
  

Abstract— This paper proposes an end-to-end trainable 

one-stage parking slot detection method for around view monitor 

(AVM) images. The proposed method simultaneously acquires 

global information (entrance, type, and occupancy of parking slot) 

and local information (location and orientation of junction) by 

using a convolutional neural network (CNN), and integrates them 

to detect parking slots with their properties. This method divides 

an AVM image into a grid and performs a CNN-based feature 

extraction. For each cell of the grid, the global and local 

information of the parking slot is obtained by applying 

convolution filters to the extracted feature map. Final detection 

results are produced by integrating the global and local 

information of the parking slot through non-maximum 

suppression (NMS). Since the proposed method obtains most of 

the information of the parking slot using a fully convolutional 

network without a region proposal stage, it is an end-to-end 

trainable one-stage detector. In experiments, this method was 

quantitatively evaluated using the public dataset and outperforms 

previous methods by showing both recall and precision of 99.77%, 

type classification accuracy of 100%, and occupancy classification 

accuracy of 99.31% while processing 60 frames per second. 

 
Index Terms— Parking slot detection, deep learning, 

convolutional neural network, end-to-end, one-stage detector 

 

I. INTRODUCTION 

utomatic parking systems have been consistently 

researched as a key element of autonomous driving [1]. 

Vacant parking space detection is undoubtedly the first step of 

an automatic parking system. This task has been conducted in 

four approaches: free space-based, slot marking-based, user 

interface-based, and infrastructure-based [2]. Among them, the 

first two approaches have been more widely researched 

compared to the others. The free space-based approach detects 

vacant parking spaces by recognizing adjacent parked vehicles. 

It works well when the parked vehicles are in favorable 

positions, but its performance depends on the existence and 
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poses of the parked vehicles. This drawback can be mitigated 

by the slot marking-based approach. This approach detects 

vacant parking spaces by recognizing parking slot markings on 

the ground. It can accurately detect parking spaces regardless of 

the existence and poses of the parked vehicles, but its 

performance depends on the visual condition of the parking slot 

markings. Most of the methods in this approach find lines, 

corners, or pixels of a specific color and combine them 

according to predetermined geometric constraints of parking 

slot markings [2]-[18]. 

Recently, deep learning-based object detection has been 

widely researched because of its impressive performance, and 

attempts to implement it using edge devices have been actively 

conducted [19]. Accordingly, it has also been applied to 

parking slot detection tasks and showed more robust and higher 

detection performance than traditional methods [20]-[22]. Deep 

learning-based parking slot detection methods can be 

categorized into two approaches. The first approach uses deep 

learning techniques along with traditional rule-based 

techniques [20], [21]. The methods in this approach first find 

junctions that make up entrances of parking slots using deep 

learning techniques and then pair them using manually 

designed geometric rules to generate parking slots. This 

approach can precisely estimate the locations of the parking 

slots based on the locations of the junctions detected by deep 

learning techniques, but it cannot be trained end-to-end due to 

the use of manually designed geometric rules. The second 

approach detects parking slots by applying the existing deep 

learning-based general object detector [22]. This method can be 

trained end-to-end, but it cannot estimate the precise location 

and orientation of the parking slot because the existing general 

object detector, which has a limitation in terms of the 

localization accuracy, is directly used without being specialized 

in parking slot detection tasks. In the viewpoint of the 

automatic parking system, the positioning accuracy of the 

detection result is significantly important because the vehicle 

should be controlled according to the detected position. 

This paper proposes a novel method that can overcome the 

limitations of the previous deep learning-based parking slot 

detection methods. The proposed method simultaneously 

acquires global information (entrance, type, and occupancy of 

parking slot) and local information (location and orientation of 

junction) by using a convolutional neural network (CNN), and 

integrates them to find parking slots with their properties. Fig. 1 

End-to-End Trainable One-Stage Parking Slot 

Detection Integrating Global and Local 

Information 

Jae Kyu Suhr and Ho Gi Jung 

A 



shows definitions of slot, entrance, and junction in cases of 

three types of parking slot markings. In this figure, blue dashed, 

green dotted, and red solid lines indicate slots, entrances, and 

junctions, respectively. The proposed method divides an 

around view monitor (AVM) image into a grid and performs 

CNN-based feature extraction. For each cell of the grid, global 

and local information of the parking slot is obtained by 

applying convolution filters to the extracted feature map. The 

global information consists of the entrance location, type, and 

occupancy of the parking slot that includes the center of each 

cell. The local information consists of the location and 

orientation of the junction that is included in each cell. Both the 

entrance location in the global information and the junction 

location in the local information represent the same location, 

but the junction location is more precise than the entrance 

location. This is because during the global information 

extraction, each cell is obliged to estimate the entrance located 

distant from it but during the local information extraction, each 

cell is obliged to estimate the junction located inside of it. Even 

though the entrance location is less precise than the junction 

location, it should be obtained because it contains pairing 

information of two junctions. Final detection results are 

produced by integrating the global and local information of the 

parking slots through the non-maximum suppression (NMS) 

based on junctions. Since the proposed method obtains most of 

the information of the parking slots using a fully convolutional 

network without a region proposal stage, it is an end-to-end 

trainable one-stage detector. In experiments, the proposed 

method was quantitatively evaluated using the public dataset 

and outperforms previous methods by showing both recall and 

precision of 99.77%, type classification accuracy of 100%, and 

occupancy classification accuracy of 99.31% while processing 

60 frames per second. It also shows 1.02 pixels and 0.18° for 

location and orientation errors, respectively. 

