
Abstract— Since a proton exchange membrane (PEM) fuel cell 
(FC) has time-varying characteristics, its online characteristics 
estimation (voltage, power, internal resistance, etc.) is becoming a 
key step in designing an energy management strategy (EMS) for 
hybrid FC vehicles. In this respect, this paper proposes a new 
method based on Lyapunov adaptation law to estimate the linear 
and nonlinear parameters of a renowned PEMFC model in the 
literature. Unlike most of similar estimators, the suggested 
approach determines the maximum current, which is a nonlinear 
parameter, online while guaranteeing the system closed-loop 
stability. This parameter is normally assumed to be constant while 
it changes through time owing to degradation and operating 
conditions variation. This alteration makes the model imprecise 
while extracting some important characteristics, such as 
maximum power and polarization curve. Therefore, it needs to be 
regularly updated along with other parameters. To demonstrate 
the capability of the suggested method, a detailed comparison is 
provided with the well-known extended Kalman filter (EKF) as an 
attested nonlinear estimator. Moreover, to highlight the 
effectiveness of the nonlinearity consideration, a comparison with 
KF is performed where the nonlinear parameter is considered 
constant. The performed experiments on a 500-W PEMFC show 
that the proposed method can be over twice as accurate as EKF 
and KF concerning the estimation of maximum power and current 
while its runtime is nearly half of them.     

Index Terms—Kalman filter, health assessment, Lyapunov 
stability, online modeling, fuel cell 

I. INTRODUCTION

A. General context
YBRID fuel cell (FC) vehicles are considered as one the
most promising technical solutions in the battle to confront 

the climate change crisis [1]. The performance of this multiple 
energy source system highly depends on the design of an 
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appropriate energy management strategy (EMS) [2, 3]. Thus 
far, numerous EMSs have been proposed for these vehicles 
which are normally based on proton exchange membrane FC 
(PEMFC) models with static characteristics (voltage and 
power) [4]. For instance, in [5], an EMS is suggested for a 
FC/battery hybrid powertrain using model predictive control 
(MPC). The PEMFC is modeled by a quadratic fitted hydrogen-
vs-power equation. In [6], Pontryagin’s minimum principle 
(PMP) is utilized to distribute the power between the FC and 
battery while considering the durability of the sources. The FC 
model is based on the experimental measurements, and the co-
state is updated online according to the battery SOC. In [7], an 
EMS based on adaptive droop control combined with a 
multimode strategy and an equivalent consumption 
minimization strategy (ECMS) is proposed for a multiple power 
source system. The PEMFC model is based on polarization 
curve behavior and the maximum and minimum FC power 
points are among the considered constraints. In [8], fuzzy logic 
control (FLC) and adaptive control theory are combined to 
develop an EMS. The authors recommend revising the values 
of FLC membership functions after a while since the PEMFC 
voltage declines through time owing to degradation. Moreover, 
in [9], a quadratic programming (QP) based strategy is 
proposed for a FC-battery vehicle in which the authors indicate 
that not updating the constraints of an EMS, such as PEMFC 
power and efficiency values, can increase the hydrogen 
consumption up to 6.6% for the studied cases.  

These reflections illustrate that considering the FC state of 
health (SOH) while developing an EMS seems essential as the 
energetic performance of the FC varies through time owing to 
different uncertainties, and this can result in the 
mismanagement of the vehicle [10]. Consequently, some 
creative endeavors have been made to augment the health 
awareness of EMSs. 
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B. Literature study
Several papers have focused on the inclusion of a degradation

model to develop a decision-making strategy based on the 
health state of the power sources [11-14]. To take some 
examples, in [11], a PEMFC degradation model based on high 
load, low load, and load changes has been combined with a 
MPC. In [12], particle filter is used to estimate the lifetime of 
the FC, and a FLC based EMS is accordingly developed. In 
[13], a degradation model is proposed to extract the polarization 
and efficiency curves of the PEMFC in different health states, 
and it is then combined with an optimization based EMS. 
Although the discussed papers have provided valuable 
solutions, modeling the degradation mechanism under 
automotive conditions is a difficult task and is still an open 
problem in the literature. Moreover, the change of operating 
conditions that are not included in the model can also impact 
the FC maximum efficiency (ME) and maximum power (MP) 
that are considered as the most used constraints while 
developing an EMS.  

To avoid the mentioned complications, the use of an 
extremum seeking technique based on perturb and observe has 
been practiced in some papers [15-17]. For example, in [15], a 
fractional-order method based on gradient optimization process 
is proposed to track the extremum value of a static nonlinear FC 
system. In [16], a multi-objective optimization problem based 
on extremum seeking is introduced to meet the required levels 
of voltage regulation, ME, and MP. The perturb and observe 
based methods are normally desirable due to their convenient 
deployment in an EMS design. Nevertheless, once the 
concurrent identification of several operating points is in 
demand, like in an online EMS, the complexity of these 
algorithms also increases. There are also some other techniques, 
such as hierarchical technique (multi-objective optimization 
and data-driven constraint predictive control) [18], sliding 
mode variable structure [19], and systemic management of FC 
current and temperature in [20], to provide efficient and stable 
operation of the FC system. While these methods have shown 
robust and satisfactory results, they are dependent on a wide 
range of experimental maps to be used as an optimal reference. 

   To evade the above-reviewed issues, a new paradigm has 
been introduced for formulating a health-aware EMS based on 
adaptive parameter identification [21, 22]. The foundation of 
this concept is presented in Fig. 1 through a three-step process. 

