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MPC-CSAS: Multi-Party Computation for Real-Time
Privacy-Preserving Speed Advisory Systems

Mingming Liu , Long Cheng, Yingqi Gu, Ying Wang , Qingzhi Liu , and Noel E. O’Connor, Member, IEEE

Abstract— As a part of Advanced Driver Assistance Systems (ADASs),
Consensus-based Speed Advisory Systems (CSAS) have been proposed to
recommend a common speed to a group of vehicles for specific application
purposes, such as emission control and energy management. With
Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) technologies and
advanced control theories in place, state-of-the-art CSAS can be designed
to get an optimal speed in a privacy-preserving and decentralized
manner. However, the current method only works for specific cost
functions of vehicles, and its execution usually involves many algorithm
iterations leading long convergence time. Therefore, the state-of-the-
art design method is not applicable to a CSAS design which requires
real-time decision making. In this article, we address the problem by
introducing MPC-CSAS, a Multi-Party Computation (MPC) based design
approach for privacy-preserving CSAS. Our proposed method is simple
to implement and applicable to all types of cost functions of vehicles.
Moreover, our simulation results show that the proposed MPC-CSAS
can achieve very promising system performance in just one algorithm
iteration without using extra infrastructure for a typical CSAS.

Index Terms— Speed advisory systems, multi-party computation,
vehicle networks, optimal consensus algorithm.

I. INTRODUCTION

W ITH the advances in smart vehicle technologies and Intelli-
gent Transportation Systems (ITS), Intelligent Speed Advi-

sory (ISA) systems have become a critical part of Advanced
Driver Assistance Systems (ADASs). For both manually driven and
autonomous vehicles, ISA has shown to be able to significantly
improve driving safety, sustainability and efficiency [1]–[3].

As a special type of ISA, Consensus-based Speed Advisory Sys-
tems (CSAS) aim to recommend a consensus speed to a group of
vehicles in a given area [4], [5]. Compared to the cases that asking
different vehicles to drive at their own optimal speeds, CSAS make
more sense in many practical scenarios. As demonstrated in Fig. 1,
cars tend to follow a common speed when possible in highways or
special zones in cities, and this can bring some obvious benefits to
various types of road users, such as reduced emissions (with less
frequent accelerations/decelerations), reduced energy consumption,
increased throughput, and increased safety and health [6]–[10].
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Fig. 1. An application scenarios of consensus-based speed advisory systems.

Considering the condition that environmental concerns become
increasingly compelling, in this article we focus on the design of
a CSAS to minimize the emissions for a group of vehicles. In fact,
achieving an optimal common speed for the case is not easy. The main
reason is that different vehicles are designed to operate optimally
at different vehicle speeds and at different loading conditions [5].
Namely, to get an optimal speed, we will have to get all the detailed
information of the vehicles in a group, not only the basic information
such as the vehicle type, vehicle age and fuel mode, but also the load
and the desired time of arrival etc. It is obvious that the data collection
process will be complex. More important, due to confidentiality
concerns and privacy regulations such as GDPR,1 nowadays it is
not always possible for vehicle owners to share or reveal their data.
Therefore, a more practical and privacy-preserving CSAS becomes
desirable.

Along this line, our previous work in [5] has attempted to devise
an optimal speed for a CSAS in a privacy-preserving manner,
namely without revealing in-vehicle information to other vehicles
or to infrastructures. Specifically, it is assumed that each vehicle
is associated with an emission cost function, and only the implicit
information, i.e. derivative values of the cost function at certain
speeds are transmitted to a central infrastructure. For simplicity,
we refer to the approach proposed in [5] as DP-CSAS (i.e., Derivation
based Privacy-preserving CSAS) in the following context.

