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Abstract— This paper proposes a reinforcement learning
approach for nightly offline rebalancing operations in
free-floating electric vehicle sharing systems (FFEVSS). Due
to sparse demand in a network, FFEVSS requires relocation
of electrical vehicles (EVs) to charging stations and demander
nodes, which is typically done by a group of drivers. A shuttle
is used to pick up and drop off drivers throughout the network.
The objective of this study is to solve the shuttle routing
problem to finish the rebalancing work in minimal time. We
consider a reinforcement learning framework for the problem,
in which a central controller determines the routing policies
of a fleet of multiple shuttles. We deploy a policy gradient
method for training recurrent neural networks and compare the
obtained policy results with heuristic solutions. Our numerical
studies show that unlike the existing solutions in the literature,
the proposed methods allow solving the general version of
the problem with no restrictions on the urban EV network
structure and charging requirements of EVs. Moreover, the
learned policies offer a wide range of flexibility, resulting in
a significant reduction in the time needed to rebalance the
network.

Index Terms— shared mobility, reinforcement learning,
neural combinatorial optimization, vehicle routing

I. INTRODUCTION

The advent of electric vehicles (EVs) and car-sharing
services provides a sustainable option to move people and
goods across dense urban areas. Car sharing services with
EVs have the potential to increase the utilization of resources
and offer a unique opportunity to the urban population in the
form of free-floating EV sharing systems (FFEVSS). With
the FFEVSS, examples of which include companies such as
car2go [1] and WeShare [2], customers no longer need to
own a vehicle and can conveniently pick up/drop off any EV,
on-demand, from the parking lots of designated service areas.
However, there are some critical operational challenges to
bring this on-demand service into the mainstream.

Before the start of the day, an operating company needs
to relocate EVs to the ideal demand locations to establish a
supply-demand balance in the system. Furthermore, to provide
a certain level of service, EVs need to be charged before they
can be used by the customers. There are two major issues: (i)
there exists a sparse demand in the service area network, and
hence it is not trivial to find the ideal locations to relocate
the EVs; and (ii) there needs to be an efficient routing plan
to drop off the drivers for picking up the EVs and taking the
EVs to the charging stations for charging, and then pick up
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Fig. 1: The overview of the rebalancing problem of FFEVSS, with
a single shuttle and 2 drivers. The numbers indicate the number of
drivers in the shuttle. Solid and dashed lines represent the routes of
the shuttle and EVs, respectively. Cases I and II refer to relocation
of EVs without and with charging, respectively.

the drivers from their respective locations [3]. It is evident
that without efficient solutions for the above complex and
costly operational challenges [4], the sustainable existence
of the FFEVSS is uncertain.

We consider a static, nightly rebalancing problem similar
to [5]–[8], where a group of drivers is used to relocate and
recharge the EVs based on the predicted demand for the next
day, assuming the utilization level of FFEVSS is minimal. As
shown in Figure 1, shuttles are used to support the movements
of drivers. In this setting, rebalancing operations require two
key decisions to be made: (i) how to route shuttles to pick
up and drop off the drivers (shuttle routing decision) and (ii)
where to charge and relocate each of the EVs (EV relocation
decision). In this paper, focusing on solving the shuttle routing
decision problem, we propose a reinforcement learning (RL)
approach, in which the EV relocation decisions are made by
a rule-based approach.

The proposed RL approach possesses several advantages
compared to optimization-based approaches. First, unlike
solutions coming from the static optimization techniques
such as [7, 8], which need to be re-solved each time an
input changes, the RL agent learns robust solutions that can
be applied to any input coming from the same distribution
[9]. Second, while static optimization approaches can take
significant time to solve a problem, a trained RL agent can be
invoked to produce quality solutions instantaneously. Third,
many practical considerations can be flexibly incorporated
within the simulator in the training phase.

The shuttle routing to rebalance FFEVSS with its variety
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Fig. 2: Assign supplier-charger pairs or reuse charger nodes? Ch
and Su denotes charger and supplier nodes respectively.
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Fig. 3: How to balance traveling time and waiting time trade-off?
De, Ch and Su denotes demander, charger and supplier nodes
respectively.

of trade-offs is not a trivial problem. For instance, as depicted
in Figure 2, one may allow or disallow the reuse of charging
stations in the derivation of solutions. The former choice
offers more flexibility, but it also increases the complexity
of exploring solutions. Therefore, the existing methods do
not allow the reuse of the charging stations [8]. On the other
hand, such a choice results in opportunity loss.

Another trade-off is depicted in Figure 3, where the first
supplier node has an EV that needs to be recharged while the
second supplier has an EV with a sufficient charging level.
Then one needs to balance between traveling time and waiting
time when routing a shuttle to supplier nodes. The complexity
of such routing decisions increases with the network size,
the network structure, and the number of shuttles and drivers
deployed. Hence, it may not be possible to explore potential
solutions with human-driven heuristics efficiently. With the
proven ability of neural networks in recognizing patterns in
graph-based representations, the utilization of neural network
architecture with the proposed RL approach will provide better
approximations and assist in obtaining efficient solutions that
can be generalized.

