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Perceiving Humans: From Monocular
3D Localization to Social Distancing

Lorenzo Bertoni , Sven Kreiss , and Alexandre Alahi

Abstract— Perceiving humans in the context of Intelligent
Transportation Systems (ITS) often relies on multiple cameras
or expensive LiDAR sensors. In this work, we present a new
cost-effective vision-based method that perceives humans’ loca-
tions in 3D and their body orientation from a single image.
We address the challenges related to the ill-posed monocular
3D tasks by proposing a neural network architecture that predicts
confidence intervals in contrast to point estimates. Our neural
network estimates human 3D body locations and their orientation
with a measure of uncertainty. Our proposed solution (i) is
privacy-safe, (ii) works with any fixed or moving cameras,
and (iii) does not rely on ground plane estimation. We demon-
strate the performance of our method with respect to three
applications: locating humans in 3D, detecting social interactions,
and verifying the compliance of recent safety measures due to
the COVID-19 outbreak. We show that it is possible to rethink
the concept of “social distancing” as a form of social interaction
in contrast to a simple location-based rule. We publicly share the
source code towards an open science mission.

Index Terms— Autonomous systems, computer vision, intelli-
gent robots, autonomous vehicles, object detection, social distanc-
ing, COVID-19.

I. INTRODUCTION

OVER the past decades, we have witnessed new emerg-
ing technologies to localize humans in 3D, ranging

from vision-based [1]–[5], to LiDAR-based solutions [6], [7]
and multi-sensor approaches [8], [9]. On one hand,
vision-based technologies can capture detailed body poses and
texture properties, but rely on a costly calibrated network of
cameras [10]–[12]. On the other hand, LiDAR sensors are
limited by high cost, noise in case of adverse weather, and
sparsity of point clouds over long ranges [4], [13], [14]. In this
work, we show that given a single cost-effective RGB camera,
we can not only extract humans’ 3D locations but also their
body orientations. Consequently, we can go beyond monoc-
ular 3D localization of humans and detect social interactions
(e.g., whether two people are talking to each other) in trans-
portation hubs, and even verify compliance with the recent
safety measures due to the COVID-19 outbreak.

The COVID-19 pandemic has forced authorities to limit
non-essential movements of people, especially in crowded
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areas or public transport [15]. Social distancing mea-
sures are becoming essential to restart passenger services,
e.g., leaving train seats unoccupied. Yet in many contexts
it is not obvious how to preserve inter-personal distances.
When the risk of contagion remains, we should work to
minimize it, and perceiving social interactions can play a
vital role. In fact, talking with a person does not incur the
same risk of infection as passing someone in the street. The
infection rate of a disease can be summarized as the product
of exposure time and exposure to virus particles [16], [17].
When people are talking together, not only does the exposure
time escalate, but the act of speaking itself increases the
release of respiratory droplets about tenfold [18], [19]. These
analyses urge us to rethink safety measures and focus on
proximal social interactions, which can be defined as any
behavior of two or more people mutually oriented towards
each other and who influence or take into account each other’s
subjective experiences or intentions [20]. We show that we
can monitor the concept of “social distancing” as a form of
social interaction in contrast to a simple location-based rule
or smartphone-based solutions [21]–[23]. A few methods have
studied interactions from images [24], [25], but their results are
either limited to personal photos, [26], indoor scenarios, [27],
or necessitate a homography calibration [24], [25]. However,
the study of social distancing requires an understanding of
social interactions in a variety of unconstrained scenarios,
either outdoors or within large facilities.

In this paper, we propose a deep learning approach
that perceives humans and their social interactions in the
3D space from visual cues only. We argue that the funda-
mental challenge behind recognizing social interactions from a
monocular camera is to perceive humans in 3D, an intrinsically
ill-posed problem. We address this ambiguity by predicting
confidence intervals in contrast to point estimates through a
loss function based on the Laplace distribution. Our approach
consists of three main steps. First, we use an off-the-shelf
pose detector [28] to obtain 2D keypoints, a low-dimensional
representation of humans. Second, the 2D poses are fed
into a light-weight feed-forward neural network that predicts
3D locations, orientations and corresponding confidence inter-
vals for each person. Finally, driven by these perception
tasks, we aim at investigating how people use the space
when interacting in groups. According to the subfield of
proxemics, people tend to arrange themselves spontaneously in
specific configurations called F-formations [29]. The detection
of F-formations is critical to infer social relations [24], [25].
Our intuition is that knowing the 3D location and orien-
tation of people in a scene allows the accurate retrieval
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Fig. 1. Our method retrieves 3D locations with confidence intervals, body orientations, social interactions and social distancing in the wild from a single
RGB image. We leverage 2D human poses as intermediate representations to verify social distancing compliance while preserving privacy.

of F-formations with simple probabilistic rules. Inspired
by [24], [25], we exploit our predicted confidence intervals to
develop a simple probabilistic approach to detect F-formations
and social interactions among humans. Consequently, we show
that we can redefine the concept of social distancing to go
beyond a simple measure of distance. We provide simple
rules to verify safety compliance in indoor/outdoor scenarios
based on the interactions among people rather than their
relative position alone. Finally, the design of our pipeline
encourages privacy-safe implementations by decoupling the
image processing step. Our network is trained on and performs
inference with anonymous 2D human poses. An example is
provided in Figure 1, where 3D location, orientation and inter-
actions among people are analyzed to verify social distancing
compliance in a private manner.

Technically, our main contributions are three-fold: (i) we
outperform monocular methods for the 3D localization task on
the publicly-available KITTI dataset [30] while also estimating
meaningful confidence intervals; (ii) we effectively capture
social interactions among people on the Collective Activity
Dataset [31] without any additional training or homography
estimation; (iii) we show that we can redefine the concept of
social distancing based on social cues while preserving the
privacy of its users. Our code is publicly available.1

II. RELATED WORK

In this work, we tackle the high-level task of understand-
ing 3D spatial relations among humans from a single RGB
image without ground plane estimation. The core of our
pipeline is composed of a sequence of low-level tasks to
process the image and extract 3D information, which can
be called monocular 3D vision. The more general field of
computer vision has experienced a fundamental transition
towards data-hungry deep learning methods thanks to their
natural ability to process data in raw form [32]. The transition
started with 2D tasks, such as object detection [33], [34] and
human pose estimation [35], and it expanded to 3D tasks
such as 3D object detection [36]–[38], object recognition [39],

1https://github.com/vita-epfl/monoloco

depth estimation [40], or even forecasting tasks [41]. A crucial
factor in this transformation has been the release of massive
datasets for 2D [42]–[44] and 3D tasks [30], [45]–[48], espe-
cially in the context of autonomous driving. While perception
tasks have been monopolized by relatively new deep learning
algorithms, the study of social interactions is based on historic
discoveries in behavioural science. In this work, we only
focus on proxemics: the subfield relating human interactions
with the use of space [49]. The remainder of this section
is organized as follows. First, we review 2D and 3D tasks
that compose our perception pipeline, namely human pose
estimation, monocular 3D object detection, and uncertainty
estimation. Last, we focus on the study of proxemics and its
applications for computer vision and transportation research.

