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Mining Actionable Patterns of Road Mobility From
Heterogeneous Traffic Data Using Biclustering

Francisco Neves, Anna C. Finamore, Sara C. Madeira , and Rui Henriques

Abstract— The comprehensive access to road traffic patterns
in the continuously growing urban areas is key to achieve a
sustainable mobility. However, the inherent complexity of urban
traffic poses many challenges to achieve this goal, including:
i) the need to integrate heterogeneous views of road traffic (such
as speed limits, jam size, delay, throughput) from available
sources; ii) the complex spatiotemporal intricacies of geolocalized
speed and loop counter data; iii) the need to mine congestion
patterns robust to the inherent traffic variability and unexpected
occurrence of events, taking also into consideration the varying
degrees of congestion severity; and iv) the need to guarantee
the statistical significance and interpretability of the target
patterns. In the context of our work, a road traffic pattern is
a recurrent congestion profile (w.r.t. speed limits, jam extent
and flow) that can span multiple locations and time periods
within a day. Biclustering, the discovery of coherent subspaces
(local patterns) within real-valued data, has unique properties of
interest, being positioned to unravel such traffic patterns, while
satisfying the aforementioned challenges. Despite its relevance,
the potentialities of applying biclustering in mobility domains
remain unexplored. This work proposes a structured view on why,
when and how to apply biclustering for mining traffic patterns
of road mobility, a subject remaining largely unexplored up to
date. Using the city of Lisbon as a guiding case, we illustrate
the relevance of biclustering geolocalized speed data and loop
counter data. The gathered results confirm the role of biclustering
in comprehensively finding statistically significant and actionable
spatiotemporal associations of road mobility.

Index Terms— Sustainable mobility, spatiotemporal pattern
mining, biclustering, road traffic data.

I. INTRODUCTION

MOBILITY in most capital cities is not yet sustain-
able. The COVID-19 pandemic crisis is exposing new

vulnerabilities as urban mobility patterns are rapidly chang-
ing. In particular, road mobility is susceptible to significant
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externalities causing daily congestions, in turn aggravating air
pollution, accessibility problems, traffic noise, and safety sus-
ceptibilities [1], [2]. Motivated by this observation, many cities
are establishing initiatives to collect heterogeneous sources of
urban data to comprehensively monitor road traffic [3], [4].
Among them, the Lisbon city Council (CML) is currently able
to gather and consolidate different views on road traffic data
along the city from mobile sensors, road cameras, and loop
counters.

Despite the relevance of these heterogeneous views to
understand road traffic dynamics, the comprehensive discovery
of traffic patterns of road congestion is hampered by five
major challenges. First, the inability of traditional pattern
mining methods to handle the spatiotemporal intricacies of
road traffic data sources, such as geolocalized speed data and
loop counter data. Second, the need to mine patterns robust
to the inherent traffic variability and sporadic occurrence
of unexpected events. Third, the need to combine multiple
aspects of road traffic, including speed limits, congestion
size, duration, as well as frequentist views on traffic flow.
Fourth, the need to discover patterns sensitive to jams with
varying levels of sensitivity (flexible coherence to go beyond
the focus on trivial congestions). Finally, the need to find
comprehensive sets of road traffic patterns with guarantees of
statistical significance, actionability and interpretability.

To address the introduced limitations, this paper proposes
the combined use of spatiotemporal data transformations and
biclustering to comprehensively find congestion patterns from
heterogeneous sources of road traffic data. In contrast with
clustering, biclustering – the discovery of subspaces within
real-valued data – provides the possibility to search for traffic
patterns on arbitrarily-sized geographical and temporal extents,
offering local and modular views. A traffic pattern is here
defined as a recurring congestion profile, possibly spanning
diverse locations and time periods within a day.

To this end, we first provide a discussion on what are
actionable road traffic patterns. Second, we propose a struc-
tured view on why, when and how to use biclustering for
their effective and efficient discovery. Finally, we show how
each of the identified challenges can be addressed using
integrative data mappings and state-of-the-art principles on
pattern-based biclustering. Although biclustering has been
largely used in the biomedical field [5], [6], its potential
in the mobility domain remains untapped. To the best of
our knowledge, this is the first work aiming at comprehen-
sively mining road traffic patterns with non-trivial forms of
coherence.
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We focus our study on the discovery of jam patterns from
two major sources of road traffic: 1) geolocalized speed data
(WAZE data), and 2) inductive loop detectors’ data. WAZE

data contain information relative to congestion events, where a
congestion event is a road segment that, at some point in time,
has an average traffic speed significantly lower than the regular
flow speed for that segment. Loop detectors are commonly
placed in city junctions to measure the number, speed and
type of vehicle passages over time. Both data sources offer
relevant complementary views to find patterns in road traffic,
including speed limits, jam size, congestion duration, severity
degree, and vehicle throughput. Considering the Lisbon city
as the study case, the gathered results confirm the relevance of
biclustering to unravel non-trivial, meaningful, actionable and
statistically significant patterns able to combine heterogeneous
road traffic aspects.

The paper is structured as follows. Section II provides
essential background on road traffic data analysis and biclus-
tering. Section III surveys important contributions from related
work. Section IV offers a comprehensively list of road traf-
fic patterns, and further describes why, when and how to
apply biclustering for their discovery. Section V gathers and
discusses results from biclustering heterogeneous sources of
road traffic data within the city of Lisbon. Finally, concluding
remarks and future directions are synthesized.

II. BACKGROUND

A. Road Traffic Data

1) Inductive Loop Detector Data: Inductive loop detectors
(ILDs), also referred as loop detectors or induction loops, are
equipment installed under roads pavements that detect vehicle
passages. Depending on the type of ILD, these equipments
are able to detect volume, speed and classify vehicles pass-
ing. ILDs are relatively susceptible to failure rates in their
estimations. Martin et al. [7] provide a detailed summary on
loop detectors. ILD raw data are often aggregated to provide
frequentist views on the cumulative number or average speed
of different classes of vehicles on a given road along specific
time intervals. In the city of Lisbon, ILDs are placed on
the major road junctions within the city and are calibrated
to stream the number of passing vehicles for every period
of 15 minutes in real-time.

