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An Adaptive Staying Point Recognition Algorithm
Based on Spatiotemporal Characteristics Using

Cellular Signaling Data
Ming Cai , Zixuan Zhang, Chen Xiong , and Chao Gou

Abstract— Cellular signaling data (CSD) have attracted
unprecedented attention due to their large size, long observation
period, and high followability. Before applying CSD, a series
of data processing steps are indispensable; among those steps,
staying point recognition is the basis for recognizing individual
travel states and thus the influence of further application of
CSD. Previous work indicates that the existing staying point
recognition algorithms have two common aspects. One is the
requirement of a fixed spatiotemporal threshold to analyze the
user’s travel characteristics. The other is the insufficiency of
accuracy assessment, which indicates that further studies are
expected owing to the lack of ground truth data in CSD.
In this work, a “spatiotemporal window”-based algorithm is
proposed to recognize individual staying and moving states.
First, an iterative-learning-based model is designed to cluster
individual trajectory points without predefined spatiotemporal
thresholds. Then, rules to distinguish the staying or moving
cluster are made from individual travel characteristics. Moreover,
verification work is carried out by collecting volunteers’ ground
truth data using our developed smartphone application, which
achieves an accuracy of 91.3%. Finally, the results demonstrate
the effectiveness and robustness of the algorithm through the
performance of comparison and sensitivity analyses.

Index Terms— Cellular signaling data, staying point recogni-
tion, spatiotemporal window, clustering method.

I. INTRODUCTION

BASED on the different generation mechanisms of mobile
phone data, Calabrese et al. [1] categorized the data

into event-driven and network-driven types. Event-driven data
include call detail records (CDRs) and Internet protocol detail
records (IPDRs), which are mainly used for billing. Cellu-
lar signaling data (CSD) are a network-driven type of data
that have two main generation mechanisms. First, CSD are
generated in backend servers when communication occurs
between a cell phone and a base station, such as switching
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Fig. 1. Application framework of CSD in the transportation.

on/off the phone, making/receiving calls, periodically updating
location, updating location area, and sending or receiving
messages. Second, based on communication-related work [2],
it was found that there was a heartbeat mechanism in CSD,
i.e., a smart cell phone still sends a handshake signal to
the nearest base station, even if a person does not use the
cell phone. The generation frequency of the heartbeat data
in the 2G/3G communication mode is 30 minutes, and in
the 4G mode is 5–10 minutes, depending on the rules of
communications corporations.

With the development of technology, people are becoming
more reliant on cell phones, which generate abundant data
describing user trajectories. CSD are characterized by large
coverage areas, short sampling periods, long observation peri-
ods, and strong followability. It was previously found that the
primary process of a CSD application contains three layers:
a data layer, a model layer, and an application layer, as shown
in Fig.1.

The data layer and model layer pose difficulties that directly
influence the effectiveness of CSD applications. The model
layer consists of a basic model and a trip model. Based
on the staying point recognition result, the individual travel
spatiotemporal characteristics [3] can be extracted, the mobil-
ity patterns [4], [5] can be derived, the origin-destination
trip matrix [6] can be calculated, and the individual trip
chains [7], [8] can be obtained. Furthermore, based on the trip
trains, individual transport modes [9], [10] can be detected,
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travel flow characteristics [11], [12] can be analyzed, and
traveler behavior [13] can be researched. Overall, staying
point recognition is an important prerequisite for transforming
CSD trajectories into traffic semantics, where CSD show great
potential application value. Besides, CSD are also widely
used in dynamic traffic assignment [14], [15], route choice
estimation [16], urban traffic model construction [17], work–
residential commuting research [18], [19], and bus scheduling
feasibility studies [20], [21]. Therefore, among these models,
staying point recognition is a crucial module, and the accuracy
of the algorithm directly influences the effectiveness of other
models and the studies of CSD in transportation.

At present, the staying point is widely regarded as the
starting and ending points of residents’ trips. The CSD
travel trajectory of each user consists of a sequence of
spatiotemporal points that can be described as PP ={

P1
(
lng1, lat1, time1

)
, P2

(
lng2, lat2, time2

)
, . . . ,

Pn
(
lngn, latn, timen

) }
, and

each point has its own attribute. The purpose of staying
point recognition is to calculate the points attributes
and distinguish whether the points belong to staying or
moving points. Then those points could be described as

PP � =
{

P1(lng1, lat1, time1, label1), P2(lng2, lat2, time2,
label2), . . . , Pn(lngn, latn, timen, labeln)

}
,

where label means staying or moving state. Through staying
point recognition, the spatiotemporal trajectory can be
converted into traffic semantic information.