A. Monocular 3D Vision

We include three different sub tasks under the “Monocular
3D Vision” umbrella, as they all contribute to perceive humans
in the 3D space from single RGB images. We are interested in
algorithms that can operate in outdoor and crowded environ-
ments, so when applicable, we focus our review on perception
techniques for autonomous driving.

1) Human Pose Estimation: Detecting people in images
and estimating their skeleton is a widely studied problem.
State-of-the-art methods are based on Convolutional Neural
Networks and can be grouped into top-down and bottom-up
methods. Top-down approaches consist in detecting each
instance in the image first and then estimating body joints
within the boundaries of the inferred bounding box [50]–[53].
Bottom-up approaches estimate separately each body joint
through convolutional architectures and then combine them
to obtain a full human pose [35], [35], [54]–[56]. More
recently PifPaf [28], [57] proposed a method tailored for
autonomous driving scenarios that performs well in low-
resolution, crowded and occluded scenes. Related to our work
is Simple Baseline [58], which shows the effectiveness of
latent information contained in 2D joints stimuli. They achieve
state-of-the-art results by simply predicting 3D joints from 2D
poses through a light, fully connected network. However, these
lines of work estimate relative 3D joint positions [59]–[61],
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or relative 3D meshes [62], [63], not providing any information
about the real 3D location in the scene.

2) Monocular 3D Object Detection: The majority of
approaches for monocular 3D object detection in the trans-
portation domain focus on vehicles as they are rigid objects
with known shape. Very recently, a few works have extended
their approaches to the pedestrian category. MonoPSR [64]
evaluates pedestrians from monocular RGB images, leverag-
ing point clouds at training time to learn local shapes of
objects. MonoDIS [65] proposes to disentangle the contri-
bution of each loss component, while SMOKE [66] com-
bines a single keypoint estimate with regressed 3D variables.
Kundegorski and Breckon [67] achieve reasonable perfor-
mances combining infrared imagery and real-time photogram-
metry. Alahi et al. combine monocular images with wireless
signals [68] or with additional visual priors [10], [69], [70].
The seminal work of Mono3D [36] exploits deep learning
to create 3D object proposals for car, pedestrian and cyclist
categories but it does not evaluate 3D localization of pedes-
trians. It assumes a fixed ground plane orthogonal to the
camera and the proposals are then scored based on scene
priors, such as shape, semantic and instance segmentations.
The following methods continue to leverage Convolutional
Neural Networks and focus only on Car instances. To regress
3D pose parameters from 2D detections, Deep3DBox [71],
MonoGRnet [72], and Hu et al. [73] use geometrical reasoning
for 3D localization, while Multi-fusion [74] and ROI-10D [75]
incorporate a module for depth estimation. Roddick et al. [76]
escape the image domain by mapping image-based features
into a birds-eye view representation using integral images.
Another line of work fits 3D templates of cars to the
image [77]–[80]. While many of the related methods achieve
reasonable performances for vehicles, current literature lacks
monocular methods addressing other categories in the context
of autonomous driving, such as pedestrians and cyclists.

3) Uncertainty Estimation in Computer Vision: Deep neural
networks need the ability not only to provide the correct
outputs but also a measure of uncertainty, especially in
safety-critical scenarios like autonomous driving. Tradition-
ally, Bayesian Neural Networks [81], [82] are used to model
epistemic uncertainty through probability distributions over
the model parameters. However, these distributions are often
intractable and researchers have proposed interesting solutions
to perform approximate Bayesian inference to measure uncer-
tainty, including Variational Inference [83]–[85] and Deep
Ensembles [86]. Alternatively, Gal et al. [87], [88] show that
applying dropout [89] at inference time yields a form of varia-
tional inference where a mixture of multivariate Gaussian dis-
tributions with small variances models the network parameters.
This technique, called Monte Carlo (MC) dropout, has earned
great popularity due to its adaptability to non-probabilistic
deep learning frameworks. Very recently, Postels et al. [90]
proposed a sampling-free method to approximate epistemic
uncertainty, treating noise injected in a neural network as
errors on the activation values. In computer vision, uncertainty
estimation using MC dropout has been applied for depth
regression tasks [90], [91], scene segmentation [91], [92] and,
more recently, LiDAR 3D object detection for cars [93]. In this

work, we demonstrate its relevance for monocular human
3D localization.

B. Social Interactions

We aim to capture social interactions among people and
monitor social distancing from visual cues. Related works
include the broad field of behavioral science [94]. Here we
focus on the subfield called proxemics, which investigates
how people use and organize the space they share with
others [25], [49]. People tend to arrange themselves spon-
taneously in specific configurations called F-formations [29].
These formations are characterized by an internal empty zone
(o-space) surrounded by a concentric ring where people are
located (p-space). According to Kendon [29]: “an F-formation
arises whenever two or more people sustain a spatial and
orientational relationship in which the space between them is
one to which they have equal, direct, and exclusive access”.

These formations characterize how people use the space
when interacting with each other. They are characterized by
three types of social spaces [24], [49]:

1) o-space: A circular empty region to preserve the personal
space of the participants around it. Every participant looks
inward and no people are allowed inside. The type of
relation (e.g., personal or business-related) defines the
dimensions of this space,

2) p-space: a concentric ring around the o-space that con-
tains all the participants,

3) r-space: the area outside the p-space.

In the case of two participants, typical F-formations are
vis-a-vis, L-shape, and side-by-side. For larger groups, a cir-
cular formation is typically formed [95]. An example of an
F-formation configuration is shown in Figure 3.

To the best of our knowledge, Cristani et al. 2011a [24]
is the first work to focus solely on visual cues to dis-
cover F-formations and social interactions. In parallel,
Cristani et al. 2011b [25] study how people get closer to
each other when the social relation is more intimate. The
following works have proposed various techniques to auto-
matically detect F-formations in heterogeneous real crowded
scenarios [96]–[99]. In all approaches, it is clear how the
detection of F-formations is critical to infer social relations
and we decide to follow their lead. This line of work, however,
considers as input the position of people on the ground floor
and their orientation [25] or requires a homography estimation
to compute the x-y-z coordinates of humans [24]. On the
contrary, our approach works end-to-end from a single RGB
image. The perception stage, i.e., extracting 3D detections
from a monocular image, is arguably the most challenging
one due to the intrinsic ambiguity of perspective projections.

Finally, social interactions have also been studied in the con-
text of personal photos [26] or egocentric photo-streams [27],
[100], [101]. Both approaches assume humans to stand less
than a few meters apart from each other and the camera, and
do not scale to long range applications, such as monitoring
an airport terminal. Recently, deep learning approaches have
been adopted to understand social interactions under a different
perspective. Joo et al. [94] learn to predict behavioral cues
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of a target person (e.g., body orientation) from the position
and orientation of another person. They learn the dynamics
between social interactions in a data-driven manner, laying
the foundations for deep learning to be applied in the field of
behavioral science.

