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The role of trip lengths calibration in model-based
perimeter control strategies

Sérgio Batista, Deepak Ingole, Ludovic Leclercq, and Mónica Menéndez

Abstract—Since the introduction of the Macroscopic Funda-
mental Diagram (MFD), many traffic control strategies and algo-
rithms have been developed to implement MFD-based perimeter
control over a specific urban region. A model-based controller
consists of two components: a plant model that represents reality;
and a prediction model used to determine optimal control actions.
In most studies, the authors assume a constant average trip
length for all drivers traveling within the same region, for the
prediction model. In these studies about perimeter control and
MFD traffic models, the controllers show a good performance
because accumulations, i.e. traffic states, from the plant are
used to reflect the initial state of the prediction model with a
high frequency (about a few seconds). However, this average
trip length changes over time as it depends on the Origin-
Destination flow decomposition, playing an important role in
real applications. The main contributions of this paper are
twofold. First, we show that the assumption about constant trip
lengths used in the prediction model deteriorates the controller’s
performance for low frequency updates of the optimal control
actions. Second, we propose a methodological framework based
on the Unscented Kalman Filter (UKF) for dynamically adjusting
the average trip lengths and accumulations. Our test results
on a real city network show that applying this methodological
framework significantly improves the controller’s performance.

Index Terms—Dynamic trip lengths, Macroscopic Fundamen-
tal Diagram traffic models, Nonlinear Model Predictive Control,
Unsented Kalman Filter, Multi-regional networks.

I. INTRODUCTION

AGGREGATED traffic models attracted more interest
from the scientific community after the works of [1] and

[2]. These models require the partition of the city network
into regions (see e.g., [3]–[7]), where the traffic conditions are
considered homogeneous and characterized by a well defined
relationship between the mean flow qr and accumulation nr
of circulating vehicles, called Macroscopic Fundamental Dia-
gram (MFD). Figure 1 (a) depicts an example of a city network
partitioning. The partition defines the borders between two
adjacent regions. These borders are located on nodes of the city
network, which we refer to as border nodes. Figure 1 (b) shows
the regional network gathered from the partitioning, where
the vertices of the graph represent the regions. The possible
travel directions between adjacent regions are represented by
the gray arrows and depend on the city network topology, i.e.
on the available travel directions of the incoming and outgoing
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links of the border nodes in the city network. Let X be the
set of regions that define the regional network.

One of the main challenges for the application of the
aggregated MFD traffic models lies in the scale-up of trips in
the city network to paths in the regional network. Figure 1 (c)
shows one green and two red trips in the city network. One
can observe that they cross a different sequence of regions,
according to the definition of the city network partitioning.
They are then linked to different regional paths. We define as
a regional path, the ordered sequence of crossed regions by
drivers from the Origin (O) to the Destination (D) regions. The
regional paths linked to these trips are depicted in Figure 1
(d). The two red trips cross the same sequence of regions,
being then linked to the same red regional path. The green
trip crosses a different sequence of regions, and is then linked
to the green regional path.

Fig. 1: (a) Example of a partitioned city network. (b) Regional
network associated to the partitioning defined in (a). (c)
Example of two red and one green trip in the city network.
(d) Regional paths associated to the green and red trips.

In reality, as one would expect, different trips associated to
the same regional path might have different travel distances
in each region. While a trip in the city network is defined by
a sequence of links with a fixed physical length, a regional
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path is characterized by a distribution of trip lengths for each
region. [8] showed that the calibration of the trip lengths,
i.e. the distance that drivers have to travel in each region,
clearly influences the traffic dynamics. The authors proposed
a methodological framework to calculate these trip length
distributions. The framework is based on: (i) the sampling of
a large set of virtual trips in the city network corresponding
to randomly sampled origin-destination pairs; and (ii) different
levels of aggregation following the sequence of regions crossed
by these virtual trips. The set of trips can also be obtained
from observations of city trip patterns. However, these data
are hardly accessible, and a virtual set provides a good proxy.
The regional paths are determined by scaling-up these virtual
trips according to the sequence of regions they cross. For each
regional Origin-Destination (OD) pair, they are ranked from
the most to the least significant one. The level of significance
is given by the number of virtual trips associated to each
regional path. The next step consists in determining the trip
length distributions associated to these regional paths. Let
{Lrp} be the trip length distribution of a generic regional
path p in a generic region r. These distributions are explicitly
calculated according to different levels of information from
the city network partitioning. The latter ranges from no prior
information about the previous and next regions to be traveled,
to a very specific regional path. The first level assigns the same
trip length distribution for all regional paths that cross the same
region. We refer to this level as the standard or Ms for short.
The most detailed level of information assigns different trip
length distributions to the different regional paths crossing the
same region. We refer to this level as the reference or Mr for
short.

