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Bilevel Optimization for Bunching Mitigation and
Eco-Driving of Electric Bus Lines

Rémi Lacombe , Sébastien Gros , Nikolce Murgovski , and Balázs Kulcsár

Abstract— The problems of bus bunching mitigation and the
energy management of groups of vehicles have traditionally
been treated separately in the literature and been formulated
in two different frameworks. The present work bridges this
gap by formulating the optimal control problem of the bus line
eco-driving and regularity control as a smooth, multi-objective
nonlinear program. Since this nonlinear program has only a
few coupling variables, it is shown how it can be solved in
parallel aboard each bus, such that only a marginal amount
of computations need to be carried out centrally. This procedure
leverages the structure of the bus line by enabling parallel
computations and reducing the communication loads between
the buses, which makes the problem resolution scalable in terms
of the number of buses. Closed-loop control is then achieved by
embedding this procedure in a model predictive control. Stochastic
simulations based on real passengers and travel times data are
realized for several scenarios with different levels of bunching for
a line of electric buses. Our method achieves fast recoveries to
regular headways as well as energy savings of up to 9.3% when
compared with traditional holding or speed control baselines.

Index Terms— Bus bunching, electric buses, optimal control,
nonlinear programming.

I. INTRODUCTION

ELECTRIC vehicles offer a promising way to mitigate the
increasing greenhouse gases emissions of the transport

sector. Electric buses in particular combine no tailpipe emis-
sions and lower energy consumption than other types of city
buses [1] with the lower marginal emissions that urban public
transit has in general [2]. However, bus lines are inherently
unstable systems, and they have long been known to develop
bus bunching if left uncontrolled [3], [4]. One late bus may
cause the accumulation of passengers at stops downstream,
which acts as a positive feedback loop on the bus and further
increases its delay. Likewise, an early bus encounters fewer
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passengers at stops than expected, and may ultimately catch up
with the preceding bus at which point the buses start bunching.
The increased service delays incurred by this so-called bus
bunching phenomenon may in turn significantly increase the
passenger delays, which may eventually discourage users from
choosing to use public transport [5].

Networks of electric buses potentially present an additional
challenge for any control strategy, namely that electric buses
may have charging constraints due to the limited autonomy
of their batteries, whereas traditional diesel buses usually
manage to complete an entire day in operation with one
full tank [6]. Consequently, a model for the energy con-
sumption might be needed in order to anticipate how control
actions affect the battery state of charge of any controlled
bus. This type of predictive model-based control for vehicles
has been extensively used in the literature to minimize the
energy consumption during driving missions in various types
of environment [7] - [11]. In particular, some authors have
designed controllers for the energy management of plug-in
hybrid electric buses [12], [13]. However, these works focus
mainly on the energy consumption of each individual bus, and
as such overlook the operational aspects of the bus line and
the issue of bus bunching.

Traditional methods to mitigate bus bunching rely mostly on
station-based interventions such as stop skipping or holding
buses at bus stops. Transit agencies often implement the
latter strategy in an ad-hoc manner to maintain their buses
on schedule, but better trade-offs between holding time and
commercial speed can usually be achieved [14]. The control
strategy developed in that paper, which is based only on
real-time information of the bus line, has even be extended to a
full bus network [15]. Other authors have further investigated
the benefits of the bus holding strategy in various types of
settings. The effects of overtaking among buses have been
studied in detail in [16] and [17], while [18] explored the
impact of including information about the phases of signalized
intersections, and [19] modeled the merging of independent
bus lines. In addition, control performances have been shown
to be further improved for the bus line control problem in [20]
and [21] when also including some predictive information
about the expected bus travel times. This information can
for example be leveraged to reduce large gaps in service
by holding buses longer than is possible based on real-time
information only. That being said, the aforementioned papers
only include limited amounts of predictive information, and it
is only used to compute the next control step.
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In recent years, many authors have opted for model-based
rolling horizon control strategies for the bus line problem.
These methods operate by solving a problem formulated in
the mathematical programming framework to choose a set of
control actions over a given time (or space) horizon. Most
papers in this vein choose bus holding at stops as their main
intervention method. Some research has been done on com-
plementing this strategy with the ability to skip bus stops [22]
or to limit passengers boarding [23], and on applying it
to multiple bus lines [24], [25]. In these articles, control
commands are updated in an event-based fashion, typically
when one bus leaves a stop, and the mathematical programs
are solved centrally for the whole network. Since the focus
is put on station control, the inter-station bus dynamics are
most often ignored. In addition to that, but holding strategies
might suffer from a lack of space where buses can be held
in urban settings, and the absence of inter-station command
updates does not leverage fully the potential of real-time
communications between buses.

Another vein of research for the model-based predictive
control of buses explores inter-station intervention, which
often takes the form of speed control. In [26], a linear-
quadratic Gaussian control scheme is developed to adjust the
speed of a bus to that of the preceding bus in operation. The
authors in [27] assemble a model predictive control (MPC)
to compute the optimal velocity profile of each bus on a
receding horizon that extends to the next bus stop. This
controller aims to minimize deviations from the time-table and
to enforce regular headways. In [28], an hybrid MPC is used
to regularize bus spacings instead, while maintaining a high
commercial speed. But in all those papers, the aim is to fulfill
a service-oriented objective, and no attention is paid to the
eco-driving of the bus fleet as a result. To the best of our
knowledge, only [29] includes an energy minimization aspect
to the bus line control problem. In that paper, the authors
develop a multi-objective MPC scheme with includes energy
and service-related cost terms. However, the electric machine
model used and the sampling in time of the MPC warrant the
inclusion of integer variables in the objective function, thus
resulting in a non-smooth optimization problem which needs
to be solved centrally, and over short prediction horizons.