III. 3D LOCALIZATION AMBIGUITY

A critical challenge in understanding social interactions
from visual cues is the 3D localization pillar. Inferring dis-
tance of humans from monocular images is a fundamentally
ill-posed problem. The majority of previous works have cir-
cumvented this challenge by assuming a planar ground plane
and estimating a homography by manual measurement or by
knowing some reference elements [24], [36], [103], [104].
These approaches do not work when people are on stairs
and they require a static calibrated setup. In this work,
we address their limitations by directly estimating distance
of humans without relying on a ground plane or homography.
This problem is ill-posed due to human variation of height.
If every pedestrian has the same height, there would be no
ambiguity. However, does this ambiguity prevent from robust
localization? This section is dedicated to explore this question
and analyze the maximum accuracy expected from monocular
pedestrian localization.

We are interested in the 3D localization error due to the
ambiguity of perspective projection. Our approach consists
in assuming that all humans have the same height hmean
and analyzing the error of this assumption. Inspired by
Kundegorski and Breckon [67], we model the localiza-
tion error related to height variation as a function of the
ground-truth distance from the camera, which we call task
error. From the triangle similarity relation of human heights
and distances, dh-mean/hmean = dgt/hgt , where hgt and dgt

are the ground-truth human height and distance, hmean is the
assumed mean height of a person and dh-mean the estimated
distance under the hmean assumption. We can define the task
error for any person instance in the dataset as:

e ≡ |dgt − dh-mean| = dgt

∣∣∣∣1 − hmean

hgt

∣∣∣∣ . (1)

Previous studies from a population of 63,000 European adults
have shown that the average height is 178 cm for males
and 165 cm for females with a standard deviation of around
7 cm in both cases [105]. However, a pose detector does not
distinguish between genders. Assuming that the distribution
of human stature follows a Gaussian distribution for male and
female populations [106], we define the combined distribution
of human heights, a Gaussian mixture distribution P(H ),
as our unknown ground-truth height distribution. The expected
task error becomes

ê = dgt Eh∼P(H)

[∣∣∣∣1 − hmean

h

∣∣∣∣
]

, (2)

which represents a lower bound for monocular 3D pedes-
trian localization due to the intrinsic ambiguity of the task.
The analysis can be extended beyond adults. A 14-year old
male reaches about 90% of his full height and a female
about 95% [67], [106]. Including people down to 14 years

old leads to an additional source of height variation of 7.9%
and 5.6% for men and women, respectively [67]. Figure 4
shows the expected localization error ê due to height variations
in different cases as a linear function of the ground-truth
distance from the camera dgt . For a pedestrian 20 meters far,
the localization error is approximately 1 meter. This analysis
shows that the ill-posed problem of localizing humans, while
imposing an intrinsic limit, does not prevent from a good
enough localization in many applications.

IV. PROPOSED METHOD

The goals of our method are (i) to detect humans in
3D given a single image and (ii) to leverage this information
to recognize social interactions and monitor social distanc-
ing. Figure 2 illustrates our overall method, which consists
of three main steps. First, we exploit a pose detector to
escape the image domain and reduce the input dimensionality.
2D human joints are a meaningful low-level representation
which provides invariance to many factors, including back-
ground scenes, lighting, textures and clothes. Second, we use
the 2D joints as input to a feed-forward neural network
that predicts x-y-z coordinates and the associated uncertainty,
orientation, and dimensions of each pedestrian. In the training
phase, there is no supervision for the localization ambigu-
ity. The network implicitly learns it from the data distrib-
ution. Third, the network estimates are combined to obtain
F-formations [49] and recognize social interactions.

A. 3D Human Detection

The task of 3D object detection is defined as detecting
3D location of objects along with their orientation and dimen-
sions [30], [45]. The ambiguity of the task derives from the
localization component as described in Section III. Hence,
we argue that effective monocular localization implies not only
accurate estimates of the distance but also realistic predictions
of uncertainty. Consequently, we propose a method which
learns the ambiguity from the data and predicts confidence
intervals in contrast to point estimates. The task error modeled
in Eq. 2 allows us to compare the predicted confidence
intervals with the intrinsic ambiguity of the task.

1) Input: We use a pose estimator to detect a set of
keypoints [ui , vi ]T for every instance in the image. We then
back-project each keypoint i into normalized image coordi-
nates

[
x∗

i , y∗
i , 1

]T using the camera intrinsic matrix K:[
x∗

i , y∗
i , 1

]T = K −1 [ui , vi , 1]T . (3)

This transformation is essential to prevent the method from
overfitting to a specific camera.

2) 2D Human Poses: We obtain 2D joint locations of
humans using the off-the-shelf pose detector PifPaf [28], [57],
a state-of-the-art, bottom-up method designed for crowded
scenes and occlusions. The detector can be regarded as a
stand-alone module independent from our network, which uses
2D joints as inputs. PifPaf has not been fine-tuned on any
additional dataset for 3D object detection as no annotations
for 2D poses are available.
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Fig. 2. Overall architecture. MonoLoco++: the input is a set of 2D joints extracted from a raw image and the output is the 3D location, orientation and
dimensions of a human with the localization uncertainty. 3D location is estimated with spherical coordinates: radial distance d, azimuthal angle β, and polar
angle ψ . Every fully connected layer (FC) outputs 1024 features and is followed by a Batch Normalization layer (BN) [102] and a ReLU activation function.
F-formations: all estimates from MonoLoco++ are analyzed with an all-vs-all approach to discover F-formations and estimate social interactions/distancing
using Eq. 8.

3) Output: We predict 3D localization, dimensions, and
viewpoint angle with a regressive model. Estimating depth
is arguably the most critical component in vision-based
3D object detection due to intrinsic limitations of monocular
settings described in Section III. However, due to perspective
projections, an error in depth estimation z would also affect the
horizontal and vertical components x and y. To disentangle the
depth ambiguity from the other components, we use a spher-
ical coordinate system (d, β,ψ), namely radial distance d ,
azimuthal angle β, and polar angle ψ . Another advantage of
using a spherical coordinate system is that the size of an object
projected onto the image plane directly depends on its radial
distance d and not on its depth z [5]. The same pedestrian
in front of a camera or at the margin of the camera field-of-
view will appear as having the same height in the image plane,
as long as the distance from the camera d is the same.

As already noted in [107], the viewpoint angle is not equal
to the object orientation as people at different locations may
share the same orientation θ but results in different projections.
Hence, we predict the viewpoint angle α, which is defined as
α = θ+β, where β denotes the azimuth of the pedestrian with
respect to the camera. Similarly to [107], we also parameterize
the angle as [sin α, cos α] to avoid discontinuity. Regarding
bounding box dimensions, we follow the standard procedure
to calculate width, height and length of each pedestrian.
We calculate average dimensions from the training set and
regress the displacement from the expectation.