In the first step, the parameters of a FC semi-empirical model 
are updated by an estimator while the vehicle is under 
operation. In the second step, the required PEMFC 
characteristics for updating the constraints of the EMS are 
extracted from the updated model and forwarded to the strategy 
to define reliable reference signals in the final step. Recursive 
least square (RLS) is utilized to identify the parameters of a 
polynomial function representing efficiency-vs.-power in [23] 
and hydrogen consumption-vs.-power in [24]. In [25], adaptive 
RLS is used to extract the ME and MP points of a FC system in 
an electric tram based on which the safe operating zone for the 
proposed EMS is updated. In [26], forgetting factor RLS 
combined with sequential QP is used to identify the maximum  
efficiency range for an ECMS. In [27], Ettihir et al. have used 
RLS to extract the parameters of a current-dependent FC model, 
suggested by Squadrito et al. [28], and in [29], unscented 
Kalman filter (KF) is used for updating the same model. 
However, they have not commented on the distinctive aspects 
of the methods. In [30], different categories of PEMFC models 
and identification algorithms are  investigated for EMS 
application, and the performance of Squadrito et al. model is 
compared with the one suggested by Amphlett et al. [31, 32] 
using RLS and KF. The obtained results indicate that the multi-
input model (Amphlett) is more precise than the single-input 
one (Squadrito), and KF is slightly more accurate than RLS. 
Although the discussed adaptative filters have been able to 
estimate the parameters of a PEMFC system, they all lack 
stability analysis which is necessary to validate the 
dependability in the long term. In [33], an adaptive 
identification method based on Lyapunov is proposed to 
estimate two parameters of a nonlinear model which only 
considers activation and ohmic losses.     

C. Contributions and organization
This paper focuses on the first and second steps of the

proposed concept in Fig. 1. In this regard, a Lyapunov based 
adaptation law is proposed to estimate the linear and nonlinear 
parameters of a renowned semi-empirical model, proposed by 
Amphlett et al, while guaranteeing the system stability. Then, 
as an example, some important PEMFC characteristics (state of 
power, voltage, and internal resistance) are extracted which can 
be used in the formulation of an EMS in future. The targeted 
nonlinear parameter for estimation is the PEMFC maximum 

Fig. 1. General structure for integrating a FC adaptive parameter identification into an EMS design. (𝑃𝑃𝐹𝐹𝐹𝐹,𝑟𝑟𝑟𝑟𝑟𝑟 denotes the requested power from FC 
and 𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸,𝑟𝑟𝑟𝑟𝑟𝑟 is the one from energy storage system) 
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current which is prone to changes owing to uncertainties caused 
by operating conditions variation and degradation. This 
parameter is highly sensitive concerning the estimation of 
voltage, as discussed in [34], and its variation can make the 
PEMFC model inaccurate. However, it is either assumed to be 
constant in other similar papers or estimated offline using 
metaheuristic algorithms [35, 36]. Extended KF has been used 
to estimate this parameter online in [30]. However, it lacks 
stability proof, and has higher computational burden compared 
to the proposed adaptive method. Compared to the performed 
identification in [33] which does not consider concentration 
region and has only two parameters for estimation, in this work, 
three losses (activation, ohmic, and concentration) are taken 
into account, and the estimator identifies online nine 
parameters. To experimentally validate the performance of the 
proposed nonlinear adaptive parameter estimator (NLAPE), the 
characteristics of a 500-W open cathode FC are estimated by 
updating the parameters of the semi-empirical model. 
Furthermore, the put forward method is compared with EKF, as 
a reliable nonlinear estimator, to be validated in accuracy terms. 
It is also compared with KF to show the necessity of updating 
the nonlinear parameter.                   

Section II describes the model of the PEMFC. The proposed 
NLAPE is detailed in section III. Section IV details the 
experimental set-up and the obtained results are discussed in 
section V. Finally, the conclusion is given in section VI. 

II. FUEL CELL MODELING  
Polarization curve analysis is suitable for demonstrating the 

impact of operating parameters, such as temperature, flow rate, 
relative humidity, power, and efficiency. Fig. 2 illustrates a 
standard polarization curve, which comprises standard 
reversible potential and three irreversible losses, namely 
activation, ohmic, and concentration. The first loss is related to 
the sluggish kinetics of oxygen reduction reaction happening in 
the low current region. The second one is associated with the 
resistance to ions flow in the electrolyte and electrons flow 
through the electrode. The third one, known as mass transport 
effect, is due to the restriction of the reactant gas transport 
across the gas diffusion and electrocatalyst layers and occurs at 
high current zone.  

Among the existing models, the one introduced by Amphlett 
et al. [31, 32], has been successfully employed for modeling 
different PEMFC stacks, as discussed earlier. This model has  

 

 
Fig. 2. Standard polarization curve of a PEMFC cell. 

also come under scrutiny in different comparative studies [30, 
37]. Although PEMFC technology has been substantially 
upgraded since this model was introduced, its structure is still 
appropriate. However, new parameterization techniques are 
obviously required to fit this model to the performance of a 
PEMFC. Thus, this model is used in this paper to estimate the 
voltage of an open cathode PEMFC system and the proposed 
adaptive estimation method is utilized for its parameterization. 

The voltage of the PEMFC stack (𝑉𝑉𝐹𝐹𝐹𝐹) is given by:   
 

�𝑉𝑉𝐹𝐹𝐹𝐹 = 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹                                           
𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑉𝑉𝑜𝑜ℎ𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐                                   (1) 

 
where 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the number of cells, 𝑉𝑉𝐹𝐹𝐹𝐹𝐹𝐹 is the cell voltage (V), 
𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  is the reversible cell potential (V), 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎  is the activation 
loss (V), 𝑉𝑉𝑜𝑜ℎ𝑚𝑚𝑚𝑚𝑚𝑚 is the ohmic loss (V), and 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 is the 
concentration loss (V). 𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  is calculated by:  
 
𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 1.229 − 0.85 × 10−3(𝑇𝑇𝐹𝐹𝐹𝐹 − 298.15) + 4.3085 ×
10−5𝑇𝑇𝐹𝐹𝐹𝐹[𝑙𝑙𝑙𝑙(𝑃𝑃𝐻𝐻2) + 0.5 𝑙𝑙𝑙𝑙(𝑃𝑃𝑂𝑂2)]                                           (2) 
 
where 𝑇𝑇𝐹𝐹𝐹𝐹  is the stack temperature (K), 𝑃𝑃𝐻𝐻2 is the hydrogen 
partial pressure in anode side (N m−2), and 𝑃𝑃𝑂𝑂2 is the oxygen 
partial pressure in the cathode side (N m−2). 𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎  is determined 
by:  
 