Although DP-CSAS represents the state-of-the-art approach on
privacy-preserving CSAS design, it has two shortcomings:

(i) The proposed optimization model in DP-CSAS is built based on
the assumption that the emission cost functions of all vehicles
are strictly convex, and thus the derivatives can be calculated.
Further, the emission model adopted in [5] is essentially an
average-speed model, and the emission only depends on the
average-speed of a specific vehicle. This unlikely works for
all real cases due to (1) the emission function of a vehicle
can also depend on other factors, such as acceleration, road
types, weather conditions etc, and (2) some cost functions can
be discontinuous and not differentiable.

(ii) DP-CSAS usually requires a relatively large amount of iterations
for the algorithm convergence. This makes the optimization

1https://eur-lex.europa.eu/eli/reg/2016/679/oj

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8988-2104
https://orcid.org/0000-0001-5172-4736
https://orcid.org/0000-0003-2621-9222


5888 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 6, JUNE 2022

process time costly, and thus the applications of the approach
may be limited. For example, as the results reported [5],
DP-CSAS takes more than 200 secs to optimize the speed for a
group of 40 vehicles. It means that DP-CSAS will not be hard
to handle dynamical cases in real time, such as frequent changes
of a vehicular network due to frequent check-in and check-out
of vehicles in the group, which may require the new optimal
consensus speed to be calculated within a few seconds.

To provide a more practical and powerful privacy-preserving
CSAS, in this article, we introduce a Multi-Party Computa-
tion (MPC) based design approach. Specifically, the proposed
method, MPC-CSAS, has several advantages compared to the state-
of-the-art DP-CSAS: (1) it is applicable to all emission cost functions;
(2) it is simple to implement in real-time without imposing a large
communication burden on the existing infrastructures; and (3) it can
not only be deployed in a static and strongly connected network, but
it can also be extended to deal with weakly and dynamic connectivity
conditions in a practical ITS scenario under a certain assumptions.
Therefore, we believe that the proposed MPC-CSAS can be applied in
many new scenarios where the DP-CSAS method cannot effectively
and efficiently take over.

The remainder of this article is organized as follows. In Section II,
we introduce the background and the related works of CSAS.
We present the system design of MPC-CSAS in Section III. We carry
out extensive evaluation of our approach in Section IV and conclude
this article in Section V.

II. BACKGROUND AND RELATED WORK

In this section, we briefly introduce the optimization problem of
CSAS as well as the related works.

A. CSAS Problem Statement

In this section, we describe an application to design a CSAS
for a fleet of vehicles. Specifically, the objective of the CSAS
is to recommend a consensus virtual speed to a fleet of Internal
Combustion Engine Vehicles (ICEVs) running on the highway so that
the overall emissions of the fleet can be minimized if all ICEVs can
follow the recommended speed. Full details of this application have
been presented in [5]. Here, we briefly review the problem statement
for completeness of the context.

We consider a scenario in which a number of ICEVs are driving
along a stretch of highway in the same direction. Some users of the
ICEVs can decide to participate into the CSAS, that is during their
driving period, they wish to use the CSAS to receive a recommend
virtual speed in order to reduce the overall emissions on the highway.
Each ICEV owner may get some revenue by participating into the
CSAS, e.g., tax reduction. Let N denote the number of ICEVs on the
highway where the broadcast signal from the CSAS can be received.
Each vehicle needs to equip with a specific communication device,
which is able to receive the broadcast signal and transmit limited
message back to the CSAS and to nearby vehicles. In practice,
the broadcast signal from the CSAS can be triggered from a base
station facilitated at the road infrastructure, and vehicular communi-
cation links can be established using V2V and V2I technologies.

Let N := {1, 2, . . . , N} denote the set for indexing the vehicles,
and let si (k) be the recommend speed of the i’th vehicle at a time slot
k. Let s(k) := [

s1(k), s2(k), . . . , sN (k)
]T be a vector for all si (k) at

time k. Furthermore, each vehicle i is associated with a cost function
fi (si (k)) which models the amount of C O2 emission generated if the
vehicle is travelling at the speed si (k). According to [5], each cost
function is continuous, strict convex and second order differentiable.