In recent years, there has been a surge of studies that
apply reinforcement learning to solve various traditional
vehicle routing problems (VRPs) [10]–[12] with capacity
constraints, time windows, or stochastic demand. The shuttle
routing problem, taken under this study, possesses significant
differences with traditional VRPs. First, in a VRP setting,
nodes to visit (demand) are typically independent of the
routing decisions. However, in the shuttle routing problem,
the locations of drivers to be picked up are determined

S0 S1 S2
a0 : SR0 a1 : SR1

EVR0
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Fig. 4: State transitions: SRi - shuttle routing decisions, EVRi -
EV relocation decisions, ai - selected action

by preceding routing decisions. This highlights a strong
interdependence between demand and routing. Second, unlike
VRP, the shuttle routing problem is characterized by delayed
rewards. As shown in Figure 4, the actual relocations of EVs
from a node happen after the execution of shuttle routing to
the node. As a result, we observe delayed rewards with respect
to the shuttle routing decision only after EVs reach their
designated nodes. Such differences require a new approach
to finding solutions for the shuttle routing problem.

We consider two settings of rebalancing FFEVSS. In the
first setting, we focus on a single shuttle problem, where
we train a single agent to learn routing policies. In the
second setting, we aim to train a fleet of shuttles through
single-agent reinforcement learning, where a central controller
is responsible for routing multiple shuttles. In both cases, we
deploy policy gradient methods along with recurrent neural
networks for training. The shuttle routing problem under
both of the above-mentioned settings possesses significant
challenges that prohibit the direct use of the existing solution
methods. For instance, in routing a single shuttle, we must
train an agent not only to find efficient routes, but at the same
time maintain the feasibility of the solutions related to the
precedence of the visiting nodes. As for routing the fleet of
shuttles, we must promote learning policies to route multiple
shuttles that will contribute to a common goal.

The main contributions of this study are as follows. First, to
the best of our knowledge, this study is the first to present an
RL-based approach for handling multiple vehicles explicitly
in the context of VRPs, while focusing on the shuttle routing
problem for rebalancing the FFEVSS. Second, within the RL
framework, we propose the utilization of deep neural network
architecture to process the complex and high dimensional
observations from an urban service area network to help train
the RL agent in its decision-making. In particular, we adopt
sequence-to-sequence models with an attention mechanism to
fit the unique challenges of the rebalancing FFEVSS. Third,
we present a novel training algorithm to route efficiently a
fleet of shuttles to rebalance FFEVSS by utilizing policy
gradient methods. Our training algorithm does not require
splitting an urban network into sub-clusters for each shuttle,
but instead allows developing policies that efficiently utilize
shuttles and drivers in a whole network. Fourth, we develop
a simulator to mimic real-world FFEVSS, which serves as
the environment for training an RL-agent and allows efficient
exploration of joint actions of multiple shuttles.

Unlike the solutions obtained using the methods from the
literature, the empirical results obtained from this study show
that the proposed method allows solving the general version
of the problem with no restrictions on the urban network
structure and charging levels of EVs. The learned policies
offer a wide range of flexibility, resulting in a significant
reduction in the time needed to rebalance the network.

The remainder of the paper will proceed as follows. In
Section II we provide an overview of relevant literature and
outline the unique challenges of the rebalancing FFEVSS. In
Section III we present the problem formulation. In Section
IV we introduce the proposed reinforcement learning model.
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In Section V we demonstrate the results of our computational
studies. Lastly, in Section VI we provide concluding remarks.

II. RELATED WORK

Even though the problem of rebalancing FFEVSS has been
recognized as essential for their sustainable existence in the
literature [13, 14], most of the studies focus on high-level
approaches to address the issue. One category of studies
falls on incentive-based methods that aim to rebalance the
system through influencing customer behavior [15]. Another
set of papers study the deployment of personnel and offer
rule-based high-level decision-making frameworks [16, 17].
There are only a few studies that specifically focus on the
shuttle routing problem to rebalance FFEVSS, thus offering
detailed solutions for day-to-day operational challenges.

One of such studies is [7], which aims to solve both EV
relocation and shuttle routing problems jointly. However, the
proposed model does not enforce relocation of EVs directly to
demander nodes, but indeed permits leaving EVs in charger
nodes. As a result, charger stations will be blocked and
cannot be reused, requiring the postponing of charging for
the remaining set of EVs. Similarly, a recent study [8] presents
novel approaches in addressing EV relocation and shuttle
routing problems simultaneously. Even though the study aims
at relocating EVs directly to demander nodes, it assumes the
abundance of charger stations in an urban network. Thus,
again reusing charger stations is not considered, and the
postponement of charging for EVs requiring it is allowed.
Since charging infrastructure is often limited [18], the reuse
of charging stations must be an integral part of solutions to
rebalance FFEVSS in real-world urban networks.