�
𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜉𝜉1 + 𝜉𝜉2𝑇𝑇𝐹𝐹𝐹𝐹 + 𝜉𝜉3𝑇𝑇𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙(𝐶𝐶𝑂𝑂2) + 𝜉𝜉4𝑇𝑇𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙(𝐼𝐼𝐹𝐹𝐹𝐹)
𝐶𝐶𝑂𝑂2 = 𝑃𝑃𝑂𝑂2

5.08×106 exp(−498 𝑇𝑇𝐹𝐹𝐹𝐹⁄ )
                                                    (3)    

 
where 𝜉𝜉𝑛𝑛(𝑛𝑛 = 1 … 4) are the semi-empirical coefficients based 
on fluid mechanics, thermodynamics, and electrochemistry, 
𝐶𝐶𝑂𝑂2 is the oxygen concentration (mol cm−3), and 𝐼𝐼𝐹𝐹𝐹𝐹  is the 
PEMFC operating current (A). 𝑉𝑉𝑜𝑜ℎ𝑚𝑚𝑚𝑚𝑚𝑚  is given by:   
                                               
𝑉𝑉𝑜𝑜ℎ𝑚𝑚𝑚𝑚𝑚𝑚 = −𝐼𝐼𝐹𝐹𝐹𝐹  𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −𝐼𝐼𝐹𝐹𝐹𝐹(𝜁𝜁1 + 𝜁𝜁2𝑇𝑇𝐹𝐹𝐹𝐹 + 𝜁𝜁3𝐼𝐼𝐹𝐹𝐹𝐹)          (4) 
 
where 𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the internal resistor (Ω), and 𝜁𝜁𝑛𝑛(𝑛𝑛 = 1 … 3) 
are the parametric coefficients. Internal resistance is one of the 
most used degradation indexes as the degradation is generally 
defined by the increase of the internal resistance leading to a 
power/voltage decrease in a PEMFC [38]. Finally, 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐  is 
calculated by:  
 
𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐵𝐵𝐵𝐵𝐵𝐵(1 − 𝐼𝐼𝐹𝐹𝐹𝐹

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
)                                                       (5) 

 
where 𝐵𝐵 is a parametric coefficient (V), and 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 is the 
maximum current (A).  

Table I shows the parameters which need to be estimated 
online by the adaptive estimator. The ranges of these 
parameters are mostly adopted from [30]. In this study, the 
calibrated parameters of the PEMFC may slightly differ from 
the reported values. It is since these parameters vary through 
time because of the uncertainties arisen from variation of 
operating conditions and the health state of the PEMFC system. 
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TABLE I 
INTENDED PARAMETERS FOR IDENTIFICATION [30] 

Parameter Range Unit 
Minimum Maximum 

𝜉𝜉1 -1.997 -0.8532 - 
𝜉𝜉2 0.001 0.005 - 
𝜉𝜉3 3.6×10-5 9.8×10-5 - 
𝜉𝜉4 -2.6×10-4 -0.954×10-4 - 
𝐵𝐵 0.0135 0.5 V 

𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝜁𝜁1, 𝜁𝜁2, 𝜁𝜁3) 0.16 0.22 Ω 
𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 20 42 A 

III. NONLINEAR ADAPTIVE PARAMETER ESTIMATOR  
As reviewed in Section I, several papers have employed 
recursive filters to estimate the parameters of a FC model [15, 
17, 22, 35]. While they have achieved satisfactory results, one 
of the most fundamental concerns is that the stability of these 
methods can vanish due to the improper initialization or other 
divergence phenomena. For example, if the covariance matrix 
does not become nonnegative-definite, KF/EKF can become 
unstable (divergence phenomenon) [36]. Consequently, the 
necessity of a stability-based technique using Lyapunov theory 
has been justified for estimating the parameters of 
electrochemical devices in many papers [37-39]. Stability proof 
draws up guidelines on the choice of control/estimation and 
adaptation laws along with the range of gains where the closed-
loop system is stable, and it is unique for a given estimator. 
Lyapunov is a recognized stability theory and has been used for 
online parameter estimation in different fields [40, 41]. Hence, 
in this section, an online NLAPE is designed using Lyapunov 
theory to estimate in real-time the FC parameters. According to 
(1)-(5), the PEMFC model is a nonlinear system which can be 
written as, 

 
𝑦𝑦 = 𝑓𝑓(𝑥𝑥,𝑢𝑢,𝛩𝛩)                                                                          (6) 
 
where 𝑦𝑦 is the system output, 𝑥𝑥  is the system states, 𝑢𝑢  is the 
system inputs, and 𝛩𝛩  denotes the unknown parameters for 
estimation. Looking back at (1)-(5), it is observed that all the 
parameters are linear considering their functions except for one 
which is the maximum current (𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚). In fact, 𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚 is placed in 
the nonlinear function. Thus, it needs to be extracted by Taylor 
series expansion to be able to linearly reformulate the system 
equation. Applying the Taylor series expansion to (6) leads to, 
 
𝑦𝑦 = 𝑓𝑓�𝑥𝑥,𝑢𝑢,𝛩𝛩�� + ∑ 𝜃𝜃�𝑖𝑖

𝜕𝜕𝜕𝜕(𝑥𝑥,𝑢𝑢,𝛩𝛩�)
𝜕𝜕𝜃𝜃𝑖𝑖

𝑛𝑛
𝑖𝑖=1 + 𝜉𝜉(𝛩𝛩�)                          (7)  

           
where 𝛩𝛩�  is the estimated parameter vector, 𝛩𝛩� = 𝛩𝛩 − 𝛩𝛩�  is the 
parameter estimation error vector, and 𝜉𝜉(𝛩𝛩�) is the residual error 
resulted from higher order terms. For 𝛩𝛩 sufficiently close to 𝛩𝛩� , 
these higher order terms of Taylor series expansion will be very 
close to zero, and so can be dropped to obtain the 
approximation.                

