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Distributed Kuramoto Self-Synchronization of
Vehicle Speed Trajectories in Traffic Networks

Manuel Rodriguez, Hosam Fathy

Abstract—This paper presents a distributed synchronization
strategy for connected and automated vehicles in traffic networks.
The strategy considers vehicles traveling from one intersection
to the next as waves. The phase angle and frequency of each
wave map to its position and velocity, respectively. The goal
is to synchronize traffic such that intersecting traffic waves
are out of phase at every intersection. This ensures the safe
collective navigation of intersections. Vehicles share their phase
angles through the V2X infrastructure, and synchronize these
angles using the Kuramoto equation. This is a classical model
for the self-synchronization of coupled oscillators. The mapping
between phase and location for vehicles on different roads
is designed such that Kuramoto synchronization ensures safe
intersection navigation. Each vehicle uses a constrained optimal
control policy to achieve its desired target Kuramoto phase at
the upcoming intersection. The overall outcome is a distributed
traffic synchronization algorithm that simultaneously tackles two
challenges traditionally addressed independently, namely: coor-
dinating crossing at an individual intersection, and harmonizing
traffic flow between adjacent intersections. Simulation studies
highlight the positive impact of this strategy on fuel consumption
and traffic delay time, compared to a network with traditional
traffic light timing.

Index Terms—Intersection management, connected and au-
tonomous vehicles, self-synchronization, Kuramoto equation, co-
operative systems.

I. INTRODUCTION

AUTONOMOUS and connected vehicles are expected to
improve the efficiency of road networks by increasing

throughput, reducing fuel consumption and reducing travel
time. Optimistic forecasts anticipate up to 45% reduction
in fuel consumption through the implementation of these
technologies [1]. Furthermore, an important portion of these
savings is expected to come from the automation of traffic
intersections.

Coordinating traffic at intersections requires solving two
different problems, at two different scales. The first is ser-
vicing conflicting flows at an intersection so that vehicles do
not collide with each other; in other words, deciding who
crosses when. We refer to this problem as the intra-junction
coordination problem. The second problem is harmonizing the
flow between adjacent intersections to reduce the amount of
energy vehicles waste due to frequent acceleration and brak-
ing; we refer to this problem as the inter-junction coordination
problem. Most of the literature on intersection control focuses
on one of these problems individually. Some approaches
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combine separate solutions, and evaluate their performance
when combined.

A. Literature review

Approaches in the literature differ mostly in their assump-
tions of which agents communicate wirelessly with each
other, and which agents are being controlled by the proposed
strategy. Agents are essentially of two types: vehicles, which
can be connected and autonomous or human-driven, and co-
ordinators, which can be traditional traffic lights or computers
that communicate wirelessly with the incoming traffic. In
the following, we review work that considers coordination
between traffic lights, coordination between CAVs and upcom-
ing traffic lights, coordination between CAVs themselves, and
finally coordination between CAVs and centralized controllers,
which in turn coordinate with each other.

First, we consider coordination between traffic lights that
can exchange signal phase and timing information with each
other. Traffic networks currently solve the intra-junction prob-
lem through traffic signalization. When these traffic signals
are actuated (i.e traffic lights), proper tuning of signal timing
and offset can also tackle the inter-junction problem. Indeed,
an early impact of connectivity in improving traffic has come
from coordinating traffic lights so that their offsets give rise
to “green waves” where vehicles encounter green lights in
sequence, effectively avoiding start-stop behaviour. Currently,
through loop detection, traffic lights can adapt their timing
using strategies such as SCOOT [2] and SCAAT [3]. Other
approaches in the literature are based on optimal control [4],
fuzzy logic [5], machine learning [6], [7], and game theory
[8].

Of specific relevance to the work presented in this paper,
several proposed traffic light control approaches make use
of the Kuramoto equation for self-synchronizing oscillators.
Sekiyama et al. proposed such an approach, where they used
Kuramoto synchronization to adjust signal phase and timing
[9]. This work was further expanded in [10], [11], [12]. In
general the problem can be thought of as material transport
problem in a directed graph, as explained by Lammer et. al.
in [11].

As cars themselves become connected and autonomous,
they can coordinate with each other and with the traffic lights.
Several algorithms are explored using both of these com-
munication configurations. For example, assuming vehicle-to-
infrastructure communication, the inter-junction problem can
be addressed through predictive trajectory planning. Specifi-
cally, vehicles that receive signal phase and timing information
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from traffic lights can plan their trajectories to avoid stopping
at red lights. This approach has been studied in [13], [14],
[15], [16], [17], [18], and has shown promising fuel economy
and throughput improvements. The idea consists of translating
signal phase and timing (SPAT) information into constraints
for a model-predictive trajectory optimization problem that
seeks to reduce fuel consumption. This body of work further
exemplifies the importance of considering the intersection
management problem in both of its scales. For example, in [18]
we show how even with the use of optimization to generate
trajectories in an arterial corridor, improper timing of the traffic
lights can halve the benefits in fuel consumption.