Recently reinforcement learning approaches gained
popularity to solve various problems in transportation,
including fleet management and rebalancing in ride-hailing
services [19]–[22]. However, none of the existing studies
focus on FFEVSS specifically and do not address the
unique issue of charging and relocation together. For solving
VRPs, deep reinforcement learning has been first applied
in [10], which utilizes sequence-to-sequence methods [23]
and an attention mechanism [24]. Later [25] adopted the
transformer model [26] to solve VRPs without recurrent
neural networks. [12] proposes a novel model to solve online
VRPs by utilizing neural combinatorial optimization and
deep reinforcement learning. Similarly, [27] presents a hybrid
model that combines local search with an attention mechanism.
However, these studies focus on routing a single capacitated
vehicle, where the main goal is to minimize the distance
traveled. While multiple loops of a single capacitated vehicle
can be interpreted as multiple vehicles, this paper is the first
to present explicit modeling of multiple vehicles within an
RL framework.

Although this study also adopts sequence-to-sequence
models with an attention mechanism similar to [10], the
significant differences in the nature of the rebalancing
FFEVSS problem and VRP dictate the development of novel
solution techniques. For instance, in the given problem,
shuttles need to leave a depot, drop off, pick up drivers who

relocate EVs, and return to the depot, highlighting two sets
of constraints. First, the precedence of visited nodes needs to
be maintained when charging stations are visited after nodes
with EVs and nodes that require EVs are visited after either
charging stations or nodes with EVs. Second, the capacity
constraint must be satisfied when nodes with EVs are visited
only when there is a driver in a shuttle and nodes with drivers
are visited only if there is seating available for a driver in
the shuttle. In addition to feasibility constraints, since both
charging and relocations of EVs are involved in the shuttle
routing problem, only considering factors that affect the total
distance traveled is not sufficient. Moreover, the dynamics of
an urban network due to routing a shuttle is more complex
compared to the VRP due to the delayed movements of
EVs relocation. Also, routing multiple shuttles requires a
novel training algorithm. In particular, when several shuttles
are present in an urban network and each of their movement
influence the state of the network, we need a novel framework
that enables the application of reinforcement learning tools
based on Markov Decision Process (MDP).

III. PROBLEM STATEMENT AND FORMULATIONS

A. Network

Let us consider a network N consisting of N number of
nodes and a depot. We define a node as a supplier if it has an
excess EV and a demander if it requires an EV. The network
also has charger nodes. Each node in the network can store
at most one EV. Depending on the charging levels of EVs
there are two possibilities of the EVs relocation. In Case I,
EVs are relocated from supplier nodes directly to demander
nodes. In Case II, EVs first need to be taken to charger nodes,
and after charging is complete, they need to be relocated to
the demander nodes, as shown in Figure 1. We consider
discrete charging levels of EVs, where a threshold-based rule
is applied to decide whether to charge an EV or not. Also,
a driver may wait at a charging station until an EV is fully
charged or may head for the next activity. We consider two
settings of the problem when a single shuttle or a fleet of
shuttles is deployed for rebalancing the system. We formulate
the routing problem for a single shuttle as MDP and utilize
a central controller to route a fleet of shuttles.

B. Multi-shuttle Routing as MDP

Even though it is possible to formulate the routing of a
fleet of shuttles using a multi-agent reinforcement learning
framework, such an approach suffers from several drawbacks.
Firstly, in the presence of several shuttles, each of which is
treated as an autonomous agent, the stationary assumption of
MDP is no longer valid [28]. In particular, in the presence
of other agents in the environment, the Markovian property,
which states that reward and current state only depends on
individual action and previous state, does not hold. Therefore,
a multi-agent reinforcement learning framework works under
partially observable MDP [29]–[31], when each agent can
observe only a local view of the network [32]. Then each agent
can only visit nodes visible from its local view, which imposes
significant restrictions on developing an efficient routing.
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Secondly, it is challenging to train autonomous agents without
making strong assumptions about constant communication
between agents. For instance, if at the current time step
one agent selects a node to visit, then such information
must be shared among other agents to avoid the presence of
several agents at the same node. Lastly, under a static network,
when the state of the network is constant and well-known,
a centralized approach will help navigate a fleet of shuttles
efficiently. Therefore, we formulate routing multiple shuttles
to rebalance FFEVSS using a central controller responsible
for making routing decisions of all shuttles. Then, we can
formulate the problem using a single-agent reinforcement
learning framework and MDP. We also note that the concept
of multi-agent reinforcement learning and central controller
is similar to decentralized control and centralized control in
the transportation literature.

A fleet of shuttles with drivers leaves a depot and visits
nodes in the network to relocate EVs from supplier nodes
to demander nodes. Shuttles must return to a depot after
fulfilling demand at all demander nodes and picking up all
the drivers. These sequential decisions of a central controller
for routing shuttles under uncertain demand (locations of
drivers) can be formulated as a finite horizon MDP, where
the future dynamics of the system depend only on the current
state. We define the RL framework for the problem as tuple
M = 〈X,A, P,R, T 〉 representing states, actions, transition
probabilities, reward function, and time horizon, respectively.
The definitions are as follows:

• I = {1, ..., I} is the set of I shuttles that are controlled
by a central controller;

• State set X represents the network, where for each node
it shows its location, the relative distance, the number of
EVs, the number of drivers, the charging levels of EVs’
and indicators for the expected transitions. We utilize
binary vectors to indicate if there is an expected EV
coming to a node. We denote state as xt at time t.