Using (1)-(5), the nonlinear model can be described as, 
 

𝑉𝑉𝐹𝐹𝐹𝐹 = 𝜓𝜓1𝜃𝜃1 + 𝜓𝜓2𝜃𝜃2 + ⋯+ 𝜓𝜓9𝜃𝜃9 = 𝛹𝛹𝑇𝑇𝛩𝛩                                (8) 
 

where, 𝛹𝛹 is a vector of known functions (regressor) obtained by 
applying (7) to system equation. 
 
𝛹𝛹 ∈ ℝ9 =
[1,𝑇𝑇𝐹𝐹𝐹𝐹 ,𝑇𝑇𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙(𝐶𝐶𝐶𝐶2),𝑇𝑇𝐹𝐹𝐹𝐹𝑙𝑙𝑙𝑙(𝐼𝐼𝐹𝐹𝐹𝐹),−𝐼𝐼𝐹𝐹𝐹𝐹 ,−𝐼𝐼𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐹𝐹 ,−𝐼𝐼𝐹𝐹𝐹𝐹2, 𝑙𝑙𝑙𝑙(1 −
𝜃𝜃9𝐼𝐼𝐹𝐹𝐹𝐹),−𝐼𝐼𝐹𝐹𝐹𝐹𝜃𝜃8/(1 − 𝜃𝜃9𝐼𝐼𝐹𝐹𝐹𝐹)]                                                   (9) 
 
𝛩𝛩 ∈ ℝ9 is a vector of unknown parameters, as listed in Table I. 
Therefore, the FC voltage estimation law is defined as, 

 
𝑉𝑉�𝐹𝐹𝐹𝐹𝑟𝑟 = 𝜓𝜓1𝜃𝜃�1 + 𝜓𝜓2𝜃𝜃�2 + ⋯+ 𝜓𝜓9𝜃𝜃�9 = 𝛹𝛹𝑇𝑇𝛩𝛩�                              (10) 
 
where the hat accent placed on top of each variable ‘’ � ’’ 
represents the estimate of that variable, and 
 
𝑉𝑉�𝐹𝐹𝐹𝐹𝑟𝑟 = 𝑉𝑉�𝐹𝐹𝐹𝐹 − 𝐾𝐾𝑝𝑝𝑒𝑒 − 𝐾𝐾𝑖𝑖 ∫ 𝑒𝑒                   (11) 
 
where, 𝐾𝐾𝑝𝑝 and 𝐾𝐾𝑖𝑖 are the proportional and integral gains, 
respectively, and 𝑒𝑒 = ∫𝑉𝑉𝐹𝐹𝐹𝐹 − ∫𝑉𝑉�𝐹𝐹𝐹𝐹 is the FC voltage 
estimation error to be driven to zero by the adaptive estimator. 
Subtracting (8) from (10) and using (11) leads to, 
 
𝑒̇𝑒 + 𝐾𝐾𝑖𝑖 ∫ 𝑒𝑒 + 𝐾𝐾𝑝𝑝𝑒𝑒 = ΨT𝛩𝛩�                          (12) 
   

However, the regression vector 𝛹𝛹 is unknown or uncertain 
since it contains the unknown parameters 𝜃𝜃8 and 𝜃𝜃9. Therefore, 
using the parameter estimates 𝜃𝜃�8 and 𝜃𝜃�9 makes only an 
approximation of 𝛹𝛹�  available for the online estimator. Thus, the 
error dynamic equation becomes, 
𝑒̇𝑒 + 𝐾𝐾𝑖𝑖 ∫ 𝑒𝑒 + 𝐾𝐾𝑝𝑝𝑒𝑒 = 𝜎𝜎                      (13) 
 
where, 𝜎𝜎 = 𝛹𝛹�𝑇𝑇𝛩𝛩� − 𝛹𝛹𝑇𝑇𝛩𝛩. This can be written in a state-space 
form as, 
 
𝑋̇𝑋 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵                   (14)  
 
where, 𝑋𝑋 ∈ ℝ2 = [∫ 𝑒𝑒𝑏𝑏 , 𝑒𝑒𝑏𝑏]𝑇𝑇 is the state vector and 𝑈𝑈 ∈ ℝ = 𝜎𝜎 
is the state-space input. 𝐴𝐴 ∈ ℝ2×2 is a stable matrix, and 𝐵𝐵 ∈

ℝ2, are given by 𝐴𝐴 = �
0 1
−𝐾𝐾𝑖𝑖 −𝐾𝐾𝑝𝑝

� and 𝐵𝐵 = �01�. 

Henceforth, the estimator gains 𝐾𝐾𝑝𝑝 and 𝐾𝐾𝑖𝑖 may be chosen to 
place the closed-loop poles at their desired locations by using a 
pole placement technique or by solving the algebraic Riccati 
equation. 

Theorem 1: Consider a nonlinear system in the form of (8) 
with the estimation law (10). The closed-loop system stability 
is achieved with the following adaptation law:  

 
𝛩𝛩�̇ = −𝛤𝛤𝛹𝛹�𝐵𝐵𝑇𝑇𝑃𝑃𝑃𝑃                        (15) 
 
where 𝛤𝛤 = [𝛾𝛾1, 𝛾𝛾2, … , 𝛾𝛾9] and 𝛾𝛾𝑖𝑖 is a positive constant gain. 𝑃𝑃 
is a symmetric positive definite matrix chosen to satisfy the 
following Lyapunov equation: 
 
𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 = −𝑄𝑄                  (16) 
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where 𝑄𝑄 is a positive definite matrix. 
Proof 1: Choose the following Lyapunov candidate: 
 

𝑉𝑉 = 𝑋𝑋𝑇𝑇𝑃𝑃𝑃𝑃 + 𝛩𝛩�𝑇𝑇𝛤𝛤−1𝛩𝛩�                  (17) 
 
Taking the derivative of 𝑉𝑉 yields: 
 
𝑉̇𝑉 = 𝑋̇𝑋𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑋𝑋𝑇𝑇𝑃𝑃𝑋̇𝑋 + 2𝛩𝛩�𝑇𝑇𝛤𝛤−1𝛩𝛩�̇                 (18) 
 