This paper extends and develops the MPC-based velocity
control strategy outlined in [30], which operates by adjusting
predicted time headways to improve both the regularity and
energy efficiency of the bus service. Some notable modeling
improvements over this reference are presented here. Namely,
the predicted bus mass is no longer assumed to be static, but
rather to evolve dynamically as a function of the passenger
demand at stops. In addition, the MPC is not made to track a
static target headway, but is now free to use adaptive headways
in order to enforce a regular bus service in any situation. The
speed of the surrounding traffic is now also explicitly included
in the predictive framework as a constraint on the bus speed.

The main contribution of this paper is to formulate the bus
line regularity control problem and the bus fleet eco-driving
problem in the same framework, and as a smooth nonlin-
ear program (NLP) with no integer variables. A resolution
procedure for the bilevel optimization problem obtained from

the decomposition of this NLP is proposed for the real-time
implementation of the control strategy in an MPC scheme.
This strategy is meant to be deployable in most bus line
settings since it alleviates the need for prior timetabling or
scheduling through the use of adaptive headways, and scalable
since it relies on computations carried out in parallel aboard
individual buses. The originality of our work lies in the
fine-grained modeling of the inter-station bus travels over
long prediction horizons. No other study on bus line control
focuses on the eco-driving of individual buses to the best of
our knowledge, nor include such a detailed model of the bus
dynamics and energy consumption.

Note that the control strategy proposed in this paper has a
hierarchical architecture [31], since the MPC scheme operates
centrally to compute optimized reference trajectories. Inde-
pendent local bus controllers are then assumed to track these
references, but they are left outside the scope of this paper.

This article is organized as follows. The modeling of buses
and passengers is presented in Section II. In Section III, it is
explained how the general optimal control problem can be
reformulated and solved as a bilevel NLP, and embedded
in an MPC. Simulations results are shown and analyzed in
Section IV. Finally, the paper closes on some concluding
remarks in Section V.

II. BUS LINE MODELING AND CONTROL

In this section and in the one that follows, we present a
predictive control algorithm based on a deterministic model of
the bus line problem. The decisions taken by the algorithm are
therefore based on a representation of the averaged behavior
of the system. This algorithm is later applied in a stochastic
simulation environment in Section IV.

In order to ease the comprehension of the following mod-
eling steps, we invite the reader to refer to Table VI and
Table VII in the Appendix, which offer a detailed summary
of all the notations introduced throughout the paper.

A. Modeling Assumptions

We consider n buses that travel continuously on a circular
route of length L with q bus stops. The buses are indexed
from 1 to n, where the bus with index 1 is the last one that
drove through the origin of the route. The bus route layout
is represented in Fig. 1. In what follows, we use modular
notations to account for the circular aspect of the route. Every
bus or stop index is written modulo n or q , respectively, and
every position is written modulo L.

We assume that no overtaking among buses can take place,
and that their onboard capacity is not limited. This first
assumption is not very restrictive as our control strategy aims
to keep regular headways, which makes overtaking events
unlikely. Considering an infinite bus capacity is also a reason-
able assumption in the case of a prior tactical planning phase,
as motivated in [33]. The transit agency can be assumed to
dispatch sufficiently many buses, such that their capacity is
rarely exceeded. Note also that explicitly taking capacity con-
straints into account would result in adding integer variables
to our mathematical model, thus destroying the scalability of
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Fig. 1. Illustration of a circular bus route with a nonhomogeneous distribution
of bus stops.

our approach. Finally, the charging problem is not addressed
here.

In this paper, we consider that no intervention strategy
other than speed control can be applied by the controller.
In particular, it cannot hold buses at stops longer than needed
for the boarding and alighting operations to complete, and it is
assumed that these operations can only take place at designated
bus stops. Note that augmenting the controller with e.g.
a holding strategy or the ability to limit passengers boarding is
possible in theory. However, we chose to restrict our analysis
to the case where only speed control is allowed, both for
addressing situations where station-based interventions cannot
be implemented (e.g. in dense urban environments) and as a
way to evaluate the benefits that can be expected from the
speed control strategy itself.

We further assume that the bus line is operated without
any prior timetable, such that only headway regularity is of
interest. This fits urban settings well, where the high service
frequency results in uncoordinated arrivals of passengers at
bus stops [34]. As a result, this is a common assumption in
the bus bunching literature [21], [23]. We consider perfect
communications of the relevant information between the buses
and a central node (which can itself be a bus) when computing
control trajectories. When a control trajectory is generated by
the algorithm, it is assumed that the buses implement it as
such, as would be the case with e.g. autonomous buses. The
issue of the lack of precision or compliance from the drivers
is outside the scope of this paper.