However, the existing staying recognition algorithms have
two main limitations. First, these algorithms both require fixed
empirical thresholds and numbers of clusters. Second, it is
rarely mentioned that the algorithms are assessed by ground
truth data.

This study proposes a novel algorithm based on spatiotem-
poral independence to address CSD staying point recognition
and threshold setting and accuracy assessment issues. The
layered cleaning algorithm is first used to clean the CSD
to address the data uncertainties and redundancy properly.
Then, a spatiotemporal window-based algorithm is proposed
to cluster individual trajectory points without a predefined
spatiotemporal threshold. A definition is established to judge
each cluster’s attribute, assigning all the basic clusters as
staying or moving. Finally, a merging operation is carried out
to combine adjacent clusters with the same attribute together,
and thus, an individual’s one-day staying points are obtained.
In contrast to existing works, the main contributions of this
work can be summarized as follows:

1. A novel spatiotemporal window-based algorithm is pro-
posed based on the characteristics of individual travel
trajectories, which can accurately identify the staying
points of CSD. This method exhibits strong adaptability
and low computational complexity, and it does not
require the number of clusters or other spatiotemporal
thresholds to be set.

2. An iterative-learning-based model is designed to clus-
ter spatiotemporal trajectory points without predefined
spatiotemporal thresholds. Through experimental verifi-
cation, the method can be well applied to CSD and GPS
data.

3. This is the first study in which verification work
for cellular signaling data staying point recognition
is performed by using our developed smartphone
application.

The remainder of the paper is organized as follows.
Section 2 is the literature review of the methods and algorithms
of staying point recognition; Section 3 presents the algorithm
of CSD staying point recognition; Section 4 presents the accu-
racy assessment and factor analysis of the proposed method;
Section 5 outlines additional research; and Section 6 is the
conclusion.

II. LITERATURE REVIEW

According to previous studies, there are three kinds of
staying point recognition methods, including spatiotempo-
ral rule-based, clustering-based, and machine learning-based
methods.

A. Methods Based on Spatiotemporal Rules

In this kind of method, trajectory points are considered
staying points when the duration of stay and the range of
activity both satisfy the conditions determined by the spatial
and temporal thresholds. Generally, these methods choose the
coverage of the base station as the spatial threshold, which
is usually 500 meters [23], and choose temporal threshold
based on experiences, which is usually 30 minutes [22], [23]
or 15 minutes [24]. This kind of method is simple with
low computational complexity, but it is not interpretable and
universally applicable to choose spatiotemporal thresholds
based on the experiences and the nature of data.

B. Methods Based on Clustering

Staying point recognition of spatiotemporal CSD trajecto-
ries can be considered a case of clustering analysis. The clus-
tering algorithms used in CSD are mainly based on K-means
and DBSCAN [25], but they require a preset number of
clusters. In actual scenarios, the number of staying and moving
states of each user is uncertain, so it is difficult to preset a fixed
value. Therefore, Tan et al. [23] proposed a clustering method
based on spatiotemporal features to extract travel ODs, but
when judging whether the trajectory point is staying or mov-
ing, it is still necessary to set fixed spatiotemporal thresholds.
Kang et al. [26] proposed an algorithm to autonomously deter-
mine the number of clusters and can identify the significant
places based on a time duration threshold (300 seconds). This
method was less affected by the number of trajectory points,
but it cannot be directly applied to identify the staying point
of CSD. Liu et al. [27] proposed a mobility-based clustering
method that used speed information to infer the degree of
congestion of moving objects. However, this well-designed
method is not suitable to capture the real staying clustering
properties from the CSD used in our study. The main reason
is that the real CSD are sparse which cause many clustering
methods hard to extract the individual travel characteristics.
And the second reason is that there is no unified definition of
staying points, so it is not interpretable to define the staying
points with fixed thresholds.
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Fig. 2. Schematic diagram of the drift data (point D is a drift point, and the
other locations are normal points).