The FC parameters 𝛩𝛩 are considered to be slowly time- varying 
so that 𝛩𝛩�̇ = 𝛩𝛩�̇ . Substituting 𝑋̇𝑋 from (14) yields, 
 
  𝑉̇𝑉 = [𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵]𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑋𝑋𝑇𝑇𝑃𝑃[𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵] + 2𝛩𝛩�𝑇𝑇𝛤𝛤−1𝛩𝛩�̇           (19) 
 
Therefore, setting 𝑈𝑈 = 𝜎𝜎 implies that, 
 
𝑉̇𝑉 = 𝑋𝑋𝑇𝑇[𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃]𝑋𝑋 + 2𝜎𝜎𝐵𝐵𝑇𝑇𝑃𝑃𝑃𝑃 + 2𝛩𝛩�𝑇𝑇𝛤𝛤−1𝛩𝛩�̇       (20) 
 
Setting 𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 = −𝑄𝑄 as in (16) leads to, 
 
𝑉̇𝑉 = −𝑋𝑋𝑇𝑇𝑄𝑄𝑄𝑄 + 2𝜎𝜎𝐵𝐵𝑇𝑇𝑃𝑃𝑃𝑃 + 2𝛩𝛩�𝑇𝑇𝛤𝛤−1𝛩𝛩�̇           (21) 
 
Add and subtract 𝛹𝛹�𝑇𝑇𝛩𝛩 from 𝜎𝜎 = 𝛹𝛹�𝑇𝑇𝛩𝛩� − 𝛹𝛹𝑇𝑇𝛩𝛩 yields, 
 
 𝜎𝜎 = 𝛹𝛹�𝑇𝑇𝛩𝛩 − 𝛹𝛹�𝑇𝑇𝛩𝛩� + 𝛹𝛹𝑇𝑇𝛩𝛩 −𝛹𝛹�𝑇𝑇𝛩𝛩           (22) 
 
Therefore, 
𝜎𝜎 = 𝛹𝛹�𝑇𝑇𝛩𝛩� − 𝛹𝛹�𝑇𝑇𝛩𝛩                  (23) 
 
Substituting 𝜎𝜎 in (21), 
 
𝑉̇𝑉 = −𝑋𝑋𝑇𝑇𝑄𝑄𝑄𝑄 + 2𝛩𝛩�𝑇𝑇 �𝛹𝛹𝑇𝑇𝛽̂𝛽𝐵𝐵𝑇𝑇𝑃𝑃𝑃𝑃 + 𝛤𝛤−1𝛩𝛩�̇� + 2𝛹𝛹�𝑇𝑇𝛩𝛩𝐵𝐵𝑇𝑇𝑃𝑃𝑃𝑃 (24) 
 
Setting the adaptation law Θ�̇ as defined in (15) implies that,  
 
𝑉̇𝑉 = −𝑋𝑋𝑇𝑇𝑄𝑄𝑄𝑄 + 2𝛹𝛹�𝑇𝑇𝛩𝛩𝐵𝐵𝑇𝑇𝑃𝑃𝑃𝑃 ≤ −𝑋𝑋𝑇𝑇𝑄𝑄𝑄𝑄 + |2𝛹𝛹�𝑇𝑇𝛩𝛩𝐵𝐵𝑇𝑇𝑃𝑃𝑃𝑃|   (25) 
 

With a proper selection of the control gains 𝐾𝐾𝑝𝑝 and 𝐾𝐾𝑖𝑖, it is 
possible to make the positive definite matrix 𝑄𝑄 large enough so 
that the first term of (25), i.e., −𝑋𝑋𝑇𝑇𝑄𝑄𝑄𝑄, becomes dominant in a 
region where 𝑋𝑋 ≠ 0  [39]. Consequently, 𝑉̇𝑉 ≤ 0 except possibly 
in the region of 𝑋𝑋 = 0. Therefore, the system is stable in the 
sense of Lyapunov. The region of 𝑋𝑋 = 0 is defined by the 
second term of (25), i.e., |2𝛹𝛹�𝑇𝑇𝛩𝛩𝐵𝐵𝑇𝑇𝑃𝑃𝑃𝑃|, which depends on the 
approximation uncertainty 𝛹𝛹�  and gets smaller as 𝛹𝛹� → 0, i.e., 
𝜃𝜃�8, 𝜃𝜃�9 → 0. 

Another worth noting aspect is that persistent excitation (PE) 
condition is necessary in the adaptive parameter estimation. In 
a FC system, this condition can be satisfied due to the variation 
of the operating current which will eventually lead to a change 
in the output voltage. PE condition assures parameter 
convergence if the following condition in (26) is satisfied for 
all t0. It should be noted that 𝛼𝛼0, 𝛼𝛼1, and 𝛽𝛽 are all positive and 
𝑊𝑊 is the regressor vector. The integral of 𝑊𝑊𝑊𝑊𝑇𝑇 needs to be 

positive definite and bounded over all intervals of length 𝛽𝛽 
which implies that 𝑊𝑊 must vary adequately over the interval 𝛽𝛽 
to span the whole dimensional space.     

 
𝛼𝛼0𝐼𝐼𝑛𝑛 ≤ ∫ 𝑊𝑊𝑊𝑊𝑇𝑇𝑑𝑑𝑑𝑑𝑡𝑡0+𝛽𝛽

𝑡𝑡0
≤ 𝛼𝛼1𝐼𝐼𝑛𝑛            (26) 

 
Algorithm 1 describes the iterative procedure of the proposed 

real-time NLAPE for extracting the PEMFC model parameters. 
From Algorithm 1, the proposed NLAPE has five vector 
multiplications, two scalar multiplications, one vector addition, 
two scalar additions/subtractions, and one vector transpose 
operation. The time complexity of a single application of the 
proposed method will be in the order of 𝑂𝑂(𝑛𝑛). To evaluate the 
performance of the proposed method, it is compared with EKF 
and KF in this work. However, the explanation of EKF and KF 
for identifying the parameters of the PEMFC model is 
considered superfluous as it is available in details in [30]. 
Despite the proposed method, EKF and KF perform several 
time-consuming arithmetic operations, as explained in [40, 41]. 
Utilizing the standard classical methods, the total time 
complexity of EKF and KF becomes 𝑂𝑂(𝑛𝑛3), and employing 
faster algorithms, mentioned in [42], makes them 𝑂𝑂(𝑛𝑛2.372). 