Many of the MFD-based applications have been designed
for testing different control algorithms or setting perimeter
control strategies (see e.g. [9]–[15] for a few examples). [1]
was the first to utilize an optimal control policy and an MFD-
based traffic model on a one-region network. This work was
later extended by [16] to a 2-regions network. In both of
these studies, the authors set a control strategy that maximizes
the trip completion rate on the network. [17] was the first to
pursue a nonlinear model-predictive control (MPC) approach
on a 2-regions network. Nonlinear MPC represents a family
of well-known perimeter control models, that are efficient to
design control strategies for nonlinear multivariate systems
with operating constraints on both input and output variables.
They are of particular interest for perimeter control appli-
cations, since traffic systems are highly non-linear. Several
MPC-based models have been considered in the literature
for solving perimeter control problems, such as linear MPC
[18], non-linear MPC [14], [17], [19], hybrid MPC [11],
[20], hierarchical MPC [9], [21], economic MPC [11], or
stochastic MPC [12]. The readers can find comprehensive
reviews describing the different MPC formulations in [22]–
[25]. The design of centralized controllers for large-scale urban
networks have to account for the (i) non-linear dynamics of
the traffic system; (ii) the linear and non-linear constraints
arising from traffic inflows and outflows at the perimeter
and accumulation of vehicles inside the perimeter; (iii) the
possibility to predict future behavior of the system to make

better decisions beforehand; and (iv) the optimal use of the
network infrastructure to operate at its capacity. These reasons
show the suitability of non-linear MPC for perimeter control
of traffic systems, and justifies our choice of this kind of
controller for this work.

The efficiency of the strategies on optimal control, such as
MPC, deteriorate with the increase of noise in the observa-
tions, uncertainty on the input parameters (e.g. on the demand
or on the MFD itself), or errors associated with model or
predictions. Some authors ( [9], [17], [26], [27]) have designed
robust control frameworks that are able to handle uncertainty
on the demand and MFDs, or stochastic frameworks [12] to
deal with such uncertainty in a more flexible manner. On the
other hand, most of the existing perimeter control strategies
assume perfect knowledge about the accumulation states and
inflow demands, requiring information about the Origin and
Destinations of drivers. This is unfeasible from a practical
perspective. [28] propose a framework that incorporates a joint
moving estimation horizon with model predictive perimeter
control scheme, to handle noisy observations and the impossi-
bility of measuring state accumulations and inflows per path.
To the best of our knowledge, none of the existent studies in
the literature has questioned the influence of the trip lengths
calibration on the real-time implementation of MPC-oriented
perimeter controllers.

A model-based perimeter controller is made of two layers.
The plant model consists of an MFD traffic model representing
the real traffic states in the network, where detailed trip lengths
and path accumulations are used. The optimal approach (i.e.
the optimal information level) for calibrating the trip lengths
for the plant model, would consider the individual trip length
for each driver in the network. However, this is not only
unfeasible from a practical perspective, but it would also add
a layer of complexity into the modeling framework that is
out of the scope of this study. Instead, the reference level
assigns different trip lengths for all drivers traveling in the
same region, but on different paths. This level is the closest to
the individual trip lengths of drivers in the city network [8].
For the purposes of this study, it is the right and sufficient
candidate for the plant model. Let Lrp be the average trip
length of regional path p in region r, used for the plant model.
Following the discussion in [8], we note that the reference level
does not change with the dynamics of the traffic states in the
network.

The prediction model consists of control decisions that
are made based on an MFD traffic model, that accounts
for a more aggregated level of information in terms of trip
lengths and accumulations per region. In the ideal scenario,
the MFD traffic model used for the prediction model would
also account for trip lengths and accumulations at the regional
path level in each region. However, the reference level is
difficult to calibrate for real applications. The main reason is
the difficulty in obtaining the full information of drivers’ trips,
to determine the travel distances according to the reference
level, i.e. the calculation of trip lengths by regional path. It is
almost impossible to determine in real-time how many vehicles
are traveling on each regional path and each region. Only
the regions’ accumulation can be estimated in practice. [9]
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considered time-dependent trip lengths that are dynamically
calculated only based on exchange flows between the regions.
This approach neglects important features of the city network
topology that are captured by the virtual set of trips [8]. It
is therefore unfeasible for control applications in real city
networks. As an alternative, most of the studies in the literature
(e.g. [11], [12], [17], [18], [26], [27], [29]–[32]) consider a
constant average trip length for all drivers in each region r,
i.e. the standard level, which is easier to calibrate than the
reference level. Let Lr be the average distance to be traveled
by all drivers in region r, independent of their path p. In
fact, Lr changes over time because the number of vehicles
circulating on a regional path p and region r, i.e. nrp(t), also
does [10]. One can estimate Lr as follows:

Lr(t) =

∑
p∈Γ nrp(t)Lrpδrp∑
p∈Γ nrp(t)δrp

,∀r ∈ X (1)

where Γ is the set of all regional paths; and δrp is a binary
variable that equals 1 if regional path p travels on region r,
or 0 otherwise.

There are two challenges for estimating Lr using (1). First,
it requires the calculation of an average trip length for each
path p in region r (Lrp). Second, we can only estimate the
regions’ accumulation nr in practise, as previously mentioned.