B. Longitudinal Bus Dynamics

The longitudinal dynamics of a bus i ∈ I[1,n] along a fixed
route can be written with the position si and the bus speed vi

as state variables:
ṡi (t) = vi (t), (1a)

mi (si , t)v̇i (t) = Fm,i (t)− Fb,i (t)− Fd,i (vi )− Fr,i (si ), (1b)

where Fm,i is the motor force at the wheels, Fb,i is the force
generated by the friction brakes, Fd,i is the aerodynamic drag,

and Fr,i gathers the rolling resistance and the gravitational
pull. The explicit dependence in t has been omitted from
Fd,i , and Fr,i in (1) for simplicity. The mass of the bus mi

is considered to be a function of both space and time to
account for the influence of the travel time on the amounts
of passengers encountered at the stops. The exact model used
for the mass is discussed later in this section. Furthermore,

Fd,i (vi , t) = 1

2
ρ Abuscavi (t)

2, (2a)

Fr,i (si , t) = g mi (si , t)
(
sin θ(si )+ cr cos θ(si )

)
, (2b)

where ρ is the air density, Abus is the frontal area of the
vehicle, ca is the aerodynamic air drag coefficient, cr is the
rolling resistance coefficient, and θ is the road gradient [35].

In order to ease the modeling of bus stops, as becomes
clear in the next section, a change of the independent variable
in (1)-(2) is proposed. The dynamics are now considered with
respect to the position s, which means that e.g. the bus speed vi

now denotes a function of the variable s. This variable change
to the space domain is common in the predictive cruise control
literature, and additional details can be found in [8] -[10]. One
of the immediate benefits of this transformation is that the
nonlinearities coming from the space-dependent road gradient
in (2b) are removed, since the position is no longer a state.
Instead, the travel time ti is now chosen as a state variable.
Similarly, the quadratic nonlinearity in (2a) can be removed
with an extra variable change, namely by choosing the kinetic
energy per mass unit Ei (s) = 1

2v2
i (s) as a state variable instead

of the velocity vi . As a result, the state-space representation
of bus i is:

d Ei (s)

ds
= 1

mi (s, ti )
(Fm,i (s)− Fb,i (s)− ρ Abusca Ei (s))

−g(sin θ(s)+ cr cos θ(s)), (3a)
dti (s)

ds
= 1√

2Ei (s)
+�stop,i (s, ti ), (3b)

where the states and control inputs can be assembled
as xi (s) = [Ei (s), ti (s)]� and ui (s) = [Fm,i (s), Fb,i (s)]�,
respectively. A delay term �stop,i is added to the travel
time dynamics in order to capture the dwell times of bus i
at bus stops. Its exact expression is presented later in this
section, when passengers modeling is discussed. Perfect state
measurement is assumed in the rest of this paper.

There is a price to pay for the space domain variable change
however, which is that the vehicles cannot have zero speed,
as imposed by (3b). This is usually not an issue for cruise
control on highways, but it becomes problematic for city buses.
One way to address this limitation is to enforce a lower bound
constraint on the speed everywhere on the route, which is
henceforth noted ventry. This bound is assumed to have a
very low, non-zero value, and to be the speed at which buses
drive when entering and exiting bus stops. This way, (3) is
able to capture the bus dynamics properly, and any additional
delay entailed when reaching zero speed at stops is added
through �stop,i .

In addition, the bus velocity can be limited by e.g. the
surrounding traffic or the legal speed limits. Such constraints
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are formulated on the kinetic energy instead, as:
1

2
v2

min(s, ti ) ≤ Ei (s) ≤ 1

2
v2

max(s, ti ), (4)

where vmin and vmax are the lower and upper bounds on the
speed, respectively. In order to enforce a non-zero bus velocity,
the lower speed bound verifies vmin(s, ti ) ≥ ventry > 0, ∀s, ∀ti .
Likewise, the bus stops can be accounted for by imposing
vmin(sl , ti ) = vmax(sl , ti ) = ventry, ∀l ∈ I[1,q], ∀ti , where sl is
the location of the bus stop with index l.

Remark 1: The speed bounds can have any general smooth
shape. They may be chosen to have large spatial variations,
to account for different traffic conditions at different places of
the route for example, or large temporal variations, to model
different traffic regimes at different times of the day for
instance. Note that vmin and vmax can even be updated in oper-
ation to include real-time traffic speed information, e.g. if each
bus communicates the current state of traffic downstream to
the following buses.

C. Energy Consumption Model

The motor speed ωm,i and torque Tm,i of a bus i ∈ I[1,n]
can be related to its longitudinal force and speed through:
Tm,i (s) = rwη(Fm,i )

M f
Fm,i (s), ωm,i (s) = M f

rw

√
2Ei (s), (5)

where rw is the wheel radius and M f is the final gear ratio.
The transmission efficiency η captures the feature of an electric
motor (EM) to be able to operate both in traction and in
generation. It models the transmission losses by taking value
1/η f when Fm,i (s) ≥ 0 and η f when Fm,i (s) < 0, where η f

is the efficiency coefficient of the final gear.
Due to the power limitations of the motor, the torque has

to satisfy the constraint:
|Tm,i (s)| ≤ min(Tmax, Pmax/ωm,i (s)), (6)

where Tmax is the maximum motor torque and Pmax is the
maximum power that the motor can supply continuously [35].

In this paper, the battery is modeled as an open cir-
cuit voltage connected in series to an internal resistance.
Then, the internal battery power Pb,i (Tm,i , ωm,i ) balances the
power dissipated over the internal resistance, a constant load
consumed by auxiliary devices and the electrical power of
the EM [7], [12]. The EM electrical power is modeled by
fitting a polynomial function to the data shown in Fig. 2,
including second order terms in Tm,i and up to fifth order
terms in ωm,i [8]. Other models may be used for the battery
and the EM, but in the general case, the battery power can
be considered as a nonlinear and monotonically increasing
function in Tm,i and ωm,i [8], [13].

