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Spatiotemporal tensor completion for improved
urban traffic imputation

Ahmed Ben Said, Abdelkarim Erradi,

Abstract—Effective management of urban traffic is important
for any smart city initiative. Therefore, the quality of the sensory
traffic data is of paramount importance. However, like any
sensory data, urban traffic data are prone to imperfections
leading to missing measurements. In this paper, we focus on
inter-region traffic data completion. We model the inter-region
traffic as a spatiotemporal tensor that suffers from missing
measurements. To recover the missing data, we propose an
enhanced CANDECOMP/PARAFAC (CP) completion approach
that considers the urban and temporal aspects of the traffic.
To derive the urban characteristics, we divide the area of study
into regions. Then, for each region, we compute urban feature
vectors inspired from biodiversity which are used to compute
the urban similarity matrix. To mine the temporal aspect, we
first conduct an entropy analysis to determine the most regular
time-series. Then, we conduct a joint Fourier and correlation
analysis to compute its periodicity and construct the temporal
matrix. Both urban and temporal matrices are fed into a modified
CP-completion objective function. To solve this objective, we
propose an alternating least square approach that operates on
the vectorized version of the inputs. We conduct comprehensive
comparative study with two evaluation scenarios. In the first
one, we simulate random missing values. In the second scenario,
we simulate missing values at a given area and time duration.
Our results demonstrate that our approach provides effective
recovering performance reaching 26% improvement compared
to state-of-art CP approaches and 35% compared to state-of-art
generative model-based approaches.

Index Terms—Traffic tensor, Tensor completion, CANDE-
COMP/PARAFAC

I. INTRODUCTION

Modern smart cities are increasingly deploying Internet of
Things (IoT) sensors to collect and analyze data to efficiently
manage urban assets and services such as public transport, util-
ities, traffic monitoring and public safety. With the widespread
usage of sensors, massive urban data are continuously col-
lected. There has been a great interest in using recent advances
in data analytics to exploit these data in order to deliver
better urban services and solve critical problems associated
to the massive urban growth such as traffic congestion and
public transport efficiency. For instance, forecasting traffic
flow has been one of the most successful applications of state-
of-art deep learning approaches. The collected sensory data
are inevitably prone to multiple equipment-related issues and
data collection imperfections causing data loss. Such data loss
can be associated to multiple causes such as GPS calibration,
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connectivity problem or weather conditions. Missing values
have dramatic consequences as it may lead to drawing mis-
leading conclusions and therefore wrong decisions. In terms of
cost, missing values may forces the city planning authority to
redo the experiment in order collect the required data, hence
extra budgetary cost and time delay. At a city-wide scale,
multiple sensors are deployed to continuously collect traffic
data. However, it is costly and technically difficult to deploy
traffic sensors across every corner of a metropolitan area, not
to mention the challenge of management and maintenance.
Practically, urban authority relies on few sensors deployed
only on key areas. Hence, traffic data imputation is important
to obtain a complete overview of the overall city traffic.
Completing the missing data is critical for many tasks such as
estimating travel time and congestion-aware route planning.
In this paper, we address the problem of urban traffic data
completion. We propose a modified CP completion approach
that takes into account the urban and time context of the traffic
to drive the completion algorithm. The paper contribution can
be summarized as follows:

• We model the interaction between regions in the area
of study as a spatiotemporal tensor. This tensor suffers
from missing data which must be recovered to get better
insights about the traffic flow.

• The tensor captures the traffic flow and hence the inter-
action between regions in the time domain. Our choice
for tensor design considers the full traffic records. i.e. our
tensor is built using all locations visited during the trip
from the start to the end regions. This results in a less
sparse tensor compared to the scenario where only source
and destination are used to build it as more interaction
between regions are derived.

• We propose an urban and time aware CP completion ap-
proach. The urban characteristics of each region are taken
into consideration. They include the region’s richness,
diversity, concentration of Points of Interest (POIs) and
convenience. These characteristics are used to determine
the similarity between regions which is then used to
augment the CP completion with additional features.

• We conduct a time series analysis to determine the
periodicity of the traffic pattern. This periodicity is used
to construct the temporal characteristics incorporated in
the CP cost function.

• We propose an alternating least square approach to min-
imize the CP cost. To address the optimization, we pro-
pose to conduct the minimization on a reshaped version
of the inputs.

• We provide a comprehensive comparative study with mul-

ar
X

iv
:2

10
3.

08
32

3v
1 

 [
cs

.L
G

] 
 1

2 
M

ar
 2

02
1



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2

tiple completion approaches to validate the effectiveness
of our proposal. Our experiments are performed on two
real world datasets: T-drive taxi data [19], [20] from
Beijing and Porto taxi 1.

The rest of the paper is organized as follows: Section II
discusses important related work. Section III presents some
tensor calculation basics used in the proposed approach. We
detail in section IV the formulation of our proposed urban-
aware CP completion problem. Experiments are presented in
section V. The last section concludes the paper and presents
an agenda for future work.

II. RELATED WORK

Zhang et al. [1] proposed a spatiotemporal learning ap-
proach to predict the citywide crowd flows. The authors
introduced inflow and outflow matrices for counting the in-
coming/outgoing moving objects for a given region at a given
time slot. The aggregation of the two matrices are used to
predict the flow at time tK+1 given the historical traffic flow
till time tK . The authors proposed Deep-ST, a deep neural
network architecture trained on the flow tensor. The historical
flow tensors are grouped into three time horizons: recent,
near and distant. A stack of Convolutional Neural Networks
(CNN) is trained on each time horizon flow tensor. Deep-
ST exploits additional information such as weather, and type
of the day (weekend/weekday) for more accurate forecasting.
Hoang et al. [2] focused on the factors affecting crowd
flows including seasonal (periodic), trend (changes in periodic
patterns) and residual (instantaneous) flows. Gaussian Markov
random field is used to model the seasonal and trend flows. The
instantaneous flow exploits the spatiotemporal dependencies
of different flows in addition to the weather data. This is
achieved by applying a regression analysis where information
about intra-regions and inter-regions dependence and weather
condition are incorporated. Huang et al. [3] proposed a Deep
Belief Network (DBN) based architecture for traffic flow
prediction. DBN is effective in generating features in an
unsupervised fashion. On top of the DBN, a multitask layer
is incorporated for supervised traffic flow prediction.