In particular, fi has been adopted as an emission function of si in
an average speed model in the following form:

fi (si ) = k

(
a + bsi + cs2

i + ds3
i + es4

i + f s5
i + gs6

i
si

)
(1)

where the parameters k, a, b, c, d, e, f, g are constant values and
they are defined differently by different types of ICEVs as per the
reference [11]. With this in place, the specific problem to be solved
can be formulated in the following:

min
s∈RN

∑
i∈N

fi (si ) ,

s.t. si = s j , ∀i �= j ∈ N. (2)

Comment: The ultimate objective of a CSAS is to recommend a
virtual consensus speed s∗ to a group of ICEVs. In the DP-CSAS
approach, this is done by solving (2) through iterations of s(k).
We note that the recommended speed deem to be a virtual speed,
and thus it is not our intention to enforce every driver to follow
such a speed, which is the key difference between a CSAS and a
platooning system.

B. Related Solutions for CSAS

SAS is a cooperative system which aims to improve
energy-efficient and sustainable mobility for vehicles. Different
from the conventional approaches such as the works in [1], [2], [12],
we focus on the consensus problem of SAS in this work. Although
consensus problem can be solved in a variety of ways such as using
ADMM [13], our focus is to construct a partially distributed solution
which allows to calculate an optimal solution in real time. Moreover,
different from the works in CSAS designs [14], [15], we address the
optimization problem in a privacy-preserving way without revealing
individual cost functions of vehicles.

To the best of our knowledge, only a few papers in the litera-
ture have considered the privacy issue of the CSAS. Specifically,
the work [16] achieves the consensus over a multi-layer network that
no vehicle knows the exact state of other vehicles. Different from
that, we focus on protecting the emission cost function of vehicles
and our target is to reduce vehicle emissions. The problem studied
in the work [5] is the same as ours. However, as we have described,
the proposed DP-CSAS has a few shortcomings. In what follows,
we will give a brief review of the DP-CSAS solutions.

C. The State of the Art DP-CSAS Solution

The key idea of the DP-CSAS solution in [5] is to find the
equivalent Lagrange equations for (2), that is:

∂
[∑N

i=1 fi (si (k)) + λi (si (k) − s j (k))
]

∂si (k)
= 0, ∀i �= j ∈ N (3)

where λi denotes the Lagrange multiplier of the i’th constraint. It is
not difficult to derive from (3) that finding the optimal solution of
(2) is equivalent to solving the following equation:

N∑
i=1

f ′
i (si ) = 0

si = s j , ∀i �= j ∈ N (4)

To solve (4), an iterative feedback scheme has been applied in the
form of:

s(k + 1) = P(k)s(k) − μ

n∑
i=1

f ′
i (si (k))e (5)



LIU et al.: MPC-CSAS: MULTI-PARTY COMPUTATION FOR REAL-TIME PRIVACY-PRESERVING SPEED ADVISORY SYSTEMS 5889

Fig. 2. An example of how to use MPC to consensus-based speed advisory systems.

where {P(k)}k∈N ⊂ R
N×N is a uniformly strongly ergodic sequence

of row stochastic matrices which can be used to model the connec-
tivity among moving vehicles. e ∈ R

N is a consensus vector with all
entries equal to 1. u is a parameter which determines the convergence
and stability of the system. It has been proved in [5] that if fi are
strictly convex, continuous, and each f ′

i has a strictly positive and
bounded growth, i.e. there exist constants di

min and di
max such that

for any a �= b

0 < di
min ≤ f ′

i (a) − f ′
i (b)

a − b
≤ di

max, ∀i ∈ N. (6)

and when μ is chosen according to

0 < μ < 2

⎛
⎝ n∑

i=1

di
max

⎞
⎠

−1

(7)

then (5) is uniformly globally asymptotically stable at the unique
optimal point s∗ = s∗e of the problem (2).

As a concluding remark of this section, we note that the DP-CSAS
proposed in [5] leverages the derivative of each cost function fi ,
and it requires some strict conditions (Lipschitz condition) on each
derivative function f ′

i , which might not be practical for cost functions
in all ITS applications.