• A is the set of joint actions such that At = A1
t ×A2

t ×
· · · ×AIt , where Ait is the action set of shuttle i at time
t and action ait indicates a node number to be visited
next by shuttle i. Then a central controller’s action set
consists of joint actions of all shuttles, At, at time t.

• Transition Probabilities function, P , determines state
transitions probabilities p(xt+1|xt, at) at time t with
respect to taken action at. In the given problem,
transitions are deterministic but often delayed. After
an action is taken, the relocations of EVs are scheduled.
However, the actual state transitions related to the
movements of EVs occur later, as shown in Figure 4.

• All shuttles share a common reward R and immediate
reward rt, which are assigned based on the joint actions
of all shuttles at time t denoted by at and state xt;

• Instead of defining the specific time value of T , we
define one episode rollout for the problem based on the
experiment outcomes. One episode is terminated either
if all demander nodes are fulfilled and all drives are
picked up back to a depot or if the total number of time

TABLE I: A summary of variables.

I the set of shuttles A the set of joint actions
X the state of network tc current clock time
τ traveling time w waiting time
T the max number of time steps r immediate reward
R total reward θa parameters of actor
θc parameters of critic π routing policy
Y the set of visited nodes n node in network

steps exceeds the predefined maximum time steps, the
value of which is set based on the size of a network.

• Each time step t is determined by the earliest fulfilled
action among all shuttles. Thus, each time step starts
when a central controller takes an action and finishes
whenever any action is fully executed.

The list of variables used can be found in Table I.

IV. REINFORCEMENT LEARNING MODEL

We adopt a policy gradient method, similar to those
popularly used in routing problems [10, 12, 25], to learn the
complex routing policies of shuttles directly. In general, policy
gradient methods consist of two separate networks: an actor
and a critic. The critic estimates a value function given a
state according to which the actor’s parameters are set to
generate policies in the direction of improvement. We train
an agent and a central controller to route a single shuttle
and multiple shuttles in an urban network by simulating
the FFEVSS environment. The simulator is developed to
handle EV relocations through rule-based decisions and
utilizing sequence-to-sequence models to generate policies.
The overview of the model is shown in Figure 5.

A. The FFEVSS Simulator

The main function of the FFEVSS simulator is to represent
the dynamics in an urban network caused by movements of
shuttles. There are immediate and delayed transitions related
to routing shuttles. In an immediate update to the environment
at each time step, we consider locations of shuttles, drivers,
EVs, the number of drivers in a shuttle, and fulfillment of
scheduled transitions either related to charging or relocation
of EVs. Also, at each time step, we schedule transitions
related to movements of EVs that have started but unfulfilled.
In particular, starting at the current clock time tc = 0, we
update the environment according to movements of a shuttle:

tc ←

{
tc + τ(nt−1, nt) if nt−1 6= nt

tc + wt if nt−1 = nt

where τ represents traveling time between nodes visited by
a shuttle at time t− 1 and t and wt denotes waiting time at
node n. We define waiting time at node n as the difference
between the time when a delayed transition at node n occurs
and the time when a shuttle reaches node n. To account
for delayed transitions, we introduce a time vector, which
keeps track of remaining times until either EVs arrive at
designated nodes or their charging completes. In the case of
multiple shuttles, the environment is updated with the earliest
movements of shuttles.
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Fig. 5: An overview of the reinforcement learning model.

Another function of the FFEVSS simulator is to update a
masking scheme according to the current state of the urban
network. The masking scheme helps to maintain the feasibility
of solutions related to the precedence of visited nodes and
the number of drivers in a shuttle. Also, having an efficient
masking scheme expedites the exploration of action space.
We deploy the following masking scheme, where At = ∅
stores the set of available nodes/actions to visit at time t
and the rest of the nodes are masked. For each n ∈ N , we
update:

At ←

{
At ∪ {n} if lt > 0 and n ∈ Dt ∪ Et
At ∪ {n} if lt = 0 and n ∈ Dt

Here set Et denotes nodes with an EV or nodes with the
expected EV due to delayed transitions, set Dt denotes nodes
with a driver or nodes with the expected drivers, and lt
denotes the number of drivers in a shuttle at time t.

B. EV relocation decisions

As described earlier, our focus in this study is to solve the
shuttle routing problem. Hence, we are using a rule-based
approach for EVs’ relocation decisions. The rule-based
approach is as follows: every time a supplier node with an EV
has a driver, that EV is relocated to the nearest available either
charger or demander node. The decision of whether to relocate
an EV to a demander or charger node is predetermined in
the settings of a simulator. We apply a threshold-based rule;
that is, if the charging level of an EV exceeds the threshold,
then it can be directly relocated to a demander node or must
be charged, otherwise.

We maintain a binary vector in the simulator to indicate if
a charger node is available or not. This representation helps
in deciding the relocation of an EV from a supplier node to
an available charger node. We determine the closest available
charger node by multiplying the binary vector by a time
matrix that indicates time to travel among any pair of nodes.
To decide EVs’ relocations from either supplier or charger
nodes to demander nodes, we maintain a demand matrix that
keeps track of demander nodes that still need an EV at time
t. In particular, in the simulator, we store the time needed

to move from all nodes to each demander node and increase
those values to large numbers if a demander node is satisfied.
Then, if an EV needs to be relocated to a demander node,
we compute the minimum time from a node to the closest
demander nodes.