Assuming vehicle fleet connectivity, some approaches avoid
the use of traffic lights altogether by having the vehicles
coordinate crossing times with each other, or with a centralized
coordinator. For comprehensive reviews of this literature, the
reader is pointed towards references [19], and [20]. In these
two reviews, the different approaches are classified by whether
decisions are made in a centralized or decentralized manner,
whether they are the product of heuristic rules or the solution
to an optimization problem ([21], [22]), or whether they
are reservation-based approaches ([23], [24]) versus trajectory
planning approaches ([25], [26]). In general the problem
is solved in two layers. The first one determines vehicles’
crossing times or sequence, while the second controls the
vehicles’ speeds to achieve the agreed-upon crossing time. The
approach proposed in this work follows a similar structure.
Other approaches based on the formation of virtual platoons
are also of particular relevance to this work, because they make
use of multi-agent consensus strategies, which can be thought
of as linear counter-parts of the Kuramoto equation. Vaio et
al. [27] propose a decentralized protocol that projects vehicles
in conflicting roads into the same coordinate system, namely
a distance to the upcoming intersection. Through a heuristic
algorithm vehicles negotiate desired inter-vehicular distances,
and they use modified consensus to achieve the desired for-
mation. The method is evaluated for a single intersection.

Finally, we consider approaches that have both connected
centralized agents, that can communicate with each other at
different intersections, and connected vehicles that exchange
information with these coordinators and among themselves.
Recent studies explore how these approaches can attempt
to solve both the inter-junction and intra-junction problem.
In [28], a centralized reservation-based controller at each
intersection communicates its decisions to both the vehicles
it is in charge of scheduling and to the controllers at neigh-
boring intersections. The crossing time decisions are made
by solving a mixed-integer linear program that considers the
information it receives from its adjacent intersection managers.
The approach is evaluated both with and without coordination
between intersection managers, showing that when intersection
controllers can communicate with each other, fuel consump-
tion benefits double. A similar approach is taken in [29], where
connected centralized schedulers take into account each other’s
information when making reservation decisions. In this case,
coordination between the schedulers is achieved by the use of
multi-agent consensus, as opposed to optimization.

B. Paper Contribution

The above literature highlights the breadth of different
approaches that are proposed to solve the autonomous inter-
section management problem. From this literature, we identify
the following key lessons. First, Kuramoto models and other
consensus-based approaches have been successfully used to
coordinate traffic lights and centralized intersection coordina-
tors, but they have not been explored as means to coordinate
autonomous vehicles themselves. Second, approaches that
consider multiple intersections and the coupling between them
can yield larger fuel savings compared to localized controls.
However, most approaches that solve both intra- and inter-
junction problems rely on some sort of centralized agent that
couples intersections. This paper proposes an approach to
solve the autonomous intersection management problem at
both levels using the non-linear consensus equation known
as the Kuramoto model. The use of Kuramoto allows vehicles
to first agree upon the current state of the intersections (i.e.
which flow is being serviced), and then to synchronize with
the intersections. The conference version of this paper [30]
introduced the basic idea underlying this strategy; namely, the
fact that through mapping phase and frequency to position and
velocity and synchronizing using Kuramoto, vehicles can agree
on crossing times that solve both the intra- and inter-junction
problem. In addition, this archival version of the work adds the
following key contributions. First, we pair the synchronizing
Kuramoto layer with a more sophisticated optimization-based
tracker, as opposed to the back-stepping tracker used in [30].
Second, we now allow right turns in the network, which puts
us closer to adapting the strategy to more realistic traffic
scenarios. Third, we evaluate the impact of our strategy on
fuel consumption and delay time as compared to human-driven
vehicles in the presence of traffic lights. The fuel savings are
then explained by correlating them to to changes in vehicle
behavior (e.g., reductions in energy loss due to the braking
portions of start-stop driving).

II. PROPOSED STRATEGY

We consider a grid of interconnected intersections in an
urban traffic network. We assume that all incoming vehicles
are autonomous, capable of vehicle-to-vehicle (V2V) commu-
nication, and can interact with all the vehicles in the network
(i.e. all-to-all connectivity). Less restrictive communication
topologies are possible as shown in the Kuramoto consensus
literature [31], and do not alter the fundamental ideas behind
this work.