D. Bus Stops and Passengers

Let pi be the current position of each bus i ∈ I[1,n] on
the route. We assume that each bus is controlled over a
finite spatial horizon, which we refer to as prediction horizon,
or simply horizon, hereafter. Since part of our goal is to
enforce a regular bus service, we choose to let the horizon

Fig. 2. Efficiency map of the motor, as a function of its speed and torque.
The black lines denote the torque constraints.

Fig. 3. Prediction horizon for bus i , where the successive mass values at the
stops downstream are shown.

of each bus stretch all the way to the preceding bus. The
horizon for bus i is thus the interval [pi , pi+1]. This way,
the predicted forward headway with bus i + 1, noted Hi ,
is by construction nothing else than the difference between
the terminal travel time ti (pi+1) and the current simulation
time t0. This avoids the need to resort to an indirect proxy,
such as e.g. bus spacings [28], to enforce headway regularity.
Indeed, this particular proxy might not be adapted to certain
settings, such as a route with a non-homogeneous distribution
of bus stops. Note that this means that the horizons are not
overlapping here, and that their union covers the full route.1

This comes at a price, however, since bus overtaking cannot
be captured with this choice of control horizons. Indeed, if one
bus is about to overtake another, its prediction horizon shrinks
to zero. But recall that it has been assumed previously that no
overtaking event can take place here.

In these settings, the bus stops are distributed among the
horizons of the buses. Let Si be the subset of size qi of
the bus stops found on the horizon of bus i . For the sake
of simplicity, we may consider a relative indexing of these
stops, Si = {i1, . . . , iqi }, in the order that they are visited by
the bus. The position si j , i j ∈ Si , at which any stop lies on the
horizon is then reached by bus i at time ti (si j ). An illustration
of the complete horizon for bus i is displayed in Fig. 3.

It is assumed that the arrivals of passengers at any stop
i j ∈ Si are modeled as a homogeneous Poisson process with
parameter λi j [36]. Since overtaking is not allowed, the last
bus to have visited stop i j is the one directly preceding bus i ,
i.e. bus i + 1. Let t j

i+1 be the time at which it departed from
stop i j . Note that it does not refer to the travel time of bus

1Other horizon types are possible, such as shrinking horizons to the next
stop [27]. By choosing to have long and variable inter-bus horizons we gain
direct access to the time headways, at the expense of the problem’s complexity.
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i+1 on its own horizon, but rather denotes a fixed scalar since
it refers to a past event. Having introduced these notations,
we can now write that bus i expects to find λi j (ti (si j )− t j

i+1)
passengers on average when reaching stop i j , i.e. that the
amount of passengers increases linearly with respect to the
travel time. For simplicity, we assume that the numbers of
boarding and alighting passengers at stops are real variables.
The delay term introduced in the travel time dynamics (3b) to
capture the behavior of buses at stops can then be expressed
as:

�stop,i (s, ti ) =

⎧⎪⎨
⎪⎩

2ts + bλi j (ti (si j )− t j
i+1) if s = si j ,

i j ∈ Si ,

0 otherwise.

(7)

In this equation, the delay for the bus to reach zero speed
from the lowest allowed speed ventry and open its doors
(and vice-versa) is noted ts , and the boarding time for each
passenger is noted b. It is assumed that the boarding and
alighting operations can be carried out in parallel (e.g. through
different doors of the bus). Since the boarding operation
usually takes longer, the delay caused by alighting passengers
is not included [36]. Note that the travel time ti is a piecewise
continuous function in space as a result, due to the jumps
caused by �stop,i when driving through bus stops.

E. Evolution of the Mass

Similarly to the travel time, the mass mi of bus i is
affected by passengers boarding and alighting from the bus.
It is a piecewise constant function in space, since passengers
exchange can only take place at bus stops, and it is also depen-
dent on the travel time since this affects the passengers loads
encountered by the bus at the stops downstream. To derive an
expression for mi , one can start by noticing that it can only
take qi + 1 distinct values over the horizon of bus i since qi

bus stops are encountered. Let {m0
i , m1

i . . . , mqi
i } be the set of

the successive values taken by mi , where the dependency in
the travel time has been dropped for notational brevity, and
where m0

i is the initial mass of bus i . The evolution of mi

over the horizon of bus i is illustrated in Fig. 3.
For any j ∈ I[1,qi ], the new mass value m j

i past stop i j can
be computed recursively from the previous one m j−1

i as:
m j

i = (1− μi j )(m
j−1
i − memp)+ mpaxλi j

(
ti (si j )− t j

i+1

)
, (8)

where mpax is the average passenger mass, memp is the mass
of the empty bus, and where μi j is the alighting proportion
of onboard passengers at stop i j [36]. Note that μi j is then
a fixed scalar in [0, 1] which can be set from historical
passenger flow data. The right-hand side of (8) thus models
the onboard passengers staying on the bus (first term), and
the new boarding passengers (second term), the load of which
increases with the travel time needed to reach that stop. This
expression prevents the mass from ever becoming smaller than
memp since only a fraction of the onboard passengers alight at
each stop.

From this recursive formulation, one can prove by induction
that m j

i can be written as an explicit function of the travel time

and the initial mass:

m j
i = m0

i

j∏
l=1

(1− μil )− memp

j∑
l=1

j∏
r=l

(1− μir )

+mpax

j∑
l=1

j∏
r=l+1

(1− μir )λil (ti (sil )− tl
i+1). (9)

It can be noted from this expression that the mass too
depends linearly on the travel time.