C. Methods Based on Machine Learning

In recent years, some scholars have started to employ
machine learning algorithms to identify staying points.
Gong et al. [28] combined the support vector machine and
C-DBSCAN algorithms to identify the staying points of
the GPS trajectory, which may be suitable for identifying
activity stops in continuous GPS trajectories with a higher
frequency of data points. Unlike GPS data, the frequency
of CSD is uncertain, and CSD is sparse in actual scenarios.
Wang et al. [29] used the naive Bayesian algorithm to classify
the ship’s historical trajectories. Similarly, Zhao et al. [30]
used the naive Bayesian algorithm to classify the individual
trajectories of CSD. They constructed a naive Bayes classifier
through the direction angle and the diameter of the minimal
covering circle and then distinguished the staying or moving
state. This kind of method does not involve the manual setting
of the spatiotemporal threshold and the number or density
of clusters. However, the classifier training requires a large
number of actual samples (i.e., CSD) that are difficult to collect
manually on a large scale.

In summary, these methods both require a fixed and preset
threshold or the number of clusters. In addition, due to insuffi-
cient real data, the common approach to accuracy assessment
is to perform a qualitative evaluation by mapping the results
directly with GIS (geographic information system) and judging
manually. This kind of assessment method is not convincing
or reliable.

III. METHODOLOGY

Compared with other spatiotemporal data, CSD have con-
siderable redundancy and error information, so it is necessary
to carry out a comprehensive data cleaning operation before
mining its application value. In this section, we first briefly
introduce the process of data cleaning and then elaborate on
the principle and implementation steps of the proposed staying
point recognition algorithm.

A. Data Cleaning

The main idea for cleaning CSD is hierarchical cleaning,
which considers the characteristics of the CSD (i.e., sparse
data, ping-pong handover data, and drift data [31]). In this
study, based on this idea, we conducted the following cleaning
steps.

1) Delete the records with missing values and the duplicate
records

2) Merge the same location records
3) Process the drift records

Fig. 3. Schematic diagram of the ping-pong handover data.

TABLE I

INTERPRETATION OF PARAMETERS IN ALGORITHM 1

Calculate the speed between the adjacent records, and
remove the records whose speeds are greater than 120 km/h
(i.e., the speed limit).

1) Process the Ping-Pong Handover Records: As shown
in Fig. 3, when a user is at the junction of base stations B, C,
and D, the cell phone signal may switch back and forth among
them since the signal strengths of the cell phone corresponding
to the three base stations are similar. Considering that signal
strength is related to the distance between cell phones and
base stations, it is more likely that the user is located at the
centroid of the base stations. In this situation, we calculate the
average coordinate of consecutive ping-pong handover records
and replace the original coordinates.

B. Staying Point Recognition

To avoid setting spatiotemporal thresholds and the number
of clusters manually and empirically, we proposed a new
algorithm considering the travel characteristics of individual
one-day CSD to self-adaptively divide the CSD trajectory into
staying clusters and moving clusters. It can be concluded from
the CSD trajectory that the spatiotemporal characteristics of
the data are significantly different when the traveler is in the
state of staying or moving. Specifically, the data in the state
of staying are more concentrated and have a higher density,
while the data in the state of moving are the opposite. Based on
the above characteristics, we hope to design a data container
to clearly describe the two types of travel characteristics and
build an iterative learning mechanism to obtain a reasonable
number of containers.

As shown in Fig. 4, we describe the container as cuboids,
and the core idea is to utilize flexible cuboids to encircle the
same spatiotemporal points. The polyline in the figure is a tra-
jectory from an individual daily CSD. Supposing a trajectory
can be contained with n cuboids, whose size is freely flexible,
the volume sum of each cuboid could be the maximum if
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Fig. 4. Schematic diagram of the proposed algorithm.

Fig. 5. Detailed process of the proposed algorithm from a 2D perspective.

n = 1; however, by adjusting the size of each cuboid,
the sum exceeds the minimum, where n = cubiod number
and the process of clustering division stops. The volume of
cuboids here can be understood as an entity with specialized
spatiotemporal characteristics in which the points inside have
the same attributes.