III. THE PROPOSED APPROACH

In this section, we first demonstrate how we can use MPC for
privacy-preserving CSAS design with an example. Then, we give the
details of our proposed MPC-CSAS.

A. MPC and Its Application to CSAS

Multi-party Computation (MPC) is a cryptographic functionality
that allows for secure computation over sensitive data sets [17].
In an MPC protocol, all parties can cooperatively evaluate for some
functions, with guarantee that each party can only learn from the
output and its own private input. We can construct MPC protocols in
different ways, and one of the most commonly used method is the
homomorphic secret sharing [18]. In such an approach, the type of the
transformation from one algebraic structure into another is kept as the
same. Namely, for any kind of manipulation over the original data,
there is a corresponding manipulation of the transformed data [19].

To demonstrate how we can apply MPC to the privacy-preserving
CSAS design, a simple example with two vehicles, A and B, and a
base station X , is illustrated in Fig. 2. For simplicity, we only include
emission values of the two vehicles when speeds are 40 and 50km/h.
Here, the objective is to find out which speed can achieve a smaller

values. As shown in Fig. 2(a), following a conventional approach,
we can ask A and B to send the values of their speed-emission
mappings to X . In this condition, the base station can calculate the
sum of the mappings at the speed 40 and 50 respectively, and then
recommend the better corresponding speed. For instance, X knows
that the sum of the mappings is 250 for the speed 40, and 220 for
the speed 50, and clearly 50 will be sent to A and B by broadcast.
Obviously, the privacy of A and B is not preserved in this method,
since the base station knows their private information. In order to
protect private information to the infrastructure (i.e., the base station),
we can ask B to send its speed-emission mapping information to A
to get an optimal speed. However, B will lose its privacy by revealing
its value to A in this setup.

To address this issue, an MPC-based approach is demonstrated
in Fig. 2 (b). The processing mainly includes three steps as follows:

1) Secret generation: The speed-emission mappings of A and B
are split into several shares and some shares should be kept
locally. As shown in Fig. 2 (b1), we use two shares for each
mapping, that is the mapping (40,100) is split into (40,180) and
(40,20). Note that we doubled the original mapping value here,
i.e., from 100 to 200 in this example, but this splitting is not
unique.

2) Secret sharing: For the secret generated for each speed, A and
B share part of them to each other. For example, A shares
(40,180) and (50,100) to B, and B shares (40,100) and (50,200)
to A. After that, the data located on A and B is demonstrated
in Fig. 2 (b2).

3) Local aggregation: A and B aggregate to the local and received
speed-emission mappings based on the value of each speed
and then send the information to the base station for final
speed recommendation. In our example, A sends (40, 120) and
(50, 340) to X , and B sends (40, 380) and (50, 100).

After the above three steps, X will know that the emission is
500 for the speed 40, and 440 for the speed 50. Therefore, the two
vehicles can get the same speed recommendation (i.e., 50km/h) as
the conventional approach shown in Fig. 2(a). Moreover, since both
A and B have kept part of their secret locally, they cannot get
any information of the original values from each other. Therefore,
the privacy of both A and B is well preserved.

Comment: In the above example, for a speed si and its emission
fi (si ), we simply generate two secret values f 1

i (si ) and f 2
i (si ) on

the emission, and guarantee that the functions f 1
i and f 2

i always

meet the condition fi (si ) = 0.5 × ( f 1
i (si ) + f 2

i (si )) for any si .
This is consistent with the definition of an MPC protocol, since
the transformation of algebraic structure is preserved in the assigned
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problem, i.e.,
∑

i fi (si ) = 0.5×(
∑

i f 1
i (si )+

∑
i f 2

i (si )). Therefore,
our above operations can achieve the privacy-preserving computation.
In contrast, if we generate secrets using another way like fi (si ) =
f 1
i (si )× f 2

i (si ), then the computation will be invalid within the MPC
scheme. In general, if M secret values need to be generated for each
vehicle, then we can have g( fi (si )) := a fi (si ) + b = ∑M

h=1 f h
i (si )

for any si , where a, b are constants.

