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Coordinating Vehicle Platoons for
Highway Bottleneck Decongestion and Throughput Improvement

Mladen Čičić1, Li Jin2, Karl Henrik Johansson1

Abstract—Truck platooning is a technology that is expected
to become widespread in the coming years. Apart from the
numerous benefits that it brings, its potential effects on the
overall traffic situation need to be studied further, especially at
bottlenecks and ramps. Assuming we can control the platoons
from the infrastructure, they can be used as controlled moving
bottlenecks, actuating control actions on the rest of the traffic,
and potentially improving the throughput of the whole system.
In this paper, we use a multi-class cell transmission model to
capture the interaction between truck platoons and background
traffic, and propose a corresponding queuing model, which we
use for control design. We use platoon speeds, and the number
of lanes platoons occupy as control inputs, and design a control
strategy for throughput improvement of a highway section with
a bottleneck. By postponing and shaping the inflow to the
bottleneck, we are able to avoid traffic breakdown and capacity
drop, which significantly reduces the total time spent of all
vehicles. We derived the estimated improvement in throughput
that is achieved by applying the proposed control law, and then
tested it in a simulation study and found that the median delay of
all vehicles by 75.6% compared to the uncontrolled case. Notably,
although they are slowed down while actuating control actions,
platooned vehicles experience less delay compared to the case
without control, since they avoid going through congestion at the
bottleneck.

I. INTRODUCTION

With truck platooning progressing persistently towards be-
coming a commonplace technology [1], studying and un-
derstanding the impact it will have on the overall traffic is
becoming increasingly important. Apart from providing po-
tential fuel savings through air drag reduction [2], which was
traditionally seen as its primary purpose, as well as having the
potential to greatly reduce the work load on drivers [3], truck
platooning is also expected have a positive impact on traffic
efficiency through reducing the headways between vehicles
[4, 5], alleviating the adverse effect trucks have on the traffic
[6]. Although there have been numerous field tests of truck
platooning in real traffic [7, 8], insufficient emphasis has been
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put on understanding how these platoons affect the behavior
of other vehicles on the road; thus the possible drawbacks of
this technology are not yet fully understood [9].

One identified problem pertains to the interaction between
truck platoons and passenger cars close to on- and off-ramps,
and bottlenecks in general [10]. There is concern that long
platoons might block access to an off-ramp, or from an on-
ramp, forcing drivers to slow down excessively or cut into
a platoon, resulting in significant disturbances for both the
platoon and the rest of the traffic. Furthermore, the arrival of
platoons can cause traffic breakdown at a bottleneck, causing
reduction of throughput due to the capacity drop phenomenon.
Recently, there have been efforts to address this problem in
microscopic [11] and macroscopic [12] frameworks. In this
paper, we are focusing on applying a new type of macroscopic
control, using the truck platoons as actuators.

Bottleneck decongestion has long been tackled by classical
traffic control measures, such as ramp metering [13] and vari-
able speed limits [14]. However, both of these control methods
require additional fixed equipment to be installed upstream of
the bottleneck, which limits their flexibility, especially when it
comes to handling temporary bottlenecks, such as work zones,
incidents etc. With the introduction of connected autonomous
vehicles to the highways, new opportunities for sensing [15]
and actuation [16, 17] of the traffic are becoming available.
Lagrangian actuation, where we use a subset of vehicles that
can be controlled directly from the infrastructure to restrict
the traffic flow, is lately garnering some attention [18, 19, 20].
This approach effectively emulates ramp metering and variable
speed control, achieving a similar type of regulation with-
out the need for additional fixed equipment, allowing us to
also control areas away from known permanent bottlenecks.
Moving bottleneck control is one such method, where we use
slower moving vehicles to restrict the mainstream traffic flow
at some points, delaying the arrival of some vehicles in a way
similar to ramp metering and variable speed limits.

Due to their large size and the existence of fleet management
infrastructure, truck platoons are an ideal candidate for moving
bottleneck control. Since they consist of heavy, slow-moving
vehicles, truck platoons will act as moving bottlenecks with or
without external control, and we may use the communication
channels already in place to send centrally computed reference
speeds and other control actions [21]. This way, we are able to
mitigate the negative effects trucks have on the traffic, and even
improve the overall traffic situation. Apart from these positive
effects on the traffic, truck platoons may improve the situation
for themselves as well, leading to potentially less delay,
smoother speed profiles, as well as increased predictability.

To this end, we need an appropriate model of the mutual
influence that truck platoons and the rest of the traffic have
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on each other, that is both tractable and sufficiently rich.
Microscopic traffic models allow for a fairly straightforward
representation of trucks and platoons [22], and PDE models
offer a consistent way of introducing moving bottlenecks [23],
but both are overly complex and detailed for link-level control
synthesis. The multi-class cell transmission model (CTM) [24]
presents a good balance of complexity and tractability, and
will therefore be used as a simulation model in this work. We
further simplify this model using a queuing representation, and
use this newly derived model for control design.

The problem that we are addressing in this paper is bot-
tleneck decongestion using randomly arriving platoons as
actuators, with their speed and the number of lanes they
occupy as a control input. The main contributions of this work
are the queuing-based model for predicting the evolution of
the traffic, and the control law that uses this prediction to
improve the throughput. The designed control law is tested
on a road segment upstream of a lane drop bottleneck that
has one on-ramp and one off-ramp, and shown to achieve
a significant reduction in total time spent. We conduct basic
stability analysis of the controlled system, and derive estimates
for the improved throughput. The median delay of all vehicles
is reduced by 75.6% in case the proposed control is applied,
compared to the case with no control. Even though the
platoons are slowed down while actuating control actions, they
experience overall less delay compared to the case without
control, since they avoid going through congestion at the
bottleneck.

The paper is structured as follows. In Section II, we present
the multi-class CTM and introduce its simplified queuing
representation. Then, in Section III, we use the said simplified
model to design control laws for improving the throughput
of the road, and in Section IV give a stability analysis of
the proposed control law, as well as estimates on achieved
throughput. Section V describes the simulation setup and
results, and finally, in Section VI we conclude and discuss
the results.

II. MODEL

In this section, we present the traffic models that will be
used for analysis, simulation and control design. The base
model, multi-class CTM, is augmented to properly represent
the behavior of platoons moving slower than the rest of
traffic. Since this model still has a high number of states and
control inputs, we propose a simplified queuing model, that
is consistent with the multi-class CTM, and use it for control
design. Control actions will be calculated using predictions
based on this simplified model, and then applied to the more
complex simulation model for evaluations.

A. The multi-class CTM

The simulation model that is used in this work is a multi-
class extension of the well-known CTM [25], and it is a variant
of the model used in [26] and [24]. Let 𝒦 be the set of
vehicle classes. The traffic density of vehicles of class 𝜅 ∈ 𝒦
in cell 𝑖 at time 𝑡 will be expressed in terms of passenger car
equivalents, and denoted 𝜌𝜅𝑖 (𝑡). We allow each of the classes

to have a distinct free flow speed 𝑈𝜅
𝑖 (𝑡) in every cell, varying

in time. These free flow speeds must not be higher than the
overall maximum free flow speed for the cell, 𝑈𝜅

𝑖 (𝑡) ≤ 𝑉𝑖. In
practice, we use 𝑈𝜅

𝑖 (𝑡) to capture some richer behaviour not
covered by the base model, like platoons stop-and-go waves,
as well as to apply the control action to the classes of vehicles
we have control over. We will use the platoon model given in
[24] for simulation and control design.

Consider a highway stretch consisting of 𝑁 cells. The
evolution of cell traffic densities for each class is given by

𝜌𝜅𝑖 (𝑡+1)=𝜌𝜅𝑖 (𝑡)+
𝑇

𝐿𝑖

(︀
𝑞𝜅𝑖−1(𝑡)−𝑞𝜅𝑖 (𝑡)+𝑟𝜅𝑖 (𝑡)−𝑠𝜅𝑖 (𝑡)

)︀
,

where 𝑟𝜅𝑖 (𝑡) is the inflow and 𝑠𝜅𝑖 (𝑡) the outflow of each vehicle
class from a potential on-ramp and to a potential off-ramp,
respectively. An example of such traffic flows is given in
Figure 1. The traffic flow of each class from cell 𝑖 to cell
𝑖+ 1 is given by

𝑞𝜅𝑖 (𝑡) = min
{︀
𝐷𝜅

𝑖 (𝑡), 𝑆
𝜅
𝑖+1(𝑡)

}︀
.

The demand and supply functions of each class 𝐷𝜅
𝑖 (𝑡) and

𝑆𝜅
𝑖 (𝑡) also depend on vehicles of other classes. Denoting

𝑑𝜅𝑖 (𝑡) = 𝑈𝜅
𝑖 (𝑡)𝜌

𝜅
𝑖 (𝑡),

𝑑𝑖(𝑡) =
∑︁
𝜅∈𝒦

𝑑𝜅𝑖 (𝑡),

we write the demand and supply functions

𝐷𝜅
𝑖 (𝑡) = 𝑑𝜅𝑖 (𝑡)min

{︂
1,
𝑄𝑖(𝑡)

𝑑𝑖(𝑡)

}︂
,

𝑆𝜅
𝑖 (𝑡) =

𝜌𝜅𝑖−1(𝑡)

𝜌𝑖−1(𝑡)
min {𝑊𝑖(𝑃𝑖 − 𝜌𝑖(𝑡)), 𝑄𝑖(𝑡), 𝐹𝑖−1(𝑡)} .

Here, cell parameters 𝐿𝑖, 𝑉𝑖, 𝑊𝑖, 𝜎𝑖 and 𝑃𝑖 are the length, free
flow speed, congestion wave speed, critical density and jam
density of cell 𝑖, respectively, and the cell capacity is given
by

𝑄𝑖(𝑡) =

∑︀
𝜅∈𝒦

𝑑𝜅𝑖 (𝑡)
𝑉𝑖𝑃𝑖𝜎𝑖𝑈

𝜅
𝑖 (𝑡)

(𝑃𝑖−𝜎𝑖)𝑈𝜅
𝑖 (𝑡)+𝑉𝑖𝜎𝑖

𝑑𝑖(𝑡)
.