The idea behind our proposed strategy consists of mapping
the position and velocity of each vehicle to a corresponding
virtual phase and frequency. The vehicles exchange phase
information through V2V communication, and compute the
dynamics of their phases using the Kuramoto equation. This
naturally drives them to synchronize. From the phase trajec-
tories, vehicles determine the times and velocities at which
they need to arrive to the upcoming intersections. With this
information, they formulate a linear quadratic optimal control
problem that can be solved at each time step to determine the
acceleration command that will place them at the intersection
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at the right time, with the right speed. The mapping between
phase and position must satisfy certain constraints for this
strategy to produce the desired behaviour, that is, safe crossing
at intersections (which solves the intra-junction problem) and
smooth crossing between intersections (which addresses the
inter-junction problem).

In this section we describe in detail how the proposed
strategy can be implemented in a network of roads with or
without right turns, where all vehicles are autonomous and
inter-connected.

A. Kuramoto Synchronization

The literature on traffic light synchronization using the Ku-
ramoto equation works by describing the agents (i.e the traffic
lights) as oscillators and establishing a mapping between the
phase of the agent and a control action (i.e switching from
green to yellow, or red). In our proposed strategy, where the
vehicles are the agents as opposed to the traffic lights, the
mapping relates the phase of the vehicles to a position along
the road. For each road segment p, we define a mapping gp(θ)
that relates the phase θ of a vehicle to the vehicle’s desired
distance to the intersection along the curvature of the road sd:

sd = gp(θ) (1)

We choose gp to be an affine function of phase; it can
therefore be described by two parameters. We call these
parameters the wavelength λ and the offset φ, where λ is the
slope and φ the zero crossing. For a given road p, the mapping
is then:

gp(θ) = (θ − φp)
λp
2π

(2)

We can think of this map as having wrapped the length along
the road around a circle of radius λp

2π , and rotated it by an
angle φp

Assuming steady state tracking of the desired distance to
the intersection sd, it follows from the definition of gp that a
vehicle i on road p will reach the intersection when its phase θi
is equal to the corresponding offset φp. It also follows that two
vehicles on road p with a phase difference of some multiple k
of 2π, will be separated by kλp meters. Mathematically, these
two properties of our mapping can be expressed as:

gp(φp) = 0 (3)

gp(θ + 2kπ)− gp(θ) = kλp (4)

We have yet to define one of the main descriptors of an
oscillator: its natural frequency. Since phase is mapped onto
position, frequency will be mapped onto velocity. Indeed, from
differentiation in time of Eq. (2), we have a definition of
desired vehicle velocity:

vd = θ̇
λp
2π

(5)

Under this definition, it follows that the natural frequency
ω of a vehicle is simply the frequency corresponding to the

constant nominal desired velocity the vehicle would like to
travel at. In our proposed strategy a key constraint is that
all vehicles have the same natural frequency ωn. As such,
a road segment p is characterized not only by its wavelength
λp, but also by a nominal speed vn,p, such that the following
constraint is always satisfied1:

ωn = 2π
vn,p
λp

(6)

Now that we have a definition of phase and frequency as
they relate to desired position and velocity, we consider the
dynamics of this phase variable. Specifically, we impose that
these dynamics be governed by the Kuramoto equation. This
equation was introduced in 1975 to model the dynamics of
populations of weakly coupled oscillators that exhibit self-
synchronizing behaviour. Synchronization refers to oscillators
with different natural frequencies influencing each other to
oscillate at the same frequency and a constant phase difference.
This occurs mostly in biological systems like populations
of flashing fireflies. The governing equation, as proposed by
Kuramoto in [32], is as follows:

θ̇i(t) = ωi +
1

N

N∑
j=1

Kij sin(θj(t)− θi(t)) (7)

In this formulation, the instantaneous frequency of oscilla-
tion θ̇i is given by the oscillator’s natural frequency ωi plus
the coupling term to all other oscillators based on the sine of
their difference in phase multiplied by a coupling term Kij .

For all-to-all symmetric coupling, that is Kij = K, and a
monotonic and uni-modal distribution of natural frequencies
p(ω), the behaviour and stability of the system is well-
understood [33]. To illustrate this behaviour, it is useful to
express the model in its mean-field form, by introducing the
order parameter:

r(t)eΨ(t)i =
1

N

N∑
j=1

eθj(t)i (8)

Ψ
𝑟

Fig. 1. The order parameter has magnitude r, the coherence, and phase Ψ,
the mean phase

If each oscillator is thought of as a particle orbiting around
the unit circle, the order parameter is the centroid of all

1The possibility of allowing multiple nominal speeds on multi-lane road
segments is not precluded by this problem formulation, since the different
lanes can correspond to different wavelengths.
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oscillators, as shown in Fig. 1. The Kuramoto equation can
then be rearranged in terms of r and Ψ:

θ̇i(t) = ωi + r(t)K sin(Ψ(t)− θi(t)) (9)

In this form, one can see that the ith oscillator is pulled
towards the mean phase Ψ with an effective coupling Kr. The
coherence r takes values from 0 to 1, where 0 represents all
oscillators orbiting incoherently and 1 represents all of them
sharing the same phase.