To formalize ILD data, consider a time series to be an
ordered set of data points xit , where i∈1..m is the index of the
variable yi being recorded and t∈1..T the corresponding time
point or time interval. Time series are referred as univariate
when only one variable is recorded and multivariate when m >
1. Time series recorded at a particular location are referred
as georeferenced time series. More formally, a georeferenced
time series is a tuple gt = (

φ, {xit }i=1..m,t=1..T
)
, where φ is

a pair (latitude, longitude) describing the location where time
series x was recorded.

Aggregated ILD data are a collection �gt1, gt2, · · · , gtn�,
where gtk = (φ, x) is a georeferenced time series with m
variables being monitored (e.g. number of vehicles) and T
periods (e.g. intervals of 15 minutes).

2) Geolocalized Speed Data: The use of mobile devices
with active global positioning systems (GPS) is pervasive
nowadays. Applications installed in some of these devices
offer localization and navigation facilities, providing a com-
prehensive view of the ongoing traffic dynamics within the
city. For instance, WAZE1 is a free to use community-driven
GPS application able to monitor world-wide traffic dynamics.
In Lisbon, WAZE partnered with the city Council to provide
real-time statistics on traffic jams.2 The streaming data comes
in the form of events, where an event corresponds to a signif-
icant change to the regular speed along a given road segment.
To formalize WAZE jam data, the concepts of trajectory and
spatial event need to be introduced.

A trajectory is a sequence T = �φ1, φ2, · · · , φi �, where
φk is a pair (latitude,longitude). Trajectories are a common
type of traffic data. Floating car data (FCD) are a common
example of trajectory data produced from GPS devices, which
gather vehicles’ sequential positions. More details on FCD
can be read in [8]. Methods for constructing FCD from
GPS information produce rather sparse trajectories that need
to be completed within the constraints of the road network
mesh [9]–[11].

In the context of our work, an event is a tuple E = (x, s, t),
where:

– x = (x1, · · · , xm) is the observation, either univariate
(m=1) or multivariate (m > 1) depending on the number
of monitored variables. For instance, given speed (y1)
and throughput (y2) variables, an illustrative observation
is x=(x1=15km/h, x2=10cars/min).

– s is the spatial extent of the observation x. The spatial
extent s can be any spatial representation associated with
the event, such as a geographic coordinate or a trajectory;

– t is the temporal extent of the observation x, either given
by a time instant or a time interval.

Geolocalized speed data can thus be seen as a collection of
events E = {e1, e2, · · · , en}, where ek = (x, s, t) is a traffic
jam event that occurred at time t in a trajectory (road segment)
s. The set of observations x contains traffic information – such
as the recorded speed, delay, severity level or road type – that
characterizes the occurring jam.

3) Integrating Heterogeneous Sources: Considering the
introduced data structures, our work aims at finding non-trivial
yet relevant road traffic patterns from:

1) georeferenced time series data from inductive loop
detectors (frequentist view);

2) spatiotemporal event data made available by naviga-
tion applications (offering perspectives on speed limits,
expected delays, severity levels and spatial extent of
congestions); and

3) heterogeneous traffic data combining previous sources.

Understandably, these two sources of spatiotemporal data
offer distinct yet complementary views on road traffic. On one
hand, ILD data analysis alone is insufficient to distinguish
whether low vehicle throughput is driven by a lack of

1https://www.waze.com
2Data can be freely accessed at https://emel.city-platform.com/opendata/
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circulating vehicles or by traffic congestion. Geolocalized
speed data can thus be used to augment frequentist views, thus
supporting the characterization of low traffic flow scenarios.
Similarly, the analysis of geolocalized speed data alone is
insufficient to comprehensively characterize traffic dynamics,
it is insensitive to the number of circulating cars and largely
dependent on coherent communications from active GPS
devices.

B. Road Traffic Pattern Mining

1) Patterns of Road Mobility: A traffic pattern is a coherent
form of traffic behavior that satisfies a specific criterion of
frequency, where frequency is often represented by a form
of temporal or spatial recurrence. An illustrative and self-
explanatory road traffic pattern is:

< (jam extent in [1.5km,2km] | location φ1, [17h, 18h])∧
(speed limit in [15km/h,20km/h]| trajectory TA, [10h, 11h])>

with recurrence in [Mondays,Fridays].

In alternative to congestion extent and speed limits, patterns
may further capture restrictions on vehicle passage flow,
average traffic delay between per distance, or severity.

Integrative patterns of road mobility combining heteroge-
neous traffic views should be also pursued. For instance, a low
number of cars passing on a given road may be explained by
a heightened speed limitation on that same road, which in turn
may be explained by the spatial extent of traffic on a nearby
location.

The aforementioned patterns should satisfy certain proper-
ties of interest:

• non-triviality (novelty) and orientation towards mobility
problems (congestions);

• heterogeneity (integrate multiple aspects of road traffic);
• interpretability;
• actionability (aid mobility decisions);
• statistical significance (road traffic patterns should not be

spurious/occurring by chance);
• robustness (adequate tolerance to noise);
• guarantees of comprehensive (complete solutions) and

efficient pattern retrieval.

2) Target Problem: Given the introduced sources of road
traffic data (section 2.1), as well as desirable patterns of road
mobility (section 2.2), the problem targeted in this work is to
comprehensively discover road mobility patterns in an efficient
and effective way.

C. Biclustering

Given a dataset defined by a set of observations X =
{x1, .., xn}, variables Y = {y1, .., ym}, and elements ai j ∈ R

observed for observation xi and variable y j :

• a bicluster B=(I ,J ) is a n × m subspace, where I =
(i1, .., in) ⊆ X is a subset of observations and J =
( j1, .., jm) ⊆ Y is a subset of variables;

• the biclustering task aims at identifying a set of biclusters
B = (B1, .., Bs) such that each bicluster Bk = (Ik, Jk)

Fig. 1. Biclustering with varying homogeneity criteria: three biclusters were
found under a constant, additive and order-preserving assumption. Illustrat-
ing, constant bicluster has pattern (value expectations) {c1 = 1.05, c2 =
0.45, c3 = 0.9} on x2 and x3 observations, while the order-preserving
bicluster satisfies the y1 ≥ y2 ≥ y3 permutation on {x1, x2, x3} observations.

satisfies specific criteria of homogeneity, dissimilarity and
statistical significance.