The cell capacity depends on the free flow speeds of each class
𝑈𝜅
𝑖 (𝑡), as well as on the share of vehicles of each class in the

cell, and is lower or equal to the maximum value 𝑄𝑖(𝑡) ≤

𝑞𝑎𝑖−1(𝑡),𝑞𝑏𝑖−1(𝑡),𝑞𝑐𝑖−1(𝑡) 𝑞𝑎𝑖(𝑡),𝑞𝑏𝑖(𝑡),𝑞𝑐𝑖(𝑡) 𝑞𝑎𝑖+1(𝑡),𝑞𝑏𝑖+1(𝑡)

𝜌𝑎
𝑖(𝑡),𝜌𝑏

𝑖(𝑡),𝜌𝑐
𝑖(𝑡) 𝜌𝑎

𝑖+1(𝑡),𝜌𝑏
𝑖+1(𝑡),𝜌𝑐

𝑖+1(𝑡)
𝑟𝑏𝑖(𝑡) 𝑠𝑐𝑖+1(𝑡)

Fig. 1: An example of three-class traffic flows in two cells.
Vehicle classes 𝑎, 𝑏, 𝑐 are colour-coded. Cell 𝑖 receives traffic
of all three classes from cell 𝑖 − 1 and class 𝑏 vehicles from
an on-ramp. Class 𝑎 and 𝑏 vehicles are downstream-bound,
and will leave cell 𝑖+ 1 and enter cell 𝑖+ 2, whereas class 𝑐
vehicles are off-ramp-bound and will leave cell 𝑖 + 1 via the
off-ramp.
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𝑄max
𝑖 , which is obtained by setting all 𝑈𝜅

𝑖 (𝑡) = 𝑉𝑖, 𝑄max
𝑖 =

𝑉𝑖𝜎𝑖. Function 𝐹𝑖−1(𝑡) models the capacity drop, and 𝜌𝑖(𝑡) =∑︀
𝜅∈𝒦 𝜌

𝜅
𝑖 (𝑡) is the aggregate traffic density. Where not stated

otherwise, the cell parameters will be equal for all cells, and
𝑊 = 𝑉 𝜎

𝑃−𝜎 yields a triangular fundamental diagram. The
cell length 𝐿 and time step 𝑇 are taken so that 𝐿 = 𝑉 𝑇 .

We prioritize the mainstream flow and only accept on-ramp
inflow that the road capacity can support, so a part of vehicles
entering the road might have to queue at the on-ramp. We
model the evolution of these queues 𝑛𝜅𝑖,𝑟, for on-ramps in cell
𝑖, with

𝑛𝜅𝑖,𝑟(𝑡)=𝑛
𝜅
𝑖,𝑟+(𝑟𝜅𝑖 (𝑡)−𝑟𝜅𝑖 (𝑡))𝑇,

𝑟𝜅𝑖 (𝑡)=

{︃
min

{︀
𝐷𝜅

𝑖,𝑟(𝑡), 𝑆
𝜅
𝑖,𝑟(𝑡)

}︀
, 𝜅∈𝒦∖𝒦*,

𝑟𝜅𝑖 (𝑡), 𝜅∈𝒦*,

𝐷𝜅
𝑖,𝑟(𝑡)=𝑟

𝜅
𝑖 (𝑡)+

𝑛𝜅𝑟,𝑗(𝑡−1)

𝑇
,

𝑆𝜅
𝑖,𝑟(𝑡)=

𝑛𝜅𝑖,𝑟(𝑡)∑︀
𝑚∈𝒦∖𝒦*

𝑛𝑚𝑖,𝑟(𝑡)
𝑄𝜅

𝑖,𝑟(𝑡),

𝑄𝜅
𝑖,𝑟(𝑡)=max

{︃
0,min {𝑆𝑖(𝑡)−𝐷𝑖(𝑡), 0}−

∑︁
𝑚∈𝒦*

𝑟𝑚𝑖 (𝑡)

}︃
.

Here, 𝑟𝜅𝑖 (𝑡) is the total flow of vehicles arriving at the on-ramp,
𝑆𝑖(𝑡) and 𝐷𝑖(𝑡) are the aggregate supply and demand of cell
𝑖, and 𝒦* is the set of prioritized traffic classes. Vehicles of
class 𝜅 ∈ 𝒦* do not queue at the on-ramps, and instead enter
the road directly.

One of the benefits of multi-class CTM is that it can exactly
define the flow to off-ramps, by representing vehicles with
different destinations with different classes. Let 𝑖 be a cell
with an off-ramp where vehicles of classes 𝒦𝑟

𝑖 ⊂ 𝒦 exit the
mainstream. We may then write

𝑠𝜅𝑖 (𝑡) =

{︃
min

{︀
𝐷𝜅

𝑖 (𝑡), 𝑆
𝜅
𝑖+1(𝑡), 𝑆

𝜅
𝑟,𝑖(𝑡)

}︀
, 𝜅 ∈ 𝒦𝑟

𝑖 ,

0, 𝜅 /∈ 𝒦𝑟
𝑖 ,

𝑆𝜅
𝑟,𝑖(𝑡) =

𝜌𝜅𝑖∑︀
𝑚∈𝒦𝑟

𝑖

𝜌𝜅𝑖 (𝑡)
𝑄max

𝑟,𝑖 ,

where 𝑄max
𝑟,𝑖 is the capacity of the off-ramp. Finally, we update

𝑞𝜅𝑖 (𝑡) accordingly,

𝑞𝜅𝑖 (𝑡) =

{︃
min

{︀
𝐷𝜅

𝑖 (𝑡), 𝑆
𝜅
𝑖+1(𝑡)

}︀
, 𝜅 /∈ 𝒦𝑟

𝑖 ,

0, 𝜅 ∈ 𝒦𝑟
𝑖 .

Out of many ways of modeling capacity drop in first-order
traffic models [27], we chose to capture it as a linear reduction
of capacity, as in [28]. Denoting by 𝛼 the maximum capacity
drop ratio under jam traffic density, we have

𝐹𝑖(𝑡)=𝑊𝑖
𝜎𝑖+1

𝜎𝑖
(𝑃𝑖−(1−𝛼)𝜎𝑖−𝛼𝜌𝑖(𝑡)) .

Note that because of this phenomenon, the actual speed of the
congestion wave will be different than 𝑊 .

In our case, vehicles of class 𝑎 will represent platooned
vehicles. Let there be Π platoons, and let platoon 𝑝 move
at speed 𝑢𝑝(𝑡) ∈ [𝑈min, 𝑈max], with 𝑈max < 𝑉 . We denote
the position of the platoon head (downstream end) 𝑥𝑝(𝑡),

𝑥1(𝑡) > 𝑥2(𝑡) > · · · > 𝑥Π(𝑡), and the reference density of
platooned vehicles 𝜌*𝑝(𝑡). Assuming the length of the platoon
is 𝑙𝑝 ≥ 2𝐿, the traffic density profile in the cells that contain
it is

𝜌𝑎𝑖 (𝑡)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, 𝑖<𝑖𝑡Π(𝑡),

𝜌*𝑝(𝑡)𝜒
𝑡
𝑝(𝑡), 𝑖=𝑖

𝑡
𝑝(𝑡),

𝜌*𝑝(𝑡), 𝑖𝑡𝑝(𝑡)<𝑖<𝑖
ℎ
𝑝(𝑡),

𝜌*𝑝(𝑡)𝜒
ℎ
𝑝(𝑡), 𝑖=𝑖

ℎ
𝑝(𝑡),

0, 𝑖ℎ𝑝(𝑡)<𝑖<𝑖
𝑡
𝑝−1(𝑡),

𝑝=1, . . . ,Π,

𝜒𝑡
𝑝(𝑡)=

𝑋𝑖𝑡𝑝(𝑡)+1−𝑥𝑝(𝑡)+𝑙𝑝

𝐿 ,

𝜒ℎ
𝑝(𝑡)=

𝑥𝑝(𝑡)−𝑋
𝑖ℎ𝑝 (𝑡)

𝐿 ,

(1)

where 𝑖ℎ𝑝(𝑡) = ⌈𝑥𝑝(𝑡)/𝐿⌉ and 𝑖𝑡𝑝(𝑡) = ⌈(𝑥𝑝(𝑡)− 𝑙𝑝) /𝐿⌉ are
the cells in which the platoon head and tail (downstream and
upstream end) are, and 𝑖𝑡0 = 𝑁 + 1. The platoon position
updates after 𝑇 will be 𝑥𝑝(𝑡+1) = 𝑥𝑝(𝑡)+𝑢𝑝(𝑡)𝑇 , and class
𝑎 traffic densities need to be updated accordingly, which is
achieved by setting

𝑈𝑎
𝑖 (𝑡)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑉, 𝑖<𝑖𝑡Π(𝑡),

𝜓𝑏
𝑖 (𝑡), 𝑖𝑡𝑝(𝑡)≤𝑖<𝑖ℎ𝑝(𝑡),

𝜓ℎ
𝑖 (𝑡), 𝑖=𝑖

ℎ
𝑝(𝑡),

0, 𝑖ℎ𝑝(𝑡)<𝑖<
𝑖ℎ𝑝 (𝑡)+𝑖𝑡𝑝−1(𝑡)

2 ,

𝑉,
𝑖ℎ𝑝 (𝑡)+𝑖𝑡𝑝−1(𝑡)

2 ≤𝑖<𝑖𝑡𝑝−1(𝑡),

𝑝=1, . . . ,Π,

𝜓𝑏
𝑖 (𝑡)=𝑉

𝑉 𝜌*
𝑝(𝑡)−(𝑉−𝑈𝑎

𝑖+1(𝑡))𝜌
𝑎
𝑖+1(𝑡)

𝑉 𝜌𝑎
𝑖 (𝑡)

,

𝜓ℎ
𝑖 (𝑡)=𝑉

(︁
1−
(︁
1− 𝑢𝑝(𝑡)

𝑉

)︁
𝜌*
𝑝(𝑡)

𝜌𝑎
𝑖 (𝑡)

)︁
.