Now that the set {m0
i , m1

i . . . , mqi
i } is known, we may use

it to assemble the mass function mi as:
mi (s, ti ) = m j

i (ti ), ∀s ∈ [si j , si j+1 ], ∀ j ∈ I[0,qi ], (10)

where indices i0 and iqi+1 are used to refer to the two stops
bordering the horizon of bus i , and where the dependency of
each m j

i , j ∈ I[1,qi ], in the travel time is now written explicitly.

III. BILEVEL OPTIMIZATION AND RECEDING

HORIZON CONTROL

In this section, a general optimal control problem (OCP) is
assembled based on the model developed throughout the previ-
ous section. Since problems of this type are unpractical to treat
as such, the OCP is first rewritten as a smooth NLP through
a tight relaxation of some of the problem constraints. This
NLP is then decomposed into a high-level problem and several
independent bus-level problems. Since each bus-level problem
only contains the information related to a single bus, one
can envision a physically distributed resolution of this bilevel
decomposition where buses can act as independent computing
nodes. Lastly, we present how this resolution framework can
be embedded in an MPC to address the challenges of real-time
control in urban settings.

A. Optimal Control Formulation

A predictive bus line model can now be derived from the
modeling steps taken in Section II. Recall that we noted
Hi the predicted forward headway of bus i with the pre-
ceding bus i + 1, and that it also denotes the predicted
travel time of bus i on its control horizon. Writing the
state and control input vectors x(s) = [x1(s), . . . , xn(s)]� and
u(s) = [u1(s), . . . , un(s)]�, where xi (s) = [Ei (s), ti (s)]� and
ui (s) = [Fm,i (s), Fb,i (s)]�, the energy-aware bus line control
problem can be formulated as the following OCP:

min
x(s),u(s)

n∑
i=1

1

2
�i H 2

i + α

n∑
i=1

(Hi − Hi−1)
2

+β

n∑
i=1

∫ pi+1

pi

Pb,i (Tm,i , ωm,i )√
2Ei (s)

ds, (11a)

s.t. ∀i ∈ I[1,n] :
Ei (pi ) = E0

i , ti (pi ) = t0, (11b)

Hi = ti (pi+1)− t0, (11c)

(3), (4), (6), (11d)

where the state dynamics (3) and the constraints (4), (6) are
enforced for all s ∈ [pi , pi+1] for each bus i , and where
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the bus mass can be computed explicitly from (9) and (10).
The initial reduced kinetic energy of bus i is E0

i , and the
initial simulation time is noted t0. The motor speed and
torque are expressed in terms of the state and control variables
through (5) in the expressions that use them. The objective
function (11a) is weighted by �i , which is defined as a
ratio involving passengers arrival rates at stops downstream,
�i =∑

i j∈Si
λi j /

∑q
l=1 λl , and by the positive coefficients α

and β that account for the trade-off between the different
objectives.

Note that (11) is based on the nominal bus line model. As a
result, the optimal trajectories obtained when solving this OCP
may not be tracked perfectly since the system may be subject
to external disturbances in practice. This point is discussed
further when introducing the receding horizon control idea at
the end of this section.

In this formulation, the buses do not try to track a predefined
service headway, but rather aim to adapt their predicted head-
ways to whichever common headway is optimal. The rationale
for this is that the desirable headway for service regularity
might change depending on e.g. the amount of disturbances
applied to the system [21]. The predictive information avail-
able can therefore be leveraged to try to find this optimal
headway.

In the economic objective function (11a):
• The first term is a look-ahead term which rewards short

headways proportionally to �i for each bus i . These
coefficients account for the differences in the passengers
affluence at stops downstream among the prediction hori-
zons, and are used as proxies to minimize passengers
waiting times at stops. For instance, a bus entering the
inner city center where many passengers might be waiting
is given a higher incentive to have a short headway than
one traveling towards the outskirts of the city.

• The second term introduces a look-back feature which
penalizes the deviations of successive headways. In other
words, it introduces some coupling between successive
buses, such that each bus also adapts its driving behavior
to the following bus.

• The third term is the amount of battery energy required
for each bus to drive to the end of its prediction horizon.
This sets an incentive for buses to adapt their driving
behavior accordingly, and is motivated by the observation
that different trajectories with similar travel times can
have a vastly different energy consumption.

The first two objectives focus on bus headways and directly
aim to improve the overall passenger experience, while the
last objective focuses on the energy consumption, which is
meaningful to the service provider. Therefore, these three
objectives may promote opposed control actions since e.g.
enforcing shorter headways usually requires a higher energy
consumption. Hence, the trade-off coefficients α and β must be
calibrated carefully depending on the application considered.

B. Direct Reformulation of the OCP

As a next step towards the resolution of the problem
presented, we propose a direct optimal control reformulation

of (11). The prediction horizon of each bus i is split into
N uniform shooting intervals of varying length �si , due to
the unequal horizon lengths. We assume a piecewise con-
stant input parametrization, i.e. ui (s) = ui,k , s ∈ [si,k , si,k+1),
where si,k = pi + k�si , and a multiple-shooting ‘discretiza-
tion’ of the dynamics [37]. Since the shooting points might
often ‘miss’ the exact locations of the bus stops, the latter are
assumed to be located at the closest shooting point instead,
i.e. si j = si,k , i j ∈ Si , where the k-th shooting point is the
one closest to stop i j . The direct reformulation can now be
written as an NLP:

min
X,U

n∑
i=1

1

2
�i H 2

i + α

n∑
i=1

(Hi − Hi−1)
2

+ β

n∑
i=1

N−1∑
k=0

J (xi,k, ui,k ), (12a)

s.t. ∀i ∈ I[1,n] :
Ei,0 = E0

i , ti,0 = t0, (12b)