Since most of the research works on traffic and crowd flow
prediction are data-driven, it is of paramount importance to
maintain clean and complete data. This research problem has
been extensively studied and multiple successful approaches
have been developed. For instance, Sparsity Regularized SVD
(SRSVD) [4] approach focuses on Internet traffic matrix
completion. SRSVD uses Singular Value Decomposition to
find a global low rank approximation of the matrix and exploits
its spatiotemporal structure by augmenting the minimization
problem with two spatial and temporal matrices. The problem
is then solved using Alternating Least Square (ALS) minimiza-
tion. Compressive Sensing (CS) [5] is closely related to matrix
completion problem. CS accurately recovers information of
a sparse matrix using small subset of samples. Roughan et
al. [6] proposed Sparsity Regularized Matrix Factorization
(SRMF). This approach exploits the low rank and spatiotem-
poral property of the traffic matrix to estimate the missing

1www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data

values. SRMF seeks the global low rank approximation which
is then augmented with an interpolation technique such as k-
nearest neighbours to fully recover the traffic matrix. Wen et al.
[7] addressed the computation complexity of the completion
problem based on the nuclear norm which requires calculating
singular value decompositions. The authors proposed the Low-
rank Matrix Fitting (LMaFit), a low complexity algorithm
that is based on nonlinear successive over-relaxation approach
that requires solving a linear least squares problem at each
iteration.

However, the aforementioned solutions for traffic matrix
completion operate on the two-dimensional traffic matrices
whose columns are stacked. The multi-ways nature of such
matrices is unfortunately ignored. Consequently, the matrix
representation is simply not enough for efficient data recovery
solutions.

In presence of more than two dimensional data, tensor
representation for data recovery has been recently investigated.
Indeed, a tensor can encompass more global information
compared to a matrix such as an additional third dimension
representing the time. Long et al. [8] reviewed state-of-art
techniques of tensor completion for visual data. The authors
identified two groups of approaches based on the optimization
techniques used. One sets a predefined rank and optimizes
the factors of tensor decomposition while the second group
minimizes the rank of the estimated tensor iteratively. Acar
et al. [10] proposed a CP weighted optimization algorithm
(CP-WOPT). A first-order optimization is utilized to solve the
weighted least squares problem. CP-WOPT has been success-
fully used to estimate missing data in spatiotemporal internet
traffic tensor. In [11], the authors studied the convergence of
the regularized ALS for tensor decomposition. Regularization
is applied to avoid overfitting. The authors proved that ALS
does not always converge using the Gauss-Siedel method while
the regularized ALS provides better convergence and may
decrease the required number of iterations.

In context of urban dynamics and mobility pattern, missing
data is a common issue. Li et al [12] and Ni et al [13] surveyed
state-of-art techniques for traffic data completion. In [14], the
authors addressed the problem of missing values in intelligent
transportation system using a probabilistic framework that
extends the well known bayesian approach of Salakhutdinov
and Mnih [15] to the higher order tensor. However, no urban
context information is used. In [16], the data tensor represents
the interaction between regions of the area of study. The set
of regions is obtained based on the traffic zones provided
by the transportation authority. Each data point rijk is the
log transform of the number of moving objects whose start
point is zone i and final destination is zone j departing at
time k. The temporal dimension represents one hour-slice.
For better recovery performance, the authors augmented the
completion approach with urban contextual factors. These
factors reflect the proportion of each type of POI at each
region. Although this approach attempted to take into account
the urban context, it does not consider important urban factors
such as the convenience and the diversity of the region in
terms of POIs. In addition, the authors studied only the
mobility interaction based on the start and end regions of the

www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data
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urban mobility data which do not capture the instantaneous
interaction between regions while travelling from source to
destination. Tan et al. [17] proposed an algorithm that uses
the multimode transport information to predict the traffic flow
with a low-rank constraint. The authors also addressed the
forecasting problem in the presence of missing data. However,
the proposed method does not scale well with very large
traffic tensor. Li et al. [18] proposed a completion approach
for tensor built using passenger flow from a metro service.
The completion objective is regularized by introducing weakly
dependent penalty and graph penalty and solved using Block
Coordinate Descent. The main assumption is that two stations
are less likely to be highly-dependent in terms of traffic flow
profile. However, such assumption may not be valid for general
road network traffic where the traffic flow is not restricted for
just one mean of transportation.

With recent advances in deep learning, data imputation has
been addressed using generative models. Yoon et al. [21]
proposed a Generative Adversarial Network (GAN) [22] based
model in which the generator observes parts of the real data
and completes the missing components. The discriminator is
trained to discriminate between the observed and imputed data
while being provided with a hint vector. This vector guides
the discriminator to improve the quality of imputation while
ensuring that the generator completes the missing information
according to the data distribution. In [23], the authors pro-
posed another GAN based data completion approach named
MISGAN. Two discriminator-generator pairs are used, one
dedicated for the mask and the other for the data. The aim
is to strengthen the imputation performance by modeling the
distribution of the masks responsible for missing data. In
their experiments, the authors considered only the scenario
of completely random missing data. Boquet et al. [24] used
Variational Autoencoder (VAE) [25] to develop an end-to-end
solution for traffic forecasting which can handle data imputa-
tion. The imputation module consists of a recognition model
that, once trained, can map the traffic samples to a latent space.
A decoder, trained to reconstruct the traffic samples from the
latent space, can then be used to generate the imputed samples.
In [26], GP-VAE, a novel VAE-based technique is proposed.
Gaussian process prior and Cauchy kernel are used to model
the temporal dependencies of the data. Variational parameters
are predicted using the inference model which takes the data
with missing information. GP-VAE is validated on benchmark
tasks and medical data. Mattei et al. [27] proposed MIWAE,
an Importance-Weighted Autoencoder approach dedicated for
missing at random data imputation. MIWAE maximizes a
lower bound of the observed log-likelihood without any ad-
ditional computational overhead compared to the Importance
Weighted Autoencoders (IWAE) [28]. In [29], the authors
presented not-MIWAE, the not-missing-at-random IWAE to
deal with data missing not at random. A deep neural network
is used to model the conditional distribution of the pattern of
missing values, hence acquiring the knowledge about the type
of missingness. The proposed model maximizes a lower bound
of the joint likelihood and a reparameterisation trick allows
deriving the stochastic gradients of the bound for the latent
and data spaces. Gondara et al. [30] proposed an unsupervised