(2)

Even if the initial class 𝑎 density profile differs from the
reference, by applying (2) it will converge to (1). Furthermore,
the traffic flow overtaking a platoon with density 𝜌*𝑝 will be
𝑉
(︀
𝜎 − 𝜌*𝑝

)︀
, which is consistent with PDE moving bottleneck

models.
Consider a bottleneck at the location of a lane drop, from

𝑛𝑙− to 𝑛𝑙+ lanes, 𝑛𝑙+ < 𝑛𝑙−. This corresponds to going
from a segment with critical density 𝜎− = 𝑛𝑙−𝜎

𝑙 to 𝜎+ =
𝑛𝑙+𝜎

𝑙, and the capacity of such bottleneck is 𝑞max
𝑏 = 𝑉 𝜎+.

However, due to the capacity drop phenomenon, in case
of excess demand at the bottleneck, its capacity will be
decreased once it becomes congested. A congestion of density
𝜌𝑐 will be formed, with the density of discharging traffic
being 𝜌𝑑. The congestion density 𝜌𝑐 can be calculated from
𝑊 (𝑃− − 𝜌𝑐) =𝑊 𝜎+

𝜎−
(𝑃− − (1− 𝛼)𝜎− − 𝛼𝜌𝑐), so that

𝜌𝑐 =
𝑃−(𝜎− − 𝜎+) + (1− 𝛼)𝜎−𝜎+

𝜎− − 𝛼𝜎+
.

We calculate the discharge density from 𝑉 𝜌𝑑 =𝑊 (𝑃− − 𝜌𝑐):

𝜌𝑑 =
𝜎−𝜎+(1− 𝛼)

𝜎− − 𝛼𝜎+
< 𝜎+. (3)

Since the outflow from the bottleneck is reduced to 𝑞𝑑 =
𝑉 𝜌𝑑 < 𝑉 𝜎+, arriving vehicles will have to wait and their total
travel time increase. We will use the Total Time Spent (TTS),
which is the sum of the total time all vehicles spent on the
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road and the time all vehicles spent queuing at on-ramps, as
the performance index of the system,

TTS =

𝑡end∑︁
𝑡=1

∑︁
𝜅∈𝒦

𝑁∑︁
𝑖=1

(︀
𝜌𝜅𝑖 (𝑡)𝐿+ 𝑛𝜅𝑖,𝑟(𝑡)

)︀
𝑇.

In order to minimize TTS, we need to keep the demand at the
bottleneck as high as possible, while keeping the bottleneck
in free flow.

The multi-class CTM introduced in this section can describe
fairly complex phenomena, but in order to do this and have
a good spatial resolution of the results, we need to use short
cells, which makes simulation and prediction less tractable.
For example, if we want to model platoons in traffic, moving
at speeds different than 𝑉 , we need the cell length 𝐿 to be
at most half of the platoon length. Therefore, 𝐿 will be on
the order of magnitude of tens of meters, so we will need a
large number of cells to describe any longer highway stretch.
This results in a system with 𝑁 |𝒦| states, where |𝒦| is the
number of vehicle classes, and up to 𝑁 |𝒦| control inputs if
we assume that we can set separate free flow speeds 𝑈𝜅

𝑖 (𝑡) for
each class and each cell. In case we want to use this model
to predict the outcome of applying some control action, e.g.,
as a part of optimization-based control, the problem will be
intractable due to the large number of states.

However, we may exploit the specific form of the model
and the problem to perform state-space reduction without any
approximations. Note that if the considered model is deter-
ministic and 𝑈𝜅

𝑖 (𝑡) = 𝑉 for all classes and cells, assuming
the highway was initially in free flow, the only place where
we can expect congestion to emerge is at bottlenecks, where
𝑄max

𝑖+1 < 𝑄max
𝑖 . Elsewhere, if the road is in free flow, the future

traffic density of a cell 𝜌𝜅𝑖 (𝑡+ 𝑗) will be equal to the current
traffic density of an upstream cell, 𝜌𝜅𝑖 (𝑡+ 𝑗) = 𝜌𝜅𝑖−𝑗(𝑡). Owing
to this, we only need to know the initial traffic densities and
follow what happens at the bottlenecks, i.e., how the length of
their queues evolve in time, to have an accurate view of the full
system. In the following section, we will derive such simplified
model, that will then be used to calculate the appropriate
control actions and close the loop.

B. Queueing model

In this work, we study the situation when there is a single
bottleneck at the downstream end of the considered stretch of
highway, and want to predict its outflow based on the control
action we chose for the platoons. Apart from this stationary
bottleneck, platoons themselves can act as moving bottlenecks,
since they will be moving slower than the rest of the traffic.
We propose modeling this highway stretch using a queuing-
based model, with queue length at the stationary bottleneck 𝑛𝑏
and queue lengths at the platoons 𝑛𝑝, 𝑝 = 1, . . . ,Π as the only
states. An example of a traffic situation with its corresponding
queuing representation is shown in Figure 2.

Since this model is used for predicting the evolution of
traffic after some time 𝑡0, we assume that the current traffic
situation 𝜌𝜅𝑖 (𝑡0) is fully known and use this to predict the
future values of system states. We enumerate the platoons
that are on the considered highway segment at 𝑡 = 𝑡0,

𝑝 = 1, . . . ,Π, and denote their position at that time 𝑥𝑝. We
assume that 𝑡0 = 0, and that 𝑡 represents the prediction time
after 𝑡0.

The evolution of the queue at the bottleneck is given by

�̇�𝑏(𝑡) = 𝑞in𝑏 (𝑡)− 𝑞out𝑏 (𝑡), (4)

where the inflow and the outflow are

𝑞in𝑏 (𝑡) = 𝑞𝑢𝑏 (𝑡) + 𝑞𝑉𝑏 (𝑡), (5)

𝑞out𝑏 (𝑡) =

{︃
𝑞in𝑏 (𝑡), 𝑞in𝑏 (𝑡) ≤ 𝑞cap𝑏 ∧ 𝑛𝑏(𝑡) = 0,

𝑞dis𝑏 , 𝑞in𝑏 (𝑡) > 𝑞cap𝑏 ∨ 𝑛𝑏(𝑡) > 0.
(6)

Typically, due to capacity drop, the discharge rate of the queue
at the bottleneck 𝑞dis𝑏 will be lower than its capacity 𝑞cap𝑏 ,
𝑞dis𝑏 < 𝑞cap𝑏 . Mirroring the behaviour of the multi-class CTM,
we set 𝑞cap𝑏 = 𝑉 𝜎+ = 𝑄max

+ and 𝑞dis𝑏 = 𝑉 𝜌𝑑, according to (3).
The inflow to the queue at the bottleneck 𝑞in𝑏 (𝑡) consists of
two parts that travel at different speeds. The first part, 𝑞𝑢𝑏 (𝑡),
models the part of the demand that originates from the arrival
of the platooned vehicles,

𝑞𝑢𝑏 (𝑡)=

{︃
𝑢𝑝𝜎𝑙, 𝑡𝑢𝑝≤𝑡≤𝑡𝑢𝑝+

𝑙𝑝
𝑉 , 𝑝=1, . . . ,Π,

0, otherwise,
(7)

𝑡𝑢𝑝=
𝑋𝑏−𝑥𝑝
𝑢𝑝

,

where 𝑡𝑢𝑝 represents the time at which platoon 𝑝 reaches the
bottleneck, and the second part consists of the background
traffic travelling at free flow speed 𝑉 ,

𝑞𝑉𝑏 (𝑡)=

{︃
𝑞out𝑝 (

𝑥𝑝+𝑉 𝑡−𝑋𝑏

𝑉−𝑢𝑝
), max

{︀
𝑡𝑉𝑝 , 𝑡

𝑢
𝑝−1

}︀
≤𝑡≤𝑡𝑢𝑝 ,

𝑉 𝜌(𝑋𝑏−𝑉 𝑡), otherwise,

𝑝=1, . . . ,Π,

𝑡𝑉𝑝 =
𝑋𝑏−𝑥𝑝
𝑉

.

Here, the position of the bottleneck is 𝑋𝑏 = 𝑥0, and 𝑙𝑝 is the
length of platoon 𝑝. We assume that the platoon will approach
the bottleneck taking up one lane, thus its density will be equal
to the critical density per lane 𝜎𝑙. The second part of the inflow
𝑞𝑉𝑏 (𝑡) originates either from the initial traffic situation,

𝜌(𝑥) =
∑︁

𝜅∈𝒦∖𝒦Π

𝜌𝜅𝑖 (0), 𝑋𝑖 ≤ 𝑥 < 𝑋𝑖+1,

where 𝒦 ∖ 𝒦Π is the set of all vehicle classes excluding the
platooned vehicles class, or is the delayed overtaking flow
of some platoon. Each platoon travels at its individual speed
𝑢𝑝 ≤ 𝑉 , and we assume that this speed is constant during the
prediction horizon. Furthermore, we assume that the platoon
speeds are such that there is no platoon merging prior to
reaching the bottleneck, 𝑡𝑢𝑝−1 > 𝑡𝑢𝑝 .

Under these assumptions, we define the evolution of the
queue at each of the platoons as

�̇�𝑝(𝑡) =
𝑉 − 𝑢𝑝
𝑉

(︀
𝑞in𝑝 (𝑡)− 𝑞out𝑝 (𝑡)

)︀
, 0 ≤ 𝑡 ≤ 𝑡𝑢𝑝 ,

for 𝑝 = 1, . . . ,Π. The evolution of queues is defined until time
𝑡𝑢𝑝 , when the queue at the platoon is added to the queue at the
bottleneck,

𝑛𝑏(𝑡
𝑢
𝑝+) = 𝑛𝑏(𝑡

𝑢
𝑝) + 𝑛𝑝(𝑡

𝑢
𝑝). (8)
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𝑞out2 𝑞out1 𝑞out𝑏

𝑛2 𝑛1 𝑛𝑏
𝑞out2 𝑞out1 𝑞out𝑏

𝑞in2

Fig. 2: Queues corresponding to static and moving bottlenecks. The static bottleneck corresponds to 𝑛𝑏, the downstream platoon
to 𝑛1 and the upstream platoon to 𝑛2. The overtaking flow of the downstream platoon 𝑞out1 is limited to one lane of traffic,
𝑞cap1 = 𝑉 𝜎𝑙, and the overtaking flow of the upstream platoon 𝑞out2 is limited to two lanes of traffic, 𝑞cap2 = 𝑉 2𝜎𝑙. Both the
inflow from the on-ramp and the outflow to the off-ramp will factor in the inflow to the downstream platoon queue 𝑞in1 .