Hi = ti,N − t0, (12c)

xi,k+1 = F(xi,k , ui,k ), k ∈ I[0,N−1], (12d)

g(xi,k , ui,k) ≤ 0, k ∈ I[0,N−1], (12e)

where Xi = [xi,0, . . . , xi,N ]�, and Ui = [ui,0, . . . , ui,N−1 ]�
are vectors gathering the optimization variables relative to bus
i , and where X = [X1, . . . , Xn]�, and U = [U1, . . . , Un]�.
The numerical integration of the state dynamics (3) is car-
ried out over s ∈ [si,k , si,k+1] by the function F(xi,k , ui,k ),
starting from xi,k and with the input ui,k . Similarly, the func-
tion J (xi,k , ui,k ) carries out the numerical integration of the
function Pb,i/

√
2Ei over s ∈ [si,k , si,k+1] to find the energy

consumed. In both cases, the Runge-Kutta method is used.
A discretized version of (10) can be obtained easily for the
bus mass, as it is already piecewise constant in space, and
used in (12d). Finally, the function g gathers the inequality
constraints from (4) and (6).

Remark 2: One important feature of NLP (12) is that no
additional integer variables need to be added to detect the
bus stops. Indeed, each bus stop is automatically associated
with a shooting point. If the problem had been formulated
in time rather than in space however, integer variables would
have been needed since the correspondence between shooting
points and bus stops would have been dependent on the control
inputs. Note also that this discretization step removes the
previous discontinuities of the mass and the travel time at the
stops. Formulating a smooth NLP is crucial for being able to
deploy second-order optimization methods later on, which are
a powerful tool to solve such problems.

The only non-smooth part in (12) now comes from the
discretization of the torque constraints (6). Indeed, the motor
torque is not continuously differentiable in zero due to the
different transmission efficiency when the EM operates in
traction or in generation, as can be seen from (5). This
can be dealt with by lifting the NLP, i.e. by adding addi-
tional optimization variables in order to obtain a smooth
modified version. Here, we introduce separate longitudi-
nal force variables for each motor regime (traction or
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generation), such that Fm,i,k = Ft,i,k − Fg,i,k , ∀k ∈ I[0,N−1] ,
∀i ∈ I[1,n]. The discretized control input vector then becomes
ui,k = [Ft,i,k , Fg,i,k , Fb,i,k ]�. The torque constraints (6) may
now be rewritten as:

0 ≤ Ft,i,k ≤ η f Pmax√
2Ei,k

, Ft,i,k ≤ η f M f Tmax

rw
, (13a)

0 ≤ Fg,i,k ≤ Pmax

η f
√

2Ei,k
, Fg,i,k ≤ M f Tmax

η f rw
, (13b)

thus removing any non-smoothness from (12), since the motor
torque Tm,i,k can now be expressed as:

Tm,i,k = rw

η f M f
Ft,i,k − η f rw

M f
Fg,i,k . (14)

With these new expressions, the lifted version of (12) is the
smooth NLP:

min
X,U

n∑
i=1

1

2
�i H 2

i + α

n∑
i=1

(Hi − Hi−1)
2

+ β

n∑
i=1

N−1∑
k=0

J̃(xi,k , ui,k ), (15a)

s.t. ∀i ∈ I[1,n] :
(12b), (12c), (12d), (15b)

g̃(xi,k , ui,k ) ≤ 0, k ∈ I[0,N−1], (15c)

where J̃ and g̃ are very similar to J and g in (12), except
that the torque expression (14) is used to compute the energy
consumption J̃ , and that the inequality constraints g̃ include
the modified torque constraints (13) instead of the original
ones (5)-(6).

Now, it remains to show that this smooth relaxation (15)
of the original problem (12) is tight, i.e. that both problems
have the same solution (including the same optimal values for
the longitudinal force). Fortunately, this can be proved rather
easily with a mild assumption on the battery power Pb,i . This
result is formalized in Proposition 1, the proof of which is
given in Appendix A.

Proposition 1: The lifted version (15), where the torque
constraints are enforced through (13) and where the torque
is expressed as (14), has the same solution as the original
problem (12).

C. Decomposition

Solving the lifted version (15) of the fully-centralized NLP
as such presents some difficulties. The nonlinear dynamics
from (3b) cause it to be non-convex, and the size of the
problem might become large depending on the scenario size.
In addition, the resolution of this NLP would have to be
carried out centrally, which might make the method sensitive
to communication issues with the vehicles in the case of a
real-life implementation. As the goal is for the problem to
be solved repeatedly in a receding horizon fashion thereafter,
we propose to make it more tractable through a bilevel
decomposition.

Fig. 4. Resolution scheme of the decomposed problem. The arrows denote
the remote communication between the central node and the buses. Note that
the buses do not need to share information with each other in these settings.