When the coupling between oscillators is K = 0, agents
orbit the unit circle in complete incoherence and the value of
r fluctuates around 0. As the coupling strength is increased,
incoherent behaviour persists until a critical coupling threshold
Kc is exceeded. For these larger values of K, a subset of
oscillators synchronize and start recruiting more and more
oscillators. Indeed, a positive relationship exists between the
coherence r and the coupling strength Kr. From Eq. (9) we
can see that the stronger the coupling, the more the oscillator
is pulled towards the mean phase, and as more oscillators orbit
near the mean phase, the coherence r increases. Finally, the
value of r saturates at some final value below, but near 1,
around which it fluctuates.

For normal distributions of natural frequencies and large
enough coupling, the resulting behaviour corresponds to all
oscillators orbiting with the mean frequency of the original
distribution (this is called frequency entrainment) and main-
taining a constant phase difference between each other (this
is called phase-locking). In the particular case of all natural
frequencies being the same, all vehicles phase lock to the mean
phase exactly, with no constant phase difference between them,
and r converges to 1 exactly. Using the frequency given in Eq.
(6), we can write the dynamics of θi as:

θ̇i(t) = ωn + r(t)K sin(Ψi(t)− θi(t)) (10)

where the local mean phase Ψi is the closest projection to θi
of the overall mean. That is:

Ψi(t) = min
k
{Ψ(t) + 2kπ}

subject to:
−π ≤ ||Ψ(t) + 2kπ − θi(t)|| ≤ π

k ∈ Z

(11)

By collapsing the distribution of natural frequencies of the
oscillators into a single point (i.e p(ωn) = 1), we force all the
phases of the system to converge to the mean phase plus some
multiple of 2π, or, in other words, to its closest mean phase
Ψi(t).

For a population of oscillators with a random distribution
of initial phase, the trajectories of the phase, mean phase,
and frequency are shown in Fig. 2. Note that oscillators are
basically pulled towards the closest mean phase; we can then
think of the mean phase, and its projections every 2π, as
beacons that the vehicles are attracted to.

Finally, we combine the behavior of a Kuramoto-driven
system and the mapping between desired position and phase
we have defined. This combination constitutes the coordinating

(a) Phase and Mean phase trajectories

(b) Evolution of frequencies θi

Fig. 2. Evolution of phase, mean phase, and frequencies for a population of
oscillators with random initial phase

layer of our algorithm. Through Kuramoto the vehicles agree
on a mean phase for the entire network, and because of
the definition of the mapping given by Eqs. 2 and 3, the
vehicles then attempt to cross the intersection exactly when
the mean phase is equal to the offset of the road. As such, the
synchronizing Kuramoto layer allows vehicles to negotiate the
crossing state of all intersections in the network, regardless of
their distance to those intersections.

B. Phase, Offset and Wavelength Constraints

Three different types of constraints need to be satisfied so
that the behaviour of oscillators shown in Fig. 2, corresponds
to solving both the intra-junction and the inter-junction prob-
lem; these are:

1) No two vehicles in the same road segment are being
pulled towards the same beacon; this guarantees spacing
between vehicles in the same road.
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(a) Inter-junction diagram

(b) Intra-junction diagram

Fig. 3. Variable definition as seen within and between junctions

2) The phase offsets for intersecting roads place the vehi-
cles in the intersection at different times; this guarantees
alternate servicing at the intersection.

3) The phase of a vehicle as it goes from one road segment
to the next segment of the same road (i.e., as it goes
straight through an intersection, without turning) does
not change (in the unit circle); this guarantees continuity
of the through flow, thereby reducing energy losses due
to re-synchronization.

Vehicles can meet the spacing constraint by properly cor-
recting their phase when a conflict is detected, which mostly
occurs when entering a new road segment. Recall that Ku-
ramoto feedback pulls an oscillators towards whichever mean-
phase attractor is closer to its current phase. If we define Ψi

as the projection of the mean-phase closest to the phase θi
of vehicle i, according to Eq. (11), we can write a phase
resetting condition for the vehicles that guarantees the spacing
constraint:

θi = min(θi,Ψj − π − ε) ∀j ∈ {j|sj > si} (12)

where ε is a very small number. By saturating θi in this
way, we make sure that Ψi 6= Ψj , which means that no two
agents on the same road segment are pulled towards the same
attractor.

To write the safe servicing and continuity constraints mathe-
matically, we consider the variable definitions in Fig. 3, where
we draw a representative intersection zone. Points A1 and B3

correspond to the origins of road segments 1 and 3; that is,
the phase at those points is the offset of the respective road
segment. Point C represents the intersecting point between the
trajectories of vehicles going straight through both roads. Here,
and for the rest of the paper we consider an intersection of
two one-way roads with only two conflicting traffic movements
for the sake of simplicity. More practical traffic scenarios can
be accounted for by partitioning the wavelength into however
many flows are necessary.