The outflow and inflow are defined the same way as with the
bottleneck queue,

𝑞out𝑝 (𝑡) =

{︃
𝑞in𝑝 (𝑡), 𝑞in𝑝 (𝑡) ≤ 𝑞cap𝑝 (𝑡) ∧ 𝑛𝑝(𝑡) = 0,

𝑞dis𝑝 (𝑡), 𝑞in𝑝 (𝑡) > 𝑞cap𝑝 (𝑡) ∨ 𝑛𝑝(𝑡) > 0,

𝑞in𝑝 (𝑡) =

⎧⎨⎩𝑞out𝑝+1

(︁
(𝑉−𝑢𝑝)𝑡−𝑥𝑝+𝑥𝑝+1

𝑉−𝑢𝑝+1

)︁
, 𝑡 >

𝑥𝑝−𝑥𝑝+1

𝑉−𝑢𝑝
,

𝑉 𝜌(𝑥𝑝 − (𝑉 − 𝑢𝑝)𝑡, 0), 𝑡 ≤ 𝑥𝑝−𝑥𝑝+1

𝑉−𝑢𝑝
,

except here we assume 𝑞dis𝑝 (𝑡) = 𝑞cap𝑝 (𝑡), and allow 𝑞cap𝑝 (𝑡)
to vary in time and be used as a control input. Since the
considered road stretch has three lanes, we assume here that
platoons can either take one lane or two lanes. In case platoon
𝑝 is taking one lane at time 𝑡, we set 𝑞cap𝑝 (𝑡) = 𝑉 (𝜎− − 𝜎𝑙),
and if it is taking two lanes, 𝑞cap𝑝 (𝑡) = 𝑉 (𝜎− − 2𝜎𝑙).

The model can be simplified by adopting a coordinate
transfer 𝜏𝑝 =

𝑥𝑝−𝑋𝑏+𝑉 𝑡
𝑉−𝑢𝑝

, 𝑡 =
𝑉−𝑢𝑝

𝑉 𝜏𝑝 +
𝑋𝑏−𝑥𝑝

𝑉 , for each
platoon, which yields

d𝑛𝑝(𝑡(𝜏𝑝))
d𝜏𝑝

= 𝑞in𝑝 (𝑡(𝜏𝑝))− 𝑞out𝑝 (𝑡(𝜏𝑝)), 𝑡𝑉𝑝 ≤ 𝜏𝑝 ≤ 𝑡𝑢𝑝

and, taking �̃�𝑝(𝜏𝑝) = 𝑛𝑝(𝑡(𝜏𝑝)), 𝑞in𝑝 (𝜏𝑝) = 𝑞in𝑝 (𝑡(𝜏𝑝)), and
𝑞out𝑝 (𝜏𝑝) = 𝑞out𝑝 (𝑡(𝜏𝑝)), we may write

˙̃𝑛𝑝(𝑡) = 𝑞in𝑝 (𝑡)− 𝑞out𝑝 (𝑡), 𝑡𝑉𝑝 ≤ 𝑡 ≤ 𝑡𝑢𝑝 (9)

for each 𝑝 = 1, . . . ,Π. The inflow to the queue at the
bottleneck and at platoons can now be simplified to

𝑞𝑉𝑏 (𝑡) =

{︃
𝑞out𝑝 (𝑡), max

{︀
𝑡𝑉𝑝 , 𝑡

𝑢
𝑝−1

}︀
≤ 𝑡 ≤ 𝑡𝑢𝑝 ,

𝑉 𝜌(𝑋𝑏 − 𝑉 𝑡), otherwise,

𝑞in𝑝 (𝑡) =

{︃
𝑞out𝑝+1(𝑡), 𝑡𝑉𝑝+1 < 𝑡 < 𝑡𝑉𝑝+1,

𝑉 𝜌(𝑋𝑏 − 𝑉 𝑡, 0), 𝑡 ≤ 𝑡𝑉𝑝+1,

and the outflow from the platoon becomes

𝑞out𝑝 (𝑡) =

{︃
𝑞in𝑝 (𝑡), 𝑞in𝑝 (𝑡) ≤ 𝑞cap𝑝 (𝑡) ∧ �̃�𝑝(𝑡) = 0,

𝑞cap𝑝 (𝑡), 𝑞in𝑝 (𝑡) > 𝑞cap𝑝 (𝑡) ∨ �̃�𝑝(𝑡) > 0,
(10)

In case there are on- and off-ramps, their influence can
be added to 𝑞𝑉𝑏 (𝑡) and 𝑞in𝑝 (𝑡). Denoting 𝑞𝑟𝑘(𝑡) the inflow

from an on-ramp (if 𝑞𝑟𝑘(𝑡) ≥ 0), or outflow to an off-ramp
(if 𝑞𝑟𝑘(𝑡) ≤ 0), we may write

𝑞𝑉𝑏 (𝑡) = 𝑞
𝑉 ∖𝑟
𝑏 (𝑡) +

∑︁
𝑘∈𝐾𝑑

𝑜 (𝑡)

𝑞𝑟𝑘(𝑡), (11)

𝑞
𝑉 ∖𝑟
𝑏 (𝑡) =

{︃
𝑞out𝑝 (𝑡), max

{︀
𝑡𝑉𝑝 , 𝑡

𝑢
𝑝−1

}︀
≤ 𝑡 ≤ 𝑡𝑢𝑝 ,

𝑉 𝜌(𝑋𝑏 − 𝑉 𝑡), otherwise,

𝐾𝑑
𝑜 (𝑡) =

{︃
𝐾𝑏

𝑝(𝑡), max
{︀
𝑡𝑉𝑝 , 𝑡

𝑢
𝑝−1

}︀
≤ 𝑡 ≤ 𝑡𝑢𝑝 ,

𝐾𝑏
𝜌(𝑡), otherwise.

For the inflow to the queue at platoons, we write

𝑞in𝑝 (𝑡) = 𝑞𝑖𝑛∖𝑟𝑝 (𝑡) +
∑︁

𝑘∈𝐾𝑑
𝑜 (𝑡)

𝑞𝑟𝑘(𝑡), (12)

𝑞𝑖𝑛∖𝑟𝑝 (𝑡) =

{︃
𝑞out𝑝+1(𝑡), 𝑡 > 𝑡𝑉𝑝+1,

𝑉 𝜌(𝑋𝑏 − 𝑉 𝑡), 𝑡 ≤ 𝑡𝑉𝑝+1,

𝐾𝑑
𝑜 (𝑡) =

{︃
𝐾𝑝

𝑝+1(𝑡), 𝑡 > 𝑡𝑉𝑝+1,

𝐾𝑝
𝜌 (𝑡), 𝑡 ≤ 𝑡𝑉𝑝+1.

Here, 𝑞𝑟𝑘(𝑡) = 𝑞𝑟𝑘(𝑡 −
𝑋𝑏−𝑋𝑟

𝑘

𝑉 ), and 𝐾𝑑
𝑜 (𝑡) are sets of indices

of all on- and off-ramps with positions 𝑋𝑟
𝑘 < 𝑋𝑏 between

the bottleneck or platoon 𝑝, and the place where their inflows
would originate from,

𝐾𝑏
𝑝(𝑡) =

{︀
𝑘
⃒⃒
𝑥𝑢𝑝(𝑡) < 𝑋𝑟

𝑘 ≤ 𝑋𝑏, 𝑡 ≥ 𝑡𝑟𝑘
}︀
,

𝐾𝑏
𝜌(𝑡) = {𝑘 |𝑋𝑏 − 𝑉 𝑡 < 𝑋𝑟

𝑘 ≤ 𝑋𝑏, 𝑡 ≥ 𝑡𝑟𝑘 } ,
𝐾𝑝

𝑝+1(𝑡) =
{︀
𝑘
⃒⃒
𝑥𝑢𝑝+1(𝑡) < 𝑋𝑟

𝑘 ≤ 𝑥𝑢𝑝(𝑡), 𝑡 ≥ 𝑡𝑟𝑘
}︀
,

𝐾𝑝
𝜌 (𝑡) =

{︀
𝑘
⃒⃒
𝑋𝑏 − 𝑉 𝑡 < 𝑋𝑟

𝑘 ≤ 𝑥𝑢𝑝(𝑡), 𝑡 ≥ 𝑡𝑟𝑘
}︀
,

𝑡𝑟𝑘 =
𝑋𝑏 −𝑋𝑟

𝑘

𝑉
,

and we define 𝑥𝑢𝑝(𝑡) as

𝑥𝑢𝑝(𝑡) =
𝑢𝑝𝑉 𝑡+ 𝑉 𝑥𝑝 − 𝑢𝑝𝑥𝑝

𝑉 − 𝑢𝑝
.

Note that 𝑞𝑟𝑘(𝑡) will depend on the local traffic conditions
around 𝑋𝑟

𝑘 at time 𝑡. Furthermore, since a portion of the queue
at the platoon will also leave the road via the off-ramp, we
reduce �̃�𝑝 at the time when the platoon reaches it,

�̃�𝑝(𝑡+) = �̃�𝑝(𝑡)−Δ𝑟,𝑘
𝑝 (𝑡), 𝑥𝑢𝑝(𝑡) = 𝑋𝑟

𝑘 , (13)
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Fig. 3: Illustration of the queueing model. The dotted lines
represent free flow propagation. Platoon trajectories are shown
in red. As shown in the figure, at 𝑡 = 𝑡′, inflow to the
bottleneck is 𝑞in𝑏 (𝑡′) = 𝑉 𝜌(𝑋 ′). At 𝑡 = 𝑡′′, inflow to the
bottleneck is 𝑞in𝑏 (𝑡′′) = 𝑞out1 (𝑡′′), and inflows to the platoons
𝑞in1 (𝑡′′) = 𝑞out2 (𝑡′′), and 𝑞in2 (𝑡′′) = 𝑉 𝜌(𝑡′′). Ramp 𝑘 will affect
𝑞in2 (𝑡) for 𝑋𝑏−𝑋𝑟

𝑘

𝑉 < 𝑡 ≤ 𝑡𝑢2 , 𝑞in3 (𝑡) while 𝑥𝑢3 (𝑡) ≥ 𝑋𝑟
𝑘 and

𝑡 < 𝑡𝑢3 , and 𝑞in𝑏 (𝑡) for the rest of time.

and the part of the queue �̃�𝑝(𝑡) that leaves the highway,
Δ𝑟,𝑘

𝑝 (𝑡), depends on the ratio of off-ramp-bound vehicles in
the platoon queue.