The proposed method has the following contributions over 

the previous deep learning-based parking slot detection 

methods: 

1) It can achieve both high detection rate and positioning 

accuracy by integrating the global and local information of 

the parking slot. 

2) It can be trained end-to-end and rapidly detect parking slots 

because it uses a fully convolutional network and one-stage 

detection strategy. 

3) It does not require inconvenient procedures for setting 

geometric rules and their associated parameters because 

those rules are trained by the network. 

4) It can extract most of the properties of the parking slot 

including location, orientation, type, and occupancy from a 

single AVM image. 

II. RELATED RESEARCH 

Previous methods for detecting vacant parking spaces can be 

categorized into four approaches: slot marking-based, free 

space-based, user interface-based, and infrastructure-based [2]. 

The literature review of this paper focuses on the slot 

marking-based approach to which the proposed method 

belongs. Details of the other approaches can be found in our 

previous papers [2], [11], [14]. 

The slot marking-based approach detects parking spaces by 

recognizing markings on the ground. Its performance is not 

dependent on the existence and poses of the adjacent parked 

vehicles, but visually proper parking slot markings should be 

presented for this approach to work. All methods in this 

approach utilize vehicle-mounted cameras that can capture 

markings on the ground. The methods in [3],[4] detect parking 

slot markings in a semi-automatic manner. The method in [3] 

detects parking slot markings based on one manually 

designated point, and it was improved to detect various types of 

parking slot markings in [4] based on two manually designated 

points. The methods in [2],[5]-[18] detect parking slot 

markings in a full-automatic manner. The method in [5] detects 

parking slots based on color segmentation. The methods in 

[6]-[14] detect parking slot markings by finding lines using 

various techniques such as Hough transform, Radon transform, 

random sample consensus (RANSAC), or distance transform. 

The methods in [2], [15]-[18] detect parking slot markings by 

finding junctions of parking slots using a machine 

learning-based object detector or corner detector. Since this 

paper focuses on deep learning-based parking slot detection, 

those methods that use non-deep learning techniques are briefly 

introduced. A detailed introduction of them can be found in our 

previous papers [2], [11], [14]. 

Deep learning-based object detection methods have been 

widely researched because they show impressive detection 

performances for a variety of target objects under various 

conditions [19]. Deep learning-based object detection methods 

can be categorized into two approaches: two-stage and 

one-stage. The two-stage approach consists of two sequential 

steps. The first step generates category-independent region 

proposals and the second step recognizes classes of objects in 

the region proposals and refines their regions. Region-based 

CNN (RCNN) [23], Fast RCNN [24], Faster RCNN [25], 

RFCN (region-based fully convolutional network) [26], and 

mask RCNN [27] are representative methods in this approach. 

The two-stage approach has an advantage of high detection 

performance but has a limitation of slow detection speed. To 

mitigate this drawback, the one-stage approach has been 

suggested. This approach directly recognizes classes of objects 

along with their regions without generating region proposals. 

You only look once (YOLO) [28], single slot multibox detector 

(SSD) [29], and RetinaNet [30] are representative methods in 

this approach. The one-stage approach has an advantage of fast 

detection speed but has a limitation of relatively low detection 

performance compared to the two-stage approach. 

As deep learning-based object detection has been actively 

researched, this technique has also been applied to the parking 

slot detection task [20]-[22]. The method in [20] generates 

 
Fig. 1. Definitions of slot (blue dashed line), entrance (green dotted line), and 

junction (red solid line). 



entrances of parking slots by finding junctions using YOLO 

and pairing them using geometric rules. The generated 

entrances of parking slots are verified by a CNN and their 

orientations are estimated by a template matching technique. 

The method in [21] estimates locations and orientations of 

junctions using a customized CNN and pairs them using 

various geometric rules to detect parking slots. This method can 

only detect perpendicular and parallel parking slots, but not 

slanted parking slots. The method in [22] applies an existing 

two-stage object detection method (anchor free faster RCNN 

[31]) to the parking slot detection task. It finds four corners of 

the parking slot as a region proposal in the first step and refines 

the locations of the four corners while classifying the 

occupancy of the parking slot in the second step. The methods 

in [20] and [21] improved the parking slot detection 

performance using deep learning techniques along with various 

geometric rules. However, they cannot be trained end-to-end 

due to the use of manually designed geometric rules and require 

inconvenient process to manually set geometric rules and their 

associated parameters. The method in [22] can be trained 

end-to-end because it adapts the existing two-stage object 

detector. However, this method has limitations of detection 

performance and positioning accuracy because it simply adapts 

the method used for the general obstacle detection without 

specializing it for the parking slot detection task. Furthermore, 

this method incorrectly detects parking slots with certain 

orientations as mentioned in the paper, and its detection speed 

is relatively slow due to the used of the two-stage approach. 