B. The MPC Based Privacy-Preserving CSAS

Now we propose the MPC based privacy-preserving CSAS in
a formal way by using graph theories. We define an order pair
G = (V, E) as a directed graph for all vehicles in the network. V
denotes the set of vertices, or vehicles of the graph G. E is a set
of edges, or communication links between vehicles, which are order
pairs with two distinctive vertices. In our context, this implies that
a communication link between any two vehicles in the network is
directional. Let deg+(v) denotes the outdegree of a vertex v ∈ V ,
which models the number of vehicles that can receive a signal from
the vehicle represented by the vertex v , and let v+ be the set of
vertices of v which it can reach to. Let v− denote the set of vertices
of v which it can receive signal from. We assume that deg+(v) is
known to every vertex v in the network.

With this in place, we claim that for every vehicle, represented by
the vertex v in a directed graph G, the MPC based CSAS can preserve
privacy for all vehicles in the network if deg+(v) >= 1, v ∈ V .
Indeed, if the outdegree can hold for every v ∈ V , then it implies
that every vehicle in the network can have at least one neighbour to
do the secret sharing part shown in Section III-A, which preserves
the privacy of any vehicle by splitting the emission mapping to at
least two parts. Now we present the pseudo code of the MPC based
privacy-preserving algorithm in the following:

Algorithm 1 MPC-CSAS Privacy-Preserving Algorithm
1: for each i ∈ N do
2: Generate a sequence of M pairs of the original speed-emission

mappings in a given range of speeds.
3: Get the outdegree value for vehicle i corresponding to vertex

vi in the graph G, i.e. deg+(vi ).
4: for j = 1, 2, . . . , M do
5: Split the mapping into deg+(vi ) + 1 shares.
6: Reserve one share locally.
7: Transmit deg+(vi ) shares to vehicles in the set v+

i .
8: end for
9: Aggregate the local received mappings from set v−

i .
10: Send the aggregated local mappings to a base station.
11: end for
12: Get the best pair index j∗ from the base station.
13: Set the recommended speed to the speed in j∗th pair.

1) Remark on Network Connectivity: Our proposed Algorithm 1
can be implemented in a batch manner, that is the optimal consensus
solution of the problem (2) can be found in just one simple algorithm
iteration between vehicles and the base station if the outdegree con-
dition for all vehicles can be satisfied in the network. By definition,
a strongly connected graph is a graph which for any two vertices
u, v ∈ V , there exists a directed path from u → v and v → u,
respectively. This show that the proposed MPC-CSAS algorithm is
applicable to strongly connected networks.

On the other hand, vehicular networks are not always static due
to various interferences in urban areas. To deal with this challenge,
vehicular networks have been modelled using time-varying connectiv-
ity graphs in current literature. For instance, in our previous work [5],

a sequence of row-stochastic matrices {P(k)}k∈N ⊂ R
N×N has

been applied for this purpose. In particular, if {P(k)} is a uniformly
strongly ergodic sequence as the assumption made in [5], then it
implies that every vehicle in the network can communicate to other
vehicles over a certain period of time. Roughly speaking, this is
equivalent to saying that the resulting connectivity graphs are strongly
connected at most time instances [5], which shows the applicability
of our proposed algorithm under switching graph topologies. It is
worth noting that in most cases we assume that a group of moving
vehicles are relatively static and the distance between each car is
relatively small so that the V2V communication is achievable among
the group. This assumption is consistent with our previous work [5].
However, our proposed solution can be easily extended to cover the
case where a group of vehicles can be dynamically clustered and
created according to the quality of network connectivity. In such a
case, if a vehicle is driving too fast/slow on a road and it cannot
receive the message from a given base station, it is still possible for
the vehicle to join a different group of vehicles implementing the
MPC-CSAS on another stretch of road.