The time-independence assumption of Lr of many studies
in the literature has not degraded the controllers’ performance
because of high frequency updates of the optimal control
actions. This means that the accumulations in the predic-
tion model are replaced with direct observations. The main
contributions of this paper are twofold. First, we first show
that under this assumption of time-independent average trip
lengths Lr, the performance of the controller decreases for
lower, but more realistic, update frequencies of the control
actions. Second, we propose a methodological framework
based on the application of an Unscented Kalman Filter (UKF)
for dynamically adjusting Lr, and improving the controllers’
performance, i.e. maximizing the throughput of the controlled
region(s).

The remainder of this paper is organized as follows. In the
next section, we discuss the implementation of the NMPC.
We then describe the methodological framework for adjusting
the average trip lengths dynamically for the prediction model.
Afterwards, we test and discuss the results of the application
of the proposed methodological framework on a simulation of
a real city network. We finalize this paper by outlining the
main conclusions.

II. METHODOLOGICAL FRAMEWORK

A. MFD traffic model for the plant level

The MFD traffic model used in the plant level represents
the ground-truth and keeps track of the vehicles’ accumulation
on each regional path p traveling on region r. The vehicles’
accumulation, nrp, depends on the balance between the inflow
qin,rp(t) and outflow qout,rp(t):

dnrp(t)

dt
= qin,rp(t)− qout,rp(t),∀r ∈ X ∧ t > 0. (2)

In the literature, one can distinguish between two kinds of
MFD traffic models: the accumulation-based [1], [2], [33]; and
the trip-based models [33]–[38]. In this paper, we consider the
accumulation-based formulation as described in [33].

The effective outflow qout,rp(t) of regional path p is deter-
mined by the competition between the exit demand function
Op(nrp, nr), and entry supply function Ip(n

′

rp, n
′
r) of the next

region:

qout,rp(t) = min(Op(nrp, nr), Ip(n
′

rp, n
′
r)),

∀p ∈ Γ ∧ ∀r ∈ X (3)

The exit demand function, Op(nrp, nr), is determined as:

Op(nrp, nr) =

{nrpδrp
nr

Pr(nr)

Lrp
if nr < nc,

nrpδrp
nr

Pc

Lrp
otherwise,

(4)

where Pr(nr) represents the production MFD; Pc and nc
represent the critical production and accumulations of region
r, respectively.

The entry supply function of the next region r′, becomes
active when a congestion is observed on regional path p in
region r′. Its formulation is [33]:

Ip(nrp, nr) =

{nrpδrp
nr

αPc

Lrp
if nr < nc,

nrpδrp
nr

αPr(nr)

Lrp
otherwise,

(5)

where the scaling factor α is set to be larger than 1 to ensure
that this function is not too restrictive [33].

The inflow function qin,r′p(t) is simply the outflow function
of the previous region r′′, i.e. qin,r′p(t) = qout,r′′p(t).

This implementation of the MFD traffic model mimics the
ground-truth, where one keeps track of the vehicles accumula-
tion of each path, i.e. nrp, and has the full information about
the trip lengths Lrp of each path p in region r.

B. MFD traffic model for the prediction level

Our goal is to track the vehicles’ accumulations in a set
of regions r ∈ Θ, such that each of them stays close to
a fixed desired set-point nref

r ,∀r ∈ Θ, i.e. we target to
maximize the throughput of the controlled regions. When the
accumulation nr > nref

r ,∀r ∈ Θ, the region’s throughput is
reduced compared to the maximal value nref

r , leading to a sub-
optimal performance. In this case, we have to apply control
actions to bring the accumulation of the region closer to the
desired set-point, i.e. that maximizes the throughput. When
the accumulation nr < nref

r ,∀r ∈ Θ, the region is working
on free-flow conditions, and the throughput is limited by the
number of vehicles that aim to exit the region. In this case, no
control action is required as long as nr < nref

r ,∀r ∈ Θ. When
the accumulation nr surpasses the desired set-point nref

r , the
controller becomes active to prevent the system from working
in sub-optimal conditions.

For the prediction model, we utilize the same exact formu-
lation except that both Lrp and nrp should be approximated
as they are unknown at this level. First, the Lrp is simply
set to Lr for all paths traveling on the same region r. Every
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time we start a new control horizon at each τ for the NMPC,
we need to estimate the initial value of nrp at time t from
the only observed variable nr. In this paper, we use a simple
approximation based on the demand traveling on all regional
paths, which is defined by the path assignment:

nrp =
λrp∑

p∈Γ

λrpδrp
nr,∀p ∈ Γ ∧ ∀r ∈ X (6)

where λrp is the demand traveling on regional path p and
region r; and δrp is a binary variable that equals 1 if regional
path p travels on region r.

This formulation does not account for the time lag between
the flow generation at their origins and its observation in
the regions. It also assumes that the demand distribution
can stand for the internal flow distribution. While being a
rough approximation, the simulation results will show that
such an approximation is practical and effective, and a good
performance level can be achieved when this approximation
is embedded in the control framework.

Finally, note that the control actions will limit the flow at
the region’s boundaries, adding a term in Eq. 3:

qout,rp(t) = min(Op(nrp, nr), Ip(n
′

rp, n
′
r), u

?
p(t)),

∀p ∈ Γ ∧ ∀r ∈ X (7)

Below we explain how to determine the gating inflows u?p(t)
using the NMPC.