As a thorough literature review, it was found that this is the 

first paper that proposes an end-to-end trainable one-stage 

parking slot detection method. The proposed method has 

significant advantages over the previous deep learning-based 

parking slot detection methods as aforementioned at the end of 

the introduction. 

III. PROPOSED METHOD 

A. Network Architecture 

This paper proposes an end-to-end trainable one stage 

parking slot detection method that simultaneously extracts the 

global and local information of the parking slot. To obtain such 

a detector, this paper suggests a novel network architecture as 

shown in Fig. 2. Fig. 2(a) indicates an input of the proposed 

network, which is a color AVM image with 416×416 pixels. 

Fig. 2(b) indicates a feature extractor. This paper uses VGG16 

whose performance has been proven in various applications 

[32]. More sophisticated and recent networks have been tested 

but showed similar performances in terms of parking slot 

detection. The feature extractor can be changed depending on 

the application environment. VGG16 is used up to pool5, so 

that the dimension of the feature map obtained from it is 

13×13×512 as shown in Fig. 2(c). Fig. 2(d) shows two 

extractors for the global and local information. The global and 

local information are represented by nine and five values, 

respectively. This paper extracts global and local information 

by applying only one convolution layer to the feature map 

obtained by VGG16 rather than applying multiple convolution 

layers to reduce computational costs. Thus, the global and local 

information extractors consist of nine and five 3×3×512 filters, 

respectively. Details on the global and local information 

extractors and their outputs will be described in the next section. 

The global and local information obtained by the proposed 

network are represented by a 13×13×9 tensor and a 13×13×5 

tensor, respectively as shown in Fig. 2(e). The proposed 

method integrates the global and local information based on 

NMS as shown in Fig. 2(f) and produces a final parking slot 

detection result. Fig. 2(g) shows a conceptual example of the 

parking slot detection result. In this result, blue, magenta, and 

red lines indicate perpendicular, parallel, and slanted parking 

slots, respectively, and solid and dashed lines indicate vacant 

and occupied parking slots, respectively. The proposed method 

can extract most of the properties of the parking slot including 

location, orientation, type, and occupancy from a single AVM 

image. 

B. Information Extractors and Network Outputs 

As shown in Fig. 2(e), the global and local information are 

represented by a 13×13×9 tensor and a 13×13×5 tensor, 

respectively. The spatial resolutions of those two tensors are 

13×13. This means that the proposed method divides the input 

image into a grid of 13×13 cells and obtains global information 

and local information for each cell. Each cell is obliged to 

extract the global information of the parking slot including the 

cell center, and at the same time, it is obliged to extract the local 

 
(a)                          (b)                     (c)                              (d)                     (e)                            (f)                               (g) 

Fig. 2. Network architecture of the proposed method. 



information of the junction included in the cell. The reason for 

suggesting this architecture is that the cell inside a parking slot 

contains the overall information of the parking slot, and the cell 

including a junction contains the detailed positional 

information of the junction. Since each cell is used to obtain the 

global information of one parking slot and the location 

information of one junction, it is recommended that the cell size 

be set smaller than the minimum size of the parking slots and 

smaller than the minimum distance between two junctions. This 

allows one parking slot to include at least one cell and one cell 

to include at most one junction. 

Fig. 3 and Fig. 4 show the detailed description of the 

information extractors and network outputs shown in Figs. 2(d) 

and (e). The global information extractor and its output 

(13×13×9 tensor) are divided into four parts (13×13×1, 

13×13×4, 13×13×3, and 13×13×1 tensors) as shown in the first 

and second row of Fig. 3. In Fig. 3(a), the possibility that a cell 

center is included inside any parking slot is calculated. This is 

obtained by applying one 3×3×512 filter to the feature map 

shown in Fig. 2(c) followed by the sigmoid function, so that it is 

represented by a 13×13×1 tensor. The bottom of Fig. 3(a) 

shows its visual representation. In this figure, a cell whose 

center is included inside any parking slot has large value (green) 

and otherwise has small value (grey). the input image is divided 

into a grid of 5×5 cells for ease of understanding but divided 

into a grid of 13×13 cells in the actual implementation. In Fig. 