Homogeneity criteria are commonly guaranteed through the
use of a merit function, such as the variance of the values in
a bicluster [6]. Merit functions are typically applied to guide
the formation of biclusters in greedy and exhaustive searches.
In stochastic approaches, a set of parameters that describe
the biclustering solution are learned by optimizing a merit
(likelihood) function.

The pursued homogeneity determines the coherence, quality
and structure of a biclustering solution [12]. The coherence of
a bicluster is determined by the observed form of correlation
among its elements (coherence assumption) and by the allowed
value deviations from perfect correlation (coherence strength).
The quality of a bicluster is defined by the type and amount of
accommodated noise. The structure of a biclustering solution
is defined by the number, size, shape and positioning of
biclusters. A flexible structure is characterized by an arbitrary
number of (possibly overlapping) biclusters. These concepts,
formalized below, are illustrated in Figure 1.

Given a dataset, the elements within a bicluster ai j ∈ (I, J )
have coherence across variables (pattern on observations) if
ai j = c j +γi +δi j , where c j is the expected value of variable
y j , γi is the adjustment for observation xi , and δi j is the noise
factor of ai j .

A bicluster has constant coherence when γi = 0 (or γ j =
0), and additive coherence otherwise, γi �= 0 (or γ j �= 0).

Let r be the amplitude of values of the input data, coherence
strength is a value δ ∈ [0, r ] such that ai j = c j + γi + δi j

where δi j ∈ [−δ/2, δ/2].
Given a real-valued dataset, a bicluster B = (I, J ) satisfies

the order-preserving coherence assumption iff the values for
each observation in I follow the same ordering π along the
subset of variables in J .

Figure 1 instantiates the introduced concepts, illustrating
biclusters with constant, additive and order-preserving coher-
ence (right) found in real-valued data (left). The pattern of
each bicluster is further provided.

The bicluster pattern ϕJ is the set of expected values in
the absence of adjustments and noise {c j | y j ∈ J }. Consider
the illustrative biclusters B1, B2 and B3 in Figure 1. Their
patterns are respectively given by ϕB1 = {c1 = 1.05, c2 =
0.45, c3 = 0.9}, ϕB2 = {c1 = 1.05, c2 = 0.45} (assuming
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ai j = c j + γi and additive factors γ1 = 0.65, γ2 = 0 and
γ3 = 0) and ϕB3 = (y2 ≤ y3 ≤ y1).

Statistical significance criteria, in addition to homogeneity,
guarantee that the probability of a bicluster’s occurrence
(against a null data model) deviates from expectations [13].

Finally, dissimilarity criteria can be further placed to
guarantee the comprehensive discovery of non-redundant
biclusters [5].

Following Madeira and Oliveira’s taxonomy [6], existing
biclustering algorithms can be categorized according to the
pursued homogeneity criteria and type of search. Hundreds of
biclustering algorithms were proposed in the last decade, as
shown by recent surveys [14], [15].

In recent years, a clearer understanding of the synergies
between biclustering and pattern mining paved the rise of
a new class of algorithms, generally referred to as pattern-
based biclustering algorithms [12]. Pattern-based biclustering
algorithms are inherently prepared to efficiently find exhaus-
tive solutions of biclusters and offer the unprecedented possi-
bility to affect their structure, coherency and quality [16]. This
behavior explains why this class of biclustering algorithms
is receiving an increasing attention in recent years [12].
BicPAMS (Biclustering based on PAttern Mining Software)
consistently combines these state-of-the-art contributions on
pattern-based biclustering [5].

III. RELATED WORK

The discovery of actionable patterns of urban mobility has
received particular attention in recent years with the increased
availability of urban data, advances on spatiotemporal data
analysis, and global pressure towards sustainability [4].
Yang et al. [17] define mobility patterns as “an abstraction
of human movement’s spatiotemporal regularity according to
human’s historical trajectories”. In addition to individual tra-
jectories from mobile users data [17]–[19], alternative sources
of urban data are being unprecedentedly consolidated by world
city Councils and subjected to pattern recognition – including
smart card data from integrated validation systems in public
carriers [20]; aggregate event statistics from free GPS systems
such as Google Maps and WAZE [21]; trajectories from GPS-
equipped public bicycles and taxis [22]; and traffic data from
ILD and cameras found along the arteries of major cities.
Understanding the patterns of human motion, both globally
and individually, is crucial for different purposes, among
them urban planning [17], traffic forecasting [23], providing
notifications or choices to the travelers [24], and monitoring
epidemic traffic responses to events and disasters [25].

Although interest in mobility patterns dates back one
century [26], their automated discovery is considered a
recent research area [27]. Below, we group recent contri-
butions on this field along three major categories: clas-
sic/statistical approaches (section III-A), clustering-based
approaches (section III-B) and pattern-centric approaches
(section III-C) for understanding urban mobility patterns.

A. Classic Approaches to Traffic Data Analysis

Classic approaches make use of statistics, parametric mod-
els and visualization principles to understand spatiotemporal

traffic dynamics. In contrast with pattern-centric stances on
traffic, generative stances describe traffic flow dynamics with
parametric models, offering the possibility to predict relevant
state variables of a transportation system. Data-assimilation
techniques are commonly combined to relate sensor obser-
vations to the system state. In this context, Yuan et al. [28]
propose an extended Kalman filter able to combine ILD and
floating car data, showing that discrete Lagrangian kinematics
of traffic dynamics are preferred over the Eulerian counterpart.

Treiber et al. [29] introduce interpolation principles for
estimating spatiotemporal distributions of traffic flow, speed
and density. The approach is applied over ILD data and
generalized to be enriched in the presence of floating car data
or other traffic information. The relevance of this work for the
targeted pattern discovery resides on the possibility to leverage
data quality by handling sources of noise, including sensor
failures and miscalibration of loop detectors.