The idea of the algorithm consists of two parts. First, N
cuboids are prepared to encircle an individual daily travel
trajectory. Then, an iterative calculation starts from N = 1,
and the iterative process continues by N = N + 1
if the volume of the cuboid decreases. An instance is
shown in Fig. 4(b), (c), and (d), indicating that N changes
from 1 to 3. In practical applications, we convert the 3D
spatiotemporal trajectory into a 2D spatiotemporal trajectory
to simplify the computational complexity. Fig. 5 shows the
detailed process of the algorithm from a 2D perspective of a
user’s signaling trajectory, where “the rectangular box” is the
spatiotemporal window (trajectory cluster), “1” is the staying
cluster, “0” is the moving cluster, and the horizontal axis
represents the time, the vertical axis represents the distance
between each record and the first record after data cleaning.

1) Trajectory Clustering: Clustering is the basis of the algo-
rithm, which divides an individual daily trajectory into several
fundamental units with prominent spatiotemporal attributes.
In this process, “base spatiotemporal cost” S0 is introduced
to describe the cost of every trajectory point. Thus, the spa-
tiotemporal window area for each point is initially calculated
according to the data characteristics. Then, the minimal area
made from the consecutive points N is then calculated in
chronological order and compared with N ∗S0. Finally, several

windows are confirmed in accordance with the comparison
results, and thus, the fundamental clusters are obtained. The
detailed process is described as follows, and the clustering
process is shown in Algorithm 1.

Algorithm 1 Clustering Algorithm
Input : PP: an individual’s daily CSD trajectory; S0: “base spatiotemporal cost”

Output : PPc={ci}: Trajectory clusters

1 begin
2 Sort PP by time in ascending order;

3 m = 0;

4 PPc; = {}
5 j=0;
6 for j in Len (PP) do

7 Calculate area of the PPm:j+1

8 i= 0
9 if area> (j+2−m)×S0 :

10 pointm:j+1∈ci

11 Append ci to PPc;

12 m = j +1
13 i++

—

14 j ++;

—

15 return PPc

16 end

a) Considering the characteristics of individual daily tra-
jectories, the base spatiotemporal cost S0 is calculated
by multiplying the personal average travel time and
distance, which can be expressed as

S0 = Dmean × Tmean

2
(1)

where Dmean is the average travel distance among all
the trajectory points and Tmean is the average staying
time in every base station.

b) A serialization operation is performed to order the
data chronologically. The result is expressed as Ti =
[t1, t2, . . . , tn], where n is the number of trajectory
points.

c) Supposing there are m points from t1 to tm consisting
of a spatiotemporal window (denoted as cluster0), then
the area can be obtained by using

area0 = D0 × T0 (2)

where T0 is the time difference between the first record
and the last record in cluster0 and can be calculated as
T0 = timem − time1, and D0(intra-cluster distance) is
the distance between the points formed by the maximum
and minimum longitude and latitude of the base stations,
which can ensure that all the points in the formed trajec-
tory cluster are within the range of the spatiotemporal
area and can be calculated as D0, shown at the bottom
of the page, where R is Earth’s radius and lat1 and
lon1 are the minimal latitude and longitude of the base

D0 = 2R × sin−1

(√
sin2

(
lat2 − lat1

2

)
+ cos (lat1) × cos (lat2) × sin2

(
lon2 − lon1

2

))
,
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station in clusterc, respectively. lat2 and lon2 are the
maximal latitude and longitude, respectively.

d) Rules are made to divide the trajectory into many
clusters. It is based on the perception that if a newly
added point has the same property as the old cluster, then
its position in the spatiotemporal coordination system
should appear to be close or inside the coverage of the
window, which adds the spatiotemporal area as little
as possible to make the characteristics of the cluster
more prominent. In detail, if the spatiotemporal area of
cluster0 is smaller than m ∗ S0, the cluster continues
to embrace the next point, and the process continues
until the area of the new cluster becomes larger than
(m + 1) ∗ S0.

e) Repeat steps c) and d) until all the trajectory points have
been classified into suitable clusters.