C. A sequence-to-sequence model for the shuttle routing
problem

Motivated by [10], we propose using a
sequence-to-sequence model for rebalancing FFEVSS,
which typically consists of an encoder and a decoder. Given
urban network N , we aim to generate a sequence of nodes
to be visited by either a shuttle or a fleet of shuttles. In
other words, we are interested in learning the following
conditional probability or parametrized policy πθ:

πθ(YT |x0) =

T−1∏
t=0

φ(yt+1|xt, Yt) (1)

In (1), we let xt = {x1t , . . . , xNt }, where xnt denotes
static and dynamic states of node n at time t. Unlike in
machine translation, the state of nodes in the network status
changes dynamically with shuttles movement; thus, we need
to consider both static and dynamic states for each node.
Also, we let yt denote a node to be visited at time t and
Yt = {y1, . . . , yt} with Y0 = ∅. Then to select a next node
to visit yt+1, we are interested in learning φ(yt+1|xt, Yt).

However, a set of nodes in the network does not convey any
sequential information. Therefore, it is common in literature
[10], to omit recurrent neural network for encoding. Indeed,
due to the sparse nature of networks, graph embedding
is deployed in encoder to build their continuous vector
representation as they suit better for statistical learning [33].
The following equation describes embedding for each n ∈ N :

x̄ns = bs +W sxns (2)

x̄ndt = bd +W dxndt (3)

where, x̄ns and x̄ndt are embedded static and dynamic states of
node n at time t and b,W represent the trainable parameters of
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a neural network. We denote by x̄nt = (x̄ns ; x̄ndt) concatenation
of embedded static and dynamic states of nodes.

For decoding we use recurrent neural networks (RNN),
that takes static state of the last visited node and stores the
sequence as follows:

ht = Whf(ht−1) +W xx̄ns (4)

where ht is a memory state of RNN, f represents nonlinear
transformation and xns is a static state of node n visited at
time t. Trainable weight matrices Wh and W x represent
connections between hidden state to hidden state and hidden
state to an input respectively. Note in our implementations,
we use a LSTM cell as RNN.

In addition to encoder and decoder, we also utilize content
based attention mechanism as in [10]. Content based attention
tries to mimic associative memory and is designed to handle
cases when an input to the sequence-to-sequence model is a
set [24]. In particular, the current state of an urban network is
coupled with the memory state of RNNs about the sequence to
calculate an alignment vector ct that assigns the probabilities
of nodes to visit next:

unt = v tanh(W (x̄nt ;ht)) ∀n ∈ N (5)
ct = softmax(ut) (6)

where v and W are trainable weight matrices.
For the problem under study, we define the static state of

nodes as their location coordinates and the initial charging
levels of EVs at supplier nodes. Even though the charging
levels of EVs will change as EVs are taken to charging
stations, only their initial values determine charging times.
Therefore, we consider them as a static state of nodes. For
a dynamic representation of the states of nodes, we use
the number of EVs, the number of drivers in a shuttle,
and the distance from the current node to other nodes. Our
experimental studies show that passing distance information
as a dynamic state of nodes substantially reduces training time.
Figures 5 summarizes the sequence-to-sequence model of the
shuttle routing problem used in the actor network. In routing
a fleet of shuttles, we also deploy a single actor network,
where a sequence of visited nodes Yt, includes nodes visited
by all shuttles up to time t.

D. Reward Function

Reward function along with sets of available actions reflects
our aim to maintain the feasibility and efficiency of routing
decisions. Since the shuttle routing problem considers both
charging and relocation of EVs, reward function must not
only reflect traveling times between nodes, but also include
waiting times. Therefore, we define reward function as the
negative of total time spent in the system starting when a
shuttle or a fleet of shuttles leaves a depot and ending when
all shuttles are returned back to the depot with all drivers after
fulfilling all demander nodes. Then our aim is to maximize
the negative of total time spent in the system denoted by R.
More formally we define reward function as follows, using

immediate rewards rt:

R =

T∑
t=1

rt (7)

where

rt =

{
−τ(nt−1, nt) if nt−1 6= nt

−wt if nt−1 = nt

and τt is traveling time and wt is waiting time at time t.

E. Training Algorithm

In training, we are interested in finding policy parameters
θ̄ that maximize the total expected reward:

θ̄ = argmax
θ

Eπθ [R]. (8)

Given the state of network X , we can write:

J(θ|x) = Eπ∼pθ(·|x)[R(π|x)] (9)

and

∇θJ(θ|x) = Eπ[Aπ∇θ log pθ(π|x)] (10)
Aπ = R(π|x)− V (x0). (11)

We use the REINFORCE algorithm with a baseline [34],
which is the value of the initial state of an urban network
estimated by a critic with trainable parameters θc. Algorithm
1 represents our training procedure, where the actor network
with trainable parameters θa represents policy π. In a batch
training setting, the batch of instances is generated by a
data generator. Instances are passed through the simulator.
Then, the actor network produces probabilities of nodes to
be visited by shuttles at each time step, and the simulator
is updated accordingly until the entire episode is finished.
Then with the received total reward for the selected actions,
the parameters of the actor and critic networks are updated.
Unlike in the existing literature [8], the algorithm does not
require splitting an urban network into sub-clusters for each
shuttle, but instead deploys all shuttles to serve the whole
network. Also, utilizing a central controller that observes the
entire urban network state along with the masking scheme
in the simulator allows efficiently exploring joint action of
all shuttles. For instance, if a node has been assigned to
be visited by a shuttle, then that node is masked for other
shuttles.