The servicing constraint, which directly relates to solving
the intra-junction problem, aims to maximally space out
vehicles crossing the intersection from different roads. It is
a constraint on the offset of each road that guarantees that
each traffic flow is serviced during a different portion of the
cycle. Considering the scenario drawn in Fig. 3 we can see
that maximal spacing for vehicle i from the vehicles that cross
the intersection before and after itself occurs if it reaches the
intersection (i.e. point C) exactly between them. Now vehicles
i+1 and i−1 are separated by a full wavelength λ1, or by 2π
radians in the phase domain (as follows from equation (4)) .
It follows that the distance between vehicle i and i−1 should
be half a wavelength, or π radians in the phase domain. We
can show that this is achieved if the mappings of roads 1 and
3 satisfy the following constraint, which relates the phases of
point C as mapped by the mappings of each road.

g−1
1 (A1C) = π + g−1

3 (B3C) (13)

where g−1
p (s) is the inverse of the mapping (1) for road

segment p. The arguments A1C and B3C are the distances
between each road’s entrance to the intersection and the
collision point. For our proposed mapping (2), the above
equation can be rearranged as:

φ3 − φ1 = 2π(
A1C

λ1
− B3C

λ3
)− π (14)

Finally, the inter-junction coordination problem can be
solved automatically by ensuring continuity between mappings
as vehicles go from one road segment to the next. That is,
we guarantee that the phases at points A1 and B3 are the
same when mapped by roads 1 and 2, and roads 3 and 4
respectively. Recalling that points A1 and B3 are the origins
of the intersection region, and using equations (2) and (3), this
amounts to:

g−1
2 (L2 +A1A

′
1) = g−1

1 (0) = φ1

g−1
4 (L4 +B3B

′
3) = g−1

3 (0) = φ3

(15)

Rearranging according to our affine mapping of equation
(1), we can express the constraints in terms of the offsets of
the roads:

φ1 − φ2 =
2π

λ2
(L2 + ¯A1A′1) (mod 2π)

φ3 − φ4 =
2π

λ3
(L4 + ¯B3B′3) (mod 2π)

(16)

It is worth noting that Eq. (16) can only partially guarantee
continuous flow as vehicles travel along a corridor of inter-
sections. For one, the constraint cannot be imposed to turning
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flows, since the servicing constraint ensures the destination
road segment of a turning vehicle will be π radians out of
phase with respect to its road of origin. Another scenario
where flow is disrupted occurs when another vehicle turns into
the destination section of the vehicle going straight. In this
situation, because of the spacing constraint, the latter vehicle
will be forced to slow down to catch the upstream wave.
Finally, while the wavelengths can be thought of as adjustable
variables in constraint (16), wavelengths are also constrained
by their relationship with frequency and velocity through Eq.
(6). Specifically, a change in wavelength from one section to
the next would force a change in desired speed through Eq. (6)
in order to maintain a constant natural frequency, creating an
undesirable acceleration or deceleration event. For the rest of
this work, we therefore assume that wavelengths and desired
speeds are the same across all roads in the network, and we
drop the road identifying index p for λ and vd.

In guaranteeing spacing, safety and continuity to solve the
coordination problem at both scales, we have introduced two
different types of constraints. The spacing constraint (12) is
a constraint on the actual phase of the vehicles; it forces
vehicles to push their desired phase back, and with it the time
at which it will cross the intersection. This constraint needs to
be checked for and implemented continuously, although it will
mostly become active when vehicles change road segments.
The servicing and continuity constraints, on the other hand,
are constraints on the constant design variables of the network,
namely the offsets and wavelengths of the roads, and they
are chosen before any vehicles enter the network. Along with
the desired speed vd, these design variables determine the
maximum throughput of the network as we will discuss in
subsequent sections.

C. Optimal mean-phase tracking

So far we have discussed the dynamics of a vehicle’s desired
phase, which is then mapped to a desired position. In previous
work [18], we propose a linear feed-forward/feedback tracker
that uses this signal as reference. Further insight into the
behaviour of the system of coupled oscillators allows us to
propose here a more sophisticated tracking approach, namely,
a model predictive optimal controller that minimizes the jerk
of vehicles using predictions of both the arrival time imposed
by the phase dynamics and the behaviour of other vehicles.

We can show that the synchronizing layer described above
determines the time Ti(t) at which the vehicle i should ideally
arrive at the intersection. Indeed, the computation of Ti(t)
follows from the properties of Eq. (9), where the mean-phase
Ψ oscillates with a constant frequency ωn [33].