Liao et al. [4] introduced a data fusion approach encompass-
ing real-time traffic data and travel demand (estimated from
Twitter data) that statistically assesses the difference in private
versus public travel time for retrieving spatiotemporal pat-
terns of time discrepancy. To this end, time-annotated origin-
destination matrices are inferred for four cities: São Paulo,
Stockholm, Sydney, and Amsterdam. Gonzalez et al. [19]
analyzed trajectories of 10,000 mobile phone users for a six
month period. Inspired by the work of Mantegna and Stanley
[30], they identified prominent statistics, including returning
peaks, to assess population’s mobility patterns. Dozens of
additional studies on traffic flow along major cities have been
more recently conducted [18], [31]–[35]. Li et al. [36] sug-
gest categorization of traffic flow studies in microscopic-level
studies (e.g. car-following models and lane-changing models),
mesoscopic-level studies (e.g. headway/spacing distributions),
and macroscopic-level studies (e.g. fundamental diagram and
traffic wave models). They also highlight the changes in
traffic flow models occurred from GPS-based and video-based
trajectory data.

Guo et al. [22] proposed visualization principles to analyse
a large point-based origin-destination dataset collected from
taxi rides in Shenzhen, China. Unlike most taxi trajectory
datasets, this study contains only the origin and destination
points per trip. To this end, they apply spatial clustering to
transform GPS points into meaningful regions, upon which
they compute and plot statistics such as inflow, outflow, and
flow ratio along different periods of the day. Hasan et al.
[20] provided visualization facilities to understand spatiotem-
poral mobility patterns gathered from smart card transactions
in London’s public transportation system. Models for inter-
modal transportation networks proposed within previous works
[37]–[39] can be used to extend this work for multiple carriers.

Research on traffic predictive models with guarantees
of interpretability also offer the possibility of unraveling
mobility patterns. Salamanis et al. [23] propose a method
to predict traffic under normal and abnormal conditions
differing in type, severity and duration. To tackle the issue
of abnormalities, their method discovers traffic patterns that
occur when an abnormal event of a specific class occurs
using open traffic data from Performance Measurement
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System (PeMS) in California, spanning a period of 10 years.
Rodrigues et al. [40] introduced a Bayesian additive model
(BAM) for decomposing traffic time series into structural
components – including routine behavior versus individual
special events – in order to estimate the number of arrivals in
a given area. The incorporation of public event information
improved predictions. The proposed method has the additional
advantage of disclosing each individual event’s influence,
making the model highly interpretable.

B. Clustering-Based Approaches to Traffic Data Analysis

Clustering methods have the potential to unsupervisedly
discover regions of interest, making them candidates to offer
discrete views of urban traffic data. Necula et al. [21] applied
clustering to identify statistically significant traffic patterns
given by a contiguous road segments with similar traffic load
over time from 10,000 GPS traffic traces of vehicles from
New Haven County, Connecticut, USA. Rempe et al. [41]
propose a graph-based approach to detect vulnerable parts of
the road network, named by the authors as congestion clusters.
To identify these vulnerable areas, the authors use spatial
smoothing to compute areas with recurrent jams over time,
termed congestion pockets. From the found time-dependent
congestion pockets, congestion clusters are inferred, and their
statistics computed (e.g. starting and ending time distributions)
and visualized. Song et al. [3] propose the use of hierarchical
clustering to mine spatiotemporal patterns of traffic congestion
using multi-source data collected from Beijing, China. Once
these patterns are discovered, geographical associations are
retrived and assessed against influential factors (such as den-
sity, design, diversity, among others). Habtemichael et al. [42]
introduce a short-term traffic forecaster based on clustering,
winsorization, and rank exponent sensitive to traffic profiles
over 36 freeway datasets from UK and USA.

Despite the relevance of the surveyed works, clustering-
based approaches impose similarity to be assessed on a daily
basis, preventing the discovery of non-trivial, statistically
significant and time-sensitive associations.

C. Pattern-Centric Approaches to Traffic Data Analysis

Gowtham et al. [43] conducted a survey on spatiotempo-
ral pattern mining algorithms. Some of these principles are
further instantiated by Xiao et al. [44] for traffic pattern
mining in maritime traffic service networks. In the context
of urban mobility, researchers have extended classic pattern
mining algorithms to successfully discover co-occurring and
sequential patterns in urban traffic data. According to Treiber
and Kesting [45], the discovery of such traffic patterns can be
used as features to improve descriptive and predictive mobility
models. Contributions from alternative spatiotemporal data
domains can provide important principles to this end, including
research developed on the discovery of spatial dynamics of
complex geographic phenomena. For instance, He et al. [46]
proposed an event-based spatiotemporal association pattern
mining approach that encompasses both point data representa-
tion and the geographic dynamics of events using air quality
data from Beijing–Tianjin–Hebei regions.

Huang et al. [47] proposed an architecture for traffic flow
description and prediction consisting of two components: a
deep belief network (DBN) and a multitask regression layer.
The DBN is employed unsupervisedly and shown to be effecti-
ve in extracting traffic features that support predictive tasks.

Naveh and Kim [48] propose the use of tensor factorization
to extract spatiotemporal movement patterns from large-scale
urban trajectory data obtained from public transport smart card
systems and roadside Bluetooth detectors. To this end, traffic
data is represented as a dynamic graph capturing region-to-
region flow interactions across time-of-day and day-of-week.

Giannotti et al. [49] propose approaches to find trajectory
patterns (T-Patterns) – location precedences with frequent time
constraints among trajectory instances – such as,

railway station
15 min−−−−→ town square

2h15 min−−−−−→ museum.

To this end, the authors propose temporally-annotated
sequence mining approaches using a density-based spatial
discretization of trajectory data [50]. Inoue et al. [51]
proposed an extension of a classic pattern mining algorithm–
FP-Growth–to mine patterns of daily congested traffic based
on traffic sensor data, and build a representation of congestion
propagation processes in the road network. The study
separates weekdays and days with/without rainfall to identify
differences in congestion patterns based on those variables.
In contrast with our proposal, the extended FP-growth
algorithm requires patterns to satisfy spatial and temporal
contiguity. Chen et al. [52] proposed an approach to discover
patterns in congested traffic from taxi trajectory data by
identifying congested links at each time. Although resembling
the idea proposed by Inoue et al. [51], the authors start by
finding Space-Temporal Congestion Subgraphs (STCS) –
corresponding to congested roads – using a moving sliding
window, and then apply FP-Growth to mine frequent STCS.
Yang et al. [17] study human mobility patterns by finding
hotspots from trajectories of 3474 individuals collected from
mobile internet data for 22 days in China. The authors also
extend classic pattern mining searches – here Apriori – to find
frequent hotspots, defined as “the most significant locations
along the human’s trajectories”.