 
Algorithm 1: Adaptive online parameter estimation  
begin 

Step 1: Initialize the error 𝑒𝑒 to zero.  
Step 2: Initialize the vector of parameters estimate 𝛩𝛩�  to 
a set of predefined values. 
Step 3: Set the control gains 𝐾𝐾𝑝𝑝 and 𝐾𝐾𝑖𝑖 and the 
adaptation rates vector 𝛤𝛤 to a set of predefined values. 
Step 4: Solve the algebraic Riccati equation (16) to find 
the matrix 𝑃𝑃. 
repeat 

Step 5: Calculate the error 𝑒𝑒. 
Step 6: Evaluate the estimation law in (10).   
Step 7: Compute the vector of parameters update, 
i.e., 𝛥𝛥𝛩𝛩� = 𝛩𝛩�̇  from (15). 
Step 8: Update the vector of parameters using, 
𝛩𝛩�(𝑘𝑘) = 𝛩𝛩�(𝑘𝑘 − 1) + 𝛥𝛥𝛩𝛩� . 

until stop request is received.  
     

IV. EXPERIMENTAL SET-UP  
To corroborate the performance of the proposed NLAPE for 

the PEMFC parameters estimation, an experimental test rig has 
been developed. Fig. 3 illustrates this set-up where a Horizon 
H-500 is employed as the main component regarding the 
estimation process. The technical characteristics of this PEMFC 
are reported in Table II. This PEMFC is air-cooled and has two 
axial fans on the stack housing to supply the oxygen of the 
cathode and remove the heat. It is also self-humidified and 
operates based on a dead-ended anode (DEA) principle in 
which the dry hydrogen is constantly supplied at a regulated 
inlet pressure. Therefore, there is a hydrogen supply valve in 
the anode inlet which provides dry hydrogen to the 
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Fig. 3. The experimental set-up for testing the proposed online estimator.   
 
PEMFC with a flow rate between 0 and 7 𝑙𝑙/𝑚𝑚𝑚𝑚𝑚𝑚 according to 
the drawn current from the stack.  The use of a DEA system has 
mitigated the need of a hydrogen recirculation loop (pump, 
water separator, and humidifier) in this PEMFC. Moreover, 
throughout the DEA operation, water back flow in the anode 
across the membrane results in self-humidification to a certain 
extent. On the other hand, the buildup of water in the catalyst 
and gas diffusion layers of anode and the nitrogen penetration 
from the cathode through the membrane have necessitated a 
regular purging to remove them. Consequently, the anode outlet 
is equipped with a hydrogen purging valve, which is normally 
closed. As advised by the manufacturer, a cyclic purging is 
performed every 10 s for a duration of 100 ms while the PEMFC 
is under operation to refill the anode volume with fresh 
hydrogen. The manual forward pressure regulator, shown in 
Fig. 3, retains the hydrogen partial pressure between0.5 and 0.6 
bar. During the purging of the accumulated water and nitrogen, 
the hydrogen flow depends on the difference between the 
atmosphere pressure and the anode side pressure. To limit the 
membrane damage, the pressure difference between the anode 
and cathode sides must not exceed 0.5 bar. The other hydrogen 
supply subsystems of this PEMFC are a mass flowmeter and a 
hydrogen tank. An OMEGA flowmeter (FMA-A2309), which 
is calibrated for hydrogen gas, is utilized to measure the flow. 
It is equipped with a capillary thermal technology to accurately 
determine mass flow devoid of any temperature, pressure, or 
square root corrections.  

As shown in Fig. 3, the PEMFC is connected to a National 
Instrument CompactRIO (NI cRIO-9022) via its controller. The 
axial fan and the inlet/outlet valves operate using the controller  

 
TABLE II 

 INTENDED PARAMETERS SPECIFICATIONS OF THE HORIZON H-500 PEMFC  
PEMFC technical data 

Type Open cathode 
Number of cells 36 
Hydrogen pressure 0.5-0.6 bar 
Cathode pressure 1 Bar 

Ambient temperature 5 to 30 °C 
Maximum stack temperature 65 °C 
Hydrogen purity 99.999% dry H2 
Size  130 × 220 × 122 mm 
Cooling Air (integrated cooling fan) 

 
Fig. 4. The characteristics of the used PEMFC 
 
of the PEMFC. The communication between CompactRIO and 
PC is done by an Ethernet connection. LabVIEW software is 
available in the PC. The data between the CompactRIO and the 
PC are transferred every 100 ms. Current,  
temperature, and voltage of the PEMFC stack are recorded for 
updating the model using the adaptive estimator. An 8514 BK 
Precision DC Electronic Load is employed to request a load 
profile from the PEMFC stack. 

For the validation purpose of this work, a Horizon H-500 
PEMFC which has been degraded through time is utilized. The 
exact age of this PEMFC is not known as it has been employed 
in different projects. In this respect, to clarify its present state 
of health, the polarization and power curves of this PEMFC are 
represented in Fig. 4. These curves are also used as a reference 
to evaluate the performance of characteristics estimation by the 
proposed adaptive estimator. To obtain the polarization curve 
of this PEMFC, a constant current has been applied to the 
PEMFC, and the corresponding output voltage and temperature 
have been recorded. By slightly increasing the current to 
different levels, the voltage and temperature of the stack can be 
recorded. After each increase of current, 15 to 25 minutes have 
been given to the PEMFC system to attain the stable condition. 
From Fig. 4, it is seen that the utilized PEMFC reaches the 
maximum power of almost 430W, and the maximum current 
seems to be around 30 A while for a brand-new H-500 PEMFC, 
it is 42 A as reported by the manufacturer. It should be noted 
that the conducted tests in this work have been performed in the 
ambient temperature of 20℃ and humidity level of 60%.  