Ψ̇(t) = ωn(t) (17)

As described in the previous section, vehicle i should reach
the intersection when its phase is already tracking its mean
phase beacon, which is in turn equal to the offset of the road:

θi(Ti) = Ψi(Ti) = φp (18)

It follows from the previous two equations that for vehicle
i at time t the expected time of arrival at the intersection is
given by:

Ti(t) =
φp −Ψi(t)

ωn
(19)

Since the vehicle enters the intersection at time Ti, in
synchrony with its mean phase beacon, its desired position,
velocity and acceleration are also known:

si(t+ Ti) = 0

vi(t+ Ti) = vd

ai(t+ Ti) = 0

(20)

Assuming vehicles can control their jerk, or their change
in acceleration, through accurate lower level powertrain and
vehicle dynamics controllers, we model these vehicles as third
order dynamical systems. Note that we choose a third order
system here, instead of the second order system tradition-
ally used to model vehicles, because it will yield smoother
acceleration profiles. With the third order model, the state
variables for each vehicle are then: (i) its distance to the
intersection, along the path of the road; (ii) its velocity; and
(iii) its acceleration. The input is the jerk of the vehicle:

ṡi(t) = vi(t)

v̇i(t) = ai(t)

ȧi(t) = ui(t)

(21)

The control input ui(t) that places the vehicle at the inter-
section at the right time, can be the solution of an optimization
problem that minimizes mean square jerk:

min

∫ t+Ti(t)

t

1

2
ui(τ)2dτ (22)

Subject to:

State dynamics (21)
Terminal time conditions (20)

sj(t)− si(t)− S ≤ 0

ai,min ≤ ai(t) ≤ ai,max

vi,min ≤ vi(t) ≤ vi,max

(23)

The additional inequality constraints guarantee that the
vehicle stays a safe distance S from its leading vehicle j,
and that the acceleration and velocity are bounded.

The solution to the problem without the inequality con-
straints (23) can be determined analytically by performing a
Hamiltonian analysis. This approach is similar to the work
of Malikoupoulos et al. in [22], [34], where the solution
to a second order dynamical system, where the input is
acceleration rather than jerk, is presented. In our case, the
optimal trajectories for the input and the states, denoted with
an asterisk, are given by:
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u∗(t) = −1

2
c1t

2 + c2t− c3

a∗(t) = −1

6
c1t

3 +
1

2
c2t

2 − c3t+ c4

v∗(t) = − 1

24
c1t

4 +
1

6
c2t

3 − 1

2
c3t

2 + c4t+ c5

s∗(t) = − 1

120
c1t

5 +
1

24
c2t

4 − 1

6
c3t

3 +
1

2
c4t

2 + c5t+ c6

(24)

The constants c1,...,6 in the above equations are integration
constants, and they can be solved for by imposing initial and
final time conditions. The initial conditions are given by the
current state of the vehicle at time t, and the final conditions
are given in equation (20). The resulting system of equations
is linear, and it is solved by inverting a 6-by-6 matrix and
multiplying it by the concatenated vector of initial and final
conditions.

The above is the solution to the unconstrained problem;
the solution to the constrained problem can be determined
numerically by discretizing and using a quadratic program-
ming solver. This type of optimization is well-understood,
convex, and not computationally prohibitive. It can therefore
be performed online at every time step when constraints
are active. As such, our proposed solution method consists
of computing the analytical solution to the unconstrained
problem, and checking for constraint activity. If no constraint
is infringed upon by the analytic unconstrained solution, we
execute the computed input trajectory. Otherwise, we use
this candidate solution as the initial guess to the quadratic
programming solver and implement the constrained solution
instead.

D. Summary

To summarize the workings of our algorithm, let us recount
the actions vehicle i takes at any given time t, after it receives
the phase and mapping information from the rest of network:

1) If the vehicle has just entered a new road segment, it
selects its initial phase θi(t) to match its current position
according to the mapping of the road.

2) It computes the order parameter of the system of os-
cillators (i.e the mean-phase Ψ and coherence r of the
network), as well as the projection Ψi of Ψ closest to
its own phase.

3) If both its phase and that of its leading vehicle j are most
proximal to the same mean-phase beacon (Ψi = Ψj), the
vehicle pushes its phase backwards by π+ε radians from
the beacon tracked by its leader (θi = Ψj − π − ε).

4) It computes the time it should arrive at the intersection
Ti(t) given the current mean-phase.

5) It determines the optimal trajectory of its state and input
that minimizes jerk, according to the analytical solution
to the unconstrained optimization problem.

6) If the solution violates constraints, it solves the con-
strained optimization problem numerically.

7) It updates the value of its phase through the Kuramoto
equation.

8) It implements the first input command according to the
generated input trajectory.