Despite the relevance of the surveyed approaches, they are
generally hampered by discretization needs (e.g. classic pattern
mining algorithms), loose forms of coherence (e.g. tensor
decomposition), and either unable to handle event data or to
provide integrative views from heterogeneous sources of road
traffic data.

IV. SOLUTION

As introduced, our work aims at discovering actionable
patterns of road mobility from two heterogeneous sources of
traffic data: georeferenced time series data from ILDs and
multivariate event collections from GPS sensors. Given the
spatiotemporal nature of road traffic data, as well as the
desirable properties of the pursued patterns (a complete list is
provided in section II-B), this is a challenging task. To solve
this task, we propose a two-step methodology. First, transfor-
mation procedures are applied to consolidate the original data
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Fig. 2. ILD data mapping.

sources and map them into new data structures appropriate to
the subsequent mining task. Second, the use of pattern-based
biclustering to discover traffic patterns from the transformed
data sources.

Accordingly, Section IV-A describes the proposed data
transformations and principles for biclustering traffic data.
In addition, Section IV-B provides a structured view on why,
when and how-to biclustering road traffic data.

A. Road Traffic Patterns Using Biclustering

1) Data Mappings: The first step of the discovery process
is to fix spatial, temporal and calendric constraints, including
the target geographies, date intervals, and weekday annota-
tions. As default, the discovery process considers all available
geographies and dates as part of the search space, and uses
calendars: day-specific (e.g. all Mondays excluding holidays)
and weekday calendars along academic and off-academic
periods (similarly to [53]).

In addition, the time granularity (e.g. minute, hour or on/off-
peak intervals) can be optionally specified to guide road traffic
data aggregation. This choice is dependent on the targeted end:
fine granularities are suggested for real-time notifications from
online pattern analysis over traffic data streams, while coarser
granularities (e.g. 15 minute) suggested for mobility planning
or long-term traffic forecasting. In its absence, according to
principles proposed in [53], the proposed pattern discovery is
iteratively performed at different time aggregations.

Once these constraints are fixed, data mappings are applied
to transform the original spatiotemporal data structures into
tabular data structures, more conducive to the subsequent pat-
tern mining task. In the target structure, each observation/row
represents a day and each variable/column measures some
specific road traffic aspect on a specific location and time
period of a day.

For the ILD data, each variable measures the number of cars
passing over a single loop detector in a specific time interval
of the day. Figure 2 shows the original structure of the ILD
data and the corresponding data mapping.

Fig. 3. WAZE data mapping.

For the geolocalized speed data (WAZE data), multiple
measurements are taken per event, and events are associated
with a specific road trajectory. Here the columns correspond
to a measurement on a single road for a specific time interval
of the day. Figure 3 shows the original structure of WAZE data
and the corresponding transformed data.

The integration of the previous mappings is a simple con-
catenation of the variables resulting from the transformation
of each road traffic data source.

2) Biclustering: Under the previous mappings, traffic data
still preserves their spatiotemporal content, yet denormalized
within a tabular data structure, turning it a candidate for
the application of biclustering. In fact, the specific properties
of the introduced transformations were specifically proposed
to this end. As a result, a traffic pattern is elegantly seen
as a recurrent and coherent congestion profile (w.r.t. speed,
volume, extent) that can span diverse locations and different
time periods.

As surveyed in the previous section, pattern-based biclus-
tering approaches provide the unprecedented possibility
to comprehensively find patterns in real-valued data with
parameterizable homogeneity and guarantees of statistical
significance.

Biclustering aims at finding subsets of observations with
values correlated on a subset of variables. In the context
of our work, this means that the pattern of the bicluster
corresponds to the jam profile, the pattern support (i.e. number
of observations) corresponds to the number of days with the
given jam profile (i.e. pattern recurrence), and the pattern
length (i.e. number of variables) corresponds to the number
of locations and time periods within a day associated with
the given jam profile. Figure 4 provides an illustration of
spatiotemporal traffic patterns given by the target biclusters
using BicPAMS [5]. The instantiated road traffic patterns were
obtained through the application of biclustering over ILD and
WAZE data collected at the heart of the Lisbon city (Marquês
de Pombal), Portugal.

To discover different jam profiles using biclustering,
the coherence strength and coherence assumption of the target
biclustering solutions can be customized in accordance with
the desirable profiles of congestion.
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Fig. 4. Illustrative road traffic patterns given by biclusters separately and integratively found in ILD and WAZE data (collected at Marquês do Pombal junction
within the Lisbon city).

Coherence Strength: Biclustering also allows the calibra-
tion of coherence strength (section II.C) – e.g. how much
speed limits (or car flow) need to differ to be considered
dissimilar.

Patterns are inferred from similar (yet non-strictly identical)
congestion properties, whether they are: 1) numerical (speed
limits, spatial extent), 2) integer (number of vehicles), or 3)
ordinal (congestion severity).

Figure 5a-b illustrates the impact that different coherence
strength criteria can have on the found patterns. Considering
δ = Ā

|L| = 3 (section II-C), a looser coherence strength of
|L| = 3 allows the discovered traffic patterns to be sensitive
to 3 profiles (e.g. low, medium and high volume car passage),
while higher coherence strengths (such as |L| = 7) indicates
a greater sensitivity to traffic variability.

Allowing these strength-based deviations from pat-
tern expectations in real-valued mobility data is key to

prevent the item-boundaries problem associated with the
discretization problems faced by classic pattern mining
methods.