approach based on overcomplete deep denoising autoencoder.
At the encoder level, the number of neurons per layer increases
by a factor as the model goes deeper while at the decoder
layer, the number of neurons is scaled back to the original
data dimensionality. Although generative models, particularly
GAN-based, have achieved state-of-art results for imputation
tasks, they are difficult to train. Indeed, they generally involve
latent variables that fail to represent the data hence making
the interpretation and understanding of the imputation difficult.
Furthermore, due to the loss formulation, GAN models suffer
from mode collapse in addition to convergence issues [31].
In this work, we address the problem of missing values in
context of urban mobility data. Our approach relies on the CP
completion method. More specifically, we advocate including
urban and temporal information to model the spatiotemporal
interaction between regions which leads to better performance
in terms of traffic data recovery and imputation.

III. PRELIMINARIES

We present in this section some basic preliminaries and
definitions related to tensor calculation.
A tensor is a multidimensional array. The order of the
tensor is its number of dimensions. The zero order tensor
is a scalar. A first order tensor is a vector. A second order
tensor is a matrix. For more than two dimension, the general
representation is the tensor.
We use Euler script letter T to denote a tensor of order
n ≥ 3. We use bold capital letter (A,B,C) to denote
a matrix in RI1×I2 and lower case (a, b, c) to denote a
vector. The entry of a matrix A ∈ RI1×I2 is denoted
by ai1i2 . The entry of a tensor T ∈ RI1×I2×...In is
denoted by ti1i2,...in . The nuclear norm of a tensor T is
||T||1 =

∑
i1

∑
i2
...
∑
in
|ti1i2...in |. The Frobenius norm of a

tensor T is ||T||F =
(∑

i1

∑
i2
...
∑
in
t2i1i2...in

) 1
2

.
We present in followings, some definitions related to the
matrix tensor calculus.

Definition 1. The Hadamard product (∗) of two tensors of
the same size is the element wise multiplication of its entries.
Let T1 ∈ RI1×I2×...In and T2 ∈ RI1×I2×...In be two tensors,
the Hadamard product, denoted T1 ∗ T2 is the tensor whose
entries (T1 ∗ T2)i1i2...in = t

(1)
i1i2...in

t
(2)
i1i2...in

.

Definition 2. The Kronecker product (⊗) of matrices A ∈
RI1×I2 and B ∈ RI3×I4 is a matrix C ∈ RI1I3×I2I4 defined
as:

C = A⊗B =

a11B a12B ...
a21B a22B ...

...
...

. . .

 (1)

Definition 3. The Khatri-Rao product (�) of matrices A ∈
RI1×I3 and B ∈ RI2×I3 is a matrix C ∈ RI1I2×I3 defined as:

C = A�B =
[
a1 ⊗ b1 a2 ⊗ b2 ...

]
(2)
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where ai and bj are the ith and jth column of A and B
respectively.

Definition 4. A mode n-matricization of the N th order
tensor, known as unfolding, is the process of organizing the
tensor into a matrix. We illustrate in Fig. 1 the first, second
and third order matricization of a N × M × T tensor. The
mode n matricization is denoted as T(n).

Definition 5. The nth order tensor T ∈ RI1×I2×...In is rank
one if it can be written as the outer products of N vectors:

T = a(1) o a(2) o ... o a(N) (3)

a(r), 1 ≤ r ≤ N , is a vector in RIr . o is the outer product.

Definition 6. The CANDECOMP/PARAFAC (CP) approach
decomposes the tensor as a sum of vectors from rank one
components:

T =

R∑
i=1

a(1)
r o a(2)

r o ... o a(N)
r = [[A(1), ...,A(N)]] (4)

a
(i)
r is the the rth vector of matrix A(i) and [[ ]] denotes the CP

decomposition. The set of matrices A(i) are the latent factor
matrices. As an example, let T ∈ RI1×I2×I3 a third-order
tensor. Its CP decomposition is:

T =

R∑
i=1

ar o br o cr (5)

The factor matrices are the vector combinations from the
rank-one components: A = [a1, a2, ..., aR] ∈ RI1×R, B =
[b1, b2, ..., bR] ∈ RI2×R and C = [c1, c2, ..., cR] ∈ RI3×R. Fig
2 illustrates the CP decomposition of a third-order tensor.

�

�

�

�

� � �

� (� × �) ��������

�

� �

� (� × �) ��������

K

N N

� (K× N) ��������

� N

Fig. 1: Matricization (Unfolding) of a 3D tensor of size (N ×
M ×K) to three matrices of sizes (K ×NM ), (N ×MK)
and (M ×KN ).

IV. TRAFFIC FLOW DATA COMPLETION USING URBAN AND
TIME AWARE CP APPROACH

In this section, we detail the formulation of the traffic
tensor completion using an enhanced CP approach. First, we
introduce the formulation of the problem. Next, we present
a summary of the overall data completion approach and we

�1

�1

�
1

�2

�2

�
2

+ + ...

�R

�R

�
�

≈ o o o

X

Fig. 2: CP decomposition of third-order tensor.

detail the enhanced CP completion for traffic flow tensor
completion. Finally, we show how the spatiotemporal urban
features can be integrated with CP to enhance the recovery
performance of urban traffic information.