2) Window Dividing: The clustering step is an efficient
operation that divides the trajectory in a single traversal, but it
may cause some clustering results not to satisfy the minimal
area condition and thus influence the accuracy of trajectory
point division. Therefore, the division operation should be
carried out for the uniformity of each cluster. Since the average
coverage radius of the 4G base station is approximately
300 meters [33] or 500 meters [32], thus the range of three
base stations could contain a range of 1-kilometer individual
traveling activity approximately. However, it is not easy to
uniquely identify the types of activities in this situation,
including staying, moving, and hovering states. To avoid the
situation in which one cluster contains multiple types of
activities, further division operation continues executing if the
number of trajectory points in a cluster is more than three (see
Algorithm 2).

Algorithm 2 Dividing Algorithm
Input : S0: “base spatiotemporal cost”; PPc= {ci}: Trajectory clusters
Output : PP c̃= {c̃i } : Trajectory clusters after dividing

1 begin

2 i= 0
3 PP c̃= {}
4 j=1

5 for ci in PPc do

6 m = 0
7 for pointjin ci do

8 Calculate area of the point0:j+1

9 �Sj=area− (j+1)×S0

10 if �Sj< �Sj+1:

11 m = j

12 pointm:j+1∈c̃i

13 Append c̃i to PP c̃;
14 i++

—

15 j= j + 1

—

16 pointj+1:end∈c̃i

17 Append c̃i to PP c̃ ;
18 i++

—

19 returnPP c̃

20 end

Fig. 6 shows an example of the division algorithm. After
clustering, six trajectory points in the trajectory cluster need

Fig. 6. Example of the dividing algorithm.

Fig. 7. Comparison of D/T in moving and staying states.

to be divided. We calculate the spatiotemporal area (S1)
formed by P1 and P2 and the spatiotemporal area (S2)
formed by trajectories P1, P2, and P3. Then we calculate
the difference sequence between the spatiotemporal areas
(S1, S2, S3, S4, S5, S6) and the base spatiotemporal cost S0.
If the difference sequence increases, the division stops; if not,
the trajectory cluster is divided at the inflection point. After
implementing the division algorithm, the original trajectory
cluster is divided into two trajectory clusters, and the trajectory
points in the divided trajectory cluster have higher cohesion.

3) Label Assignment: After obtaining the windows, we add
labels to the windows based on the spatiotemporal charac-
teristics of the surrounding trajectory points to distinguish
the staying and moving states of each divided cluster. Intu-
itively, a spatiotemporal window is suggested to be marked
as “moving” if the intra-cluster distance (D) of the window
is greater than its stay interval (T ). The window is marked
as “staying” if the stay interval (T ) is greater than the
intra-cluster distance (D). The spatiotemporal properties of
each cluster are defined as follows:

Cluster label =
{

1, D < T

0, D ≥ T
,

where “1” denotes “staying” and “0” denotes “moving.”
To verify our intuition, we calculate the D and T of the

cluster formed by the trajectory points of known real staying
and moving states and compare the D/T values in the two
states, as shown in Fig. 7. The separator line is located
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near 1, which means that it is feasible to label the clusters
by comparing D and T .

4) Window Merging: Since the trajectory points of CSD
include the staying state and moving state, the spatiotemporal
windows with the same state should be merged to form a con-
secutive and intact individual trip chain. Therefore, we merge
the windows with the same spatiotemporal label and then
remark on the new combined window (see Algorithm 3).

Algorithm 3 Merging Algorithm
Input : PP c̃= {c̃i }: Trajectory clusters after splitting

Output : PP ¯̄c=
{

c j :At t r i butej

}
: Trajectory clusters after merging

1 begin
2 i= 1, j=0, m=0

3 PP ¯̄c= {}
4 for c̃i in PP c̃ do

5 if At t r i butec̃i �=At t r i bute ˜ci−1 do
6 cluster ˜cm : ˜ci−1 ∈c j

7 Calculate D j and T j of c j

8 if Dj>Tj

9 At t r i bute j = 0—

10 else: At t r i bute j = 1
11 Appendc j to PP¯̄c;

12 j++; m = i

—

13 i + +

—

14 cluster ˜cm : ˜cend ∈c j

15 Append c j to PP ¯̄c
16 return PP ¯̄c
17 end

5) Label Adjustment: The initial label of each spatiotempo-
ral window is determined by the rates of the window’s length
and width (i.e., the moving speed). In the case that a person
walks 400 meters, his/her state should be labeled moving.
However, because the coverage area of the base station in
urban regions is approximately 500 meters [32], the cluster of
the person’s trajectory points is regarded as a candidate staying
window to contain the scope of activity in the base station’s
coverage. Therefore, there may be some moving-state clusters
misidentified as candidate staying windows.