Constant Mobility Patterns: Depending on the goal, one or
more coherence assumptions (section II-C) can be pursued.
The classic binary coherence assumption is focused on pat-
terns of congestion independently of the level of congestion.
Such coherence assumption has severe problems because it
is highly dependent on the criteria that determines what
is a jam or not. This can be hard to identify given the
heterogeneity of speed limits in accordance with road types.
In addition, such option is unable to distinguish different levels
of congestion, a necessary condition if we want to assess our
traffic patterns and guarantee that they are actionable. The
binary assumption can thus be replaced by a constant assump-
tion. Figure 4 provides illustrative constant patterns of road
traffic.
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Fig. 5. Effects of coherence strength and assumption on the resulting traffic patterns.

Non-Constant Mobility Patterns: The constant assumption
suffers from a problem: two days need to satisfy the same
jam profile in order to count as supporting observations for a
bicluster. However, congestion highly varies along days. Even
when focusing on specific days (e.g. Tuesdays, Wednesdays
and Thursdays; Fridays; holidays), there is a high traffic
variability dependent on the presence of public events, weather
context, or road traffic interdictions.

In this context, non-constant patterns should be pursued
to guarantee a greater robustness to traffic variability, while
still guaranteeing the coherence of the target traffic patterns.
In particular, two types of traffic patterns are pursued:

• additive pattern: days with variations on the expected jam
profile (along specific locations and time periods of the
day), coherently explained by shifting factors;

• order-preserving pattern: days with preserved order-
ings of jam intensity over a set of locations and
time periods (Figure 5c). Illustrating, if a specific
location is always more congested than another with
regards to speed limits, the same order is observed
irrespectively of the absolute value associated with
the speed limit. Illustrating, consider the measuring
of jam extents (kilometers) between 9h-9h15 in three
locations (corresponding to variables y2, y3 and y7),
days x1 and x2 (y2, y3, y7|x1)={0.32,0.50,0.47} and
p(y2, y3, y7|d2)={0.29,0.97,0.55} are coherently associ-
ated since they preserve the permutation ai2 ≤ ai3 ≤ ai7.

Non-constant mobility patterns are a superset of constant
mobility patterns. Their search is suggested for the discovery
of road mobility patterns able to better tolerate the inherent
traffic variability due to unexpected occurrences and situ-
ational context (e.g. road interventions, cultural and sport
events). Although a comprehensive discovery of road mobil-
ity patterns can be pursued using the non-constant coherent
assumption alone, constant road mobility patterns provide a
simpler interpretation as they offer value expectations (e.g.
speed limit in [22km/h,29km/h]).

As a result, pattern-based biclustering allows the discovery
of less-trivial yet coherent, meaningful and potentially relevant
spatiotemporal associations that form the target traffic patterns.

Handling Highly Sparse Traffic Data: Road traffic data are
inherently sparse, specially georeferenced speed data. After

the proposed data mappings, an arbitrarily-high fraction of
elements from the transformed data is empty due to the local-
ized occurrence of jams in specific locations and time periods.
This creates a new requirement for the target approach: ability
to discover patterns in the presence of highly sparse data.

In fact, since the proposal of BicNET [54], pattern-based
biclustering approaches were enriched with principles to effi-
ciently explore sparse data. In fact, pattern-based biclustering
approaches further enable the discovery of biclusters with
an upper bound on the allowed amount of missings. This is
particularly relevant to guarantee that the sporadic absence of
a jam on a specific time period does not impact the target road
traffic patterns as can be shown in Figures 4 and 5.

B. On Why and When to Apply Biclustering

On WHY : As motivated, biclustering of traffic data should
be considered to:

• avoid the drawbacks of classic pattern mining methods,
including: 1) their susceptibility to the item-boundaries
problems3 and 2) inability to comprehensively explore
the spatiotemporal content of traffic data;

• discover non-trivial patterns of congestion given by con-
stant, additive and order-preserving jam profiles;

• combine heterogeneous aspects of road traffic, including
limited speed, vehicle volume, and spatial extent of jams;

• pursue patterns with parameterizable properties of interest
by customizing the target coherence strength, quality
(noise-tolerance), dissimilarity and statistical significance
criteria.

On WHEN: Similarly, biclustering of traffic data should
be applied when: 1) jam intensity/profile matters; 2) pursu-
ing less-trivial forms of knowledge (including the introduced
constant or order-preserving assumptions); 3) discretization
drawbacks must be avoided; 4) heterogeneous sources of
road traffic are available; and when 5) one seeks to find
comprehensive solutions of traffic patterns with customizable
homogeneity.

On HOW: Comprehensive Exploration of Traffic Data:
Pattern-based biclustering offers principles to find complete

3The possibility to allow deviations from value expectations (under limits
defined by the placed coherence strength) together with multi-item assign-
ments [16] are placed to prevent discretization problems from occurring
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solutions of traffic patterns by: 1) pursuing multiple homo-
geneity criteria, including multiple coherence strength thresh-
olds, coherence assumptions and quality thresholds; and 2)
exhaustively yet efficiently exploring different regions of the
search space, preventing that regions with large patterns jeop-
ardize the search [5]. As a result, non-trivial yet significant
correlations within road traffic data are not neglected.

In addition, pattern-based biclustering does not require the
input of support thresholds as it explores the search space
at different supports [16], i.e. there is no need to place
expectations on the minimum number of days for a jam profile
to become relevant. The minimum number of locations and
time periods within a day can be optionally inputted to guide
the search. Dissimilarity criteria and condensed representations
can be also placed [5] to prevent the delivery of redundant
patterns.

On HOW: Statistical Significance: A sound statistical testing
of road traffic patterns is key to guarantee the absence of
spurious relations, and ensure the relevance of the given pat-
terns to support mobility decisions. To this end, the statistical
tests proposed in BSig [13] are suggested to minimize false
positives (outputted patterns yet not statistically significant)
without incurring on false negatives. This is done by approx-
imating a null model of the target traffic data and statistically
testing each bicluster against the null model in accordance
with its underlying coherence.

On HOW: Robustness to Noise: Pattern-based biclustering
can find biclusters with a parameterizable tolerance to noise
[16]. Illustrating, a quality of 80% indicates that an upper
limit given by 20% of entries within a bicluster may deviate
from the target jam profile (δi j /∈ [−δ/2, δ/2]). This possibility
ensures robustness to the inherent daily traffic fluctuations,
as well as spontaneous jams caused by sporadic events which
do not yield particular significance.