4) Minimization Objective: Our final loss is the logarithm
of the probability that all components are “well” predicted,
i.e., it is the sum of the log-probabilities for the individual
components. For every component but the 3D localization,
we use a vanilla L1 loss. To regress distances of people,
we use a Laplace-based L1 loss [91], which we describe in
the following section. Our minimization objective is a simple
non-weighted sum of each loss function.

5) Base Network: The building blocks of our model
are shown in Figure 2. The architecture, inspired by
Martinez et al. [58], is a simple, deep, fully-connected
network with six linear layers with 1024 output features.
It includes dropout [89] after every fully connected layer,
batch-normalization [102] and residual connections [108]. The
model contains approximately 8M training parameters.

6) MonoLoco++ vs MonoLoco: We refer to our method
as MonoLoco++. Technically, it differs from the previous
MonoLoco [5] by:

• the multi-task approach that combines 3D localization,
orientation and bounding-box dimensions,

• the use of spherical coordinates to disentangle the ambi-
guity in the 3D localization task,

• an improved neural network architecture.

Combining precise 3D localization and orientation paves the
way for activity recognition and social distancing, which was
not possible using MonoLoco [5]. As illustrated in Fig 2,
multiple MonoLoco++ estimates are combined into the
F-formation estimation block to detect social interactions and
social distancing. In addition, we will show how the above
technical improvements benefit the monocular 3D localization
task itself.

B. Uncertainty

In this work, we propose a probabilistic network which
models two types of uncertainty: aleatoric and epistemic [91],
[109]. Aleatoric uncertainty is an intrinsic property of the task
and the inputs. It does not decrease when collecting more
data. In the context of 3D monocular localization, the intrinsic
ambiguity of the task represents a quota of aleatoric uncer-
tainty. In addition, some inputs may be more noisy than others,
leading to an input-dependent aleatoric uncertainty. Epistemic
uncertainty is a property of the model parameters, and it can
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be reduced by gathering more data. It is useful to quantify the
ignorance of the model about the collected data, e.g., in case
of out-of-distribution samples.

1) Aleatoric Uncertainty: Aleatoric uncertainty is captured
through a probability distribution over the model outputs.
We define a relative Laplace loss based on the negative
log-likelihood of a Laplace distribution as:

LLaplace(x |d, b) = |1 − d/x |
b

+ log(2b) , (4)

where x represents the ground-truth distance, d the predicted
distance, and b the spread, making this training objective an
attenuated L1-type loss via spread b.

During training, the model has the freedom to ignore noisy
data and attenuate its gradients by predicting a large spread b.
As a consequence, inputs with high uncertainty have a small
effect on the loss, making the network more robust to noisy
data. The uncertainty is estimated in an unsupervised way,
since no supervision is provided. At inference time, the model
predicts a Laplace distribution parameterized by the distance d
and a spread b. The latter one indicates the model’s confidence
about the predicted distance. Following [91], to avoid the
singularity for b = 0, we apply a change of variable to predict
the log of the spread s = log(b).

Compared to previous methods [91], [110], we design a
Laplace loss that works with relative distances to take into
account the role of distance in our predictions. For example
in autonomous driving scenarios, estimating the distance of a
pedestrian with an absolute error can lead to a fatal accident
if the person is very close, or be negligible if the same human
is far away from the camera.

2) Epistemic Uncertainty: To model epistemic uncertainty,
we follow [87], [91] and consider each parameter as a mix-
ture of two multivariate Gaussians with small variances and
means 0 and θ . The additional minimization objective for
N data points is:

Ldropout(θ, pdrop) = 1 − pdrop

2N
||θ ||2. (5)

In practice, we perform dropout variational inference by
training the model with dropout before every weight layer
and then performing a series of stochastic forward passes at
test time using the same dropout probability pdrop of training
time. The use of fully-connected layers makes the network
particularly suitable for this approach, which does not require
any substantial modification of the model.

The combined epistemic and aleatoric uncertainties are
captured by the sample variance of predicted distances x̃ . They
are sampled from multiple Laplace distributions parameterized
with the predictive distance d and spread b from multiple
forward passes with MC dropout:

V ar(X̃) = 1

T I

T∑
t=1

I∑
i=1

x̃2
t,i(dt , bt )

−
[

1

T I

T∑
t=1

I∑
i=1

x̃t,i (dt , bt )

]2

, (6)

Fig. 3. Illustration of the o-space discovery using [24] on the left and our
approach on the right. Both approaches use the candidate radius r to find the
center of the o-space, as infinite number of circles could be drawn from two
points. Differently from [24], once a center is found, we dynamically adapt
the final radius of the o-space ro−space depending on the effective location
of the two people.

where for each of the T computationally expensive forward
passes, I computationally cheap samples are drawn from the
Laplace distribution.

C. Social Interactions and Distancing

We identify social interactions by recognizing the spatial
structures that define F-formations (see Section II-B for more
details). Our approach considers groups of two people in an
“all-vs-all” fashion by studying all the possible pairs of people
in an image.

Ideally, two people talking to each other define the same
o-space by looking at its center. In practice, 3D local-
ization and orientation of people are noisy and previous
methods [24], [25] have adopted a voting approach. They
define a candidate radius r of the o-space and each person
vote for a center. The average result defines the center of the
o-space. In Cristani et al. [24], the candidate radius r remains
the final radius of the o-space and is fixed for every group
of people. However, once the o-space center is found, nothing
prevents us from considering its radius ro−space dynamically as
the minimum distance between the center and one of the two
people. An illustration of the differences is show in Figure 3.
Therefore, given the location of two people in the x-z plane x
and their body orientation θ , we define the center and the
radius of the o-space as:

O01 = µ0 + µ1

2
ro−space = min(|O01 − xo|, |O01 − x1|) , (7)

where O01 and ro−space are the center and radius of the
resulting o-space, µ0 and µ1 indicate the location of the two
candidate centers of the o-space. In general, µ = [x + r ∗
cos(θ), z + r ∗ sin(θ)] and is parametrized by the candidate
radius r , which depends on the type of relation (intimate,
personal, business, etc.) [49].

Once the o-space is drawn, we verify the following
conditions:

(a) |xo − x1| < Dmax

(b) |O01 − xi| < ro−space ∀i �= 0, 1

(c) |µ0 − µ1| < Rmax (8)
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where Dmax and Rmax are the maximum distances between
two people, and between the candidate centers of the o-spaces,
respectively. Vectors are represented in bold.