3(b), the relative position from a cell center to paired junctions 

which represent the entrance of the parking slot including the 

cell center is calculated. This is obtained by applying four 

3×3×512 filters to the feature map followed by the sigmoid 

function, so that it is represented by a 13×13×4 tensor. The 

bottom of Fig. 3(b) shows its visual representation. In this 

figure, only the results obtained from the cells located inside the 

parking slots are drawn. A pair of two red arrows indicates two 

2D vectors connecting the cell center to the two junctions of the 

parking slot including the cell center. Since four values are 

needed to represent two 2D vectors for each cell, the dimension 

of the tensor is 13×13×4 as aforementioned. The position of 

each parking slot can be roughly estimated based on the two 2D 

vectors. In Fig. 3(c), the type of parking slot including a cell 

center is acquired. This is obtained by applying three 3×3×512 

filters to the feature map followed by the softmax function, so 

that it is represented by a 13×13×3 tensor. In this paper, the 

parking slots are categorized into three types (perpendicular, 

parallel, and slanted) and those types are represented in one-hot 

encoding. Since three values are needed to represent three types 

for each cell, the dimension of the tensor is 13×13×3 as 

aforementioned. The bottom of Fig. 3(c) shows its visual 

representation. In this figure, blue, magenta, and red cells 

indicate perpendicular, parallel, and slanted parking slots, 

respectively. In Fig. 3(d), the occupancy of the parking slot 

including a cell center is acquired. This is obtained by applying 

one 3×3×512 filter to the feature map followed by the sigmoid 

function, so that it is represented by a 13×13×1 tensor. The 

bottom of Fig. 3(d) shows its visual representation. In this 

figure, a cell whose center is included inside the occupied 

parking slot has a large value (violet) and a cell whose center is 

included inside the vacant parking slot has a small value 

(yellow). 

An intermediate parking slot detection result shown in Fig. 

3(e) can be obtained by combining the whole global 

information shown in Figs. 3(a)-(d). In Fig. 3(e), blue, magenta, 

and red lines indicate perpendicular, parallel, and slanted 

parking slots, respectively, and solid and dashed lines indicate 

vacant and occupied parking slots, respectively. In this figure, 

two parking slot candidates are generated for the perpendicular 

and slanted parking slots because each of those slots includes 

two cells and three parking slot candidates are generated for the 

parallel parking slot because it includes three cells as shown in 

Figs. 3(a)-(d). The proposed method generates one parking slot 

 
(a)                                    (b)                                     (c)                                     (d)                                                 (e) 

Fig. 3. Global information extractor and detailed global information obtained from it. 



candidate for each cell located inside the parking slot. It should 

be noted that the type and occupancy of the parking slot 

obtained by the global information extraction are accurate, but 

their positions are not. This is because the positions of the 

paired junction are estimated from the cell distant from those 

junctions. In the viewpoint of the automatic parking system, the 

positioning accuracy of the detection result is significantly 

important because the vehicle should be controlled based on the 

detected position. Therefore, this paper extracts the local 

information that includes precise location and orientation of the 

junction and uses them to improve the positioning accuracy of 

the parking slot. 

The local information extractor and its output (13×13×5 

tensor) are divided into three parts (13×13×1, 13×13×2, and 

13×13×2 tensor) as shown in the first and second row of Fig. 4. 

In Fig. 4(a), the possibility that a cell contains a junction is 

calculated. This is obtained by applying one 3×3×512 filter to 

the feature map shown in Fig. 2(c) followed by the sigmoid 

function, so that it is represented by a 13×13×1 tensor. The 

bottom of Fig. 4(a) shows its visual representation. In this 

figure, a cell containing a junction has large value (green), 

otherwise has small value (grey). In Fig. 4(b), the relative 

position from the cell center to the junction included in the cell 

is calculated. This is obtained by applying two 3×3×512 filters 

to the feature map followed by the sigmoid function, so that it is 

represented by a 13×13×2 tensor. The bottom of Fig. 4(b) 

shows its visual representation. In this figure, only the results 

obtained from the cells containing a junction are drawn. A blue 

arrow indicates a 2D vector connecting the cell center to the 

junction included in the cell. In Fig. 4(c), the orientation of the 

junction included in the cell is calculated. This is obtained by 

applying two 3×3×512 filters to the feature map followed by 

the sigmoid function, so that it is represented by a 13×13×2 

tensor. The bottom of Fig. 4(c) shows its visual representation. 

A red arrow indicates a 2D vector that represents the orientation 

of the junction included in the cell. Only the direction of this 

vector is estimated and used. 

A junction detection result shown in Fig. 4(d) can be 

obtained by combining the whole local information shown in 

Figs. 4(a)-(c). In Fig. 4(d), violet crosses and lines indicate the 

locations and orientations of the detected junctions, 

respectively. It should be noted that the positions of the 

junctions obtained in the local information extraction are more 

accurate than those obtained in the global information 

extraction. This is because the position of the junction is 

estimated from the cell including the junction during the local 

information extraction, but it is estimated from the cell distant 

from the junction during the global information extraction. 

Therefore, the proposed method uses the precise junction 

position acquired by the local information extraction to 

improve the positioning accuracy of the parking slot acquired 

by the global information extraction. 