On HOW: Other Opportunities: Additional benefits of
pattern-based biclustering that can be carried towards the
analysis of traffic data include:

1) the possibility to remove uninformative elements in data
to guarantee a focus, for instance, on non-trivial jam
profiles (removal of entries denoting highly congested
traffic) [54];

2) incorporation of domain knowledge to guide the task in
the presence of background metadata [55];

3) support classification and regression task in the presence
of labels (e.g. traffic conditioning modes, panel message
recommendations, situational context) by guaranteeing
the discriminative power of biclusters [12].

V. RESULTS

Considering the Lisbon city as a study case, we applied the
proposed approach to comprehensively discover road traffic
patterns from geolocalized speed data from WAZE and induc-
tive loop detector (ILD) data collected during a two month
period in central junctures of the city (Figure 6). To illustrate
the enumerated potentialities, experiments are discussed in
three major steps, corresponding to the analysis of the gathered

Fig. 6. Map visualization of the two sources of urban traffic data along the
studied area (Marquês de Pombal): a) ILD sensor placement; b) WAZE jam
events on peak hour (1/14/2020, 9AM).

results from ILD, WAZE , and consolidated ILD-WAZE data
sources. Finally, we show that biclustering guarantees the
statistical significance of the spatiotemporal associations found
within road traffic data, providing a trustworthy means to
support mobility reforms.

Experimental Setting: BicPAMS [5] was the selected biclus-
tering approach as it combines state-of-the-art principles on
pattern-based biclustering. BicPAMS is used with default
parameters: varying coherence strength (δ = Ā/|L| where
|L| ∈ {2, .., 10}), decreasing support until 100 dissimilar
biclusters are found, up to 30% noisy elements, 0.01 sig-
nificance level, and constant and order-preserving coherence
assumptions. Two search iterations were considered by mask-
ing the biclusters discovered after the first iteration to ensure a
more comprehensive exploration of the data space and a focus
on less-trivial patterns of road mobility.

Both ILD and WAZE data sources are subjected to dif-
ferent forms of noise, which were carefully profiled before
conducting the undertaken study. Inductive loop detectors that
were statistically found to be poorly calibrated were removed.4

WAZE events were found to be structurally sparser than initially
expected, thus potentially missing less severe jams due to an
hypothesized lack of coherent GPS communications.

Finally, location-based distributions of speed, extent and
frequency were approximated, and the statistical tests proposed
in BSig [13] applied to compute each pattern’s statistical
significance.

A. ILD Traffic Patterns

Two months of observations produced from loop detectors
placed at major junctures of the city were collected
(Figure 6a). Table I synthesizes the results produced by
biclustering ILD data with BicPAMS [5].

Confirming the potentialities listed in Section IV, BicPAMS
was able to efficiently and comprehensively find homoge-
neous, dissimilar and statistically significant biclusters – recur-
rent variations on the flow of vehicles (throughput) spanning
diverse locations and different time periods. Consider, for
instance, traffic patterns given by constant biclusters sensitive
to three degrees of volume (|L| = 3) and 70% quality. These
traffic patterns have an average of μ(|J |) = 20 features
(corresponding to different city locations and time periods

4https://web.ist.utl.pt/rmch/ilu/
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TABLE I

PROPERTIES OF BICLUSTERING SOLUTIONS IN ILD DATA USING BICPAMS WITH VARYING HOMOGENEITY CRITERIA

Fig. 7. Illustrative constant and order-preserving traffic patterns found in ILD data.

TABLE II

PROPERTIES OF BICLUSTERING SOLUTIONS IN WAZE DATA USING BICPAMS WITH VARYING HOMOGENEITY CRITERIA

of a day) and occur on μ(|I |) = 43 days within a two
month period (60 days). These initial results further show the
impact of tolerating noise, placing different coherence assump-
tions (such as the order-preserving assumption) and parame-
terizing coherence strength (δ ∝ 1

|L| ) on the biclustering
solution.

Figure 7 visually depicts a constant and order-preserving
patterns of road mobility using a line chart (where each line
corresponds to a day when the traffic pattern was observed)
and heatmap (where days correspond to rows). The traffic

pattern captures coherent variations on the traffic flow across
locations and time periods.

ILD data are in essence georeferenced multivariate time
series data (section II-A). Understandably, biclustering can be
as well applied over any alternative source of traffic data given
by georeferenced time series, such as the average car speed.

B. WAZE Traffic Patterns
WAZE events associated with jam problems at the Marquês

de Pombal area within Lisbon were collected for two months
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Fig. 8. Three illustrative constant patterns of road traffic found in WAZE data.

(Figure 6b). Table II synthesizes the biclustering results
produced by the application of BicPAMS over WAZE data.
Similarly to ILD, we observe an inherent ability of biclustering
to efficiently retrieve a large number of robust, dissimilar and
statistically significant patterns of road traffic. These patterns
are reocurring speed limits and jam extent that span specific
trajectories and time periods.

For this analysis we consider WAZE data in their whole
richness, combining views on speed, jam extent, and per-
ceived severity. Illustrating, traffic patterns given by constant
biclusters with coherence strength determined by |L| =
4 are sensitive to four levels of severity, speed and jam
extension. We can, for instance, observe that biclusters with
|L| = 4 and 70% quality have a median of 6 features
(corresponding to different city locations and time peri-
ods of a day) and occur on an average of μ(|I |) = 42

days within a two month period (60 days). These results
further show the relevance of discovering patterns with
different homogeneity criteria (coherence assumption, coher-
ence strength and quality).

Figure 8 depicts three constant road traffic patterns (and the
respective jam profile, spanned locations, time periods of the
day) using BicPAMS with default parameters.

Each bicluster shows a unique traffic pattern. For instance,
the first traffic pattern (Figure 8a) captures a congestion profile
at the evening peak hour with locations where jam extensions
are high and locations where speed is severely limited. These
results motivate the relevance of finding constant biclusters to
find patterns with coherent speed limits and congestion lengths
for a statistically significant number of days.