C. Nonlinear Model Predictive Control implementation

In this section, we describe the mathematical formulation of
the NMPC to track the vehicles’ accumulation in the controlled
regions r ∈ Θ. NMPC is an advanced control technique where
we minimize the objective function by solving a Constrained
Finite-Time Optimal Control (CFTOC) problem at each con-
trol period. The result is an optimal closed-loop gating inflow
profile, where a good performance and minimal degradation
are achieved over a finite time horizon. NMPC as a direct
solution of the a CFTOC problem for reference matching is
represented as follows:

min
U

∑
r∈Θ

N−1∑
k=0

(
||ñr,k − nref

r,k)||2Q + ||∆ur,k||2R
)
δr, (8a)

s.t.
nk+Ts

= f(nk, ur,k), ∀k ∈ {0, . . . , N − 1}, (8b)
ñr,k = g(nk), ∀k ∈ {0, . . . , N − 1}, (8c)
∆ur,k = ur,k − ur,k−Ts

, ∀k ∈ {0, . . . , N − 1}, (8d)
ur,min ≤ ur,k ≤ ur,max, ∀k ∈ {0, . . . , N − 1}, (8e)
ur,−1 = ur(t− Ts), (8f)
n0 = n(t), (8g)
∀r ∈ Θ, (8h)

where U = {ur,0, . . . , ur,N−1} is a set of optimal gate inflows
of all controlled regions r ∈ Θ, for the finite-time prediction

horizon N ; ur = {upδrp} is also a set that contains the gate
inflow of all regional paths that travel on the controlled region
r ∈ Θ; and δr is a binary variable that equals 1 if region r is
controlled, i.e. if r ∈ Θ.

Equation (8a) is the objective function that we aim to
minimize, with respect to the input flow vector ur ∈ Rnu .
The term nu represents the number of elements in vector ur.
In classical perimeter control approaches, it is considered a
single value for the controller whatever the regional path is.
However, in our case, we consider individual gates for each
path that traveling on each of the controlled regions r ∈ Θ. The
objective function is weighted by both the output weighting
matrix Q � 0 and the input weighting matrix R � 0. The
term ñr,k in (8a) represents the predicted accumulation(s) for
all controlled region(s) r ∈ Θ. While, nref

r,k represents the
reference accumulation of controlled region r. In (8b), the
state vector nk+Ts

at time step k + Ts depends on a function
f(nk, ur,k) that describes the nonlinear traffic dynamics of
the network. This is the prediction model, described in the
previous section. Note that the length of vector nk+Ts

is equal
to the total number of regions of the regional network. Both
(8g) - (8h) represent the initial conditions, where ur(t − Ts)
and n(t) are the observed traffic inputs and states in the
regional network, and Ts is the simulation/system sampling
time. Equation (8e) constrains the minimum (ur,min) and
maximum (ur,max) inflows of the paths traveling on the
controlled region(s) r. Equation (8c) represents the estimated
output accumulation.

Fig. 2 (a) depicts a schematic representation of how
the plant and prediction models interact together. In the
plant model, the traffic dynamics are simulated through an
accumulation-based MFD model as described in the previous
section, where the trip lengths Lrp in (4) and (5) are calculated
by the reference level Mr, i.e. the related regional path p. The
first time instants correspond to the network loading (or warm-
up period). Once the network is loaded, the NMPC controller
gets activated when the accumulation(s) in the controlled
region(s) reach the set-point(s). We then run the prediction
model over the finite-time prediction horizon N to determine
the optimal inflow gates up. The optimal control actions are
then taken into account in the plant model. We only apply the
first optimized gating inflows u?r,0 to the plant. This procedure
is also known as the Receding Horizon Controller (RHC)
as discussed in [22], [23], [25]. It is worth to mention that
we measure plant states at each simulation sampling time Ts
whereas the MPC is employed at each controller sampling
time τ and the same value is applied to plant until next τ .
Here, Ts ≤ τ is considered to show the effectiveness of the
proposed approach in real-life.

One of the bottlenecks in NMPC solution is the extensive
optimization and the resulting computational requirements.
The optimization problem described by the system of equa-
tions (8a) - (8g) is nonlinear and non-convex. Thus a proper
selection of an optimization solver has to be made in order
to obtain feasible optimal control values. There are several
nonlinear programming algorithms that can be applied to solve
this optimization problem, such as the Interior Point Methods
(IPM), the Active Set Method (ASM), or the Sequential
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Quadratic Programming (SQP) (see e.g. [39], [40]). In this
paper, we choose the SQP method as it is strictly feasible with
respect to constraints, robust, and has a better warm-starting
properties than IPM and ASM [41].

Mδt = T(M-1)δt(M-2)δt2δtδt0
Warm-up

period Controlled period applied at each time interval τ

...

τ

Plant model

u
p

nr(t)

0 1
... ...

N

Predict the traffic states over the time
horizon N.