Fig. 4 summarizes this process in a block diagram. The
result of following this protocol is that vehicles cross the inter-
section at different times, and that acceleration maneuvers as
they go from one intersection to next are not very aggressive.
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Fig. 4. Control Architecture

III. DESIGNING FOR TRAFFIC FLOW AND SAFETY

Before looking at the performance of our strategy in sim-
ulation, we can discuss some of its anticipated implications
in terms of traffic flow and density. By virtue of Kuramoto
synchronization, all vehicles oscillate at the same frequency
once coherence is achieved. In fact, in our current formulation,
this frequency corresponds to the natural frequency we choose
for the network:

ωn = 2π
vd

λ
(25)
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The flow of vehicles in each road is directly related to
this frequency given that vehicular flow is the product of
velocity and density. Maximum density is nothing more than
the inverse of the wavelength, because in each road there can
only be one vehicle per wave, and vehicles are spaced by one
wavelength (or more). The maximum possible flow is then, in
its traditional units of vehicles per hour:

q =
vd

λ
(3600) =

ωn
2π

(3600) (26)

We can then expect that for input flows below the selected
natural frequency, the algorithm will be able to meet the traffic
demand. For higher input flows, a queue will start to form at
the entrances of the network as vehicles wait to track non-
occupied wave crests.

Velocity and wavelength should be chosen to produce a nat-
ural frequency higher than the demand of the road. However,
this is not the only constraint on these two variables, since the
spacing of vehicles as they cross the intersection also depends
on these variables. In fact, from analysing Fig. 3, we can
determine that the gap in seconds between a vehicle at the
collision point of the intersecting paths and the vehicle that
just crossed is given by:

g =
1

vd
(
λ

2
− S) (27)

Where S is a safety distance that needs to be larger than
the occupied portion of the wave, that is, the length plus the
width of the vehicles.

Having defined the relationship between our design vari-
ables vd and λ, we can look at the inherent trade-offs between
increasing the maximum throughput of the network and main-
taining enough spacing between vehicles at the intersection.
Fig. 5 shows this trade-off in our design space. We have
drawn lines of constant throughput and lines of constant
safety gap. We can see that to increase the safety gap, one
might decide to choose larger wavelengths; however, since
this will reduce the density of the roads, throughput will be
affected. Alternatively, if one wishes to increase throughput,
the simplest way to “cross” dashed-blue lines is to increase
speed, but this comes at the cost of reducing the safety gap.
Another inherent trade-off that does not show up in Fig. 5, as it
is more difficult to compute analytically, is the energy/fuel cost
associated with having longer wavelengths. If a vehicle enters
a road completely out of phase, the acceleration/deceleration
maneuver it will need to perform is larger in roads with larger
wavelengths. This translates to a higher kinetic energy change,
and with it, some potential waste of fuel.

IV. SIMULATION STUDIES

In this section, we study the performance and characteristics
of our proposed strategy in simulation. We consider a network
of one-way roads consisting of 9 intersections and 24 road
segments where vehicles can either go straight or turn right; a
snapshot of this network is shown in Fig. 6. The road segments
are approximately 90 meters long, and the straight segment
of the intersections is approximately 10 meters long. The
entry roads to the network are assumed to be longer, at 200
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Fig. 5. Relationship between speed, wavelength, flow and safety

meters. For this network, where the origins of the mappings
between connected road segments are 100 meters apart, a 20
meter wavelength would satisfy the continuity and servicing
constraints of Eqs. (16) and (14) if we choose offsets of 0 and
π for horizontal and vertical roads respectively.

Fig. 6. Network of 9 intersections used in simulation.

A. State Trajectories

Fig. 7 shows the distance to the intersection as a function
of time for a group of vehicles approaching the intersection
at the center of the network. In this figure, as in subsequent
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ones, the color of the curve indicates whether the vehicle is
travelling down a horizontal (dashed red) or a vertical (solid
blue) road segment, and, for clarity, we flip the sign of the
distance along the horizontal directions. We can see that red
and blue lines cross the 0 line at different points, meaning that
vehicles enter the intersection at different times. Moreover, the
plot illustrates how vehicles space out evenly along the same
road.

Fig. 7. Example position trajectories for a group of vehicles approaching
the same intersection along the horizontal (red dotted-solid line) and vertical
(blue solid line) roads.

We can also look at the position, velocity and acceleration
of a single vehicle as it travels through the network, which
we show in Fig. 8. Here, we have also plotted in solid
blue the vertical segments, and in dashed red the horizontal
ones. We can see that as the vehicle goes straight through
the intersections its velocity profile stays relatively flat, as
promoted by the continuity constraint we impose on the
mapping and the fact the consensus occurs at a network level.
When the vehicle turns in the third intersection it needs to
adjust its speed to match the offset of the new road it travels
on. The same thing happens as it turns right again in the next
intersection.