The above conditions verify the presence of an F-formation,
as:
(a) examines whether two people stand closer than a maxi-

mum distance Dmax , i.e., they lie inside a p-space,
(b) examines whether the o-space is empty (no-intrusion

condition),
(c) examines whether the two people are looking inward the

o-space.
We note that condition (c) is empirical as looking inward

is a generic requirement. Two people usually look at each
other when talking, but the needs for social distancing may be
different. Our goal is not to find perfect empirical parameters
for F-formations discovery, but rather to show the effectiveness
of combining simple rules and estimating 3D localization
and orientation. We consider two people as interacting with
each other if the three conditions are verified. This method is
automatically extended to larger groups as two people can
already cover any possible F-formation (vis-a-vis, L-shape
and side-by-side), while three or more people usually form
a circle [24]. Further, we are not interested in defining the
components of each group, but rather whether people are
interacting or not.

1) Social Distancing: The procedure to monitor social
distancing can either follow the same steps, or can be adapted
to a different context. Risk of contagion strongly increases
if people are involved in a conversation [17], [19]. Therefore,
recognizing social interactions lets the system only warn those
people that incur the highest risk of contagion. In crowded
scenes, this is crucial to prevent an extremely high number of
false alarms that could undermine any benefit of the technol-
ogy. Yet social distancing conditions can also be differentiated
from the social interaction ones. For example, a third person
invading the o-space could mean that the three people involved
are not conversing, but still they may be at risk of contagion
due to the proximity. How strict these rules should be can only
be decided case by case by the competent authority. Our goal
is to help assessing the risk of contagion not only through
distance estimation but also by leveraging social cues.

2) Uncertainty for Social Interactions: A deterministic
approach can be very sensitive to small errors in 3D localiza-
tion and orientation, which we know are inevitable due to the
perspective projection. Therefore, we introduce a probabilistic
approach that leverages our estimated uncertainty to increase
robustness towards 3D localization noise. We note that
Cristani et al. [24] also adopted a probabilistic approach
injecting uncertainty in a Hough-voting procedure. However,
the chosen parameters were driven by sociological and empir-
ical considerations. In our case, uncertainty estimates come
directly as an output of the neural network and they are unique
for each person. Recalling that the location of each person is
defined as a Laplace distribution parametrized by d and b in
Eq. 4, we draw k samples from the distribution. For each
pair of samples, we verify the above conditions for social
interactions. Combining all the results, we evaluate the final
probability for a social interaction to occur.

V. EXPERIMENTS

To the best of our knowledge, no dataset contains 3D labels
as well as social interactions or social distancing informa-
tion. Hence, we used multiple datasets to evaluate monocular
3D localization, social interactions and social distancing sep-
arately. The following sections serve this purpose.

A. Monocular 3D Localization

1) Datasets: We train and evaluate our monocular model on
the KITTI Dataset [30]. It contains 7481 training images along
with camera calibration files. All the images are captured in
the same city from the same camera. To analyze cross-dataset
generalization properties, we train another model on the teaser
of the recently released nuScenes dataset [45] and we test it
on KITTI. We do not perform cross-dataset training.

2) Training/Evaluation Procedure: To obtain input-output
pairs of 2D joints and distances, we apply an off-the-shelf
pose detector and use intersection over union of 0.3 to match
our detections with the ground-truths, obtaining 1799 training
instances for KITTI and 8189 for nuScenes teaser. KITTI
images are upscaled by a factor of two to match the minimum
dimension of 32 pixels of COCO instances. NuScenes already
contains high-definition images, which are not modified. Once
the human poses are detected, we apply horizontal flipping to
double the instances in the training set.

We follow the KITTI train/val split of Chen et al. [36]
and we run the training procedure for 200 epochs using
the Adam optimizer [111], a learning rate of 10−3 and
mini-batches of 512. The code, available online, is developed
using PyTorch [112]. Working with a low-dimensional rep-
resentation is very appealing as it allows fast experiments
with different architectures and hyperparameters. The entire
training procedure requires around two minutes on a single
GTX1080Ti GPU.

3) Evaluation Metrics: Following [5], we use two metrics
to analyze 3D pedestrian localization. First, we consider a
prediction as correct if the error between the predicted distance
and the ground-truth is smaller than a threshold. We call
this metric Average Localization Accuracy (ALA). We use
0.5 meters, 1 and 2 meters as thresholds. We also analyze the
average localization error (ALE). To make fair comparison
we set the threshold of the methods to obtain similar recall.
Compared to [5], we do not evaluate on the common set of
detected instances. Their evaluation is not reproducible as the
common set depends on the methods chosen for evaluation.
In contrast, analyzing ALE and recall allows for simple but fair
comparison. Following KITTI guidelines, we assign to each
instance a difficulty regime based on bounding box height,
level of occlusion and truncation: easy, moderate and hard.
However in practice, each category includes instances from
the simpler categories, and, due to the predominant number
of easy instances (1240 easy pedestrians, 900 moderate and
300 hard ones), the metric can be misleading and underesti-
mate the impact of challenging instances. Hence, we evaluate
each instance as belonging only to one category and add the
category all to include all the instances.
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TABLE I

COMPARING OUR PROPOSED METHOD AGAINST BASELINE RESULTS ON THE KITTI DATASET [30]. WE USE PiFPAF [28] AS OFF-THE-SHELF NETWORK
TO EXTRACT 2D POSES. FOR THE ALE METRIC, WE SHOW THE RECALL BETWEEN BRACKETS TO INSURE FAIR COMPARISON. WE SHOW

RESULTS BY TRAINING WITH THREE DIFFERENT DATA SPLITS: KITTI DATASET [30], NUSCENES TEASER [45] OR A SUBSET OF

NUSCENES TO MATCH THE NUMBER OF INSTANCES OF THE KITTI DATASET. ALL CASES SHARE THE SAME EVALUATION

PROTOCOL. THE MODELS TRAINED ON NUSCENES SHOW CROSS-DATASET GENERALIZATION PROPERTIES
BY OBTAINING COMPARABLE RESULTS IN THE ALE METRIC

4) Geometric Approach: 3D pedestrian localization is an
ill-posed task due to human height variations. On the other
side, estimating the distance of an object of known dimensions
from its projections into the image plane is a well-known
deterministic problem. As a baseline, we consider humans
as fixed objects with the same height and we investigate the
localization accuracy under this assumption.

For every pedestrian, we apply a pose detector to calculate
distances in pixels between different body parts in the image
domain. Combining this information with the location of the
person in the world domain, we analyze the distribution of the
real dimensions (in meters) of all the instances in the training
set for three segments: head to shoulder, shoulder to hip and
hip to ankle. For our calculation we assume a pinhole model of
the camera and that all instances stand upright. Using the cam-
era intrinsic matrix K and knowing the ground-truth location
of each instance D = [xc, yc, zc]T we can back-project each
keypoint from the image plane to its 3D location and measure
the height of each segment using Eq. 3. We calculate the mean
and the standard deviation in meters of each of the segments
for all the instances in the training set. The standard deviation
is used to choose the most stable segment for our calculations.
For instance, the position of the head with respect to shoulders
may vary a lot for each instance. We also average between
left and right keypoint values to take into account noise in the
2D joint predictions. The result is a single height �y1−2 that
represents the average length of two body parts. In practice,
our geometric baseline uses the shoulder-hip segment and
predicts an average height of 50.5cm. Combining the study
on human heights [105] described in Section 3 with the
anthropometry study of Drillis et al. [113], we can compare
our estimated �y1−2 with the human average shoulder-hip
height: 0.288 ∗ 171.5cm = 49.3cm.