The problem can be split into a line-level (or high-level)
problem, and bus-level subproblems:

min
H

n∑
i=1

1

2
�i H 2

i + α(Hi − Hi−1)
2 + βVi (Hi), (16a)

s.t. Hi ∈ dom(Vi ), i ∈ I[1,n], (16b)

Vi (Hi) = min
Xi ,Ui

N−1∑
k=0

J̃(xi,k , ui,k ), (17a)

s.t. Ei,0 = E0
i , ti,0 = t0, (17b)

ti,N = t0 + Hi , (17c)

xi,k+1 = F(xi,k , ui,k ), k ∈ I[0,N−1], (17d)

g̃(xi,k , ui,k) ≤ 0, k ∈ I[0,N−1], (17e)

where H = [H1, . . . , Hn]�, where Vi (Hi) is the optimal cost
of the bus-level NLP (17) for a given Hi and where dom(Vi )
at the high-level denotes the feasible set of (17) for bus i . Note
here that g̃ includes the inequality constraints (13), and that
the motor torque appearing in the expression of J̃ is computed
according to (14), as mentioned previously.

Remark 3: Due to the non-convexity of the bus-level
subproblems (17), no guarantees of global optimality can
be obtained, in general. However, this type of decompo-
sition is known to conserve global optimality in the con-
vex case [38]. The proof proposed in that work can be
adapted to the non-convex case to show that the decomposed
problem (16)-(17) has the same set of KKT points [39] as the
original problem (12). Under some mild assumptions, this is
equivalent to saying that these two problems have the same
set of local minima [39].

Remark 4: Some of the computations of (16)-(17) can be
carried out in parallel since the only coupling terms between
the buses have been gathered at the high-level. This opens the
door to a physically distributed resolution where the bus-level
NLPs (17) could be solved independently aboard each bus,
while only (16) would be solved centrally, as illustrated
in Fig. 4. The amount of information that would need to be
exchanged between the central node and the buses in that case
is quite low, as it is motivated when discussing the resolution
procedure in Appendix B.

Constraint (16b) is important to guarantee the feasibil-
ity of each bus-level problem with respect to the terminal
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constraint (17c). Since the feasible set dom(Vi ) gathers
the possible terminal travel times for bus i , it is in fact
an interval with static bounds, and can be expressed as
dom(Vi ) = [H min

i , H max
i ]. Therefore, (16b) may simply be

rewritten as a set of linear inequality constraints. The two
bounds of each feasible set can be computed as the solutions
to the optimization problems:

H min
i = min

Xi ,Ui
ti,N , (18a)

s.t. (17b), (17d), (17e), ∀k ∈ I[0,N−1], (18b)

and,

H max
i = min

Xi ,Ui
− ti,N , (19a)

s.t. (17b), (17d), (17e), ∀k ∈ I[0,N−1], (19b)

which are the minimum and the maximum time problems,
respectively. They too may be solved in parallel, aboard the
concerned buses.

This bilevel decomposition of the original problem is not
a panacea, however. The high-level problem (16) remains a
non-convex NLP, with an objective function defined implicitly
through (17). Different tools can be deployed to solve it.
Here, we chose to combine some results from parametric
optimization [40] with a second-order optimization method,
which was in part motivated by the better convergence rates
of such methods. The details of the Sequential Quadratic
Programming (SQP) [39] algorithm implemented can be found
in Appendix B. In what follows, we assume that the resolution
of the decomposed problem has been carried out.

D. Receding Horizon Control

Urban buses typically evolve in an environment which can
be highly dynamic and uncertain since many different types
of actors interact in a restricted space. However, the con-
trol decisions obtained from solving (16)-(17) are based on
deterministic predictions, which ignore the stochastic distur-
bances coming from the real system. In order to reject these
disturbances, closed-loop control is introduced by using an
MPC [32].

Despite having expressed the commands and the dynamics
in the space domain up to that point, we choose to sample the
MPC in time. The rationale for this is that the time needed for
each bus to travel a given distance may change a lot depending
on where the bus is located on the route. For instance, running
an MPC sampled in space would result in no command update
for any bus dwelling at a stop, thus potentially ignoring
new information coming from the other buses. Opting for
synchronous updates instead makes it possible to be computing
new commands constantly. The MPC sampling time, which
is noted T hereafter, could for example be calibrated on the
computation time needed to solve the decomposed problem
(16)-(17) in order to apply command updates as frequently as
possible.

By sampling the MPC in time however, a bus might travel
through a fractional number of shooting points during any
MPC stage. In this case, its new states can be interpolated
from the previous state trajectories when the next stage begins.

Algorithm 1: MPC for the Bus Line Problem

1 initialize state, time ← 0, data ← {}
2 while time− time_end < 0 do
3 X , U ← solve (16)-(17)
4 state ← system_evolution(state, X , U , T )
5 data ← {data, state}
6 time ← time + T
7 end
8 return data

Since the buses move relatively to each other between MPC
stages, their prediction horizon length changes constantly.
Using a constant number of shooting points N for each horizon
guarantees that each NLP (17) has a constant size over time,
regardless of the horizon length. Since these NLPs are the main
bottleneck in terms of computation time, having a constant N
ensures that T can be chosen in a way that guarantees that the
full problem (16)-(17) can always be solved before the next
MPC update.

A summarized pseudo-code representation of the MPC is
given in Algorithm 1. The state variable is to be understood
as containing the current information available about the whole
system, including e.g. the last departure times from stops or the
horizon lengths. The system_evolution function implements
during T time units the control trajectories U obtained by
solving the decomposed problem. It then returns the updated
state of the bus line based on the evolution of the real
system, at which point new commands can be computed.
A data structure containing the complete state history is finally
returned when the control has been applied during the desired
period of time.