C. Integration of Global and Local Information 

Final parking slot detection results are produced by 

integrating the global and local information. The information 

integration is simply performed by a junction-based NMS. In 

this step, if the junction obtained in the global information 

extraction (global junction) exists near the junction obtained in 

the local information extraction (local junction), the global 

junction is replaced by the local junction because the position 

of the local junction is more precise than that of the global 

junction. Through the junction-based NMS, the parking slots of 

the global information are matched with the junctions of the 

local information, so that the global and local information are 

integrated together. After the integration, the orientation of the 

parking slot is set to 90˚ with respect to the line connecting two 

junctions in case of the perpendicular or parallel parking slot 

and is set the average of the orientations of two junctions in 

case of the slanted parking slot. Figs. 5(a) and (b) show the 

global and local information, respectively, and Fig. 5(c) shows 

the junction-based NMS result. In Fig. 5(c), black crosses 

 
(a)                                    (b)                                    (c)                                                (d) 

Fig. 4. Local information extractor and detailed local information obtained from it. 



indicate the global junctions replaced by the local junctions. 

Two global junctions of one slanted parking slot (lower red line 

in Fig. 5(a)) are replaced by two local junctions located nearby 

as shown in Fig. 5(c), and two global junctions of the other 

slanted parking slot (upper red line in Fig. 5(a)) are not replaced 

by the local junctions as shown in Fig. 5(c) because local 

junctions are not located near them. All global junctions of two 

perpendicular parking slots (blue lines in Fig. 5(a)) are replaced 

by local junctions, so that their positions become identical as 

shown in Fig. 5(c). In this figure, ×2 indicates that two parking 

slots overlap each other. Global junctions of two parallel 

parking slots (two upper magenta lines in Fig. 5(a)) are replaced 

by local junctions, so that their positions become identical as 

shown in Fig. 5(c). But in the case of the other parallel parking 

slot (lower magenta line in Fig. 5(a)), only one of its global 

junctions is replaced by a nearby local junction as shown in Fig. 

5(c). After the junction-based NMS, a slot-based NMS is 

performed. This step first eliminates the parking slots in which 

all their global junctions are not replaced by the local junctions. 

In Fig. 5(c), one slanted parking slot (the upper red line) and 

one parallel parking slot (lower magenta line) are eliminated. If 

there are overlapping parking slots, only the one that has the 

highest possibility calculated in Fig. 3(a) is selected. Fig. 5(d) 

shows the final parking slot detection result after the slot-based 

NMS. 

D. Training 

The feature extractor was initialized by the weights 

pre-trained on ImageNet and 14 convolution filters used for 

extracting the global and local information were initialized by 

Xavier uniform initializer. All weights were optimized by 

Adam optimizer whose learning rate, β1, β2, and ε were set to 

10-4, 0.9, 0.999, and 10-8, respectively. The proposed network 

was trained for 100 epochs and the batch size was set to 24. Fig. 

6 shows the training procedure of the proposed network. As 

shown in Fig. 6(g), the ground truth of the parking slot is 

divided into seven parts. Four parts are used as the ground truth 

of the global information and three parts are used as the ground 

truth of the local information. Those ground truths are 

compared to the network outputs (global and local information 

in Fig. 6(e)) to calculate losses as shown in Fig. 6(f). 

The final loss is calculated by the weighted sum of the seven 

losses that correspond to seven ground truths in Fig. 6(g). Four 

losses (losssp, losssxy, lossst, and lossso) are for the global 

information and three losses (lossjp, lossjxy, and lossjv) are for the 

local information as 

sp sp sxy sxy st st so so

Losses  for  global  information

jp jp jxy jxy jv jv

Losses  for  local information

loss w loss w loss w loss w loss

w loss w loss w loss

=  +  +  + 

+  +  + 
  (1) 

where wsp, wsxy, wst, wso, wjp, wjxy, and wjv are the weights for the 

seven losses, and they are experimentally set to 40, 170, 0.05, 3, 

300, 3000, and 1000, respectively, based on their magnitudes in 

the training dataset. Each loss will be explained in detail one by 

one. It should be noted that all losses are designed by 

considering that all network outputs are between 0 and 1. 

The loss for the possibility that a cell center is included in 

any parking slot, losssp is calculated as 
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where spi
true is the ground truth for the possibility that the center 

of the i-th cell is included in any parking slot. It is set to 1 if 

included or 0 if not. The input image is assumed to be divided 

into a grid of S×S cells. spi
pred is the prediction result of the 

network for spi
true. I i

slot indicates whether the center of the i-th 

cell is included in any parking slot and is set to 1 if included or 0 

if not. λslot is added to compensate for the unbalance between 

the number of cells included in the parking slots and the number 

of cells that are not. This is set to 0.2 based on the ratio of those 

numbers in the training dataset. 

The loss for the relative position from the center to the paired 

junctions, losssxy is calculated as 
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         (3) 

where (sx1i
true, sy1i

true) and (sx2i
true, sy2i

true) are two 2D vectors 

that represent the ground truth for the relative position from the 

center of the i-th cell to the paired junctions of the parking slot 

including the i-th cell. These values are divided by Lmax and 

normalized to the values between -1 and 1. Lmax is set to the 

maximum length of the parking slot marking, which is 

 
(a)                                                    (b)                                                     (c)                                                    (d) 

Fig. 5. NMS-based information integration. 