Finally, if a vehicle in a group has weakly connectivity to its
neighbouring vehicles, it is still possible for the vehicle to conduct the
secret sharing and the local aggregation steps with the base station.
In this case, a new service needs to be incorporated into the base
station which can be seen as a “dummy” vehicle for the application
purpose. Here, the “dummy” vehicle is considered as a software
component deployed at a base station, which can assist the weakly
connective vehicle for V2V based information exchange. Once this is
done, the speed recommendation service, essentially another software
component based on the MPC-CSAS algorithm deployed at the base
station, can be involved for the final decision making step. From
an operational perspective, this setup has flexibility in that it will
allow vehicles to conduct a two-step communication with the base
station to receive the optimal speed advisory information at different
time and place during travelling. We note that although both software
components can be deployed at a given base station, the privacy of
vehicles’ data can still be preserved provided that a security access
control based approach is employed at the base station. We shall
ignore a further discussion for this aspect in the work as this is beyond
the scope of our article.

2) Remark on Network Communication Overheads: In fact, MPC
has significant computational overhead and always involves high
communication cost in the presence of big data processing [17].
However, for a CSAS case, the domain of vehicle speeds is small.
Moreover, getting an absolute optimal speed will make little sense
for CSAS. Therefore, we can ask each vehicle to keep a local list
of speed-emission mappings in a specified speed range, such as
between 30km/h and 120km/h with increasing every 5km/h. In this
case, each vehicle will only need to keep 19 speed-emission pairs
locally and shares the 19 pairs with another vehicle. If we use
integers to represent the speed and emission, the size of the shared
information between vehicles is only 152 bytes. Moreover, the data
received and processed by a base station will be less than 3KB for a
group of 20 vehicles. Obviously, the amount of data to be processed
is extremely small in our approach, and the communication and
computing time will be approximately 0 for both vehicles and base
stations which are with a general hardware configuration. Namely,
the overhead of the MPC is negligible. This is also the reason why we
call our approach as a real-time solution for privacy preserved CSAS.
Specifically, in our simulation environment, we have observed that
with inserted timestamps both the data sharing and data aggregation
process can be done in less than 5ms.

3) Remark on Practical Implications of Applying the Proposed
Methodology: We believe that our current proposed method can be
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TABLE I

EMISSION FACTORS FOR SOME CO2 EMISSION TYPES OF ICEVS
ACCORDING TO [11], WHERE {E, F, G} = 0 AND K = 1

Fig. 3. Different CO2 emission cost functions in Table I.

easily extended to cope with various setups whilst utilising most up-
to-date in-vehicle communication and computing devices as well as
roadside traffic infrastructure. Specifically, our proposed approach fits
well into the current Mobile Edge Computing (MEC) framework
and architecture, where various services can be defined, deployed
and implemented at the edge side using for instance REST-based
APIs. As we have already commented, our proposed system requires
very limited communication and computation overhead (less than
3KB data for 20 vehicles) compared to other existing works in the
literature. Given this, we believe that the instantaneity of our system
operation in a real world speed advisory scenario is fully operable in
current 4G/LTE infrastructures, and will surely be working well in
the 5G and beyond 5G network environment.

IV. SUMO SIMULATION AND RESULTS

In this section, we evaluate the performance of Algorithm 1 using
SUMO [20].

A. Simulation Setup

In order to illustrate the efficacy of our proposed algorithm, we first
adopt the average speed model in (1) for different types of ICEVs
with the parameters a, b, c, d, e, f, g, k illustrated in Table I. The
resulting emission functions for six types of ICEVs are shown
in Fig. 3.

It is clear to see from Fig. 3 that for same emission standard,
e.g. Euro 3, increasing engine capacity of the vehicles, i.e. R004,
R011 and R018, will also increase the CO2 amount for a given
average speed.

We now perform the following experiments.