A. Problem formulation

Urban traffic data collected from distributed sensors are
prone to multiple imperfections leading to missing measure-
ments. To address the inter-region traffic flow data completion
problem, we first segment the area of study into M regions.
Then we model the traffic flow from one region to another
as a spatiotemporal tensor that may have missing measure-
ments. Multiple approaches can be adopted for the region
segmentation including administrative, morphology, grid and
road segments based segmentation [32], [33]. In this paper,
we simply adopt a grid based approach. Specifically, we set
up a boundary box over the area of study and divide it into
elementary squares as illustrated in Fig. 3. The size of the
elementary squares is adjustable depending on the desired
granularity e.g. 1km2, 2km2, etc. Given M regions and T

������ ��

������ ��

Fig. 3: Grid-based segmentation of Beijing. (For clarity, we
illustrate few squares)

time intervals, a traffic flow tensor X ∈ RM×M×T is a third
order tensor where each entry xijk represents the number
of objects (car, bike, pedestrians ...) located at region Ri at
time k and relocated at region Rj at time k + 1. In previous
approaches, this tensor is constructed by considering only the
start and end location of the moving objects (e.g. car, bus,
etc.). Thus, it does not capture the complete travel patterns
of these objects and the intermediate visited segmentation
squares. Unlike these approaches, we consider every sampled
location from the travel pattern of each moving object to build
the traffic flow tensor in order to provide a complete overview
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of the traffic during the studied time span.
Let W ∈ RM×M×T be a binary tensor such that:

wijk =

{
0 if xijk is missing
1 otherwise

W models the perturbation that leads to the missing informa-
tion in the data tensor. The observed traffic flow tensor Y, i.e.
the tensor with missing data is the element wise product of
the complete tensor X with the perturbation W:

Y = W ∗ X (6)

Our goal is to recover X given the observed tensor Y by
seeking an approximate tensor X̂ which is as close as possible
to the true and complete tensor X. Our strategy consists of
introducing a prior knowledge related to the urban and time
context of the traffic flow.

B. Overview of the proposed enhanced CP for traffic flow data
completion

Fig. 4 illustrates the proposed traffic data completion ap-
proach using an enhanced CP approach taking into account the
temporal aspects of the input data and the urban characteristics
of the area of study. Given an area of study and its associated
database of moving object trajectories and POI, the CP com-
pletion approach is a four-stage process: tensor construction,
temporal matrix calculation, urban matrix calculation and the
urban and time aware CP completion solver. First, the area of
study is segmented into a grid of elementary blocks. Each
block is identified by its central location. Given a set of
trajectories of moving objects e.g. pedestrians, buses, taxis,
each trajectory sample is associated to the nearest block with
its associated timestamp to construct the traffic tensor. This
tensor is corrupted resulting in missing information. Using the
POI data, we construct the urban context similarity matrix.
For each block, we derive the following metrics: Richness,
Diversity, Concentration and Convenience. These metrics are
then used to construct the urban similarity matrix using cosine
similarity. To derive the temporal matrix, we conduct an en-
tropy analysis to determine the most regular time series in the
traffic tensor. Then, we conduct a joint Fourier and correlation
analysis to determine the periodicity of this particular time
series. The calculated period is used to construct the temporal
matrix which is a specific Toeplitz matrix. The two matrices
are fed to a modified CP completion objective function which
is optimized using an alternating minimization approach. The
objective of the minimization is to reduce the error between
an approximate traffic tensor and the true one.

We present, in the following, the formulation of CP com-
pletion problem and detail the calculation of the urban context
and temporal matrices. Then, we present, the modified urban
an temporal aware CP completion objective function and how
to solve it in order to obtain the approximate complete traffic
tensor.

C. CP completion for traffic tensor recovery

CP completion aims at recovering a tensor X ∈ RM×M×T
given its rank R:

X ≈ [[A,B,C]] =

R∑
r=1

ar o br o cr (7)

The CP optimization problem can be formulated as:

minimize f(A,B,C) = ||W ∗
(
X− [[A,B,C]]

)
||2F (8)

with respect to the factor matrices A, B and C. It has been
shown [11] that the regularized version of the problem 8
converges faster. It is expressed as follows:

minimize fλ(A,B,C) = ||W ∗
(
X− [[A,B,C]]

)
||2F

+λ
(
||A||2F + ||B||2F + ||C||2F

) (9)

λ > 0 is a regularization parameter allowing a tradeoff
between the approximation errors and the fitting error. Prob-
lem (9) can be solved using the regularized ALS technique.
Specifically, three sub-problems are derived:

Ak+1 = argmin
Ǎ∈RM×R

∥∥∥W(1)

(
X(1) − Ǎ(Ck �Bk)T

)∥∥∥2

F

+λ||Ǎ||2F
Bk+1 = argmin

B̌∈RM×R

∥∥∥W(2)

(
X(2) − B̌(Ck �Ak+1)T

)∥∥∥2

F

+λ||B̌||2F
Ck+1 = argmin

Č∈RT×R

∥∥∥W(3)

(
X(3) − Č(Bk+1 �Ak+1)T

)∥∥∥2

F

+λ||Č||2F
(10)

Where W(i) and X(i) are the ith order matricization of tensors
W and X respectively, T is the transpose operator and k refers
to the number of iterations. We can clearly notice that λ||Ǎ||2F ,
λ||B̌||2F and λ||Č||2F do not depend on k. It is worth noting
that problem 9 always converges toward a global minimum
[34]. However, the obtained optimal solution is related to the
regularized problem 9, not to problem 8.