An illustration of the derivation of the proposed model is
given in Figure 3. In summary, the proposed model consists
of Π+ 1 states, whose evolution is described by (4) and (9).
Inflow to the bottleneck is given by (5), and consists of the
background traffic travelling at free flow speed (11), and the
platoons (7). Outflow from the bottleneck is (6), and there are
discontinuous jumps in this state triggered by the arrival of
platoons at the bottleneck, (8). For each platoon queue, inflow
is given by (12), outflow by (10), and there is a discontinuous
jump in the state when the platoon passes an off-ramp, (13).
The model can be described as a tandem queuing system, with
saturation and hysteresis, time-varying structure and jumps.

III. CONTROL DESIGN

Having defined the simplified model of the system, in this
section we will formulate a control law for improving the
throughput of the system. In general, the control objective we
consider can be formulated as shaping the traffic flow at some
position. We are looking to maximize the outflow from the
bottleneck, which in case there are no off-ramps corresponds
to minimizing the total travel time. In case there are off-ramps
the total outflow of the mainstream and of the off-ramps needs
to be maximized instead. We first consider the case when there
are no on- or off-ramps and then extend the control to include
on- and off-ramps.

The main idea of the proposed control law is to use the
platoons as controlled moving bottlenecks whose speed and

severity we can control. We control the moving bottleneck
speed by changing the reference speed of the platooned
vehicles, and the moving bottleneck severity by changing how
many lanes the platoon takes by splitting the platoon and
commanding half of the vehicles to drive in parallel to the
other half, in the adjacent lane. By doing this, we are able to
first help dissipate the congestion and the static bottleneck, by
restricting the flow as much as possible, and then dissipate the
congestion in the wake of the moving bottleneck, by reducing
the moving bottleneck severity while making sure the static
bottleneck remains in free flow. The proposed control laws
rely on the simplified queuing prediction model, and will be
described in the remainder of the chapter.

A. Ideal actuation

In order to have a baseline for comparing the performance of
our proposed control laws, we first consider the ideal case, as-
suming we can fully control all traffic, and that we can control
every class of traffic independently. This corresponds to having
a 100% penetration rate of connected, communicating, and
controlled vehicles, and knowing each vehicle’s destination.
Since we already assumed that the demand of off-ramp-bound
vehicles is lower than the capacity of the off-ramp, we only
need to minimally delay the mainstream-bound background
traffic so that the demand at the bottleneck never exceeds its
capacity. This is equivalent to ensuring that the traffic density
immediately upstream of the bottleneck 𝜌𝑖𝑏(𝑡) ≤ 𝜎+ for all 𝑡,
and can be achieved by setting

𝑈 𝑏
𝑖𝑏
(𝑡)=𝑉,

𝑈 𝑏
𝑖 (𝑡)=min

{︀
𝑉,max

{︀
𝑈 𝑏
min, 𝜓

𝑏
𝑖 (𝑡)
}︀}︀

, 𝑖=1, . . . , 𝑖𝑏−1

𝜓𝑏
𝑖 (𝑡)=

𝑉

𝜌𝑏𝑖 (𝑡)

(︃
𝜌𝑏*𝑖 (𝑡)−

𝑉 −𝑈 𝑏
𝑖+1(𝑡)

𝑉
𝜌𝑏𝑖+1(𝑡)

)︃
,

𝜌𝑏*𝑖 (𝑡)=

{︃
𝜎+−𝜌*𝑝,

𝑋𝑏−𝑥𝑝(𝑡)
𝑢𝑝(𝑡)

<𝑋𝑏−𝑋𝑖

𝑉 <
𝑋𝑏−𝑥𝑝(𝑡)+𝑙𝑝(𝑡)

𝑢𝑝(𝑡)
+ 𝐿

𝑉 ,

𝜎+, otherwise,

𝑝=1, . . . ,Π.

(14)

This way, the mainstream-bound background traffic is regu-
lated so that the total demand at the bottleneck, including the
arriving platoons, is kept as close to its capacity as possi-
ble without exceeding it. The mainstream-bound background
traffic is delayed minimally, while the platoons and the off-
ramp-bound background traffic experience no delay, travelling
at their respective maximum speeds.

B. Platoon-actuation not aware of on- or off-ramps

The control objective, maximizing the throughput, i.e.,
the outflow 𝑞out𝑏 , can be achieved by keeping 𝑛𝑏 = 0 and
𝑞in𝑏 = 𝑞cap𝑏 . Additionally, we require that the queue at the
platoon is already discharged when the platoon reaches the
bottleneck, 𝑛𝑝(𝑡𝑢𝑝) = 0. Therefore we employ control law

𝑞cap𝑝 (𝑡) =

⎧⎪⎨⎪⎩
𝑞ref(𝑡), 𝑛𝑏(𝑡) = 0 ∧ 𝑡 ≥ 𝑡𝑢𝑝−1,

𝑞cap𝑝−1(𝑡), �̃�𝑝−1(𝑡) = 0 ∧ 𝑡 < 𝑡𝑢𝑝−1,

𝑄lo, otherwise,
(15)
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where the reference flow 𝑞ref(𝑡) can be externally determined.
For maximizing the throughput, we set

𝑞ref(𝑡) = 𝑄hi − 𝑞𝑢𝑏 (𝑡),

taking the largest admissible 𝑄hi ≤ 𝑞cap𝑏 . In order to compute
the current 𝑞cap𝑝 (𝑡) = 𝑞cap𝑝 (𝑡𝑉𝑝 ) for all platoons, we need to
predict 𝑛𝑏 until 𝑡𝑉Π , which requires calculating 𝑞capΠ (0) and
𝑞cap𝑝 (𝑡) for 0 ≤ 𝑡 ≤ min

{︀
𝑡𝑢𝑝 , 𝑡

𝑉
Π

}︀
.

Assuming this control law is applied, we set the speed of
each platoon so that 𝑛𝑝(𝑡𝑢𝑝) = 0 and 𝑛𝑏(𝑡) = 0, 𝑡𝑐𝑝 ≤ 𝑡 ≤ 𝑡𝑢𝑝 ,
with minimum 𝑡𝑐𝑝, where

𝑡𝑐𝑝 ≥ max

{︂
𝑡𝑉𝑝 , 𝑡

𝑢𝑝−1

𝑝−1 +
𝑙𝑝−1

𝑉

}︂
.

This is achieved when

�̃�𝑝(𝑡
𝑢
𝑝)=�̃�𝑝(𝑡

𝑐
𝑝)+

𝑡𝑢1∫︁
𝑡𝑐𝑝

𝑞in1 (𝑡)d𝑡−𝑄hi(𝑡𝑢1−𝑡𝑐1)=0. (16)

For 𝑝 = 1, in case it is known that 𝑡𝑉2 < 𝑡𝑢1 , (16) simplifies to

�̃�1(𝑡
𝑢
1 ) = �̃�1(𝑡

𝑉
2 ) +𝑄lo(𝑡𝑢1 − 𝑡𝑐1)−𝑄hi(𝑡𝑢1 − 𝑡𝑐1) = 0,

𝑢1 =

(︀
𝑄hi −𝑄lo

)︀
(𝑋𝑏 − 𝑥1)

�̃�1(𝑡𝑉2 ) + (𝑄hi −𝑄lo) 𝑡𝑐1
,

since we can explicitly calculate

�̃�1(𝑡
𝑉
2 ) =

∫︁ 𝑡𝑉2

𝑡𝑉1

𝑉 𝜌(𝑋𝑏 − 𝑉 𝑡, 0)d𝑡−𝑄lo(𝑡𝑉2 − 𝑡𝑉1 ).

Otherwise, 𝑢𝑝 is calculated by solving (16) numerically, and
can be obtained as a by-product of iterating the prediction
steps for 𝑛𝑏 and �̃�𝑝. The simplest way of calculating 𝑢𝑝 is to
initialize it to

min

{︂
𝑈max, 𝑢𝑝−1

𝑋𝑏 − 𝑥𝑝
𝑋𝑏 − 𝑥𝑝−1 + 𝑙𝑝−1

}︂
,

and then decrease it until either 𝑢𝑝 = 𝑈min or (16) is satisfied.
This also ensures that 𝑢𝑝 is constrained to be within the range

𝑈min ≤ 𝑢𝑝 ≤ min

{︂
𝑈max, 𝑢𝑝−1

𝑋𝑏 − 𝑥𝑝
𝑋𝑏 − 𝑥𝑝−1 + 𝑙𝑝−1

}︂
,

which is required for the limitations to be met if there is no
platoon merging.

C. Platoon-actuation aware of on- or off-ramps

Consider now the case when there are on- or off-ramps.
In order to predict the evolution of queues, which is needed
for computing the control inputs, we need to know the ramp
flows 𝑞𝑟𝑘(𝑡) in advance. This information can be hard to obtain,
since it will depend on the routing decisions of individual
drivers constituting the background traffic. Therefore, we use
the predicted ramp flows.