To improve the accuracy of identifying the staying clusters,
we adjust the labels by comparing the cluster’s moving speed
with the threshold of 0.5. If the stay interval of the candidate
staying cluster is less than 5 minutes or the distance between
the first base station in the cluster and the last base station
in the previous cluster is greater than 400 meters [34], the
candidate staying cluster is regarded as a moving cluster and
relabeled as “moving”.

6) Complexity of the Proposed Algorithm: This manuscript
mainly involves three core algorithms. The complexity of
Algorithm 1 is O(nlogn), the complexity of Algorithm 2 is
O(n), and the complexity of Algorithm 3 is O(m), where
n is the number of individual daily CSD travel trajectory
points, and m is the number of trajectory clusters formed
by Algorithm 2. Therefore, the complexity of the proposed
algorithm is O(nlogn).

TABLE II

DATA COLLECTED BY APP

TABLE III

ACTUAL NUMBER OF STAYS IN VALIDATION DATASET

IV. EXPERIMENT

A. Data Collection

To evaluate the accuracy of the proposed algorithm,
we developed a smartphone application for collecting CSD
and GPS data. This application can automatically record the
information for the current base station communicating with
the cell phone and simultaneously record the current GPS
coordinates with a sampling frequency of 5 seconds. The
GPS coordinate data, describing a real and complete individual
trajectory, were used to assess the accuracy of the data cleaning
results. Examples of the data collected by the application are
shown in Table II.

Then, we recruited twelve volunteers to collect data for ver-
ification and divided them into six groups. As shown in Fig. 8,
for the designed trip purposes (e.g., commuting, shopping, and
entertainment), the volunteers used the application, traveled to
different destinations along the planned routes with various trip
modes (e.g., buses and subways), and stayed at the destinations
for a period. Once the state changed, the volunteers manually
recorded their state with the application. For example, when
a volunteer planned to travel from the school to the park,
the state had to be marked as “moving” before the trip and
then marked as “staying” after arriving at the park. During
some periods of staying, the volunteers were allowed to hover,
i.e., they moved around in a particular area (e.g., parks and
shopping malls). The number of staying states and moving
states of each volunteer are shown in Table III.

B. Data Preprocessing

Taking the CSD of Group 005 as an example, we removed
the incorrect and redundant data in the original CSD trajecto-
ries and retained all the essential spatiotemporal information
for staying point recognition. From Fig. 9, the result is
similar to the GPS trajectory, indicating that the method of
data cleaning is effective. The original CSD trajectories have
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Fig. 8. Schematic diagram of the trajectories of volunteers.

Fig. 9. Comparison chart before and after data cleaning.

Fig. 10. Amount of data remaining after cleaning of CSD of group 005.

10,582 records, and the result after data cleaning has only
236 records, as shown in Fig. 10.

C. Results Analysis

To assess the accuracy of the proposed algorithm, we used
four metrics, accuracy (A), precision (P), recall (R), and
F1-score (F1), which are widely used in the accuracy assess-
ment of classification methods.

A = T P + T N

T P + T N + F P + F N
(3)

P = T P

T P + F P
, R = T P

T P + F N
, F1 = 2 × R × P

P + R
(4)

where TP and TN denote the times of correctly identified stay-
ing states and correctly identified moving state, respectively.
FP denotes the times when a moving point is mislabeled as
a staying point, while FN denotes the times when a staying

TABLE IV

RECOGNITION AND EVALUATION INDEX OF STAYING POINTS
OF SIX GROUPS OF TRAJECTORIES

Fig. 11. Confusion matrix.

TABLE V

COMPARISON OF THE ACTUAL NUMBER OF STAYS AND THE

NUMBER OF STAYS IDENTIFIED BY OUR ALGORITHM

point is mislabeled as a moving point. The results of each
trajectory are shown in Table IV. The last column shows the
total recognition accuracy of the six groups of trajectories and
the calculation results of various indicators. The accuracy of
the proposed algorithm is 91.3%. Fig. 11 shows the confusion
matrix for the six groups of trajectories. The recall of 100%
indicates that there is no staying state mislabeled as a moving
state.