Prediction model 

Mδt = T(M-1)δt(M-2)δt2δtδt0
Warm-up

period

Plant model

u
p

nr(t)

(b) NMPC and UKF implementation 

(a) Feed-back between MFD traffic model and the NMPC 

UKF 

Estimation of trip
lengths and traffic

states

nr(t)

L
r

MFD 
model

Cost
function

NMPC controller

Optimizer

u
p
(t-τ)

2 3 k N-3N-2 N-1

τ

0 1
... ...

N

Predict the traffic states over the time
horizon N.

Prediction model 

2 3 k N-3N-2 N-1

ττ

Controlled period applied at each time interval τ

ˆ

ˆ

Fig. 2: (a) Schematic implementation of the NMPC together
with the MFD traffic model, i.e. the plant. (b) Inclusion of the
UKF in the framework depicted in (a), to correct for the bad
estimations of the trip lengths L̃r.

D. Combined State-Parameter Estimation using Unscented
Kalman Filter

In reality, the average trip length Lr changes over time [10].
One possibility to account for the time-dependence of Lr is
to consider (1). But, as discussed in the Introduction, Lrp is
challenging to calibrate, and nrp(t) is impossible to measure
in reality. We then propose a methodological framework to
dynamically adjust Lr. We make use of a combined strategy
based on the application of an UKF [42], [43] and NMPC (see
Fig. 2 (b)).

The Kalman Filter (KF) is a widely used conceptual two-
stages prediction-correction approach. The KF fundamental
operation is a successive process of prediction based on system
input, followed by a correction process based on measurable
system output. The Extended Kalman Filter (EKF) is the
most commonly used technique in the field of nonlinear
system estimation. This is mainly due to the simplicity of its
implementation. The EKF has been applied in many studies
in the literature for traffic states or parameter estimation (see,
e.g. [44]–[46]). The EKF approximates the existent system
non-linearities, using the Jacobian propagation of co-variance

information. This leads to the loss of higher order information,
and the precision of both states estimation and error co-
variance are degraded. The UKF offers an appealing alter-
native for dynamically adjust the trip lengths (i.e. parameter
estimation) and accumulations (i.e. state estimation), without
the need to linearize the system (see e.g. [42], [47]). Using
the UKF, we adjust the average trip lengths L̃r,∀r ∈ X , as
well as the initial traffic conditions nr,0. Both L̃r and nr,0
will then be set as inputs to the used in the prediction model,
i.e. the NMPC. Below, we describe in more detail the UKF
implementation.

Fig. 2 (b) depicts a schematic representation of how the
NMPC is applied together with the UKF. The process is
simple. The UKF receives as an input the observed traffic
states, i.e. measured accumulations nr(t),∀r ∈ X , and the
gating inflows u?p(t) of the previous control action. The UKF
is used for parameter estimation (trip lengths, i.e.

−→
L =

{Lr},∀r ∈ X) along with state estimation (accumulations,
i.e. n̂r(t),∀r ∈ X) for all regions of the network. The goal
is to find the optimal set of trip lengths

−→
L , such that the

difference between the estimated n̂r(t),∀r ∈ X and measured
accumulations nr(t),∀r ∈ X is minimized. For this purpose,
we add the parameter vector (L̃r,k) into the state vector (nk)
and define the new state update equation accordingly. In
practise, we add the time-varying parameters to the state vector
as L̃r,k+δt = L̃r,k,∀r ∈ X . We define ne,k = [nTk L̃Tr,k]T as
the augmented state vector, and n̂e,k = [n̂Tk L̃Tr,k]T as its
estimation. The UKF estimation method considers 2ηn,e + 1
sigma points sampled from the initial confidence interval.
These points are propagated in time using the system model.
Note that, ηn,e = ηn + ηp is the number of augmented states
in the system, where ηp and ηn represent the number of
parameters and states, respectively. In this paper, we follow
the UKF formulation as described in [42], [43]. The nonlinear
system is:

ne,k+Ts
= f(nk, L̃rp,k, ur,k) + wk, (9a)

ye,k = g(xk) + vk, (9b)

where wk and vk represent the process and output noise
vectors, respectively. Note that wk and vk have zero mean
values, and co-variance matrices Q̄k and R̄k, respectively.

The UKF computes the current estimate of n̂e,k, by solving
the MFD model described in (9a). The current state estimates
n̂e,k and output estimation ye,k are updated at time k as:

x̂e,k = x̂e,k−1 + κ (ye,k − ŷe,k), (10a)
ŷe,k = x̂e,k, (10b)

where n̂e,k−1 and n̂e,k are the vectors of apriori and posteriori
state estimates, respectively. The term κ represents the Kalman
gain.

The detailed system of equations and solution algorithm are
presented in [42], [48].

The output of the UKF consists of the calibrated average trip
lengths

−→
L = {Lr},∀r ∈ X and estimated traffic states n̂k.

We then set L̂r = L̃r for running the prediction model. The
estimated accumulations are also set as the initial condition
for the prediction model, i.e. n0 = n̂k. The prediction model



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ??, NO. ??, MARCH 2020 6

is then solved as described in the previous section, for one
sample time k. We apply control actions with the properly
adjusted trip lengths at each τ seconds and until the T is
reached.