D. Urban and time aware CP completion

Moving patterns accross urban area have spatial and tempo-
ral dependencies. For example, at 5 PM, the end of working
hours and in the city centers, traffic is usually slow with many
pedestrians, cars, buses, etc. In addition, traffic flow is also
characterized by the so called urban context [16], [35], [36],
that is the characteristics of the surroundings such as presence
of POIs including transportation facilities (metro, bus and
subway stations ...), shopping malls, coffee shops, etc. Wang
et al. [16] attempted to incorporate urban context information
in the tensor completion problem. Authors defined an urban
matrix which captures the similarity between regions in term
of POI categories proportion. By category, we refer to the type
of POI such as shopping, transportation, restaurant, etc. In
addition, temporal information is also incorporated. It reflects
the intensity of moving patterns from source to destination. In
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Fig. 4: Traffic tensor data completion using urban and time aware CP approach.

[4], [37], authors modeled this information as a simple Toeplitz
matrix To of the form:

To =


1 −1 0 ...

0 1 −1
. . .

0 0 1
. . .

...
. . . . . . . . .

 (11)

Matrix To is characterized with the central diagonal of ones,
and the first upper diagonal of -1. It simply indicates that
traffic flows at adjacent time slots are similar. Authors in
[4] recommend incorporating a domain knowledge in the
design of To such as the periodicity of the traffic data
rather than assuming similarity with adjacent time slots. The
authors proposed another form of temporal matrix in which
the temporal similarity is offset by a period of 24h assuming
diurnal patterns in the tensor.

We detail in the followings, our proposed urban similarity
and temporal matrices which will be incorporated in the CP
completion problem.

1) Urban context similarity matrix: In ecological and bio-
geographical studies, statistical measures have been estab-

lished to characterize the diversity of an area in terms of
species. This allows to obtain a quantitative estimate of the
biological diversity. Inspired by the same concept, an area is
characterized by its POIs diversity. For this, we use the study in
[42]. Specifically, it considers Hill numbers as a measurement
of POIs diversity. They are multifaceted measurements of
order q and expressed as:

qD =
( s∑
i=1

pqi

) 1
1−q

(12)

where pi is the ith POI category proportion, s is the
number of POIs categories and q is the order. From Hill
numbers, we define the following measures for each region Ri:

Definition 7. For q = 0, we define the Richness index Rch:

Rch = 0D =
( s∑
i=1

p0
i

)1

= s (13)

In other words, the richness index Rch is the number of POIs
categories at region Ri. Therefore, the presence of higher
number of POIs categories indicates a richer region. We note
that Rch does not depend on the number of POIs of each
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category.

Definition 8. For q = 1, Eq. 12 is not defined. However, its
limit when q → 1 is the exponential of the Shannon index.
We define the Shannon diversity index Sh as:

Sh = 1D = lim
q→1

qD = exp
(
−

s∑
i=1

pi log (pi)
)

(14)

Sh expresses the amount of randomness in the POIs categories
and the number of POIs. Lower entropy values indicates
greater randomness and vice versa.

Definition 9. For q = 2, we define the region concentration
Ctr:

Ctr = 2D = 1/
( s∑
i=1

p2
i

)
(15)

It is the inverse of the Simpson index which reflects the
probability that two sampled elements randomly drawn from
large community would belong to the same categories.

Definition 10. For a region Ri, we define its traffic
convenience Co, that is the proportion of POIs associated
to transportation category such as public transport stations,
parking lots, etc.

Definition 11. For each region Ri, we define its urban
characteristic vector v:

v = [Rch, Sh,Ctr, Co] (16)

The urban context similarity matrix U is a matrix whose
element uij reflets the urban similarity between region Ri and
Rj that is:

uij =
vRi · vRj

||vRi
|| ||vRj

||
(17)

Each element is the cosine similarity between each pair of
regions. It ranges between -1 and 1. A value closer to 1 indi-
cates high similarity. The urban similarity matrix is driven by
the richness, convenience, concentration and diversity indexes.
When planning a trip from source to destination, one usually
avoids crowded areas with high congestion and concentration
of POIs. Such information is captured by the proposed design
of the urban similarity matrix.

2) Temporal similarity matrix: As highlighted in section
IV-D, temporal dependency information is usually manifested
across adjacent timestamps or offset by the period of the
traffic data. However, simply assuming a 24h period of traffic
is inconsistent particularly with presence of missing data as
it is problematic to detect the periodicity. Furthermore, traffic
patterns are not consistently regular every 24h as the traffic
significantly changes from weekdays to weekend and can
easily be disrupted by any disturbance on the road network.
To overcome this issue, we adopt a time series analysis
strategy to construct the temporal similarity matrix. More
specifically, we consider the traffic tensor from time series
perspective, that is the data across the third dimension of the
tensor Y. Then, we determine the most regular time series as
it will provide the most accurate periodicity estimate. A joint

robust Fourier and autocorrelation is conducted to determine
the period. This period is then used to construct the temporal
matrix using the Toeplitz form.

Definition 12. A traffic time series tsij: represents the traffic
information of pair of regions Ri and Rj across the full
time horizon T . In the remainder, we refer to tsij: as simply ts.

Definition 13. The most regular time series ts is defined as
the one with the least Sample Entropy (SamEn) [40] value.
Sample Entropy has been widely used for time series analysis.
It calculates the irregularity and reflects the randomness and
complexity of the time series. The lower the value of SampEn,
the more regular the time series is. Given a time series ts =
ts1, ts2, ..., tL and a template vector tsm of length m from ts
where tsmi = {tsi, tsi+1, ..., tsi+m−1}, the distance function
between two template vectors is:

d(m, i, j) = d[tsmi , ts
m
j ] = max

k=1...m

{∣∣tsi+k−1 − tsj+k−1

∣∣}
(18)

Let Θm
i (r) be the number of template vectors within distance

less or equal a threshold th from tsmi is:

Θm
i (r) =

N−m∑
j=1,j 6=i

Ω(m, i, j, th) (19)

where:

Ω(m, i, j, th) =

{
1 if d(m, i, j) ≤ th
0 otherwise

The probability that two template vectors of length m will
match is defined as:

∆m
th =

1

N −m

N−m∑
i=1

Θm
i (r) (20)

Finally, SamEn is expressed as:

SampEn(m, th,N) = ln
( ∆m

th

∆m+1
th

)
(21)

SampEn cannot be directly applied as the time series contains
missing values. To solve this problem, we adopt the strategy
proposed in [41] named KeepSampEn, that is the template
vector tsm must not contain any missing values. Such straight-
forward approach has shown great stability performance and
robustness against missing values.

