V-C1 show that our model achieves
good performance at the region-level based on administrative
regions. In this subsection, we further illustrate the effective-
ness of the proposed method at the micro-level, i.e., the transit-
stop level (station-level).

We choose three administrative areas with totally different
demand intervals and predict the OD demand between each
transit stop within one area (when the time step is one hour).
The statistical demand distributions of three chosen areas
are shown in Figure 6 (Region-A: Postcode 2000; Region-B:
Postcode 2170; Region-C: Postcode 2200). They have different
average values and distributions for the demand. Region-A has
a much lager OD demand level than the other two regions. And
the geographical distribution of average demand based on all
historical data in the three regions are shown in Figure 7,
which reflects the spatial distribution of demand. Then we
compare the prediction results of our model with GRU,
LSTnet, GCRN, and STGCN. The RMSE, MAE, and MAPE
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Fig. 5. Examples of Predicted OD Demand Interval
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Fig. 6. Demand Distribution of the Selected Regions

values are shown in Table III. Though LSTnet obtains slightly
smaller MAE value than the proposed model over Region-
B, other results indicate that the proposed model still has
better forecasting performance at the micro-level (transit-stop
level). Moreover, based on the proposed model, the stations
with larger demand achieve relatively smaller MAPE. When
comparing the predictions at the station-level and region-level,
based on MAPE, one can see that the region-level prediction
with large demand is more accurate. This is possibly due to
that stations with a smaller level of demand involve more
randomness, which can hardly be fully captured.

E. Parameter Sensitivity

We now evaluate the performance of the proposed method
under various hyperparameters tuning based on the validation
set, including learning rate, the threshold, and sparsity of

Fig. 7. Heatmap of the Selected Regions
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Fig. 8. Performance on Parameter Tuning

TABLE III
COMPARISON OF PREDICTION ACCURACY AT THE MICRO-LEVEL

Method
Region GRU LSTnet GCRN STGCN Our

RMSE
Region A 12.1331 11.6914 11.4835 11.5926 11.1668
Region B 7.5565 5.5670 5.1012 4.8637 4.4474
Region C 5.9944 4.3636 4.0685 3.9729 3.7338

MAE
Region A 6.5966 4.3352 4.4431 4.8935 4.2912
Region B 4.4878 3.6252 3.7265 3.8305 3.6405
Region C 4.0148 3.0719 3.1069 3.0959 2.8152

MAPE
Region A 0.2511 0.2409 0.2761 0.24432 0.2352
Region B 0.2340 0.2579 0.2680 0.2555 0.2502
Region C 0.2591 0.2514 0.2735 0.2501 0.2474

adjacency matrix A based on a time step of one hour. And
the results listed below are computed based on the test set.

Figure 8(a) shows RMSE and MAE under different learning
rates from 0.001 to 0.011. When the learning rate is 0.05, the
model yields the best performance.

The threshold introduced in Equation (1) is used to deter-
mine whether there is a sufficiently large correlation/similarity
between two nodes in the graph (correspond to the demand
patterns of two OD pairs). We test various values of the
threshold in this subsection from 0.00007 to 0.03. Figure 8(b)
gives the values of MAE and RMSE under different thresholds.
When the threshold value is set to 0.001, the proposed model
achieves the best performance. If the threshold value is too
large, the adjacency matrix A will be relatively sparse, which
means that most OD pairs are considered to have no simi-
larity. The proposed model is then unable to fully utilize the
correlation/similarity among OD pairs to enhance prediction
accuracy. On the contrary, if the threshold value is too low,
those not related OD pairs might be considered to have similar
demand patterns, which results in the addition of noise in the
model when predicting the demand.

Moreover, the threshold further governs the sparsity of
the adjacency matrix defined. We then test different sparsity
of the adjacency matrix which are shown in Figure 8(c).
It illustrates RMSE and MAE under different sparsity of
adjacency matrix A from 10% to 55%. Specifically, when
the sparsity of A is set to 100%, the prediction achieves
MAE= 4.4256, RMSE= 8.286, and MAPE= 0.2571, which
are worse than others. An over-sparse adjacency matrix means
that the potential relationship between two OD pairs is ignored
while an over-dense matrix means that two unrelated OD
pairs are considered to be related. An appropriate sparsity is
important for the proposed approach. The results indicate that
a sparsity of 30% yields the best performance.

VI. CONCLUSION

This paper proposes a novel deep learning framework based
on a graph for confidence interval-based OD demand fore-
casting through exploring and utilizing the relevance among
temporal and spatial information of the public transit data.
Specifically, in the graph constructed, we define the node as
one OD pair, the edge as the correlation between two OD
pairs. One may define the nodes in the graph as zones in the
real world and the edges as the demand between the origin
and destination intuitively. However, in this case, the graph
constructed will not contain any information regarding corre-
lations between OD pairs. In order to utilize the correlations
between OD pairs for forecasting, one may have to integrate an
additional module to define the correlations between OD pairs.
Treating each OD pair as a node to construct the graph is a
more concise (while less intuitive) way to make full use of the
graph network structure, which covers information regarding
correlations among OD pairs for prediction.

In particular, within the proposed approach, (i) the Proba-
bilistic Graph Convolution Model employs the demand fore-
casting module based on a series of gated graph convolution
layers to extract spatio-temporal correlations; and (ii) the
Bayesian Approximation Module is proposed to measure the
model uncertainty and further provide the confidence interval
for the demand prediction. The proposed approach is compared
with several benchmark algorithms in the literature including
ARIMA, LR, HA, GRU, and LSTnet, GCRN, and STGCN.
The experiments on the real-world dataset show that the pro-
posed approach outperforms other state-of-the-art methods. In
general, the proposed approach is able to achieve lower RMSE,
MAE, MAPE, and yields more precise demand intervals under
different time resolutions for demand forecasting.

This study makes the first attempt to combine Bayesian
Neural Network with OD demand forecasting for predicting
demand confidence interval. It provides a reliable way to
represent the demand and measure the uncertainty of demand.
The outputs can be used for public transit planning and
operation optimization problems. The developed techniques
may also be applied to other domains such as human mobility
uncertainty analysis and traffic flow variability.

This study can be further extended in many ways. Firstly, the
current work can be extended by adding more information into
the neural network, such as the demographic attributes and PoI
(Point of Interest) of the areas. This may further improve the
prediction. Secondly, a future study may also explore the time
series mutation problems based on demand forecasting. Last
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but not least, we may utilize the graph network in alternative
manners in order to predict demand. For example, we may
consider nodes in the graph as zones in the real world and
the edges in the graph as the demand between the origin and
destination and develop further related techniques. One then
can also compare these alternative approaches with the method
proposed in this paper.
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