V. COMPUTATIONAL STUDIES

A. Data Generation and Configurations

We consider a 1 × 1 square mile network consisting of
demander, supplier, and charger nodes. We first specify the
total number of nodes in the network and the number of
demander and charger nodes. We sample x, y coordinate of
each node from a uniform distribution with values ranging
from 0 to 1. Similarly, we sample demander, charger, and
supplier nodes from a uniform distribution. For each supplier
node we set the initial charging levels of EVs randomly
between 1 and 5. We assume that EVs do not need charging
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Algorithm 1 Training Algorithm

1: Initialize network parameters θa and θc for actor and
critic networks respectively. Set the maximum number of
epochs, a batch size and the maximum number of steps
denoted as Mepochs, Mepis and T respectively;

2: for epochs = 1 to Mepochs do
3: Reset gradients dθa, dθc;
4: for m = 1 to Mepis do
5: data ∼ DataGenerator(ρ);
6: xm0 , A0 = simulator.reset(data);
7: Add xm0 to X0, set Rm = 0, set L to I;
8: for t=0 to T do
9: for each i ∈ L do

10: ait, p
i
t = actor network(xt, Ait);

11: Store pit in pm, remove ait from At;
12: end for
13: xt+1, At+1, rt, tc = simulator.step(at);
14: Empty set L;
15: for each i ∈ I do
16: if ait is complete at tc then
17: add i to L
18: else
19: ait+1 = ait and remove ait from At+1

20: end if
21: end for
22: Rm = Rm + rt;
23: end for
24: calculate V m(xm0 ; θc) using critic
25: end for
26: dθa = 1

Mepis

∑Mepis
m=1(Rm − V m(xm0 ; θc))∇θa log pm;

27: dθc = 1
Mepis

∑Mepis
m=1∇θc(Rm − V m(xm0 ; θc))

2;
28: end for

and can be directly taken to demander nodes if their charging
levels exceed 3. Otherwise, EVs first need to be taken to
charger nodes, where all of them are charged until the
charging level of 5 is reached. For each charging level, we
assign the charging time equal to the average traveling time
between all pairs of nodes in the network. We do not consider
discharging rates in the movements of EVs, while we assume
the constant velocity for EVs equal to 45 miles/hour.

Computational experiments are conducted with 2 Intel
Xeon E5-2630 2.2 GHz 20-Core Processors, 32 GB
RAM, and the Ubuntu 18.04.4 LTS operating system. All
implementations are done in Python 3.7 using PyTorch 1.5.
Our implementations of the critic network have similarities to
the actor network structure except for the use of LSTM. We
first embed the initial static state of the urban network using
1D convolution networks and then pass it to the attention
mechanism. We pass the output of the attention mechanism
through a sequence of feed-forward networks to obtain the
final estimate for a value function. Table II represents the
hyperparameters used for training, which are the same as in
[10]. We train RL agents on networks of various sizes and
difficulty levels. For each problem class defined by the size

TABLE II: Hyperparamter values

Conv1D, LSTM hidden dim 128 Conv1D kernel size 1
Critic, linear hidden dim 128 Learning rate actor, critic 10−4

of a network, we consider instances with three different levels
of difficulty. Cases when there is an abundant presence of
charging stations than the number of EVs requiring charging
we call easy instances. Similarly, cases when there is an
exact number of charging stations as the number of demander
nodes we call medium difficulty instances. Finally, in cases
when there is a less number of charging stations than the
number of demander nodes, we call them hard instances. The
descriptions of difficulty levels are found in Table III.

B. RL agents and Benchmarks

We train three types of agents using the proposed RL
models. The first agent denoted as gen-RL is trained on all
three difficulty levels, but on a fixed network size. The second
agent denoted as net-RL is trained on networks of various
sizes, but it is tailored to a specific difficulty level. The last
agent denoted as RL is trained on a fixed network size and
on a specific difficulty level. For our computational studies,
we consider a benchmark from [8]. The benchmark model
denotes as Sim represents a joint model that solves the EVs
relocation and the shuttle routing problems simultaneously.
To solve multi-shuttle routing problems, the heuristic splits an
urban network into some clusters and solves a single-shuttle
routing problem for each cluster. However, there are some
limitations to the method. One of them is related to the
inflexibility of the solutions when drivers that have been
dropped off from one shuttle cannot be picked up by other
shuttles. Another disadvantage is related to charger nodes.
The heuristic can only handle cases when the number of
charger nodes is not less than the number of EVs that must
be charged.