A closer analysis of the found road traffic patterns
shows their robustness to the item-boundaries problem: slight
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Fig. 9. Three illustrative order-preserving patterns of road traffic found in WAZE data.

deviations from the expect speed limit or jam extension are not
excluded from the bicluster. The target patterns are thus not
hampered by the drawbacks of discrete views on road traffic.

Non-constant patterns are in this work suggested to find
more flexible patterns of road traffic, usually associated with
less-trivial traffic associations. Figure 9 depicts two non-
constant traffic patterns with an order-preserving assumption.
This assumption is useful to capture coherent orders in jam
profiles, thus being able to account for coherent differences
in speed limits, jam extensions and expected delays across
days. As one can clearly see on the heatmaps (Figure 9a
and b), order-preserving patterns are characterized by a well-
established permutation on the features associated with a
congestion.

As introduced (section III-A), collections of WAZE events
are characterized by an inherent structural sparsity – i.e. the
mapped data structure can have an arbitrary-high amount of
missing entries depending on the chose temporal granularity.
In the conducted experiments, the amount of missing entries
for the 15 minutes granularity surpasses 90%. This observation
further confirms the robustness of pattern-based biclustering in
discovering mobility patterns from highly sparse traffic data.

C. Integrative Patterns of Road Traffic

Finally, we briefly show integrative traffic patterns from
the consolidation of ILD and WAZE data sources. Table III
describes the properties of the pattern solutions produced from
specific biclustering searches. Given the need to account for

cross-source relationships, we can observe that the resulting
traffic patterns have in average either a lower number of
supporting days (an average of 20 days from the monitored
60-day period) or a lower number of jam features (an average
of approximately 10 features). A considerably high number
of dissimilar and statistically significant patterns combining
speed and volume views on road traffic was discovered.
Tolerance to noise of these solutions can be easily customized
in order to comprehensively find patterns with parameteriz-
able degree of quality. In addition to noise-tolerance, δi j /∈
[−δ/2, δ/2], coherence strength δ = A/|L| can be customized
to comprehensively model relations with slight-to-moderate
deviations from traffic pattern expectations.

Figure 10 depicts three of the dozens of integrative traffic
patterns found in Marquês de Pombal’s junctures within the
Lisbon city. The interesting aspects of all of these patterns is
that they combine frequentist views pertaining to ILD data,
as well as continuous views on speed and jam extension,
pertaining to WAZE data. Considering the second depicted
pattern (Figure 10b), it captures a traffic profile spanning
different streets around Marquês de Pombal along different
periods of the afternoon with a delineated jam profile in terms
of flow, speed and spatial extent.

D. Statistical Significance

Table I shows the ability of the target biclustering searches
to find statistically significant relations within road traffic data.
A bicluster is statistically significant if the number of days with
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TABLE III

BICLUSTERING RESULTS FROM CONSOLIDATED ILD AND WAZE DATA USING BICPAMS WITH DIFFERENT HOMOGENEITY CRITERIA

Fig. 10. Illustrative mobility patterns found from heterogeneous traffic data (event and time series traffid data), integrating views on traffic flow, speed and
jam extension.

a given congestion profile is unexpectedly low [13]. Figure 11
provides a scatter plot of the statistical significance (horizontal
axis) and area |I |x|J | (vertical axis) of constant biclusters
with |L| = 3 and >70% quality. This analysis suggests the
presence of a soft correlation between size and statistical
significance.

We observe that a few biclusters from both ILD and WAZE

data sources have low statistical significance (top left dots)
and can therefore be discarded not to incorrectly bias mobility
decisions. Two major observations explain the different levels
of statistical significance for the retrieved mobility patterns
from ILD and WAZE data sources. First, the structurally
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Fig. 11. Statistical significance versus size of the collected constant patterns of road traffic (|L|=3 and 70% of quality).

sparser nature of WAZE data when compared with ILD data
(georeferenced time series) leads to road mobility patterns
with a generally lower number of supporting days (smaller
patterns), hampering their statistical significance. Hence,
the lower significance levels and absence of patterns on the
bottom right part of Figure 11b. Second, not all road mobility
patterns found from ILD data correspond to congestion
profiles. Instead, they correspond to expectations well-detected
by the null model and, therefore, generally have lower levels
of statistical significance (upper left marks in Figure 11a).

VI. CONCLUDING REMARKS

This work addresses the problem of mining actionable
patterns of road mobility from heterogeneous sources of traffic
data. To this end, it proposes the combined use of data transfor-
mations and pattern-based biclustering searches to comprehen-
sively explore spatiotemporal associations within road traffic
data. Pattern-based biclustering searches are suggested to this
end as they hold unique properties of interest: efficient yet
exhaustive searches; non-trivial traffic patterns with parameter-
izable coherence; tolerance to noise and missing data; ability
to incorporate domain knowledge; and sound statistical testing.

Results from geolocalized speed and loop counter data
confirm the unique role of biclustering in finding relevant
patterns given by recurrent jam profiles spanning diverse
locations and time periods within the day in accordance with
inputted spatial and temporal constraints. Non-constant road
traffic patterns can be further pursued to guarantee a greater
robustness to traffic variability while still guaranteeing the
coherence of the target traffic patterns.

The target traffic patterns can combine different jam-related
aspects, such as speed limits, vehicle passage frequencies, and
the spatial extent of congested road segments. Results evidence
the ability to unveil actionable, interpretable and statistically
significant patterns of road mobility, thus providing a trustwor-
thy context with enough feedback to support mobility reforms.

Future Work: As future work, we first intend to provide
spatiotemporal navigation facilities among the multiplicity of
traffic patterns present within a city at a certain time, as well
as more usable visual representations of each pattern. Second,

we expect to extend this analysis to other modalities of trans-
port within the city of Lisbon, and then apply the proposed
approach to urban data collected from other cities. Third,
an incremental version of the proposed pattern discovery
process can be considered by parameterizing BicPAMS [5]
with FCFPIM [56] to provide strict real-time guarantees in
the presence of road traffic streaming data. Finally, we aim
to extend the proposed approach to discover patterns sensitive
to sources of situational context, including weather records,
interdictions, and large-scale events.
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