V. RESULTS AND DISCUSSION 
To evaluate the performance of the proposed NLAPE under 

different excitation signals, two current profiles have been 
imposed to the FC system. In the first place, its performance is 
compared with EKF, which is a well-known method in this line 
of work, to show its competence in extracting the PEMFC 
characteristics. Subsequently, it is compared with KF to clarify 
the importance of estimating maximum current in addition to 
the linear parameters.       

The first load profile has been obtained from a city driving 
cycle (urban dynamometer driving schedule) using the IEEE 
VTS Motor Vehicles Challenge 2017 [43]. This profile can 
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replicate the driving condition that a PEMFC may experience 
in a vehicular application. Fig. 5 represents the online estimate 
process concerning this load profile. Fig. 5a presents the drawn 
current from the PEMFC system and the corresponding stack 
temperature fluctuation. The estimation of the PEMFC voltage 
by the suggested NLAPE and EKF is shown in Fig. 5b and Fig. 
5c. From these two figures, both parameter estimation methods 
can estimate the PEMFC voltage with a very good level of 
accuracy. To tangibly demonstrate the accuracy level of the 
voltage estimation, Fig. 5d demonstrates the parity plot of the 
estimated stack voltage obtained by each of the estimators. In 
accordance with this figure, the estimated voltage points remain 
very close to the reference line and are dispersed all around it 
considering both methods. This parity plot validates the 
acceptable performance of the proposed nonlinear estimator in 
terms of voltage estimation and shows that it can reach the same 
level of precision as EKF while the deriving equations are much 
simpler in terms of mathematical operations. It is worth noting 
that the estimation mismatch around 30 V in Fig. 5d has 
happened in the very beginning of estimation process, which 
corresponds to almost the beginning of the requested current 
(Fig. 5a), and after that it disappears due to the convergence of  

 

 
Fig.  5. Online estimation of PEMFC voltage using the first load profile, a) 
drawn current from the PEMFC stack (blue line) and the corresponding stack 
temperature (red line), b) voltage estimation by the proposed NLAPE, c) 
voltage estimation by EKF, and d) parity plot of the voltage estimation by both 
estimators.  

 parameters. This is mainly due to the initialization of the tuning 
parameters, such as the control gains 𝐾𝐾𝑝𝑝 and 𝐾𝐾𝑖𝑖 and the 
adaptation rates vector Γ in the proposed algorithm. The second 
profile utilized in the performance assessment of this work is a 
step-up current profile covering the whole operating range of 
the utilized FC. Fig. 6 illustrates the results of estimation for 
this second load profile. Fig. 6a shows the requested current and 
the variation of the stack temperature resulted from this load 
profile. It can be seen that temperature of the stack rises as the 
demanded current from the output voltage of the PEMFC stack.  
 The comparison of the estimated voltage by the NLAPE and 
EKF is illustrated in Fig. 6d in form of a parity plot. It can be 
observed that a high density of the estimated points by both 
parameter identification methods is placed on the reference line 
which is obtained by plotting the measured PEMFC output 
voltage points. The estimation mismatch around 30 V in Fig. 6d 
is due to the initialization of tuning parameters and swiftly 
disappears after the convergence of the parameters.     
After discussing the performance of the identification methods 
regarding the voltage estimation, the next analysis concerns the 
estimation of polarization and power curves. Extraction of these 
curves is essential for an EMS design as the former can reflect  
 

 
Fig. 6. Online estimation of PEMFC voltage using the second load profile, a) 
drawn current from the stack (blue line) and the corresponding temperature (red 
line), b) voltage estimation by NLAPE, c) voltage estimation by EKF, and d) 
parity plot of voltage estimation for both estimators. 
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the health state and the latter can determine the MP. Another 
aspect which should be pointed out here is that the adaptive 
estimators are normally capable of tracking the output voltage 
precisely as they attempt to minimize the error of voltage 
estimation for one single point regardless of how they vary the 
parameters. However, it is important to check if this estimation 
is valid within the whole operating current range of the stack. 
Fig. 7 compares the estimation of these curves obtained by the 
proposed method, EKF, and KF. It should be noted that KF is 
included in the analysis in Fig. 7 mainly to highlight the 
influence of ignoring the maximum current estimation and 
consider it constant similar to most of the papers in the 
literature. Hence, the maximum current value is fixed at 42 A 
for KF since it is reported by the manufacturer for a brand-new 
PEMFC. However, for the case of NLAPE and EKF, the initial 
value is 42 A, and they are supposed to estimate the actual 
value. Fig. 7a presents the extracted polarization and power 
curves after 270 s from applying the first load profile. Fig. 7b 
shows the extracted curves at 507 s while demanding the second 
current load profile from the PEMFC system. It should be noted 
these curves have been obtained from the PEMFC model using 
the estimated parameters at each specified timestep. At each 
case, the estimated curves are compared with the reference ones 
demonstrated in Fig. 4. To clarify the accuracy of 
characteristics extraction by the three estimators, residual 

standard error (RSE) (𝑅𝑅𝑆𝑆𝑆𝑆 = �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2
𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑑𝑑
, where 𝑦𝑦𝑖𝑖  is the 

 

 
Fig. 7. Estimation of the PEMFC characteristics under the load profiles, a) 
extracted characteristics after applying the first load profile at 270 s, b) 
extracted characteristics after applying the second load profile at 507 s.  