C. Results on Random Instances

Figure 6 shows training rewards for the multi-shuttle
problems on the network with 23 nodes and 3 drivers. Overall,
training time depends on the network size, its structure, and
the features passed to the actor network. Using distance
information from the current node to other nodes in the
actor network results in better rewards compared to when not
passing such information.

To compare different RL agents’ performances, we conduct
experiments on various network sizes and the degree of
difficulty of instances and measure the mean of the total time
spent in the system out of 128 instances. Table IV shows the
experiments’ results. In most instances, an RL agent trained
on a specific size and a specific instance difficulty level tends
to perform the best. We observe that net-RL agents, trained on
various network sizes, tend to perform better on larger network
sizes, while gen-RL agents, trained on various difficulty levels,
can be competitive on medium-sized networks. As the network
size increases, the results show that using net-RL and gen-RL

7



TABLE III: Difficulty levels description, where De, Ch, Su, and Su
′

denote the set of demanders, chargers, suppliers, and suppliers
with EVs that require charging, respectively.

Easy Medium Hard

|N | |De| |Ch| |Su| |Su′ | |De| |Ch| |Su| |Su′ | |De| |Ch| |Su| |Su′ |

23 7 7 8 4 7 7 8 8 8 6 8 8
50 16 16 17 8 16 16 17 17 17 15 17 17

100 33 33 33 16 33 33 33 33 33 32 34 34

TABLE IV: Comparison of RL agents in terms of total time spent in the system, the average of 128 test instances are reported. In bold
are the best results.

Easy Medium Hard

|N | |I| |Dr| net-RL gen-RL RL net-RL gen-RL RL net-RL gen-RL RL

23 1 3 9.29 8.34 7.70 14.63 11.75 10.27 16.01 13.73 12.32
2 3 6.01 5.79 5.40 7.93 8.45 6.93 8.89 9.00 8.34
3 2 5.48 5.28 5.21 7.02 7.58 6.38 8.33 8.11 7.79

50 1 3 14.97 13.96 13.77 20.35 19.36 17.93 22.60 20.05 18.92
2 3 8.54 8.21 8.41 11.81 10.81 11.23 12.15 11.76 11.96
3 2 7.22 6.90 6.89 9.58 9.41 9.23 10.33 9.89 9.77

100 1 3 23.16 22.98 22.18 30.62 32.33 30.67 31.53 32.30 36.67
2 3 12.91 14.25 12.92 17.55 18.42 17.54 17.21 18.79 17.90
3 2 10.23 10.21 10.21 13.39 13.73 13.33 13.69 13.67 14.94

TABLE V: RL model vs. the heuristic optimization in terms of total time spent in the system, the percentages of winning instances and
computational time in seconds, the average of 128 test instances are reported. In bold are the best results.

Easy Med Hard

Mean Win % Time, s Mean Win % Time, s Mean Time, s

|N | |I| |Dr| Sim RL RL-Sim Sim RL Sim RL RL-Sim Sim RL Sim RL Sim RL

23 1 3 8.81 7.70 85.94% 7.07 0.01 12.39 10.27 94.53% 13.98 0.02 – 12.32 – 0.02
2 3 5.72 5.40 65.63% 1.61 0.04 7.43 6.93 73.44% 3.31 0.04 – 8.34 – 0.09
3 2 5.27 5.21 51.56% 0.91 0.06 6.39 6.38 48.44% 1.71 0.05 – 7.79 – 0.11

50 1 3 17.34 13.77 96.09% 48.43 0.05 24.59 17.93 100.00% 98.61 0.05 – 18.92 – 0.06
2 3 9.19 8.41 74.22% 11.62 0.21 12.25 11.23 73.44% 23.47 0.16 – 11.96 – 0.25
3 2 6.96 6.89 53.13% 5.35 0.20 9.25 9.23 50.00% 10.75 0.21 – 9.77 – 0.35

100 1 3 34.20 22.18 100.00% 152.15 0.16 45.97 30.67 100.00% 599.36 0.17 – 36.67 – 0.26
2 3 16.11 12.92 100.00% 66.13 0.44 21.63 17.54 96.09% 118.68 0.44 – 17.90 – 0.55
3 2 11.71 10.21 86.72% 28.23 0.92 15.63 13.33 92.97% 53.86 1.03 – 14.94 – 1.02
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Fig. 6: Training rewards with and without distance as an input

agents can be beneficial. For the rest of the experiments, we
use RL agents.

Table V illustrates the performance of the RL solutions
with those of the heuristic optimization method, labeled Sim.
The reinforcement learning approach can solve all instances
of the problem, while the optimization method can handle
only easy and medium cases. Moreover, for easy and medium

cases measured in the mean of total time spent in the system,
the RL solutions perform better than the heuristic optimization
solutions. We also note that the derived RL solutions do not
solve for optimal relocation of EVs and are only based on
predefined rules, while the optimization heuristic solves for
both the shuttle routing and EV relocation problems.

Table V shows the performance comparison of Sim and
RL models in terms of percentages of winning instances. For
instance, in an RL-Sim pair comparison, the value of cells
under the column indicates the percentages of instances when
the RL model performed at least equally to Sim model out
of 128 test instances. As shown in Table V the RL model
performs better than the heuristic method in at least 50% of
all instances, except one instance.