If ramp 𝑘 is an on-ramp, we can replace the actual ramp flow
with its average 𝑞𝑟𝑘 = 𝑞𝑟𝑘, which in reality can be determined
statistically. If ramp 𝑘 is an off-ramp, we can employ the

standard assumption that some constant ratio of vehicles 𝑅𝑘

leave the road via the off-ramp. We can then write

𝑞𝑟𝑘(𝑡)=−𝑅𝑘

⎛⎝𝑞𝑖𝑛,𝑟𝑘 (𝑡)+
∑︁

𝑙∈𝐾𝑘,𝑟
𝑜 (𝑡)

𝑞𝑟𝑙 (𝑡)

⎞⎠ ,

𝑞𝑖𝑛,𝑟𝑘 (𝑡)=

{︃
𝑞𝑉𝑏 (𝑡), 𝑥𝑢1 (𝑡)<𝑥

𝑟
𝑘<𝑋𝑏

𝑞out𝑝+1(𝑡), 𝑥𝑢𝑝+1(𝑡)<𝑥
𝑟
𝑘<𝑥

𝑢
𝑝(𝑡)

𝐾𝑘,𝑟
𝑜 (𝑡)=

⎧⎪⎨⎪⎩
{𝑙|𝑥𝑢1 (𝑡)<𝑥𝑟𝑙 <𝑥𝑟𝑘} , 𝑡>𝑡𝑉1 , 𝑥

𝑟
𝑘<𝑥

𝑢
𝑝−1(𝑡){︀

𝑙|𝑥𝑢𝑝(𝑡)<𝑥𝑟𝑙 <𝑥𝑟𝑘
}︀
, 𝑥𝑟𝑘<𝑥

𝑢
𝑝−1(𝑡), 𝑝>1

{𝑙|𝑋𝑏−𝑉 𝑡<𝑥𝑟𝑙 <𝑥𝑟𝑘} ,otherwise

depending on the origin of the flow to off-ramp 𝑘 at time 𝑡.
The portion of queue at platoon 𝑝 that leaves the highway

at off-ramp 𝑘 can be estimated to be

�̃�𝑝(𝑡+) = (1−𝑅𝑘)�̃�𝑝(𝑡), 𝑥𝑢𝑝(𝑡) = 𝑥𝑟𝑘,

and we may now apply a control law similar to the one derived
for the case when there are no on- and off-ramps.We modify
(15) to take into account the fact that there might be some off-
ramps 𝑘 ∈ 𝐾* whose flow we do not want to obstruct. Since it
is not possible to selectively allow the off-ramp-bound traffic
to pass without also releasing the mainstream-bound traffic,
we will only allow unrestricted flow towards those off-ramps
by setting 𝑞cap𝑝 = 𝑄hi if there are other platoons downstream
that are regulating the inflow to the bottleneck. The updated
control law is

𝑞cap𝑝 (𝑡)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑞ref(𝑡), 𝑛𝑏(𝑡)=0∧𝑡≥𝑡𝑢𝑝−1,

𝑄hi, 𝐾𝑝−1*
𝑝 (𝑡) ̸=∅∧𝑡<𝑡𝑢𝑝−1,

𝑞cap𝑝−1(𝑡),𝐾
𝑝−1*
𝑝 (𝑡)=∅∧�̃�𝑝−1(𝑡)=0∧𝑡<𝑡𝑢𝑝−1,

𝑄lo, otherwise,

(17)

where 𝐾𝑝*
𝑝 (𝑡) = 𝐾𝑝

𝑝+1(𝑡) ∩𝐾*.
The platoon speeds are again obtained in the course of

predicting the queue evolution, as described in the previous
subsection.

IV. ANALYSIS

In order to understand the effects and limitations this control
law will have in realistic situations, we first study it under
simplified conditions, in an idealised situation. Whereas in
simulations the inflow of background traffic will vary in time
and take random values belonging to some range, and platoons
arrive with exponentially distributed gaps, we first assume
constant background traffic inflow 𝑄in(𝑡) = 𝑄in and periodic
platoon arrivals, with period 𝜏𝜋 , and each platoon consisting
of 𝑛𝜋 passenger car equivalents, and then allow the inflow
and gaps between two platoons vary within some range. In
this section, we derive:

1) Exact limits on the maximum initial excess congestion for
which the controlled system is stable, assuming constant
inflow and periodic platoon arrivals,

2) The number of controlled platoons required to fully
dissipate the congestion at a static bottleneck and return
the road to the unperturbed free flow state, and
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3) An estimate of throughput given varying inflow and gap
between platoons, i.e., the average inflow for which we
are able to dissipate the congestion at the bottleneck with
a predefined probability.

The bottleneck will be considered to have capacity 𝑞cap𝑏 ,
which is reduced to 𝑞dis𝑏 in case there is capacity drop,
𝑞dis𝑏 < 𝑞cap𝑏 . We study the case when the bottleneck is already
congested at initial time. If the platoon arrives at a congested
bottleneck, its vehicles are added to the bottleneck queue.
Otherwise, if there is no queue at the platoon and it arrives
at a bottleneck in free flow, the platoon passes through the
bottleneck without causing traffic breakdown.

In summary, the system that we study in this section is

�̇�𝑏(𝑡)= 𝑞in𝑏 (𝑡)− 𝑞out𝑏 (𝑡),

𝑞in𝑏 (𝑡)=

{︃
𝑞out𝑝 , max

{︀
𝑡𝑉𝑝 , 𝑡

𝑢
𝑝−1

}︀
≤ 𝑡 ≤ 𝑡𝑢𝑝 ,

𝑄in(𝑡), otherwise,

𝑞out𝑏 (𝑡)=

{︃
𝑞in𝑏 (𝑡), 𝑞in𝑏 (𝑡) ≤ 𝑞cap𝑏 ∧ 𝑛𝑏(𝑡) = 0,

𝑞dis𝑏 , 𝑞in𝑏 (𝑡) > 𝑞cap𝑏 ∨ 𝑛𝑏(𝑡) > 0,

˙̃𝑛𝑝(𝑡)= 𝑞in𝑝 (𝑡)− 𝑞out𝑝 (𝑡),

𝑞in𝑝 (𝑡)=

{︃
𝑞out𝑝+1, 𝑡𝑉𝑝+1 < 𝑡 < 𝑡𝑢𝑝+1,

𝑄in(𝑡), 𝑡 ≤ 𝑡𝑉𝑝+1,

𝑞out𝑝 (𝑡)=

{︃
𝑞in𝑝 (𝑡), 𝑞in𝑝 (𝑡) ≤ 𝑞cap𝑝 (𝑡) ∧ �̃�𝑝(𝑡) = 0,

𝑞dis𝑝 , 𝑞in𝑝 (𝑡) > 𝑞cap𝑝 (𝑡) ∨ �̃�𝑝(𝑡) > 0,

𝑛𝑏(𝑡
𝑢
𝑝+)=

{︃
𝑛𝑏(𝑡

𝑢
𝑝)+𝑛𝑝(𝑡

𝑢
𝑝)+𝑛𝜋, 𝑛𝑏(𝑡

𝑢
𝑝)+�̃�𝑝(𝑡

𝑢
𝑝)>0,

0, 𝑛𝑏(𝑡
𝑢
𝑝)+�̃�𝑝(𝑡

𝑢
𝑝)=0,

𝑝= 1, . . . ,Π

(18)

where 𝑞cap𝑝 (𝑡) is governed by control law (15).

A. Constant inflow and periodic platoon arrivals
We study the stability of the queue at the bottleneck under

conditions of constant inflow and periodic platoon arrivals for
different initial bottleneck queue lengths. First, in case no
control is applied, the system is stable if

�̃�in = 𝑄in +
𝑛𝜋
𝜏𝜋

< 𝑞dis𝑏 ,

i.e., if the average total inflow is less than the dissipating
flow of the bottleneck, and its queue length will go to zero
regardless of its initial value.

However, if the platoons can be controlled, we are able to
extend the range of 𝑄in for which the system is stable. In
this case, it is of interest to study what is the maximum initial
queue length �̄�0𝑏 for which the system is stable for every given
𝑄in. We control the platoons by setting their speeds and how
many lanes they take. The platoon speed can range from some
set minimum speed 𝑈min to the free flow speed of all traffic 𝑉 .
By setting the number of lanes a platoon occupies, we control
the maximum overtaking flow at its position, with overtaking
flow of 𝑄lo corresponding to maximum number of lanes taken,
and 𝑄hi corresponding to one lane taken.

The case we are considering assumes that the flow values
are arranged as

𝑄lo < 𝑞dis𝑏 < 𝑄in < �̃�in < 𝑄hi ≤ 𝑞cap𝑏 , (19)

and the uncontrolled system is unstable. The length of the
considered road segment is ℓ and a platoon moving at speed
𝑢𝑘 traverses it and reaches the bottleneck after

𝜏𝑘𝑝 =
ℓ

𝑢𝑘
.

We can define the initial queue length �̄�0𝑏 = 𝑛𝑏(ℓ/𝑉 ) as the
queue length at the bottleneck at the time when the overtaking
flow from the platoon reaches it. This is equivalent to saying
that there is �̄�0𝑏 excess congestion to be dissipated, signifying
how many vehicles need to be temporarily removed from the
inflow in order for the bottleneck to return to free flow. For the
first platoon entering the road segment, the entire congestion
will be located at the bottleneck, and for subsequent platoons,
the initial excess congestion �̄�𝑘𝑏 will be distributed between the
bottleneck and downstream platoons that previously entered
the road. The system is stable if �̄�𝑘+1

𝑏 < �̄�𝑘𝑏 , i.e., if every
subsequent platoon has less excess congestion to dissipate.
Since we are looking for maximum �̄�𝑘𝑏 for which this holds, we
study the situation when maximum control action is applied,
corresponding to setting the platoon speed to 𝑢𝑘 = 𝑈min with
maximum overtaking flow 𝑄lo until the queue at the bottleneck
is dissipated, which happens after

𝜏𝑘𝑐 =
�̄�𝑘𝑏

𝑞dis𝑏 −𝑄lo
.

Moving at minimum speed, a platoon will reach the bottleneck
after

𝜏max
𝑝 =

ℓ

𝑈min
,

so a necessary condition to be able to begin dissipating the
congestion is that 𝜏max

𝑝 > 𝜏𝑘𝑐 , which yields

�̄�0𝑏 <
𝑞dis𝑏 −𝑄lo

𝑈min
ℓ.

The process of dissipating excess congestion can be split
into two phases. In the first phase, maximum control action
is applied and there is a queue at the platoons when they
reach the bottleneck. Given excess congestion �̄�𝑘𝑏 , the excess
congestion left for platoon 𝑘 + 1 to dissipate can be written
as

�̄�𝑘+1
𝑏 = 𝑎�̄�𝑘𝑏 + 𝑏, (20)

where

𝑎 =
𝑄hi −𝑄lo

𝑞dis𝑏 −𝑄lo
> 1, (21)

𝑏 = 𝜏𝜋
(︀
𝑄in − 𝑞dis𝑏

)︀
+ 𝑛𝜋 − 𝜏max

𝑝

(︀
𝑄hi − 𝑞dis𝑏

)︀
< 0. (22)

Therefore, the stability condition of (20) is

�̄�𝑘𝑏 <
𝑏

1− 𝑎
.