E. Setting of the different controller configurations
In this paper, we set-up four different configurations of

the model-based perimeter control strategy. In all scenarios,
the dynamics of the plant model are represented by an
accumulation-based MFD model where the trip lengths are
calibrated according to the reference level Mr, i.e. Lrp. The
main difference between the four scenarios lies on how the
trip lengths are calibrated for the prediction model:
• Scenario 1: Uncontrolled. In this scenario, we do not

apply any kind of optimal control actions on the plant
model.

• Scenario 2: Perfect model-based controller. In this case,
we simply consider that the prediction model is the
plant model, disregarding any calibration and monitoring
issues. While being unrealistic in practise, this scenario
provides an optimal case for the controller’s efficiency.
In this scenario, we have perfect knowledge of the trip
lengths (Lrp) and accumulations (nrp) per path.

• Scenario 3: Regular model-based controller. We use the
regular prediction model as described in Sect. II-C. In
this scenario, we consider static average trip lengths per
region, Lr, independent of the path that vehicles are
traveling. In terms of the accumulations, at the prediction
level, we are only able to estimate accumulations per
region, nr, from the plant model. We then estimate the
accumulations per region using Eq. 6.

• Scenario 4: Regular model-based controller with UKF, to
update accumulations. We assume the same settings as in
the previous Scenario 3. The difference is that we utilize
the UKF to predict the input accumulations n̂r,∀r ∈ X
to the prediction model. At each control period τ , we
dynamically estimate the input accumulations using the
proposed UKF model.

• Scenario 5: Regular model-based controller with UKF, to
update accumulations and trip lengths. We assume the
same settings as in the previous scenario 4. However, we
also determine the average trip lengths Lr as function of
the changes in the traffic conditions in the regions. At
each control period τ , we dynamically estimate the dy-
namic average trip lengths as well as the accumulations,
using the proposed UKF model. Our goal is to show that
the dynamically adjusting trip lengths and accumulations
improve the controller’s performance. For this, we chose
a simpler formulation without considering a time-lag
between the prediction and the plant models. This means
that we estimate the accumulations and trip lengths at the
same time step. This simpler implementation still proves
our case.

III. RESULTS

A. Definition of the test scenarios
The test network is depicted in Figure 3 (a) and encom-

passes the 3rd and 6th districts of Lyon and the city of Villeur-

banne (France). We refer to this network as L63V. It has 3127
nodes and 3363 links, and is partitioned into seven regions.
Figure 3 (b) shows the MFD functions for these regions.
They were calculated by assuming a bi-parabolic shape to fit
microscopic simulation data obtained from Symuvia [49].
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Fig. 3: (a) City network composed by the 3rd and 6th districts
of Lyon and Villeurbanne (France), divided into seven regions.
(b) MFD functions. (c) Demand scenarios.

The regional paths and trip lengths are determined based
on a set of virtual trips in the city network. We sample
a total of 3 million origin and destination nodes on the
L63V network (Figure 3 (a)), and calculate the shortest-trip in
distance between each of them. We then scale-up these trips
according to the definition of the city network partitioning
depicted in Figure 3 (a). The regional paths are ranked
according to their significance level. In this test case, we
consider 3 regional OD pairs: 1-7; 4-2; and 6-4. The regional
choice sets are: Ω17 = {1267, 1357}; Ω42 = {412, 432}; and
Ω64 = {654, 6534}. Let Γ define the set containing these five
regional paths. We calculate the average trip lengths Lr and
Lrp for these regional paths (see also [8] for the mathematical
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details). Figure 3 (c) depicts the demand scenarios for the
three OD pairs. We assign 80% of the OD 17 demand to path
p = {1357}. While, 85% of the OD 42 demand is assigned
to p = {432}. The whole demand of OD 64 is assigned
to path p = {6534}. For both plant and prediction MFD
traffic models, we fix a total simulation period of T = 25000
seconds, and the traffic states are determined at every δt = 10
seconds in the regions.

In this paper, we target to control the total accumulation
in region 3 to a maximum of 700 vehicles, which corre-
sponds to the maximum outflow. This means that the set
Θ only includes region 3, and the reference accumulation
nref3,k = 700 vehicles. There are three paths that cross region
3. We then have to define three overall gates (with one or
more intersections each) at the perimeter of region 3 and
therefore nu = 3. We set u3,max based on the maximum
inflows verified for the scenario where no control is applied
to region 3. The sets of values used for these constraints
are: [0.1, 0.1, 0.1] ≤ u3,k ≤ [1.25, 1.70, 0.95]. We also set
Q = 0.1×I(3×3) and R = 1×I(ny×ny), where ny corresponds
to the number of elements of the output vector. In our case,
we are just estimating the accumulation in region 3, i.e. ñ3,k,
and then ny = 1. Note that, for calibrating the Q and R
parameters, we run different simulations with different sets of
Q and R values for the previously described demand scenario,
and check their performance in region 3. We then choose the
set of values that yield the best performance, see [50, Chapter
7] for tuning the MPC. The total number of sample times N
is a user pre-defined parameter, that should be set respecting
the fact that the prediction horizon (i.e. N × τ ) is much larger
than the time difference between two control actions. We then
set N = 10. For the implementation of the UKF, we set the
process noise vector as w = [10−6× I(7×7) 10−2× I(7×7)]

T ;
the measurement noise vector as v = 10−6 × I(ny×ny),
where ny = 1 because we are just optimizing the accu-
mulation of region 3; and the state co-variance vector as
P = [1 × I(7×7) 10 × I(7×7)]

T . We also set to 1, both
the spread of sigma points and the characterization of the
state distribution used to adjust the weights of the transformed
sigma points.