7m×PPM in this paper. PPM stands for pixel per meter and is 

calculated from the AVM image calibration procedure. (sx1i
pred, 

sy1i
pred) and (sx2i

pred, sy2i
pred) are the prediction results of the 

network for (sx1i
true, sy1i

true) and (sx2i
true, sy2i

true), respectively. 

Since they are between 0 and 1, we subtract 0.5 from them and 

multiply by 2 to make them between -1 and +1, which is the 

range of the corresponding ground truth. 

The loss for the parking slot type, lossst is calculated based on 

the categorical cross-entropy as 

( ) , , ,log
S

i i i

st slot st c true c pred c

i c

loss I st st
= =

 
= − 

 
 

2
3

1 1

          (4) 

where sti
true,c is the ground truth for the probability that the type 

of parking slot containing the center of the i-the cell is c (1, 2, or 

3). This is represented in one-hot encoding. That is, if the type 

of the parking slot is perpendicular, parallel or slanted, (sti
true,1, 

sti
true,2, sti

true,3) is set to (1,0,0), (0,1,0), or (0,0,1), respectively. 

sti
pred,c is the prediction result of the network for sti

true,c. λst,c is 

added to compensate for the unbalance among the numbers of 

the cells included in different types of the parking slots. λst,1, λst,2, 

and λst,3 are set to 1.76, 2.86, and 31.65, respectively, based on 

the ratio of those numbers in the training dataset. 

The loss for the parking slot occupancy of the cell, lossso is 

calculated as 

( )

( )

S
i i i

so occ occ pred true

i

i i i

vac vac pred true

loss I so so

I so so





=

= −


+ −



2

2

1

2

                    (5) 

where soi
true is the ground truth for the occupancy of the parking 

slot that includes the i-th cell. It is set to 1 if occupied or 0 if 

vacant. soi
pred is the prediction result of the network for soi

true.    

I i
occ indicates whether the center of the i-th cell is included in 

the occupied parking slot and is set to 1 if included or 0 if not.    

I i
vac indicates whether the center of the i-th cell is included in 

the vacant parking slot and is set to 1 if included or 0 if not. λocc 

and λvac are added to compensate for the unbalance between the 

number of cells included in the occupied parking slots and the 

number of cells included in the vacant parking slots. They are 

set to 1.55 and 3.30, respectively, based on the ratio of those 

numbers in the training dataset. 

The loss for the possibility that the cell contains a junction, 

lossjp is calculated as 

( )

( )( )

S
i i i

jp junc pred true

i

i i i

junc junc pred true

loss I jp jp

1 I jp jp

=

= −


+ − −



2

2

1

2

              (6) 

where jpi
true is the ground truth for the possibility that the i-th 

cell includes a junction. It is set to 1 if contains or 0 if not. jpi
pred 

is the prediction result of the network for jpi
true. I i

junc indicates 

whether the i-th cell contains a junction and is set to 1 if 

contains or 0 if not. λjunc is added to compensate for the 

unbalance between the number of cells that contains junctions 

and the number of cells that do not. It is set to 0.02 based on the 

ratio of those numbers in the training dataset. 

The loss for the relative position from the cell center to the 

junction included in the cell, lossjxy is calculated as 

( ) 

( ) 

.

.

2S 2
i i i

jxy junc pred true cell

i 1

2
i i

pred true cell

loss I jx 0 5 jx W

jy 0 5 jy H

=

= − −


+ − −



      (7) 

where (jxi
true, jyi

true) is a 2D vector that represents the ground 

truth for the relative position from the center of the i-th cell to 

the junction included in the i-th cell. These values are divided 

by Wcell and Hcell and normalized to the values between -0.5 and 

+0.5. Since the input (416×416 pixels) is divided into 13×13 

cells, both Wcell and Hcell are 32. (jxi
pred, jyi

pred) is the prediction 

result of the network for (jxi
true, jyi

true). Since they are between 0 

and 1, we subtract 0.5 from them to make them between -0.5 

and +0.5, which is the range of the corresponding ground truth. 

The loss for the orientation of the junction included in the 

cell, lossjv is calculated as 

( ) 

( ) 

.

.

2S 2
i i i

jv junc pred true

i 1

2
i i

pred true

loss I 2 jvx 0 5 jvx

2 jvy 0 5 jvy

=

= − −


+ − −



             (8) 

where (jvxi
true, jvyi

true) is a 2D normal vector that represents the 

ground truth for the orientation of the junction included in the 

i-th cell. (jvxi
pred, jvyi

pred) is the prediction result of the network 

 
(a)                      (b)                  (c)                      (d)                   (e)                       (f)                                                 (g) 

Fig. 6. Training procedure of the proposed network. 



for (jvxi
true, jvyi

true). Since they are between 0 and 1, we subtract 

0.5 from them and multiply by 2 to make them between -1 and 

+1, which is the range of the corresponding ground truth. 