Starting with �̄�0𝑏 , we can calculate �̄�𝑘𝑏 by recursing (20),

�̄�𝑘𝑏 = 𝑎𝑘�̄�0𝑏 +

𝑘−1∑︁
𝑖=0

𝑎𝑖𝑏.
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The second phase begins with platoon 𝑘 able to dissipate
all excess congestion and reach the bottleneck with no queue.
This happens when �̄�𝑘𝑏 < 𝑐, where

𝑐 =
(︀
𝑞dis𝑏 −𝑄lo

)︀(︂
𝜏max
𝑝 − 𝜏𝜋

𝑄in −𝑄lo

𝑄hi −𝑄lo

)︂
, (23)

and given �̄�0𝑏 , the transition into the second phase of conges-
tion dissipation after 𝑘′ platoons, where 𝑘′ is the lowest integer
such that

𝑎𝑘
′
�̄�0𝑏 +

𝑘′−1∑︁
𝑖=1

𝑎𝑖𝑏 ≤ 𝑐.

Since in this phase the platoons will be reaching the bottleneck
that is in free flow, and with no queues, in this phase we may
approximate 𝑛𝜋 ≈ 0.

The minimum time when platoon 𝑘 can reach the bottleneck
with no queue is

𝜏𝑘𝑝 =
�̄�𝑘𝑏

𝑞dis𝑏 −𝑄lo
+ 𝜏𝜋

𝑄in −𝑄lo

𝑄hi −𝑄lo
, (24)

in which case the platoon is travelling at speed

𝑢𝑘 =
𝑙

𝜏𝜋
𝑄in−𝑄lo

𝑄hi−𝑄lo +
�̄�𝑘
𝑏

𝑞dis
𝑏 −𝑄lo

.

Substituting (20) into (24) we get

𝜏𝑘+1
𝑝 = 𝜏𝑘𝑝 − 𝜏𝜋

𝑄hi −𝑄in

𝑄hi −𝑄lo
,

and the speed of platoon 𝑘 + 1 will be

𝑢𝑘+1
𝑝 =

𝑙
𝑙
𝑢𝑘

− 𝜏𝜋
𝑄hi−𝑄in

𝑄hi−𝑄lo

.

The traffic will return to the unperturbed state after platoon
𝑘′′ for which

𝜏𝑘
′′

𝑝 =
𝑙

𝑢𝑘′′
𝑝

≤ 𝜏𝜋,

or equivalently,

�̄�𝑘
′

𝑏 ≤
(︀
𝑞dis𝑏 −𝑄lo

)︀(︂
𝜏min
𝑝 − 𝜏𝜋

𝑄in −𝑄lo

𝑄hi −𝑄lo

)︂
.

Given 𝜏𝑘
′

𝑝 < 𝜏max
𝑝 , we can calculate 𝑘′′ by rounding up

𝑘′′ =

⌈︃
𝜏𝑘

′

𝑝 − 𝜏𝜋

𝜏𝜋
𝑄hi−𝑄in

𝑄hi−𝑄lo

⌉︃
.

We summarize the analysis in this proposition:

Proposition 1. Assuming constant inflow 𝑄in(𝑡) = 𝑄in,
periodic arrival of platoons with period 𝜏𝜋 and ordering
of flow values (19), the queue length 𝑛𝑏(𝑡) of system (18)
controlled by control law (15) is stable and will remain 0
after some time 𝑡, if the initial queue length satisfies

�̄�0𝑏 <
𝑏

1− 𝑎
,

where 𝑎 and 𝑏 are given by (21) and (22), respectively, and
�̄�0𝑏 = 𝑛𝑏(

ℓ
𝑉 ). Furthermore, if this condition is satisfied , the

system returns to the unperturbed state with 𝑛𝑏(𝑡) = 0 and
�̃�𝑝(𝑡) = 0 after platoon 𝑘′′ reaches the bottleneck.

B. Varying inflow and platoon arrivals

The uncertainty coming from the varying inflow of back-
ground traffic and random platoon arrivals can be modelled
by adding another term to (20):

�̄�𝑘+1
𝑏 = 𝑎�̄�𝑘𝑏 + 𝑏+ 𝛿𝑘, (25)

where 𝛿𝑘 = 𝛿𝑘𝜏𝜋 (𝑄
in − 𝑞dis𝑏 ) + 𝜏𝜋𝛿

𝑘
𝑄in + 𝛿𝑘𝜏𝜋𝛿

𝑘
𝑄in , 𝛿𝑘𝜏𝜋 is the

difference of the gap between platoon 𝑘 − 1 and 𝑘 from 𝜏𝜋 ,
and 𝛿𝑘𝑄in is the difference of the average inflow from 𝑄in

during that time. We may also write

�̄�𝑘𝑏 = 𝑎𝑘�̄�0𝑏 +

𝑘−1∑︁
𝑖=0

𝑎𝑘−1−𝑖
(︀
𝛿𝑖 + 𝑏

)︀
.

Proposition 2. Assuming that
⃒⃒
𝛿𝑘
⃒⃒
< Δ < |𝑏|, if for any 𝑘 we

have

�̄�𝑘𝑏 <
𝑏+Δ

1− 𝑎
, (26)

with 𝑎 given by (21) and 𝑏 by (22), then system (25) is stable,
so we are able to dissipate the congestion at the bottleneck.
Conversely, if for any 𝑘 we have

�̄�𝑘𝑏 >
𝑏−Δ

1− 𝑎
, (27)

then system (25) is unstable, so in that case the queue at the
bottleneck will grow unbounded.

Consequently the conclusions about stability can be ex-
tended to system (18) if a suitable bound on uncertainty Δ
can be derived.

For the initial excess congestion between these two values,
𝑏+Δ
1−𝑎 < �̄�0𝑏 <

𝑏−Δ
1−𝑎 , �̄�𝑘𝑏 will almost surely satisfy either condi-

tion (26) or (27) for some 𝑘, after which the queue stability
does not depend on 𝛿𝑘. Assuming uniformly distributed 𝛿𝑘,
with E

{︀
𝛿𝑘
}︀
= 0, Var

{︀
𝛿𝑘
}︀
= Δ2

3 (e.g., if 𝛿𝑘 ∼ 𝒰 [−Δ,Δ]),
the probability of �̄�𝑘𝑏 satisfying (27) (i.e., failing to decongest
the bottleneck) closely follows the logistic curve depending
on �̄�0𝑏 ,

𝒫𝑢𝑛𝑠(�̄�
0
𝑏) ≈

(︃
1 + exp

(︃
𝑏

1−𝑎 − �̄�0𝑏
Δ
4

)︃)︃−1

and the probability of �̄�𝑘𝑏 satisfying (26) for some
𝑘 (i.e., successfully decongesting the bottleneck) is
𝒫𝑠𝑡𝑎(�̄�

0
𝑏) = 1− 𝒫𝑢𝑛𝑠(�̄�

0
𝑏).

Finally, we may define the estimate of throughput of the
controlled system as the maximum 𝑄in for which the control
algorithm is able to decongest the bottleneck with probability
𝒫*, given an appropriately chosen �̄�0𝑏 . This yields the bound
on 𝑄in,

�̃�in
�̄�0
𝑏 ,𝒫*,Δ=𝑞dis𝑏 +

𝑄hi−𝑞dis𝑏

𝜏𝜋

⎛⎝𝜏max
𝑝 −

�̄�0𝑏+
Δ
4 log

(︁
𝒫*

1−𝒫*

)︁
𝑞dis𝑏 −𝑄lo

⎞⎠ .

One suitable choice for �̄�0𝑏 is to take

�̄�0𝑏=
(︀
𝑞dis𝑏 −𝑄lo

)︀(︀
𝜏max
𝑝 −𝜏𝜋

)︀
+𝑛𝜋+

𝑄hi−𝑞dis𝑏

𝑞dis𝑏 −𝑄lo
Δ
4 log

(︁
𝒫*

1−𝒫*

)︁
,
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in which case we have

�̃�in
𝒫*,Δ=𝑄hi−𝑄hi−𝑞dis

𝑏

𝑞dis𝑏 −𝑄lo

(︂
𝑛𝜋

𝜏𝜋
+𝑄hi−𝑄lo

𝑞dis𝑏 −𝑄lo
Δ
4

log( 𝒫*
1−𝒫*)
𝜏𝜋

)︂
, (28)

and thus �̄�0𝑏 is equal to 𝑐 from condition (23) with
𝑄in = �̃�in

𝒫*,Δ − 𝑛𝜋

𝜏𝜋
.

V. SIMULATION-BASED VALIDATION

In order to assess the performance of the proposed control
laws, we conducted a number of simulation runs, results
of which will be presented in this section. We demonstrate
the control laws’ effectiveness and show that we are able
to eliminate 52.7% of the total delay due to congestion
experienced by all vehicles on average, or 75.6% of the total
delay by median, compared to the case when no control is
applied.

The simulations were executed on a 5 km long stretch of
highway, illustrated by Figure 2, with an on-ramp around the 2
km mark, and an off-ramp around the 3 km mark. Most of the
highway stretch has three lanes, corresponding to a critical
density of 𝜎− = 60 veh/km and capacity of 𝑄max

− = 6000
veh/h, with free flow speed of 𝑉 = 100 km/h. There is a
bottleneck caused by a lane drop 80 m upstream of the end of
the considered stretch, with capacity of 𝑄max

+ = 4000 veh/h.
The capacity drop phenomenon is modelled with 𝛼 = 0.4,
which causes the bottleneck capacity to be reduced to 𝑄dis

+ =
3273 veh/h, representing a 18.2% capacity drop for this road
configuration.