1) Number of Stays: From Table V, we find that the
proposed algorithm tends to overpredict the number of stays.
There are two main reasons. The first is the occurrence of
moving states mislabeled as short-term stays (e.g., 5-minute
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TABLE VI

ERROR RATE OF THE DURATION OF STAYS IDENTIFIED
BY OUR ALGORITHM

Fig. 12. Recognition accuracy of the stay interval of six groups of trajectories.

stays) due to the base station’s broad coverage. The second is
that hovering states were identified as multiple staying states.

2) Duration of Stays: To illustrate the recognition results
for the duration of stays, we calculated the error rate of the
duration of stays, which can be calculated as error ratetime,
shown at the bottom of the page, where endtimea and
star ttimea are the end time and start time of the stay
identified by the algorithm, endtimet andstar ttimet are the
actual end time and start time of the stay, and timet is the
actual duration of stay. The calculation results are shown in
Table VI. S1–S5 represent the first to fifth stays, and ‘NaN’
indicates no stay.

Fig. 12 shows the accuracy of the recognition of duration of
stays of the six groups of trajectories. The recognition accuracy
of the duration of stays is greater than 60%, and the maximum
is 100%. Furthermore, the accuracy of identifying the duration
of stays in the morning and evening is higher (staypoint1 and
staypoint5) because the users stayed in their place of residence
during these periods.

3) Position of Stays: In addition to the number of stays
and the duration of stays, the accuracy of the stay position
is also one of the key indicators for evaluating the accuracy
of staying point recognition. We mapped the staying points
identified from each travel trajectory in Fig. 13 and compared
them with the actual staying positions.

Fig. 13. Recognition results of the stay position of six groups of trajectories
(the red stars represent the aggregated points).

TABLE VII

ACCURACY COMPARISON WITH SEVERAL METHODS

TABLE VIII

THE MEAN OF DURATION ERROR COMPARISON WITH
SEVERAL METHODS

D. Comparison of the Methods

We compared the proposed algorithm with the three types
of staying point recognition method, including the method
based on the fixed threshold [23], the method based on
DBSCAN clustering [25], and the method based on naive
Bayes classification [30], marked as method1, method2, and
method3, respectively.

We used the CSD data from six groups of trajectories col-
lected in the experiment and the metrics (accuracy, precision,
recall, F1-score) to evaluate the recognition accuracy. From
the comparison shown in Table VII, it can be seen that the
proposed method has a better performance. We also compared
the accuracy of the four methods in the duration of stays. From
Table VIII, it can be seen that the proposed algorithm has the
lowest mean duration error.

error ratetime = |endtimea − endtimet | + |star ttimea − star ttimet |
timet
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TABLE IX

COMPARISON RESULTS OF GROUPS IN DIFFERENT S0

Fig. 14. Accuracy comparison of groups at different S0.

E. Sensitivity Analysis

In this section, we performed a sensitivity analysis on the
proposed algorithm. The accuracy of the proposed algorithm is
affected by the data quality related to factors such as the envi-
ronment, signal strength, obstructions, communication corpo-
rations, and cell phone brands. These factors lead to missing
data and the generation of sparse, drifting, and ping-pong
handover data. To this end, a data cleaning algorithm was used
to reduce its impact. According to the description of the algo-
rithm in Section III-B, the factors affecting the performance
of the algorithm include the base spatiotemporal cost S0 and
the value of D/T .

We set different S0 and D/T values to compare the per-
formance of the algorithm. Table IX shows the performance
results of different groups of data. The value of S0 is calculated
using the average travel time and distance of the individual.
The maximum accuracy represents the optimal performance
of the algorithm under the group. Except for Group 002,
the other groups achieve the best performance. From Fig. 14,
the proposed algorithm is affected by the fluctuation of S0,
and it is difficult to determine a fixed S0 for individuals due
to the uniqueness of individual travel trajectories.

Fig. 15 shows the performance of the algorithm with
different D/T values. Obviously, the proposed algorithm is
affected by the D/T value. The D/T value in this study is
set as 1 for two main reasons. First, in the actual situation,
the D/T value describes the speed of the user, and the value
of 1 m/s (i.e., D/T = 1) is a typical value of walking speed.
Second, it is difficult to set a value of D/T for each user in
practice.