To show the generation of the instantaneous solutions
using RL models, we measured computation time. Table
V demonstrates the computation time it takes to derive a
solution under Sim and RL models. We report an average
time to solve an instance out of 128 instances in total. The
difference in deriving solutions between Sim and RL models
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TABLE VI: The number of drivers vs. difficulty levels.

Trained On

E
,d
r
=

2

M
,d
r
=

2

H
,d
r
=

2

E
,d
r
=

3

M
,d
r
=

3

H
,d
r
=

3

Te
st

ed
O

n

E, dr = 2 0 14.8 16.4 53.9 3.1 10.9
M, dr = 2 6.3 0 21.9 0 8.6 14.8
H, dr = 2 10.9 3.9 0 0 6.2 40.6
E, dr = 3 23.4 11.7 12.5 0 6.3 7.0
M, dr = 3 14.8 39.8 14.1 0 0 14.8
H, dr = 3 17.2 0.8 37.5 0 3.1 0

TABLE VII: The Amsterdam dataset structure and RL model vs.
Sim on the dataset in terms of total time spent in the system.

Weekdays Weekends

|N | |I| |Dr| Sim RL Sim RL

170 1 5 420.08 416.23 411.59 433.63
2 3 207.63 182.39 224.88 185.06
3 2 142.90 136.52 153.38 142.20

increases up to 585 times in the case of a single shuttle
routing in a network with 100 nodes for Easy instances.

We also compare the effects of the number of drivers
and difficulty levels on the trained models. In particular,
we train models with a specific number of drivers on easy,
medium, and hard instances on a fixed network size and
check these models’ performances against the models with
varying a number of drivers and difficulty levels. For example,
in Table VI rows indicate the problems’ configurations in
testing and columns indicate the problems’ configurations
in training datasets. The cells corresponding to a row and
column show the percentages of instances when a trained
model outperformed the model specifically trained for a test
dataset. As we observe, models trained on specific difficulty
levels tend to perform better on similar instances with a
different number of drivers compared to on test models with
the same number of drivers, but different difficulty levels.

The sample solution for a single-shuttle case, where 4 EVs
in an urban network require charging, is shown in Figure 7.
A shuttle with 3 drivers leaves the depot and visits supplier
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Fig. 7: Example solution for a single-shuttle case, |N | = 23, |Dr| =
3 and |I| = 1.
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Fig. 8: Example solution for a multiple-shuttle cases, |N | = 23,
|Dr| = 3 and |I| = 2.

nodes first, followed by a charger node. By interchangeably
visiting nodes thorough the network, the shuttle returns to the
depot after picking up drivers from demander nodes. We can
observe the versatility of the produced solutions by looking
at the charging stations. For instance, a driver dropped off at
the first visited supplier node relocates the EV to a charging
station, waits there until the EV is charged, and then relocates
it to a demander node. Only then the driver is picked up by
a shuttle. In another example, the driver dropped off at the
second visited supplier node is picked up immediately at a
designated charging station by a shuttle. Similarly, Figure 8
represents the sample solution for the case with 2 shuttles.
Each shuttle visits supplier nodes first until it runs out of
drivers. Then each of them interchangeably visits charger,
supplier, and demander nodes and returns to the depot. The
flexibility of the produced solutions can be observed when a
driver originally dropped at the second visited supplier node
by the first shuttle is picked up at a charging station by the
second shuttle.

D. Results on the Amsterdam Cases

We also use real data of FFEVSS representing car2go
operations in Amsterdam, the Netherlands, which was
collected between May 5th and October 29th, 2016. From
the actual data, we collect locations of supplier, demander
and charger nodes and reduce the network by removing EVs
that do not need relocation/charging. We also group the data
into weekdays and weekends, which results in 14 and 12
instances for the respective groups that we use as test data
for the experiments. To train an RL agent, we generate on
the fly training data by sampling locations of nodes using
weekdays data by extracting the CDF of the distribution for
nodes’ coordinates. We also assign node types randomly by
following the similar structure observed in weekdays data.
In particular, the training and testing data have 170 nodes
with 71 supplier, 71 demander, and 27 charger nodes. Table
VII presents the results of the RL agent performance on the
Amsterdam dataset. In all instances with except one, the RL
agent performs better as compared to the heuristic; overall,
RL performs 6.17% better. The poor performance of the RL
agent in the instance with a single shuttle and 5 drivers on
weekends may be improved by training with more weekend
data.
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VI. CONCLUSION

This study solves the shuttle routing problem for FFEVSS.
We consider a static network, in which a group of
drivers is deployed to relocate EVs from supplier nodes
to charger and demander nodes. We propose a reinforcement
learning approach to learn routing policies for single-shuttle
and multi-shuttle cases. The proposed solution methods
allow solving the new class of problem instances while
demonstrating improved results on instances solvable by
existing methods in the literature. We also present several
RL agents that generalize on various network structures
or network sizes, and we demonstrate that the RL agent
specifically trained on a network produces superior results.
As future work, it is interesting to consider a dynamic network
with the presence of customer demand to rebalance FFEVSS
in the daytime.
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