IV. EXPERIMENTS 

A. Dataset 

The proposed method was quantitatively evaluated using the 

publicly available AVM image dataset called Tongji Parking 

Slot Dataset 2.0 (PS2.0) [33]. This dataset consists of 9827 

training images with 9476 parking slots and 2338 test images 

with 2168 parking slots and includes three types of parking slot 

markings (perpendicular, parallel, and slanted). Table 1 shows 

details of the dataset. This dataset contains images taken under 

various illumination conditions including outdoors and indoors, 

daytime and nighttime, sunny and rainy days, strong shadows, 

etc. The original AVM image includes 10×10m around the 

vehicle and its resolution is 600×600 pixels. The proposed 

method resizes the original image to 416×416 pixels and feeds 

it into the network as an input image. This dataset contains the 

ground truth positions of the parking slots and junctions. 

Because it does not contain the ground truth of the occupancies 

of the parking slots, we manually designated them. While 

adding this ground truth, a parking slot that includes the 

ego-vehicle region is labeled as vacant because the ego-vehicle 

can park in that slot. 

B. Performance Evaluation and Comparison 

The proposed method was quantitatively evaluated using the 

evaluation criteria provided by PS2.0 [33]. According to the 

criteria, a parking slot is considered as a true positive if its two 

junctions are within 12 pixels from their ground truth locations 

and its orientation is within 10˚ from the ground truth 

orientation. All detected parking slots that do not meet these 

conditions are considered as false positives. For the 

performance evaluation and comparison, recall and precision 

are calculated as 

# True Postive
recall=

# True Postive + # False Negative

# True Postive
precision=

# True Postive + # False Postive

              (9) 

Table 2 shows the parking slot detection performances of the 

proposed method and DeepPS [20]. The detection result of 

DeepPS is obtained from the publicly available code released 

by its authors [33]. Since performances of the previous methods 

based on non-deep learning techniques are much inferior to the 

proposed method and DeepPS, they are not presented in Table 2. 

Their performances can be found in [20]. In addition, the other 

two deep learning-based methods suggested in [21] and [22] are 

not compared with the proposed method and DeepPS because 

they have critical drawbacks that they cannot detect slanted 

parking slots or parking slots with certain orientations, 

respectively, as mentioned in their papers. DeepPS is the only 

previous method based on the deep learning technique that can 

handle all situations included in PS2.0. As shown in Table 2, 

the proposed method misses only five parking slots out of 2168 

and produces five false positives while DeepPS misses 22 

parking slots and produces eight false positives. The recall and 

precision of the proposed method are all 99.77%. The reason 

that the proposed method outperforms DeepPS is as follows: 

The whole process of DeepPS is difficult to be integratedly 

optimized because it is a combination of the CNN trained by the 

data and the rules designed by hands. Contrarily, the proposed 

method can be integratedly optimized because it is designed as 

an end-to-end trainable fully convolutional network. In 

addition, DeepPS obtains the location of the parking slot using 

the CNN-based object detector (YOLO) but obtains the 

TABLE I 

SUMMARY OF THE DATASET (PS2.0) 

Data Training Test 

Images 9827 2338 

Slots 

Perpendicular 5668 936 

Parallel 3492 1151 

Slanted 316 81 

Total 9476 2168 

 

TABLE II 

PARKING SLOT DETECTION PERFORMANCE EVALUATION AND COMPARISON 

Method 
#False 

Negative 
#False 

Positive 
Recall Precision 

Proposed method 5 5 99.77% 99.77% 

DeepPS [20] 22 8 98.99% 99.63% 

 

TABLE III 

POSITION ACCURACY EVALUATION AND COMPARISON 

Method 

Location error 

(pixel) 

Orientation error 

(degree) 

mean std. mean std. 

Proposed method 1.02 0.72 0.18     0.30 

DeepPS [20] 1.09 0.74 0.39 0.57 

 

 

TABLE IV 

TYPE CLASSIFICATION PERFORMANCE OF THE PROPOSED METHOD 

Type 
#Correctly 

detected slots 

#Correctly 

classified slots 

Classification 

rate (%) 

Perpendicular 934 934 100% 

Parallel 1151 1151 100% 

Slanted 78 78 100% 

Total 2163 2163 100% 

 

TABLE V 

OCCUPANCY CLASSIFICATION PERFORMANCE OF THE PROPOSED METHOD 

Occupancy 
#Correctly 

detected slots 

#Correctly 

classified slots 

Classification 

rate (%) 

Vacant 1609 1597 99.25% 

Occupied 554 551 99.46% 

Total 2163 2148 99.31% 

 



orientation of the parking slot using the template matching 

technique. Contrarily, the proposed method obtains both the 

location and orientation of the parking slot using the CNN, so 

that it can provide more accurate parking slots compared to 

DeepPS. Table 3 shows the positioning accuracies of the 

proposed method and DeepPS. These accuracies are obtained 

from only the correctly detected parking slots. It can be noticed 

that the location errors of the two methods are similar because 

both methods use the CNN for the junction detection, but the 

orientation error of the proposed method is less than that of 

DeepPS because the proposed method estimates the orientation 

of the parking slot using the CNN while DeepPS uses the 

template matching. 