B. Fuel Consumption and Delay Time Results

We can evaluate the fuel consumption and delay time of
vehicles using our strategy compared to simulated human
drivers controlled by traffic lights. The baseline drivers are
governed by a modified Gipps car following model [35] as
implemented in Aimsun, an established traffic simulator. We
set the input flow of all entry roads at 750 vehicles per hour,
with a turn percentage of 20%. The arrival process of vehicles
into the network is the main source of stochasticity in our
simulation, and it is modeled as a Poisson arrival process,
as is traditionally done in traffic simulation [36]. We choose a
traffic light cycle of 60 seconds, with 25 seconds of green time
for each flow and 10 seconds of clearing time. Furthermore
we offset the green time of the lights in pursuit of the ”green
wave” effect, which occurs when vehicles catch several green

Fig. 8. Example position, velocity and acceleration trajectories for a single
vehicle travelling through the network in horizontal (red solid-dotted) or
vertical roads (solid blue), along with the reference mean phase and frequency
(dotted black).

windows in a row as they travel down an arterial corridor. We
run the baseline simulation for 10 minutes of simulated time,
and we replicate the scenario with the same vehicle injection
times and paths, but using our Kuramoto strategy instead. Fig.
9 shows the baseline position trajectories corresponding to the
same vehicles shown in Fig. 7 in the last sub-section.

Fig. 9. Example baseline position trajectories for vehicles approaching an
intersection controlled by a traffic light.

The described simulation consists of about 750 vehicles, but
for our comparisons we consider only the 100th through 600th

vehicles. In this way, we allow for the network to build some
capacity, and we don’t consider vehicles who don’t finish their
path before the simulation is stopped.

We are interested in looking at two metrics relevant for
traffic performance evaluation: fuel consumption and delay
time. The delay time is simply the difference between a
vehicle’s travel time and its corresponding minimum travel
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time had it cruised at the desired speed of the road, normalized
by the total distance traveled. To calculate fuel consumption,
we use a fuel map for a 1.2 liter gasoline engine. The map
translates every engine torque and speed pair to a fuel rate
ṁf . To use it, we first calculate the wheel power required to
meet the acceleration and velocity trajectories imposed by the
driver. We then estimate the corresponding engine power by
assuming an efficiency ratio for the transmission. Finally, we
say the vehicle uses the minimum fuel rate associated with this
engine power demand, which assumes the transmission can
operate at the required engine torque and speed combination.
Fig. 10 shows the optimal fuel rate vs. engine power line we
get.

Fig. 11 shows the delay time and fuel consumed by each of
the vehicles for both the baseline and proposed scenario. When
we compare the average of both point clouds, we find that our
proposed strategy leads to a 48% and 57% reduction in fuel
consumption and delay time respectively for this particular
scenario. Furthermore, we note a significant reduction in the
spread of the point cloud, meaning that there is less variability
in the anticipated behaviour of the vehicles. Indeed, in the
baseline, a vehicle that encounters a desirable green wave of
traffic light sequences can traverse the network quickly without
stop-and-go behaviour, whereas vehicles that are less lucky are
forced to stop at several intersections in sequence.

If we compute the work done by negative propulsive forces
(i.e. braking), drag forces, and rolling resistance forces in our
model for longitudinal vehicle dynamics, we can see where
energy losses are incurred. The savings in fuel consumption
can then indeed be attributed to a reduction in energy losses
due to braking. In other words, our strategy improves perfor-
mance by reducing stop-and-go behaviour, as expected. Fig.
12 shows the result of this energy balance.

V. CONCLUSION

In this paper we present a control strategy for connected and
autonomous vehicles that solves the intersection coordination

Fig. 10. Optimal fuel rate vs. engine power for a 1.2 liter gasoline engine

Fig. 11. Delay time and fuel consumed for each vehicle in the simulation of
the baseline (green) and proposed strategy (blue)

problem in both of its scales. That is, our strategy synchronizes
vehicles crossing the same intersection, and it smooths the flow
from one intersection to the next. This is achieved by defining
a mapping between a vehicle’s position and its corresponding
phase in a virtual system of oscillating agents coupled by the
Kuramoto equation. The mapping, with its safety constraints
within the intersection and continuity constraints between
intersections, guarantees the desired behaviour of the reference
position. This reference is then the tracked through an optimal
control problem that is first solved analytically, and then
numerically if constraints are violated. The resulting strategy
saves both fuel and travel time, and reduces the variability in
these metrics seen across the fleet.

Our work here shows the potential of using self-
synchronizing Kuramoto consensus to coordinate CAVs. Fu-
ture work can extend the approach to include traffic lights

Fig. 12. Energy losses by type (brake, drag, and rolling resistance) for the
synchronization strategy and the baseline strategy
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and mixed traffic (i.e. human-driven and autonomous). Starting
from the algorithm presented here, it is quite straightforward
to extract signal phase and timing information and display it
as a traffic light. The traffic light, in turn, can control human
driven vehicles. One can then study how the mixed traffic fleet
affects the performance of the network.
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