The next step is to calculate the location of each instance
knowing the value in pixels of the chosen keypoints v1 and v2
and assuming �y1−2 to be their relative distance in meters.
This configuration requires to solve an over-constrained linear
system with two specular solutions, of which only one is inside
the camera field of view.

5) Other Baselines: We compare our monocular method on
KITTI against five monocular approaches and a stereo one:

• MonoLoco. We compare our approach with
MonoLoco [5]. Our MonoLoco++ uses a multi-task
approach to learn orientation, has a different architecture
and uses spherical coordinates for distance estimation.
Both methods share the same off-the-shelf pose
detector [28], [57].

• Mono3D [36] is a monocular 3D object detector for cars,
cyclists and pedestrians. 3D localization of pedestrians is
not evaluated but detection results are publicly available

• MonoPSR [64] is a monocular 3D object detector that
leverages point clouds at training time to learn shapes
of objects. In contrast, our method does not use any
privileged signal at training time.

• MonoDIS [65] is a very recent multi-class 3D object
detector that provides evaluations for the pedestrian cat-
egory on the KITTI dataset.

• SMOKE [66] is a single-stage monocular 3D object
detection method which is based on projecting 3D points
onto the image plane. The authors have shared their
quantitative evaluation.

• 3DOP [104] is a stereo approach for pedestrians, cars and
cyclists and their 3D detections are publicly available.

Finally, in Figure 4 we also compare the results against the task
error of Eq. 2, which defines the target error for monocular
approaches due to the ambiguity of the task.

B. Monocular Results

1) Localization Accuracy: Table I summarizes our quan-
titative results on KITTI. We strongly outperform all the
other monocular approaches on all metrics and obtain com-
parable results with the stereo approach 3DOP [104], which
has been trained and evaluated on KITTI and makes use
of stereo images during training and test time. In addition,
we show cross-dataset generalization properties by training
our network on a subset of the nuScenes dataset containing
only 1799 instances and evaluating it on the KITTI dataset.
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Fig. 4. Average localization error (ALE) as a function of distance.
We outperform the monocular MonoPSR [64] and MonoDIS [65], while
even achieving more stable results than the stereo 3DOP [104]. Monocular
performances are bounded by our modeled task error in Eq. 2. The task error
is only a mathematical construction not used in training and yet it strongly
resembles the network error, especially for the more statistically significant
clusters (number of predicted instances included).

Its generalization properties can be attributed to the
low-dimensional input space of 2D keypoints [114].

In Figure 4, we make an in-depth comparison analyzing the
average localization error as a function of the ground-truth
distance. We also compare the performances against the task
error due to human height variations modeled in equation 2.
Our method results in stable performances that almost replicate
the target threshold. More generally, it is notable that the
error of each method shows a quasi-linear behaviour. At a
short range, the majority of methods show large errors, as the
instances are not fully visible in the image. Since our method
reasons with keypoints, its performances are more stable.
At the 25-30m range MonoLoco error is slightly lower than the
task error. This is mainly caused by the statistical fluctuations
due to the small sample sizes at those distances. Figure 6 and 7
show qualitative results on challenging images from the KITTI
and nuScenes datasets, respectively.

2) Aleatoric Uncertainty: We compare in Figure 5 the
aleatoric uncertainty predicted by our network through
spread b with the task error due to human height variation
defined in Eq. 2. While ê is a linear function of the distance
from the camera, the predicted aleatoric uncertainty (through
the spread b) is a property of each set of inputs. In fact, b
includes not only the uncertainty due to the ambiguity of the
task but also the uncertainty due to noisy observations [91],
i.e., the 2D joints inferred by the pose detector. Hence, we can
approximately define the predictive aleatoric uncertainty due
to noisy joints as b−ê and we observe that the further a person
is from the camera, the higher is the term b − ê. The spread b
is the result of a probabilistic interpretation of the model
and the resulting confidence intervals are calibrated. On the
KITTI validation set, they include 68% of the instances.

3) Combined Uncertainty: The combined aleatoric and
epistemic uncertainties are captured by sampling from multiple
Laplace distributions using MC dropout. During each of the

Fig. 5. Aleatoric uncertainties predicted by MonoLoco++ (spread b), and
due to human height variation (task error ê) as a function of the ground-truth
distance. The term b − ê is indicative of the aleatoric uncertainty due to
noisy observations. The combined uncertainty σ accounts for aleatoric and
epistemic uncertainty and is obtained applying MC Dropout [87] at test time
with 50 forward passes.

forward passes, we draw and accumulate samples from the
estimated Laplace distribution. Then, we calculate the com-
bined uncertainty as the sample variance of predicted distances
in Eq. 6. The magnitude of the uncertainty depends on the cho-
sen dropout probability pdrop in Eq. 5. In Table II, we analyze
the precision/recall trade-off for different dropout probabilities
and choose pdrop = 0.2. We perform 50 computationally
expensive forward passes and, for each of them, 100 com-
putationally cheap samples from a Laplace distribution using
Eq. 6. As a result, 84% of pedestrians lie inside the predicted
confidence intervals for the validation set of KITTI.

One of our goals is robust 3D estimates for pedestrians,
and being able to predict a confidence interval instead of a
single regression number is a first step towards this direction.
To illustrate the benefits of predicting intervals over point
estimates, we construct a controlled risk analysis. To simulate
an autonomous driving scenario, we define as high-risk cases
all those instances where the ground-truth distance is smaller
than the predicted one, hence a collision is more likely to
happen. We estimate that among the 1932 detected pedes-
trians in KITTI which match a ground-truth, 48% of them
are considered as high-risk cases, but for 89% of them the
ground-truth lies inside the predicted interval.

4) Challenging Cases: We qualitatively analyze the role of
the predicted uncertainty in case of an outlier in Figure 9.
In the top image, a person is partially occluded and this
is reflected in a larger confidence interval. Similarly in the
bottom figure, we estimate the 3D localization of a driver
inside a truck. The network responds to the unusual position
of the 2D joints with a very large confidence interval. In this
case the prediction is also reasonably accurate, but in general
an unusual uncertainty can be interpreted as a useful indicator
to warn about critical samples.

We also show the advantage of estimating distances without
relying on homography estimation or assuming a fixed ground
plane, such as [36], [104]. The road in Figure 9 (top) is uphill
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Fig. 6. Qualitative results from the KITTI [30] dataset containing true and inferred distance information as well as confidence intervals. The direction of
the line is radial as we use spherical coordinates. Only pedestrians that match a ground-truth are shown for clarity.