We considered three classes of traffic: class 𝑎 consists of
the platoons we control, class 𝑏 is the mainstream-bound
background traffic, and class 𝑐 the off-ramp-bound background
traffic. The arrival of class 𝑎 vehicles is modelled as Poisson
process with Poisson arrival rate of 𝜆 = 81 platoon/h,
𝜏𝜋 = 0.0123 h. We assume that each platoon consists of 2
passenger car equivalents, although in reality, due to having
shorter inter-vehicular gaps, these platoons might be up to
about five passenger cars or about three trucks long. This
effect was not included in calculating the TTS, and including
it would only further emphasize the benefits of proposed
control. The inflow of background traffic is assumed to be
time-varying and uniformly distributed, changing every 14.4
seconds. At the beginning of the highway segment, the de-
mand of mainstream-bound background traffic takes values
in 𝑟𝑏1(𝑡) ∼ 𝒰(1000, 2000) veh/h, and the demand of off-
ramp bound traffic is 𝑟𝑐1(𝑡) ∼ 𝒰(750, 1250) veh/h. Since the
on-ramp and off-ramp are reasonably close, we assume that
none of the vehicles entering the highway via the on-ramp
will exit it via the off-ramp, 𝑟𝑐𝑖on(𝑡) = 0 veh/h. The demand
of mainstream-bound traffic at the on-ramp is modelled as
𝑟𝑏𝑖on(𝑡) ∼ 𝒰(900, 1500) veh/h.

With the parameters specified in previous paragraph, we
may calculate an estimate of the throughput that we may
achieve by applying the presented control law. Using (28)
with Δ = 𝜏𝜋

(︀
max

(︀
𝑟𝑏1 + 𝑟𝑏𝑖on

)︀
−E
{︀
𝑟𝑏1 + 𝑟𝑏𝑖on

}︀)︀
and 𝒫*= 0.9,

we estimate that the throughput would be improved from
�̃�in

unc = 3273 veh/h to �̃�in
𝒫*,Δ = 3513.2 veh/h. Note that

in deriving (28) we do not take into account the existence of
the on-ramp.

The duration of each simulation run is 2 hours, of which
the background traffic inflow is halved for the first 3 minutes,
in order to properly initialize the system, and for the last 12
minutes, in order to allow the traffic to return to free flow
and ensure fair comparison between different control laws.
Simulations are done with four cases of control:
(a) No control,
(b) Platoon-actuated control ignoring on- and off-ramps from

Subsection III-B, with 𝑞cap𝑝 (𝑡) given by (15),
(c) Platoon-actuated control taking on- and off-ramps into

account from Subsection III-C, with 𝑞cap𝑝 (𝑡) given by
(17), and

(d) Ideally actuated control from Subsection III-A, with
𝑈 𝑏
𝑖 (𝑡) given by (14).

In order to demonstrate the effect applying these control laws
has on the traffic, a part of one simulation run is shown in
Figure 4.

Consider the uncontrolled case shown in Figure 4a. Around
time 𝑡 = 0.144 h, the aggregate density of the platooned
vehicles and background traffic arriving at the bottleneck is too
high, and the aggregate demand exceeds bottleneck capacity.
This causes a traffic breakdown, and after a brief transient,
congestion is formed and bottleneck capacity is reduced.
Because of this, even though the incoming traffic density is
lower after 𝑡 = 0.154 h, and would not exceed the original
bottleneck capacity, it is not enough to dissipate the congestion
at the bottleneck. Consequently, the throughput is reduced,
the total time spent significantly increased, and the bottleneck
will stay congested until the inflow to the highway segment is
reduced close to the end of the simulation run.

In contrast to this, in the ideally actuated case shown in
Figure 4d, a part of the mainstream-bound background traffic
is delayed so that the density of other vehicles reaching the
bottleneck while a platoon is traversing it is low enough so
as not to cause traffic breakdown and capacity drop. In this
way, free flow is maintained and throughput is close to its
theoretical maximum.

As shown in Figure 4b and Figure 4c, the performance of
the two proposed control laws is similar. However, in case
the influence of on- and off-ramps is ignored while predicting
the evolution of the system, the applied control action is more
severe than required, which leads to more congestion upstream
of the off-ramp and overall lower efficiency. The control law
that takes the on- and off-ramps into account comes close
to emulating the ideal actuation case, but achieves somewhat
worse performance because it is unable to selectively affect
only one class of background traffic, only has access to the
average splitting ratio for the off-ramp, and requires delaying
the platoons.

We executed 50 Monte Carlo simulations, with the same
platoon arrival times and background traffic inflow profiles for
each control case. The resulting average and median TTS are
shown in Table I. We show the TTS of each vehicle class, and
for all vehicles combined. Apart from comparing the TTS, we
also considered the delay, defined as the difference in TTS
compared to the ideal actuation case, which is taken as a
benchmark for minimum achievable TTS of each simulation
run. The delay is shown as percentage of minimum travel time,
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(a) No control (b) Platoon-actuated control ignoring on- and off-ramps

(c) Platoon-actuated control taking on- and off-ramps into account (d) Ideally actuated control

Fig. 4: An example comparing the outcome of the four simulation cases. Traffic density is color-coded, with warmer color
representing higher density.

(a) Class 𝑎 (b) Class 𝑏 (c) Class 𝑐 (d) All classes

Fig. 5: Box plots showing the increase in TTS compared to the ideal actuation case.

TABLE I: Average and median TTS for each vehicle class and all vehicles.
TTS Class 𝑎 Class 𝑏 Class 𝑐 Total

[veh ℎ] average median average median average median average median
Case (𝑎) 22.62 22.94 369.84 374.13 56.62 56.04 449.08 453.94
Case (𝑏) 23.25 23.03 329.91 315.75 60.62 60.37 413.78 398.18
Case (𝑐) 21.77 21.34 304.90 278.63 58.60 58.41 385.27 357.58
Case (𝑑) 17.00 16.91 255.00 254.09 55.92 55.93 327.92 326.42

TABLE II: Average and median delay for individual vehicle classes and all vehicles.
Delay Class 𝑎 Class 𝑏 Class 𝑐 Total
[%] average median average median average median average median

Case (𝑎) 33.1 35.3 45.0 46.9 1.2 0.0 36.9 38.3
Case (𝑏) 36.8 33.5 29.4 24.1 8.4 8.0 26.2 21.7
Case (𝑐) 28.1 20.7 19.6 8.6 4.8 4.4 17.5 8.4
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and it is shown as a box plot in Figure 5, and given in Table II.
For example, if a vehicle would traverse the road segment in 3
minutes if it travelled at free flow speed, and actually traverses
it in 4.5 minutes, we say that it had a 50% delay.

We can see that even by applying control that ignores the
existence of on- and off-ramps, as described in Section III-B,
we reduce the TTS by about 10% of the ideal TTS on average,
with the median reduced by about 17%. This corresponds
to eliminating 29.1% of the delay on average, or 43.7% by
median. However, only the TTS of class 𝑏, the mainstream-
bound background traffic, is reduced, while the TTS of other
vehicles is even somewhat increased. This can be explained
by the fact that the controller assumes that all vehicles are
headed for the bottleneck, and will therefore delay the traffic
too much, stalling the off-ramp-bound traffic which would
otherwise be able to leave the highway unhindered. In spite of
this inefficiency, and owing to the fact that vehicles of class
𝑏 comprise the majority of the traffic, this control law is still
able to preserve free flow and forestall capacity drop at the
bottleneck, thus the overall TTS and delays are lower than in
the uncontrolled case.

In contrast, when the control from Section III-C was used,
the TTS of both class 𝑎 (the platooned vehicles) and class 𝑏
vehicles, is reduced, with the aggregate TTS lower by almost
20% of ideal TTS on average, or by almost 30% in median.
This corresponds to eliminating 52.7% of the delay on average,
or 75.6% by median. Even though the platoons will be delayed
in order to actuate the control action, their TTS will be lower,
since they will avoid waiting in congestion upstream of the
bottleneck. This is especially important, since it shows that it
is beneficial for the platooned vehicles to employ this control
law, even if their goal is not to optimize the overall traffic
performance, but to minimize only their own travel time. The
TTS of class 𝑐 vehicles is still increased compared to the
uncontrolled case, but less so than with the previous control
law. Overall, this control law comes very close to the ideal
case, with the median delay being only 8.4%, and an average
delay of 17.5%.

It is notable that while the proposed control laws achieve
significant reduction of both average and median TTS, but
there is a number of outliers corresponding to particularly
unfavourable simulation runs. Since the arrival of platoons is
modelled as a Poisson process, we can expect to occasionally
have long gaps between two platoons. If this occurrence coin-
cides with a higher demand of mainstream-bound background
traffic, we will not be able to prevent the traffic breakdown,
since there would be no platoons available to actuate the
control action, resulting in a build-up of congestion and higher
a TTS.

VI. CONCLUSION

In this work, we used the multi-class CTM framework to
study the effects of platoons arriving at a highway bottleneck.
We proposed a simplified queuing model that captures the
important aspects of traffic dynamics, and used it to design
control laws that use platoons as actuators, and their speed
and depth as control inputs, to keep the bottleneck in free

flow, maximizing throughput and minimizing total time spent
of all vehicles. The performance of these control laws was
tested in multi-class CTM simulations, on a 5 km long stretch
of highway upstream of the lane drop bottleneck, going from
three lanes to two. The considered highway segment also
included an on-ramp and an off-ramp. The achieved TTS
using these control laws was compared to the case when
no control is used, as well as with the case when we have
ideal actuation, and can fully control all individual vehicles.
It has been demonstrated that applying the proposed control
laws significantly reduces the TTS compared to the situation
with no control, coming close to the performance of the ideal
actuation case. Moreover, even the platooned vehicles, which
are delayed in order to affect the rest of traffic, incur lower
delays, since they avoid having to traverse the congestion at
the bottleneck, making the proposed control beneficial for all
traffic participants.

For future work, we are interested in deriving theoretical
bounds on effects of the proposed control laws in terms of total
time spent and further refining the bound on the achievable
throughput. Additionally, we plan to extend this work to
handle longer highway sections, where multiple bottlenecks
need to be regulated in cascade, as well as test the approach
in microscopic traffic simulations. In general, the influence
of truck platoons on the rest of traffic needs to be further
investigated using both simulations and experiments on public
roads.
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