Unlike DeepPS, the proposed method not only estimates the 

positions of the parking slots but also classifies their types and 

occupancies. Table 4 shows the type classification performance 

of the proposed method. It correctly classifies the types of all 

2163 correctly detected parking slots, so that its type 

classification accuracy is 100%. The parking slot type can be 

obtained using the handcrafted geometric features such as 

width, height, and orientation of the detected parking slot. 

However, this paper shows that it can be easily obtained by the 

     

     

    

     

     
Fig. 7. Parking slot detection results of the proposed method under various conditions. Blue, magenta, and red lines indicate perpendicular, parallel, and slanted 
parking slots, respectively, and solid and dotted lines indicate vacant and occupied parking slots, respectively. 



CNN along with the detection result without using any 

handcrafted features. Table 5 shows the occupancy 

classification performance of the proposed method. It correctly 

classifies occupancies of 2148 parking slots out of 2163, so that 

its occupancy classification accuracy is 99.31%. In Tables 2-5, 

it is shown that the proposed method can extract most of the 

properties of the parking slot including location, orientation, 

type, and occupancy from a single AVM image using an 

end-to-end trainable fully convolutional network. 

Fig. 7 shows the parking slot detection results of the 

proposed method in various situations included in the test 

dataset of PS2.0. In this figure, blue, magenta, and red lines 

indicate perpendicular, parallel, and slanted parking slots, 

respectively, and solid and dotted lines indicate vacant and 

occupied parking slots, respectively. It can be noticed that the 

proposed method not only detects the parking slots but also 

recognizes their types and occupancies under a variety of road 

conditions (reflected lights, standing water, strong shadows, 

stains, asphalt, concrete, bricks, etc.), illumination conditions 

(outdoors and indoors, daytime and nighttime, sunny and rainy 

days, etc.), and obstacle conditions (cars, pillars, bicycles, 

pedestrians, etc.). 

Fig. 8 shows failure cases of the proposed method. Figs. 8(a) 

and (b) show false detections. In Fig. 8(a), this method detects 

the parking slot whose one junction is occluded by the parked 

vehicle. This detection may be a true positive, but it was 

considered as a false positive because the ground truth of PS2.0 

dataset includes only the parking slots whose junctions are all 

visible. This failure case appears three times. In Fig. 8(b), this 

method produces a false positive by detecting a space where a 

pillar exists between two parking slots (lower blue line). Figs. 

8(c) and (d) show miss detections. This method cannot detect 

two parking slots in Figs. 8(c) and (d) due to the severely faded 

parking slot marking and heavy occlusion of one junction, 

respectively. Figs. 8(e)-(h) show occupancy classification 

failures. In Figs. 8(e) and (f), two parking slots at the bottom are 

incorrectly classified as occupied because of the stretched 

image regions of the adjacent pillar and parked car, respectively. 

In Figs. 8(g) and (h), two parking slots are incorrectly classified 

as vacant. 

The proposed method was implemented using Python with 

Keras. NVIDIA GEFORCE GTX 1080Ti was used for the 

experiment. The inference phase of the proposed method 

requires 16.66ms to process one image, so that it can process 60 

images per second. DeepPS was implemented using C++ with 

Darkent and Caffe. It requires 23.83ms to process one image 

using the same GPU. It is difficult to directly compare those 

two methods because they use different frameworks, but in 

general, the proposed method is expected to be faster than 

DeepPS considering that Python with Keras is slower than C++ 

with Darknet and Caffe. 

V. CONCLUSIONS 

This paper proposes an end-to-end trainable one-stage 

parking slot detection method. The proposed method has 

several obvious advantages over the previous deep 

learning-based parking slot detection methods. First, it can 

achieve both high detection rate and positioning accuracy by 

integrating the global and local information of the parking slot. 

Second, it can be trained end-to-end and rapidly detect parking 

slots because it uses a fully convolutional network and 

one-stage detection strategy. Third, it does not require 

inconvenient procedures for setting geometric rules and their 

associated parameters because those rules are trained by the 

network. Last, it can extract most of the properties of the 

parking slot including location, orientation, type, and 

occupancy from a single AVM image. Experimental results 

showed that the proposed method outperforms previous 

methods while requiring a small amount of computational cost. 

In the future, we are planning to compress the proposed 

network and embed it into recently released edge artificial 

intelligence (AI) chips. 

    
(a)                                                (b)                                               (c)                                               (d) 

    
(e)                                               (f)                                                 (g)                                               (h) 

Fig. 8. Failure cases of the proposed method. (a) and (b) show false positives, (c) and (d) show false negatives, and (e)-(h) show occupancy classification errors. 
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