B. Influence of trip length approximation on the prediction
model

In this section, we show: (i) how the assumption of static
average trip lengths per region Lr degrades the controller’s
performance, for lower but more realistic τ values (i.e. sce-
nario 3); and (ii) that the use of the UKF to dynamically
estimate the average trip lengths and accumulations improves
the controller’s performance (i.e. scenario 5). The controller’s
performance is evaluated against the reference scenario 2,
where we assume to have the full knowledge about the average
trip lengths and accumulations per path, for the prediction
model. We recall that scenario 2 is just an hypothetical and
idealized scenario, since in reality we can only estimate both
accumulations nr and trip lengths Lr per region. We consider
this ideal scenario only for the purposes of discussion in this
section, and evaluate the controller’s performance of scenarios
3, 4 and 5 in comparison to this one.

In the test case described in the previous section, our goal
is to maximize the throughput of region 3. We apply optimal
control actions in region 3, at each τ = 10, 60, and 120
seconds. The larger values of τ are more realistic as the cycle
length of traffic signals is usually ∼ 60 seconds. We then
discuss how to implement the UKF for adjusting the average
trip lengths for the prediction model.

Fig. 4 (a)-(c) depicts the evolution of the accumulation n3(t)
in region 3, during the controlled period. The results are shown
for the five scenarios considered in this study, and the three
values of τ . Fig. 4 (d) depicts the total time spent (TTS) by
all drivers in region 3 for the same previous scenarios 2 to
5. The TTS for the uncontrolled scenario 1 is 4.295 × 105

seconds. Fig. 6 shows the evolution of the gating inflows up(t)
as function of the simulation time, for the three paths (i.e.
p = {1357}, p = {432} and p = {6534}) and the different τ
values.
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Fig. 4: (a)-(c) Evolution of the traffic dynamics in the con-
trolled region 3, for all five scenarios. The results are depicted
for: (a) τ = 10s; (b) τ = 60s; and (c) τ = 120s. (d) Total
time spent (TTS) in region 3 for scenarios 2 to 5, and for all
three values of τ .
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Fig. 5: Gating inflows up(t) as function of the simulation time t [s], for the controlled region 3. The different panels depict
the results for the three regional paths p that travel region 3, and for the different τ = 10, 60, 120 seconds.
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Fig. 6: Same as in Fig. 4 (a)-(c), but for the non controlled regions. The plots represent the comparison between the Scenarios
3 (top row panels), Scenario 4 (middle row panels) and Scenario 5 (bottom row panels) against the benchmark Scenario 2.

One can observe in Fig. 4 (a) that the accumulation n3(t),
for scenario 3, is kept close to the one of the optimal scenario
2. This shows that for high frequency updates of the optimal
control actions, i.e. τ = 10 seconds, the system is able to adapt
itself to the static assumption of average trip lengths used in
the prediction model. However, the differences between the
accumulations n3(t) determined for scenarios 3 and 2, increase
as the frequency of the optimal control actions decreases. We
can observe that in Fig. 4 (b) and (c), the controller is able

to maintain the region’s accumulation close to 700 vehicles,
for the reference scenario 2. In contrast, for scenario 3, the
region becomes congested after approximately 10000 seconds.
The controller is not being able to maintain the region’s
accumulation close to the desired value of 700 vehicles, i.e.
the throughput of the region is reduced and leads to a sub-
optimal performance as also evidenced by the increase of the
TTS (see Fig. 4 (d)). This happens because the controller is
not able to properly regulate the gating inflow of vehicles
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traveling on path p = {1357} entering region 3, as it can be
observed in Fig. 6 for scenario 3. These results clearly show
that the assumption of static average trip lengths degrades
the controller performance compared to the optimal scenario
2. The differences become more evident as the frequency of
the optimal control actions decreases. The relative differences
between the TTS of scenario 3 and 2, are 1.5%, 12.8% and
14.3%, for for τ = 10, 60 and 120 seconds, respectively. This
means that, for example, for τ = 120 seconds, the TTS of
scenario 3 is 14.3% larger than the TTS of scenario 2.

The application of the UKF proves to be effective to adjust
the average trip lengths Lr according to the changes of the
traffic conditions in the regions as well as the accumulations
nr. As one can observe in Fig. 4, the controller is able to
maintain the accumulation n3(t) determined for scenario 5,
close to the one of the reference scenario 2. While, this is not
true for scenario 4, where we only adjust the accumulations.
For this scenario 4 and for τ = 120 seconds, we observe
that in the simulation time between 12000 and 13000 seconds,
the accumulation n3(t) is inferior to the reference value. This
happens because we do not linearize the control optimization.
Instead, we solve directly the non-linear optimization problem,
and the solver might find sub-optimal solutions.