After identifying the most regular time series, we apply
a joint Fourier and autocorrelation analysis to determine its
periodicity. The approach consists of transforming the time
series into frequency domain, determining the most dominant
frequency and then mapping back to the time domain to
calculate the period. First, in order to determine the most
dominant frequency, we calculate the periodogram of the time
series. It is the square of each coefficient of the Fourier
Transform of ts. To mitigate the effect of missing data, we
use the Lomb-Scargle periodogram [43]. This periodogram is
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widely used in astronomy where missing data is a common
issue. At a frequency fk, it is defined as:

P (fk) =
1

2

(∑L
i=1

(
ts[i] cos(2πfk(ts[i]− τ))

)2

∑L
i=1 cos

2(2πfk(ts[i]− τ))
+

∑L
i=1

(
ts[i] sin(2πfk(ts[i]− τ))

)2

∑L
i=1 sin

2(2πfk(ts[i]− τ))

) (22)

Where:

τ =
1

4πfk
tan−1

(∑L
i=1 sin(4πfk)∑L
i=1 cos(4πfk)

)
(23)

In this particular periodogram, the sine and cosine coefficients
are separately normalized by a time constant which depends
on the frequency fk in order to make the transform insensitive
to time shift. To identify the most dominant frequency, we use
a thresholding approach. Each coefficient is however mapped
in the time domain to a period range [Nk

N
k−1 ). To accurately

determine the period, we use the circular autocorrelation.
Given a sequence ts, its circular autocorrelation is expressed
as:

Corr(θ) =
1

N

N∑
i=1

ts[i]ts[i+ θ] (24)

Therefore, given a time range [t1, t2) obtained using Lomb-
Scargle periodogram, we look for the presence of peak in
{Corr(t1), Corr(t1 + 1), ..., Corr(t2 − 1)} using quadratic
fitting. If the obtained fitting is concave, it indicates the
presence of a period t∗ = argmax

t1≤t<t2
Corr(t). Once t∗ is

determined, we define the temporal similarity matrix as a
Toeplitz matrix in which the difference is offset with t∗:

To =


1 0 . . . −1 0 . . .

0 1
. . . . . . . . . . . .

0 0 1
. . . . . . . . .

...
. . . . . . . . . . . . . . .

 (25)

3) The optimization algorithm: By introducing the urban
and temporal contexts into the CP completion, the modified
objective function is expressed as follows:

minimize fuλ (A,B,C) = ||W ∗
(
X− [[A,B,C]]

)
||2F

+λ
(
||A||2F + ||B||2F + ||C||2F

)
+ β

(
‖[[UA,B,C]]‖2

+ ‖[[A,UB,C]]‖2 + ‖[[A,B,ToC]]‖2
) (26)

Where β is a positive regularization parameter. In the above
design of fuλ , two insights are exploited. First, the traffic
data with its periodicity and temporal stability are included.
Second, the urban similarity matrix reflects how one region is
similar to another one in terms of POIs. At a given time, re-
gions with high similarity are highly likely to exhibit the same
traffic pattern. This knowledge is incorporated in the modified
traffic tensor completion problem. Such design has been used
for internet traffic data completion [37] with different space
and time context, and shown effective recovery performance.

To solve the objective 26, we adopt an alternating least square
procedure. First, we fix B and C and we solve for A. Next,
we fix A and C and solve for B. Finally, we fix A and B
and solve for C. When fixing two parameters and solving for
the third, the problem becomes a simple linear least squares.
For example, assuming B and C are fixed, the obtained least
squares problem can be expressed as follows [37]:

||W(1) ∗
(
X(1) −A(C�B)T

)
||2F + λ||A||2F

+β
(
||(UA(C�B)T )||2F + ||A(C� (UB))T ||2F

+||A((ToC)�B)T ||2F
) (27)

By writing:

Ψ1 = C�B Φ1 = C� (UB) Γ1 = (ToC)�B (28)

and taking the derivative of Eq. 27 with respect to A and
setting it equal to zero, we have:

(W(1) ∗W(1) ∗ (AΨT
1 ))Ψ1 + λA

(
I[A] + ΦT1 Φ1 + ΓT1 Γ1

)
+

βUTUAΨT
1 Ψ1 = W(1) ∗X(1)

(29)

where I[A] is the identity matrix whose size is the number
of rows of A. Let vec( ) be the operator which creates a
column vector from a matrix by stacking its columns one
below another:

vec(X) =


x1

x2

...
xm

 (30)

where xi is the ith column of matrix X . We use the following
formulas:
vec(AXB) = (BT ⊗A) vec(X)

vec(AB) = (BT ⊗ I[A]) vec(A) = (I[BT ] ⊗A) vec(B)

vec(A) ∗ vec(B) = diag
(

(vec(A)
)
vec(B)

vec(A ∗B) = vec(A) ∗ vec(B) = vec(B) ∗ vec(A)
(31)

where diag(x) is a diagonal matrix with the elements of the
vector x are in its diagonal.
By applying the vec operator, we have:

(ΨT
1 ⊗ I[W(1)]) diag

(
vec(W(1)) ∗ vec(W(1))

)
·

(Ψ1 ⊗ I[A]) vec(A) + β
(

(ΨT
1 Ψ1)⊗ (UTU)

)
vec(A)

λ
((

I[A] + ΦT1 Φ1 + ΓT1 Γ1

)T ⊗ I[A]

)
vec(A)

= vec(W(1)) ∗ vec(X(1))(
(ΨT

1 ⊗ I[W(1)]) diag
(
vec(W(1)) ∗ vec(W(1))

)
(Ψ1 ⊗ I[A]) + λ

(
I[A] + ΦT1 Φ1 + ΓT1 Γ1

)T
⊗ I[A]+

β(ΨT
1 Ψ1)⊗ (UTU)