1) In the first case, we assume that there are six vehicles, one
vehicle in each class as outlined in Table I. Also, we assume
that the topology of the vehicular network is static and strongly
connected. In particular, each vehicle is assumed to be con-
nected circle-wise, that is vehicle 1 has one neighbour vehicle 2,
vehicle 2 has one neighbour vehicle 3, likewise, up to vehicle 6

Fig. 4. Local estimated error (upper plot) and aggregated curve seen from
the base station (lower plot) for the first case.

Fig. 5. Local estimated error (upper plot) and aggregated curve seen from
the base station (lower plot) for the second case.

which has one neighbour vehicle 1. Finally, we set M = 100
which linearly spaces the speed in the range of [5, 140]km/h,
and with the mapping function g( fi (si )) = fi (si ).

2) In the second case, we assume that the system setup is
the same to the first case, but with the mapping function
g( fi (si )) =2 fi (si ) + 10.

3) In the third case, we assume that there are 20 vehicles for
each emission type, and the vehicular network is still static
and strongly connected, but with M = 20, 30, . . . , 100 with
the same mapping function in the second case.

B. Simulation Results

Our simulation results for each individual case study listed above
are shown in Figs. 4 - 6, respectively. In Fig. 4, we show that the
local estimated error from each vehicle has been different from zero,
which indicates that no vehicle can correctly identify other vehicles’
cost functions by using the secret sharing mechanisms. However,
with a basic mapping function g(x) = x , the overall cost function
seen from a base station is the same with the ground truth, which
demonstrates that the privacy of the overall cost function does not
preserve well to a central agent in this case. To improve this, we now
impose a new linear mapping function g(x) = 2x + 10, and it is
clear to show from Fig. 5 that privacy for both local and the central
agents have been preserved well by using our proposed algorithm
while without affecting the optimal solutions of the original problem.
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Fig. 6. Accuracy of our proposed method compared to the true optimal
solutions with respect to M.

Finally, the results in Fig. 6 compare the accuracy of optimal solutions
by using the proposed algorithm with respect to varying values of M
within a set. Clearly, when M is chosen as the lowest value in Fig. 6,
i.e. with only 10 data points linearly sampled in the given speed range,
the algorithm can perform well by reaching to over 90% optimality
in simple one algorithm iteration. For other cases shown in the figure,
we find out that the accuracy is almost identical and nearly 100% due
to the fact that the converged optimal recommended speed is much
close to the true optimal value of the original optimization problem.
This fact further shows the efficacy to deploy the proposed algorithm
in real-time CSAS scenarios, i.e. the value M is not quite sensitive
to the accuracy of the optimal solution in our problem. As a final
remark, we note that the above simulation results are also applicable
to time-varying network having uniformly strongly ergodic property.
The stability and convergence of the time-varying graph is guaranteed
by our results in [21]. The optimality and consistency of the result is
guaranteed by the mechanism of the proposed MPC-CSAS algorithm.

V. CONCLUSION

In this article, we propose a new design for CSAS based on the
MPC protocols, namely MPC-CSAS. We have shown that by using
the ideas of secret generation and sharing, users’ privacy can be
designed and preserved both locally and globally for a CSAS applica-
tion, that is no other vehicles or a base station in the network can infer
the original cost function associated with each vehicle, which may
contain a user’s critical/sensitive information. We have discussed the
applicability and feasibility to deploy the MPC-CSAS with both static
and strongly connected network as well as time-varying network
which satisfies uniformly strongly ergodic property linked to graph
theories. We have validated the efficacy of the proposed algorithm in
SUMO simulations. One of the assumptions we made in this article
is that a participated vehicle can trust the information received from
other vehicles in the network, which may potentially cause security
concerns to the participated vehicle. In light of this, we will explore
trustiness detection strategies such as how to use blockchain to record
trustiness of the involved vehicles as part of our future work. We will
also explore how the proposed MPC-CSAS can be adapted to more
complex networks for novel scenarios in ITS.
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