The relative differences in the TTS by drivers in region
3 is reduced for scenario 4, however it is still larger than
the reference scenario 2. The situation is clearly improved for
scenario 5, where the TTS is close to the one of scenario 2.
We note that the TTS of scenario 5 is larger than the TTS of
scenario 2, for all three values of τ . The relative differences
between the TTS of: (i) scenarios 4 and 2, are 0.1%, 6.9%
and 6.0%, for τ = 10, 60 and 120 seconds, respectively;
and (ii) scenarios 5 and 2, are 0.1%, 0.1% and 0.7%, for
the same ordering of the τ values. This clearly shows that
the improvement on the controller’s performance comes from
adjusting both trip lengths and accumulations. Therefore, these
results validate the application of the UKF to properly adjust
the input parameters, i.e. Lr and nr, used to run the prediction
model, for more realistic τ values.

The results depicted in Fig. 4 also show that the way we
estimate the accumulations per region using Eq. 6 in the
prediction model, is effective. We recall that this approach
is used for all scenarios 3, 4 and 5. If this assumption was
not effective, we would not observe a close performance of
the controller in maximizing the throughput of region 3, when
comparing scenarios 5 and 2.

Fig. 6 shows the evolution of the traffic dynamics in the non
controlled regions of the network. The application of the UKF
also improves the estimation of the congestion propagation in
the whole network, that is verified by the close evolution trends
between scenarios 2 and 5, for all three τ values. This effect
is particularly observed in the adjacent region 1, where the
assumption of static trip lengths leads to an underestimation
of the congestion with respect to the case of the perfect model-
based controller, i.e. scenario 2. However, the application of
the UKF corrects for this bias.

We also analyze the UKF estimation results of the trip
lengths over the simulation time. For this, we determine
the relative differences (Φr(t)) between the estimated trip
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Fig. 7: Relative differences Φr(t) for all seven regions of
the network. The minimum of the objective function is also
depicted.

lengths (L̂r) through the UKF (scenario 5) and the static
average trip lengths (Lr) calculated through Ms (scenario
3). The relative differences for a region r are calculated
as Φr(t) = L̂r(t)−Lr

Lr
,∀r ∈ X . We also determine the

value of the objective function Ψ(t), based on the differences
between the estimated accumulations n̂r(t) and the observed
accumulations nr(t), as Ψ(t) =

∑
r∈X n̂r(t) − nr(t). Fig. 7

depicts the evolution of the relative differences Φr(t) for all
seven regions as well as the three values of τ considered. This
figure also shows the temporal evolution of the minimum of
the objective function Ψ(t).

One can observe that for τ = 10 seconds, the relative errors
are in general small because the system is able to adapt itself to
the static trip lengths due to the large frequency updates of the
optimal control actions. But, the relative differences increase
for larger values of τ . This is consistent with the improvement
provided by the UKF in the controller’s performance, and
prediction of the system dynamics in the system, as previously
discussed. The objective function Ψ(t) is in general close to 0.
However, this is not observed during the beginning (i.e. around
∼ 5000 seconds) and ending (i.e. around ∼ 15000 seconds) of
the controlled period in region 3. This is also consistent with
the matching differences verified in Fig. 4 (a)-(c), between the
scenarios 2 and 5, during these two periods.
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IV. CONCLUSION

In this paper, we show that: (i) the assumption of static
average trip lengths Lr clearly degrades the performance of
the controller with respect to the reference scenario 2, and
the throughput of the region is reduced leading to a sub-
optimal performance level; and (ii) the proposed methodology
based on the UKF is effective for improving the controller’s
performance. With the UKF, the controller is able to keep the
accumulation n3(t) close to both the desired set-point and the
accumulation determined for the reference scenario 2. This
fact is also illustrated by the total time spent (TTS) in region
3, for scenarios 5 and 2. The TTS of these two scenarios are
very close, however the TTS of scenario 5 is slightly superior.
Note that, we do not expect that the UKF tracks the exact
value of the average trip lengths Lr, because the prediction
and plant models have different structures. Even if we calibrate
Lr at the end of the control period, it means that the trip
lengths are the same for all regional paths traveling on the
same region, which is known to introduce significant bias in
the predicted traffic states [8]. It is important to stress here
that the UKF provides good estimations of the average trip
lengths Lr and accumulations nr per region, which are utilized
as inputs in the prediction model, to improve the performance
of the controller. The performance achieved by the controller
in this scenario is very close to the one achieved in the
case when the prediction perfectly fits the plant model, i.e.
scenario 2. This is highly important for control applications in
practise. The results show an improvement in the performance
of the controller in region 3, bringing it close to the best
performance that can be achieved with a perfect prediction
model. Moreover, the estimation of the traffic dynamics in the
whole system is also improved, and closer to the reference
scenario.

As future research work, we aim to extend the proposed
methodological framework to incorporate a route guidance
system [51].
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