TABLE II

PRECISION AND RECALL OF UNCERTAINTY FOR THE KITTI
VALIDATION SET WITH 50 STOCHASTIC FORWARD PASSES.

|x−d| IS THE LOCALIZATION ERROR, σ THE PREDICTED
CONFIDENCE INTERVAL, ê THE TASK ERROR MODELED

IN EQ. 2 AND RECALL IS REPRESENTED BY THE % OF

GROUND-TRUTH INSTANCES INSIDE THE
PREDICTED CONFIDENCE INTERVAL

as frequently happens in the real world (e.g., San Francisco).
MonoLoco++ does not rely on ground plane estimation,
making it robust to such cases.

5) Ablation Studies: In Table III, we analyze the effects
of choosing a top-down or a bottom-up pose detector with
different loss functions and with our deterministic geometric
baseline. We compare our Laplace-based L1 loss of Eq. 4 with
a relative L1 loss

L1(x |d) = |1 − d/x | , (9)

and a Gaussian loss

LGaussian(x |d, σ ) = (1 − d/x)2

2σ 2 + 1

2
log(σ 2). (10)

The Gaussian Loss is based on the negative log-likelihood
of a Gaussian distribution and corresponds to an L2 loss

TABLE III

IMPACT OF DIFFERENT LOSS FUNCTIONS WITH MASK R-CNN [52]
AND PiFPAF [28] POSE DETECTORS ON NUSCENES TEASER

VALIDATION SET [45]. WE ALSO SHOW RESULTS USING THE
AVERAGE LOCALIZATION ERROR (ALE) METRIC AS A

FUNCTION OF THE GROUND-TRUTH DISTANCE

USING CLUSTERS OF 10 METERS

attenuated by a predicted σ in the location. Intuitively,
L2 type losses are more sensitive to outliers due to their
quadratic component. All the losses make use of relative dis-
tances for consistency with Eq. 4. From Table III, we observe
that L1-type losses perform slightly better than the Gaussian
loss, but the main improvement is given by choosing PifPaf
as pose detector.

6) Run Time: A run time comparison is shown in Table IV.
Our method is faster or comparable to all the other methods,
achieving real-time performance.
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Fig. 7. Qualitative results from the nuScenes dataset [45] containing true and inferred distance information as well as confidence intervals.

C. Social Interactions

To evaluate social interactions we focus on the activity of
talking, which is considered as the most common form of
social interaction [24]. From single images, we evaluate how
well we recognize whether people are talking or just passing
by, walking away etc.

1) Datasets: We evaluate social interactions on the Collec-
tive Activity Dataset [31], which contains 44 video sequences
of 5 different collective activities: crossing, walking, waiting,
talking, and queuing and focus on the talking activity. The
talking activity is recorded for both indoor and outdoor
scenes, allowing us to test our 3D localization performance
on different scenarios. Compared to other deep learning
methods [115]–[117], we analyze each frame independently

with no temporal information, and we do not perform any
training for this task, using all the dataset for testing.

2) Evaluation: For each person in the image, we estimate
his/her 3D localization confidence interval and orientation. For
every pair of people we apply Eq. 7 and Eq. 8 to discover the
F-formation and assess its suitability. We use the following
parameters in meters: Dmax = 2 as maximum distance, and
r1 = 0.3, r2 = 0.5 and r3 = 1 as radii for o-space candidates.
These choices reflect the average distances of intimate rela-
tions, casual/personal relations and social/consultive relations,
respectively [49].

How much people should look inward the o-space
(to assume they are talking) is also an empirical evaluation.
We set the maximum distance between two candidate centers
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Fig. 8. Estimating whether people are talking to each other (social interaction). The use of uncertainty makes the method more robust to 3D localization
errors and improves the accuracy. The bird eye view shows the estimated 3D locations and orientations of all the people. The color of the arrows indicates
whether people are involved in talking.

TABLE IV

SINGLE-IMAGE INFERENCE TIME ON A SINGLE GTX 1080Ti
FOR THE KITTI DATASET [30] WITH PIFPAF [28] AS POSE

DETECTOR. MOST COMPUTATION COMES FROM THE POSE

DETECTOR (RESNET 50 / RESNET 152 BACKBONES). FOR
THIS STUDY, WE USE ALL THE IMAGES AT THEIR ORIGINAL

SCALE THAT CONTAIN AT LEAST A PEDESTRIAN. FOR

MONO3D, 3DOP AND MONOPSR WE REPORT PUB-
LISHED STATISTICS ON A TITAN X GPU. IN THE

LAST LINE, WE CALCULATE EPISTEMIC

UNCERTAINTY THROUGH 50 SEQUENTIAL

FORWARD PASSES. IN FUTURE WORK,
THIS COMPUTATION CAN

BE PARALLELIZED

Rmax = ro−space for simplicity. We treat the problem as
a binary classification task and evaluate the detection recall
and the accuracy in estimating whether the detected people
are talking to each other. To disentangle the role of the 2D
detection task, we report accuracy on the instances that match
a ground-truth. To avoid class imbalance, we only analyze
sequences that contain at least a person talking in one of their

frames. Consequently, we evaluate a total of 4328 instances,
of which 52.8% are talking.

3) Voting Procedure: To account for noise in 3D local-
ization, we sample our results from the estimated Laplace
distribution parameterized by distance d and spread b (Eq. 4).
Each sample votes for a candidate center µ and we accumulate
the voting. If an agreement is reached within at least 25%
of the samples, we consider the target pair of people as
involved in a social interaction and/or at risk of contagion.
MonoLoco++ estimates a unique spread b for each pedes-
trian, which accounts for occlusions or unusual locations,
as seen in Figure 9. Further, we compare this technique to
(i) a baseline approach that leverages 3D localization but
not orientation, (ii) a deterministic approach that does not
include uncertainty, and (iii) a probabilistic approach where
the uncertainty is provided by the task error defined in Eq. 2.

4) Results: Table V shows the results for the talking activity
in the Collective Activity Dataset [31]. Our MonoLoco++
detects whether people are talking from a single RGB image
with 91.5% accuracy without being trained on this dataset,
but only using the estimated 3D localization and orientation.
The uncertainty estimation plays a crucial role in dealing
with noisy 3D localizations as shown in the ablation study
of Table V. All approaches use the same values for 3D
localization and orientation, but they differ in their uncertainty
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Fig. 9. These examples show 1) why relying on homography or assuming a flat plane can be dangerous, and 2) the importance of uncertainty estimation.
In the top image, the road is uphill and the assumption of a constant flat plane would not stand. MonoLoco++ accurately detects people up to 40 meters
away. Instance 4 is partially occluded by a van and this is reflected in a higher uncertainty. In the bottom image, we also detect a person inside a truck.
No ground-truth is available for the driver but empirically the prediction looks accurate. Furthermore, the estimated uncertainty increases, which is a useful
indicator to warn about critical samples.