observed value, 𝑦𝑦�𝑖𝑖 is the estimated value, 𝑛𝑛 is the total number 
of observations, and 𝑑𝑑 is the number of unknown parameters) 
is calculated for each of the considered case studies and 
reported in Table III. Furthermore, Table III compares the 
execution time of the proposed method with the other two 
estimators for each timestep. The reported value for each 
method is the average of execution time of ten consecutive 
timesteps. According to this table, NLAPE has been able to 
estimate the FC characteristics with a good level of accuracy 
compared to other two methods while its runtime is almost half 
of them. KF has shown the weakest performance in terms of 
RSE as it cannot tune the maximum current which is a nonlinear 
parameter.   
Fig. 8 illustrates the estimation of the maximum current 
(nonlinear parameter) by both of NLAPE and EKF. As 
explained earlier, the initial value for maximum current is 
chosen as 42 A. However, since the utilized PEMFC in this 
study is not new, this value has almost converged to 30 A which 
agrees with the maximum current value in the presented 
experimental polarization curve in Fig. 4. Therefore, 30 A has 
been selected as the reference value for this parameter. From 
Fig. 8, it can be seen that in case of the first profile, NLAPE and 
EKF converge to the reference value at almost 100 s and 200 s 
while in the second profile they both converge at around 350 s. 
To check the required time for the utilized algorithms to 
estimate the PEMFC power characteristics, which is important 
for designing an EMS, the convergence trend of the maximum 
power for the first and second profile is presented in Fig. 9. To 
obtain this plot, the estimated power curve of the PEMFC has 
been plotted at each timestep and the maximum power value 
has been extracted from it. This trend shows the needed time to 
extract the targeted characteristics from the model, which is the 
main purpose of using these online estimators. The reference 
maximum power (430 W) has been extracted from the 
illustrated experimental power curve in Fig. 4. Since the two 
performed tests are not very long, this value is not expected to 
change due to degradation. From Fig. 9, it is observed that 
NLAPE converges to the reference value around 100 s sooner 
than EKF in the first profile. Regarding the second profile, they 
both almost converge to the reference value at 350 s. Table IV 
summarizes the mean squared error (MSE) of the estimated 
 

TABLE III 
 COMPARISON OF THE UTILIZED ESTIMATORS  

Estimator RSE (first 
profile) 

RSE (second 
profile) 

Average runtime of a 
time step (ms) 

NLAPE 

Polarization: 
0.51 

Polarization: 
0.24 4.5 

 Power: 
109.56 

 

Power: 
58.93 

 

EKF 

Polarization: 
0.58 

Polarization: 
0.53 10.6 

 Power: 
142.17 

 

Power: 
98.73 

 

KF 

Polarization: 
20.27 

Polarization: 
15.85 

8.4 
Power: 

1.0543e4 
Power: 

8.8581e3 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

9 

 
Fig. 8. Estimation of maximum current for the first current profile (a) and 

the second current profile (b).  
 

 
Fig. 9. Estimation of maximum power for the first current profile (a) and the 

second current profile (b).  
 

maximum current and maximum power considering the 
explained reference values. This table shows that the proposed 
estimator has been capable of estimating both parameters with 
higher accuracy under the two current profiles.  

 
TABLE IV 

 COMPARISON OF THE UTILIZED ESTIMATORS  
Parameter Estimator MSE (first profile) MSE (Second profile) 

NLAPE 
 

Maximum current: 
4.15 

Maximum current: 
27.74 

Maximum power: 
477.2 

 

Maximum power: 
2701.1 

 

EKF 
 

Maximum current: 
11.45 

Maximum current: 
34.48 

Maximum power: 
1437.2 

Maximum power: 
3622.4 

 

Another relevant analysis is related to the evolution of internal 
resistor which is obtained through estimating three parameters 
𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑓𝑓(𝜁𝜁1, 𝜁𝜁2, 𝜁𝜁3). Fig. 10a presents the estimated 
internal resistor for the case of first load profile and Fig. 10b 
shows the estimation result regarding the second profile. To 
validate the estimation evolution of the FC internal resistance, 
the result of a current interrupt test from [30] is utilized as a 
means of comparison. It should be noted that this test has been 
done on the same FC technology with similar conditions. 
Current interrupt is an offline characterization technique which 
is usually used to provide a rough estimate of the internal 
resistance at different operating conditions. Table V 
summarizes the results of the resistor measurement from the 
offline technique. Comparing the estimated values in Fig. 10 
with the measured values in Table V shows that the estimated 
internal resistance range is consistent with the measured one.   

 

 
Fig. 10. Resistor estimation during the first load profile (a) and the second 

current profile (b). 
 

TABLE V 
 MEASURED RESISTANCE BY CURRENT INTERRUPT   
Current (A) Temperature (℃) Resistance (Ω) 

3 24.4 0.1614 
6 24.8 0.1672 
9 26.4 0.1727 

12 27.3 0.1771 
15 28.8 0.1784 
18 31 0.1803 
21 33.2 0.1846 
24 36.8 0.1861 
26 39 0.2205 

VI. CONCLUSION 
This paper puts forward a NLAPE for online health 

assessment of a PEMFC by tracing the required characteristics 
(power, voltage, resistance) for an EMS application. The 
PEMFC model is composed of nine parameters. All the 
parameters are linear-in-structure, except for one (maximum 
current), which is embedded in the nonlinear function. The 
proposed method capitalizes on the theory of adaptive control 
to identify online the explained linear and nonlinear parameters 
employing merely measured voltage, current, and temperature 
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of the PEMFC stack. Firstly, it is compared with EKF, which is 
an established nonlinear estimator in the literature, to be 
validated in terms of accuracy for estimating the voltage and 
more importantly polarization and power curves. Secondly, the 
proposed NLAPE is compared with KF, which is a linear 
estimation approach, to highlight the importance of estimating 
maximum current (nonlinear parameter). As opposed to 
adaptive filtering and other gradient descent-based algorithms, 
the closed-loop stability of the utilized system is thoroughly 
studied by means of Lyapunov method. The competence of the 
proposed NLAPE is experimentally explored under two load 
profiles and compared with EKF and KF. The conducted 
comparison highlights the capability of the proposed approach 
in estimating the PEMFC output voltage and extracting the 
physical characteristics. The results of this paper suggest the 
following directions for future endeavors: 

• The effectiveness of the proposed real-time parameter 
estimator can be validated by using several FCs with 
different aging milestones.   

• The proposed estimator can be integrated into the 
design of an EMS to prevent the malfunction of the 
strategy while facing the FC performance drifts. To do 
so, the constraints and utilized parameters in the cost 
function of optimization-based EMSs can be updated 
using the proposed estimator. Moreover, the health 
state of the FC can be estimated and used in decision-
making strategies.    
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