)
vec(A) = ∆ vec(A)

= vec(W(1)) ∗ vec(X(1))
(32)
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Finally, we have:

∆ vec(A) = vec(W(1)) ∗ vec(X(1))

vec(A) =
(

∆
)+

vec(W(1)) ∗ vec(X(1))
(33)

Where
(
·
)+

is the Moore-Penrose inverse.
Similarly, to solve for B, we fix A and C, the obtained least
square problems is:

||W(2) ∗
(
X(2) −B(C�A)T

)
||2F + λ||B||2F

+β
(
||(B(C� (UA))T )||2F + ||UB(C�A)T ||2F

+||B((ToC)�A)T ||2F
) (34)

Let:

Ψ2 = C�A Φ2 = C� (UA) Γ2 = (ToC)�A (35)

We have:(
(ΨT

2 ⊗ I[W(2)]) diag
(
vec(W(2)) ∗ vec(W(2))

)
(Ψ2 ⊗ I[B]) + λ

(
I[B] + ΦT2 Φ2 + ΓT2 Γ2

)T
⊗ I[B]+

β(ΨT
2 Ψ2)⊗ (UTU)

)
vec(B) = ∆2 vec(B)

= vec(W(2)) ∗ vec(X(2))

(36)

Therefore:

vec(B) =
(

∆2

)+

vec(W(2)) ∗ vec(X(2)) (37)

Finally, to solve for C, we fix A and B. The obtained least
square problems is:

||W(3) ∗
(
X(3) −C(B�A)T

)
||2F + λ||C||2F

+β
(
||(C(B� (UA))T )||2F + ||C(UB�A)T ||2F

+||ToC(B�A)T ||2F
) (38)

Ψ3 = B�A Φ3 = B� (UA) Γ3 = (UB)�A (39)

We have:(
(ΨT

3 ⊗ I[W(3)]) diag
(
vec(W(3)) ∗ vec(W(3))

)
(Ψ3 ⊗ I[C]) + λ

(
I[C] + ΦT3 Φ3 + ΓT3 Γ3

)T
⊗ I[C]+

β(ΨT
3 Ψ3)⊗ (UTU)

)
vec(C) = ∆3 vec(C)

= vec(W(3)) ∗ vec(X(3))

(40)

Therefore:

vec(C) =
(

∆3

)+

vec(W(3)) ∗ vec(X(3)) (41)

By applying unvec(), the inverse vec operator, we obtain the
solution to the subproblems 27, 34 and 38. We present in
Algorithm 1, the pseudocode of the proposed urban and time
aware CP tensor completion.

Algorithm 1 Urban and time aware tensor completion

1: Input: Y, W, F, To, R, β, λ, tol
2: Output: X̂,
3: Initialize:A ∈ RM×R, B ∈ RM×R and C ∈ RM×R
4: Eval0 = fuλ (A,B,C) (Eq. 26)
5: Repeat:
6: Solve for A using Eq. 33
7: Solve for B using Eq. 37
8: Solve for C using Eq. 41
9: Eval = fuλ (A,B,C) (Eq. 26)

10: ε = Eval0 − Eval
11: Eval0 = Eval
12: Until ε < tol
13: Output: X̂ (Eq. 7)

V. EXPERIMENTAL RESULTS

In this section, we validate the effectiveness of our comple-
tion approach. We conduct a set of experiments on two traffic
datasets and compare the recovery performance with multiple
state-of-art approaches.

A. Data

The data we use in our experiments are road traffic records
of taxi from two cities: Porto, Portugal and Beijing, China.
• Porto Taxi: the data contain 442 trajectories of taxi cabs in

Porto, Portugal. For each taxi, time stamped geolocations
along with metadata are provided. After segmenting the
area of study into 1km2 cells and aggregating the traffic
in each grid cell, we obtain a (91 × 91 × 2880) traffic
tensor.

• T-drive: The data contains 15 million time stamped GPS
records of 10357 taxis from February 2nd to February
8th 2008 from Beijing, China. The average sampling
rate is about 177 seconds. The data are proprocessed to
eliminate noisy records. By applying grid segmentation
using 2 km2 and traffic record aggregation, we obtain a
tensor of size (1516× 1516× 352).

B. Methodology

Wet set up two evaluation protocols. In the first one, given
the traffic tensor, we drop measurement at random. This is
achieved by randomly generating the binary mask W and
multiply it by the traffic tensor X to create the observed data
Y. However, in a realistic case, missing data are the results of
a failure usually related to sensor or transmission equipment
dysfunction and for a some duration. We also simulate this
structured missing values scenario by imputing measurements
at random cells for a time duration. For each scenario, we vary
the rank parameter R and the missing value rate then report
the Relative Error (RE):

RE =
||X− X̂||2

||X||2
(42)

Where X and X̂ are the true and recovered traffic ten-
sors. We evaluate the proposed completion approach against:
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CP ALS [44], CP ARLS [11], CP OPT [45], CP WOPT
[10], CP APR [46] with two configurations: row subprob-
lems by projected quasi-Newton CP APR PQNR and row
subproblems by projected damped Hessian CP APR PDNR
and GCP OPT [47]. We set m = 3 and th = 0.3 for the
Sample Entropy.
We also evaluate the proposed approach against GAN-based
approaches: GAIN [21], MIDA [30] (for both random and
structured missing values), MIWAE (for random missing val-
ues) [27] and not-MIWAE [29] (for structured missing values).
For each approach, we report the best obtained result after
multiple runs.