V. DISCUSSION

A. Hovering and Short-Term Stays

The proposed algorithm can accurately identify the staying
point in most cases. In the case of recognizing hovering stays,

Fig. 15. Accuracy comparison of groups at different D/T .

Fig. 16. Schematic diagram of short-term stay.

this kind of stay was identified as multiple stays. To facilitate
the extraction of individual trip chains, we aggregated these
stay points into a single stay point whose time was the sum
time and the location was the mean of the points.

However, for short-term stays, they cannot be effectively
identified due to the generation mechanism of CSD. For
example, as shown in Fig. 16, there are 5 base stations
(A, B, C, D, and E). A person traveled from A to E and stayed
at C for a short period. Theoretically, the recorded CSD data
should include the locations of the five base stations. Due
to the instability of communication, there may be less than
1 record generated from base station C , which is insufficient
for identifying this kind of stay.

B. Sparsity of CSD Data

In actual scenarios, the individual CSD are usually very
sparse and inaccurate due to the uncertainty in the communi-
cation between cell phones and base stations. The existing
method can deal with the problem caused by the sparsity
of GPS data [35], but it is not suitable for addressing the
issue in terms of CSD. We conducted a statistical analysis
of the CSD data from some users in Foshan, China. The
data sampling interval ranges from 0 to 400 seconds, and the
average sampling interval is 370 seconds, as shown in Fig. 17.
The average number of CSD points per user per day is 194,
as shown in Fig. 18.

To ensure that the collected CSD data are sufficient and
reliable, the application’s sampling frequency is 5 seconds.
The number of data points for each user each day is 7,240 on
average. To assess the performance of the proposed algorithm
in actual scenarios, we adopted a resampling method. We ran-
domly selected the data at different rates from 5% to 100%
and used the proposed algorithm to identify the staying points
from the selected data. As displayed in Fig. 19, the proposed
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TABLE X

COMPARISON RESULTS OF CSD AND GPS STAYING POINTS RECOGNITION

Fig. 17. Histogram of the real CSD data sampling interval distribution.

Fig. 18. Histogram of average data amount per day per user distribution.

Fig. 19. Performance comparison of four indicators at different sampling
rates.

algorithm still performs well for 5% of the data, which is close
to the general data size.

In addition, the proposed algorithm also has good perfor-
mance on another dataset, i.e., GPS data. The application
collects CSD data and GPS data simultaneously. A sample
of these data is shown in Fig. 10. We take the GPS of Group
005 as an example to calculate the staying points, as shown in
Table X. The accuracy of GPS is lower than that of CSD, but
the recall is also 100% because the GPS data records more

spatial location points to identify short-term stays caused by
traffic jams during movement. However, the volunteers did not
record the stays caused by traffic jams during the experiment,
which caused the GPS calculation to perform slightly worse
than that of CSD.

VI. CONCLUSION

In this study, to avoid presetting spatiotemporal thresholds
empirically as in previous work, we present a new algorithm
of staying point recognition for identifying the staying points
and moving points in cellular signaling data. The proposed
algorithm, a kind of iterative-learning-based algorithm, can
cluster trajectory points and label the clusters concerning
the CSD characteristics, which offers a new perspective for
spatiotemporal trajectory clustering.

Based on the ground truth of cellular signaling data col-
lected by our developed application, we conducted empirical
experiments, sensitivity analysis, and performance compari-
son to confirm the merits of the proposed algorithm. The
results showed that our algorithm performed optimally and
achieved an accuracy of 91.3%. From the sensitivity analysis,
we found that the performance of the proposed algorithm
was related to the base spatiotemporal area and the value of
D/T (i.e., the speed of the user). Considering the individual
characteristics, we adaptively set different base spatiotemporal
areas for each user. However, it is difficult to set the value of
D/T for each user, so we selected a fixed value considering
the walking speed of a human.

According to our experimental analysis, it can be found
that the proposed method can be applied not only to CSD
but also to GPS data. Whether it is high-frequency trajectory
data or sparse location data, this method has good adaptability.
It can accurately identify the staying points of spatiotemporal
trajectories, which provides a basis for the application of
location data in transportation.

In future work, we will apply the proposed algorithm to a
large amount of real cellular signaling data and study more
application scenarios, e.g., additional trajectory data and the
processing of short-term staying points with other data.
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