TABLE V

ACCURACY IN RECOGNIZING THE talking ACTIVITY ON THE COLLECTIVE
ACTIVITY DATASET [31]. IN ALL CASES THE DISTANCE HAS BEEN

ESTIMATED BY OUR MONOLOCO++. “W/O ORIENTATION”,
DOES NOT USES THE ESTIMATED ORIENTATION, WHILE
“DETERMINISTIC” LEVERAGES ORIENTATION BUT NOT

THE UNCERTAINTY. “TASK ERROR UNCERTAINTY”
REFERS TO THE DISTANCE-BASED UNCERTAINTY

DUE TO AMBIGUITY IN THE TASK (EQ. 2),
“MONOLOCO++ UNCERTAINTY” REFERS

TO THE INSTANCE-BASED UNCERTAINTY

ESTIMATED BY OUR MONOLOCO++

component. The biggest improvement is given from deter-
ministic approaches (Row 1, Row 2) to a probabilistic one.
Row 3 refers to the task error uncertainty of Eq. 2, which
grows linearly with distance. Row 4 refers to the estimated
confidence interval from MonoLoco++, which are unique
for each person. The role of uncertainty is also shown in
Figures 8 and 10, where 3D localization errors are compen-
sated by the voting procedure.

D. Social Distancing

Regarding social distancing, there are no fixed rules for
evaluation. As previously discussed, the risk of contagion is
higher when people are talking to each other [18], yet it may be
necessary to maintain social distancing also when people are
simply too close. Our goal is not to provide effective rules, but
a framework to assess whether a given set of rules is respected.

1) Datasets: In the absence of a dataset for social dis-
tancing, we created one by augmenting 3D labels of the
KITTI dataset [30]. We apply Eq. 8 using the ground-truth
localization and orientation to define whether people are
violating social distancing. Once every person is assigned a
binary attribute, we evaluate our accuracy on this classification
task using our estimated 3D localization and orientation and
applying the same set of rules.

2) Evaluation: We evaluate on the augmented KITTI
dataset where every person has been assigned a binary attribute
for social distancing. Coherently with the monocular 3D local-
ization task, we evaluate on the val split of Chen et al. [36]
even if no training is performed for this task. We use the same
parameters as for the social interaction task, only relaxing the
constraint on how people should look inward the o-space, and
we set Rmax = 2 ∗ ro−space. This corresponds to verifying
whether both candidate centers µ0,µ1 are inside the o-space,
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Fig. 10. Estimating whether people are talking to each other(social interaction). Even small errors in 3D localization can lead to wrong predictions. As shown
in the bird eye view, the estimated locations of the two people is only slightly off due to the height variation of the subjects. Uncertainty estimation compensates
the error due to the ambiguity of the task.

Fig. 11. Qualitative results for the 3D localization task and social distancing. Our MonoLoco++ estimates 3D locations and orientations and raises a warning
when social distancing is not respected.
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Fig. 12. Qualitative results for the social distancing task in case of three people waiting at the traffic light. Two overlapping people are detected as very close
to each other and the system warns for potential risk of contagion. A third person is located slightly more than two meters away and no warning is raised.

as shown in Figure 3. The larger Rmax in Eq. 8c, the more
conservative the social distancing requirement. If Eq. 8c is
removed completely, social distancing would only depend on
the distance between people.

3) Results: Using the augmented KITTI dataset, we analyze
whether social distancing is respected for 1760 people in
the validation set. Using the ground-truth localization and
orientation we generate labels for which 36.8% of people do
not comply with social distancing requirements. This is rea-
sonable as the KITTI dataset contains many crowded scenes.
As shown in Table VI, our MonoLoco++ obtains an accuracy
of 84.0%. We note that this dataset is more challenging than
the Collective Activity one [31], as it includes people 40+
meters away as well as occluded instances. Qualitative results
are shown in Figures 11 and 12, where our method estimates
3D localization and orientation, and verify social distancing
compliance. In particular, Figure 12 shows that the network
is able to accurately localize two overlapping people and
recognize a potential risk of contagion, also based on people’s
relative orientation. In addition, we notice that orientation has
a direct impact on reducing false alarms. Without orientation,
the network estimates that 43 % of instances violate social
distancing requirements. Including orientation, the estimated
number reaches 37%, almost on par with the ground-truth
value of 38%.

VI. PRIVACY

Our network analyzes 2D poses and does not require any
image to process the scene. In fact in Figures 1, 11 and 12,
the original image is only shown to clarify the context, but it
is not processed directly by MonoLoco++. We leverage an
off-the-shelf pose detector which could be embedded in the

TABLE VI

ACCURACY IN MONITORING SOCIAL DISTANCING ON KITTI
DATASET [30]. IN ALL CASES THE DISTANCE HAS BEEN

ESTIMATED BY OUR MONOLOCO++. “W/O ORIENTATION”,
DOES NOT USES ORIENTATION TO ACCOUNT FOR SOCIAL

DISTANCING, WHILE “DETERMINISTIC” LEVERAGES
ORIENTATION BUT NOT THE UNCERTAINTY. “TASK

ERROR U.” REFERS TO THE DISTANCE-BASED

UNCERTAINTY DUE TO AMBIGUITY IN THE
TASK (EQ. 2), “MONOLOCO++ U.” REFERS

TO THE INSTANCE-BASED UNCERTAINTY

ESTIMATED BY OUR MONOLOCO++

camera itself. We have designed our system to encourage a
privacy-by-design policy [118], where images are processed
internally by smart cameras [119] and only 2D poses are sent
remotely to a secondary system. The 2D poses do not contain
any sensitive data but are informative enough to monitor social
distancing.

We also note that smart cameras differ from other technolo-
gies by being non-invasive and mostly non-collaborative [118].
Differently from mobile applications, the user is not requested
to share any personal data. On the contrary, a low-dimensional
representation such as a 2D pose may be challenging for
accurate 3D localization, but its ambiguity may prove useful
for privacy concerns.

VII. CONCLUSION

We have presented a new deep learning method that per-
ceives humans’ 3D locations and their body orientations from
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monocular cameras. We emphasized that the main challenge of
perceiving social interactions is the ambiguity in 3D localizing
people from a single image. Thus, we presented a method
that predicts confidence intervals in contrast to point estimates
leading to state-of-the-art results. Our system works with a
single RGB image, shows cross-dataset generalization prop-
erties, and does not require homography calibration, making
it suitable for fixed or mobile cameras already installed in
transportation systems.

While we have demonstrated the strengths of our method
on popular tasks (monocular 3D localization and social inter-
action recognition), the COVID-19 outbreak has highlighted
more than ever the need to perceive humans in 3D in the
context of intelligent systems. We argued that to monitor social
distancing effectively, we should go beyond a measure of
distance. Orientations and relative positions of people strongly
influence the risk of contagion, and people talking to each
other incur higher risks than simply walking apart. Hence,
we have presented an innovative approach to analyze social
distancing, not only based on 3D localization but also on social
cues. We hope our work will also contribute to the collective
effort of preserving people’s health while guaranteeing access
to transportation hubs.
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