C. Recovering traffic tensor with random missing values

We illustrate in Fig. 5 the variation of RE with respect
to varying missing values rate for Porto Taxi. We run this
simulation using the regularization parameters λ = β = 0.1.
Results show that the proposed tensor completion approach
achieved the best performance for low and high missing value
rates and varying R. We notice 23% improvement compared
to the closest performance for R = 4 with low rate missing
values. We notice that GCP OPT and CP WOPT completely
fail to recover data for high missing value rates. Figure 6
illustrates the recovery performance of Beijing T-drive Taxi
data with random missing values. The findings confirm the
effectiveness of our approach in completing the traffic tensor
with 33% improvement compared to the closest performance
for R = 5 and low missing values rate. We notice that for
high missing rates, GCP OPT, CP WOPT could not recover
the tensor data.
We illustrate in Fig. 7 the comparison of the proposed comple-
tion approach against state-of-art generative models: GAIN,
MIDA and MIWAE. We report in this comparison the best
performance achieved by the proposed technique. The results
show that for low missing rates these models achieved better
performance. However, for severe missing rates, the proposed
approach achieved significantly better performance with 30%
improvement for Porto traffic tensor having 80% missing rate.

D. Recovering tensor with structured missing values

In this simulation scenario, we set λ = 0.1 and β = 0.01.
Figure 8 depicts the RE results for different settings. The
best recovery performance is achieved by our method while
GCP OPT results in high RE. Most of the algorithms showed
stable performance except CP APR PQNR and GCP OPT.
CP WOPT again results in similar performance as in the
previous scenario. We illustrate in Fig. 9 the recovery per-
formance for Beijing T-drive taxi with structured missing
values. Our CP completion approach achieved the lowest RE
values for all missing values rate with 26% improvement
compared to the closest performance for R = 3 and low
missing values rate. Fig. 10 depicts the comparison of the
proposed completion method against GAIN, MIDA and not-
MIWAE. Note that not-MIWAE is designed to recover data
with structured missing values. The findings show similar
performance to the random missingness experiment. In fact,

although the generative models achieved better performance
for low missing rates, a performance degradation is witnessed
for higher missing rates. For 80% missing rate, our method
exhibited an improvement of 35% compared to the closest
performance for Porto traffic data.

E. Discussion

Experiments showed that our urban and time aware CP
tensor completion approach is efficient in recovering missing
traffic information with both random and structured missing
values. The other algorithms, although achieved competitive
performance with low missing values rate, they failed to
recover the traffic tensor with very high imputation. On overall,
the proposed technique performed better on T-Drive data
compared to Porto Taxi. This has been also the case for all
techniques used for comparison.

It is worth noting that performance of our approach depends
on the regularization parameter λ and β. We analyze the
variation of the Relative Error with respect to different λ
and β to recover Porto data under structured missing values.
The results are depicted in Fig. 11. We notice that high
regularization of the matrix norm, i.e. high λ, value leads to
higher error. In addition, we notice that the optimal choice
for parameter β is in the range of 0.01 to 0.02. Higher or
lower values result in higher RE. Automatic tuning of these
parameters is an open research question. For this work, λ and
β parameters are empirically chosen.

We further compare the performance on tensors constructed
using the source and destination sub-regions only and using
all locations visited in the journey from source to destination.
Without loss of generality, we conduct this experiment on T-
Drive data with R = 6 where we attempt to recover the tensors
under different corruption levels with random and structure
missing values and evaluate the RE. We refer to the first tensor
as Beijing-S2D and the second one as Beijing-All. To quantify
the sparsity of each tensor, we use the S l2

l1

[48]:

Slog(x) = −
∑
i

log(1 + x2
i ) (43)

Computation of the sparsity measure shows that Beijing-S2D
is more sparse than Beijing-All with 5 order of magnitude
where Slog = −1.2106 and Slog = −6.5106 for Beijing-
S2D and Beijing-All respectively. Results, depicted in Figures
13 and 14 show that the proposed approach achieved similar
performances on both tensors and under both missing values
scenarios. Hence, we can conclude that it is not affected by
the sparsity of the input tensor. Our design choice for the
traffic tensor is motivated by the fact that using all trajectories’
locations would result in constructing a traffic tensor that better
reflects the traffic information in the area of study.

Finally, we analyze the time complexity of each completion
approach. We run each algorithm until the minimization of
its objective function is less than 10−6. We illustrate in Fig.
12 the results of the experiment with time in log scale. The
proposed approach achieved relatively high time complexity
as the algorithm requires computing multiple operations and
applying Moore-Penrose inverse. Therefore it is important to
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Fig. 5: Recovering Porto traffic tensor with random missing values: Relative Error results
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Fig. 6: Recovering Beijing traffic tensor with random missing values: Relative Error results
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Fig. 7: Comparison with generative models

achieve a tradeoff between performance and execution time.
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Fig. 8: Recovering Porto traffic tensor with structured loss of values: Relative Error results
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Fig. 9: Relative Error results for recovering Beijing traffic tensor with structured missing values
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Fig. 10: Comparison with generative models and structured missing values

VI. CONCLUSION

We proposed a CP based completion approach to recover the
missing values from traffic tensor. We augmented the CP algo-

rithm with additional information related to the urban context
of the area of study. This includes several biodiversity-inspired
characteristics related to the richness, diversity, concentration



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 13

0.02 0.04 0.06 0.08 0.1
0.5

0.51

0.52

0.53

0.54

0.55

0.56

R
el

at
iv

e 
E

rr
or

 = 0.6

 = 0.8

 = 0.4

 = 0.1

Fig. 11: Recovering Porto traffic data under structured missing
values: Variation of the Relative Error with respect to λ and
β
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Fig. 12: Recovering T-Drive data constructed with source
and destination only and all trajectories’ locations: Random
missing values
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Fig. 13: Recovering T-Drive data constructed with source
and destination only and all trajectories’ locations: Structured
missing values

and traffic convenience. In addition, we take into account
the temporal information by considering the periodicity of
the traffic data. We established two comparison scenarios
and analyzed the proposed approach from time complexity
perspective. Our findings showed that the CP completion
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Fig. 14: Time complexity

approach augmented with the proposed urban and time in-
formation achieved competitive recovery performance.
In future work, we will focus on alleviating the time com-
plexity. We will also address the choice of the regularization
parameters and propose a solution for automatic tuning
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