In this algorithm, the system_evolution function is assumed
to represent some local bus controllers which can track the
optimized reference trajectories X and U generated at each
sampling instant. As a result, the entire bus line control
structure can be said to have a hierarchical architecture [31].
The tracking control layer can be assumed to operate at a
higher frequency than that of the MPC, and to guarantee
critical safety constraints such as e.g. collision avoidance with
surrounding vehicles, including the other controlled buses. The
implementation of this additional control layer is outside the
scope of this paper, however.

IV. SIMULATIONS

In this section, the proposed MPC strategy outlined in
Algorithm 1 is tested in simulations capturing realistic bus
operations.

A. Simulations Setup and Route Layout

Historical data from bus line 17 in Gothenburg, Sweden,
is used to calibrate the simulations. This urban bus line serves
a total of 28 stops during one full trip, several of which are
located in the inner city center. In addition, this route makes
the buses drive through a hilly terrain, as shown in Fig. 5,
which means that their driving profiles must be adapted
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Fig. 5. Route layout of bus line 17. The bus stops are placed according to their altitude on the route, and it is indicated which of them serve as control points
for the holding baseline. The solid red line is the average maximum speed obtained from historical bus driving profiles, and is used as the upper velocity
bound vmax. The dashed lines indicate the speed limit on each road segment, as well as the lower velocity bound ventry.

accordingly by the MPC in order to be energy-efficient [8].
We focus on transit operations during rush hour in the sim-
ulations as this presents the biggest challenge from a control
point of view. The upper bound vmax for the bus velocity used
in the predictions is extrapolated from several real driving
profiles in order to represent the disturbances coming from
the surrounding traffic. Fig. 5 displays how vmax changes at
different places of the route, depending e.g. on the speed limit.
Note that vmax is assumed to be only space-dependent here.
The advantage of having a detailed velocity profile instead
of e.g. a simple piecewise constant function is that it enables
fine-grained predictions of the energy consumption over the
route. The passengers arrival rates λl and alighting proportions
μl at every stop l ∈ I[1,q] are directly inferred from the
historical data.

Each simulation run consists of two hours of bus operation
during rush hour, and each starts with 8 buses in total.
In these simulations, the MPC is sampled with T = 30 s.
Unlike the prediction framework used in the MPC, which is
fully deterministic, the simulations include several sources of
stochastic disturbances to account for the unpredictability of
a real transit system. (i) The accumulation of passengers at
each bus stop l ∈ I[1,q] is sampled from a Poisson process with
parameter λl . (ii) Similarly, the number of alighting passengers
at l is sampled from a binomial distribution depending on
the alighting proportion μl and the load of the bus arriving
at l [36]. (iii) Lastly, the maximum velocity at which buses
can travel is increased (or decreased) by a certain percentage
of vmax on each inter-stop segment separately. The deviation
percentages are sampled from a normal distribution centered
around 0 and with a constant variance σ 2

traffic. They are meant
to model the fluctuations of the real traffic conditions around
their historical average, as well as the differences in traffic
conditions across different segments of the route. In order
to account for the evolution of traffic conditions over time,
these disturbances are resampled every two and a half minutes.
Note that the speed upper bound obtained may have to be
adapted ex post facto to comply with the legal speed limit

on each segment (which is either 50 km/h or 70 km/h).
This means that larger values of σtraffic tend to slow down
the system on average since vmax is not usually much lower
than the legal speed limit. It the simulations, we chose to set
σ 2

traffic = 10 m2/s2 in order to model moderate deviations from
the historical average.

In [30], it was observed that the speed constraint functions
in (4) can affect significantly the performances of the control
algorithm. In particular, choosing a high value for the lower
bound vmin leads to limited speed adjustments possibilities,
and might impair the ability of the controller to regularize
bus operations. Therefore, we chose to set vmin(s) = ventry,
∀s ∈ [0, L], in order to investigate the full potential of the
proposed method, and where it is assumed that vmin does not
depend on time either. Note that the buses are never made to
travel at such a low speed in practice, except in the case of
extreme bunching.

The modeling and simulation aspects are implemented in
MATLAB. The symbolic framework CasADI [41] is used
to assemble the NLPs (17) and (22), which are then solved
with the primal-dual interior point solver IPOPT and with the
active-set solver qpOASES, respectively.

B. Baselines

We compare the proposed MPC strategy with two baselines
relying on different intervention strategies, namely a classical
headway-based holding baseline, and a proportional-integral
(PI) controller. The former method relies on simple rule-based
control actions at a subset of bus stops, named control points,
where each bus may be held for long periods of times in
order to compensate unstable headways. Holding methods in
general are the ones most commonly implemented by transit
agencies in practice, which motivates the inclusion of one
as a baseline. On the other hand, the PI-controller has an
intervention strategy similar to that of the proposed MPC since
it computes longitudinal force commands to adjust the bus
speed in operation. Like the MPC, it is not allowed to hold
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buses at the control points. Each baseline is presented in-depth
below.

Holding baseline: This control method makes the buses
travel at the maximum possible speed between stops. At the
control points, it holds buses if necessary, until they can be
dispatched from each control point according to a predefined
target headway. In other words, when a bus is ready to leave
a control point, two situations can occur:
• If the last bus departure from that control point occurred

more than one target headway ago, the bus leaves the
control point immediately.

• Otherwise, the bus is held at the control point until the
time where the last departure occurred precisely one
target headway ago, at which point the bus leaves the
control point.

Based on the rush hour timetables for bus line 17, the target
headway is set to 5 minutes in the simulations. Note that it
is only used by the two baselines, but not by the proposed
MPC, which is based on adaptive headways, and as such does
not need any predefined target. It is assumed that the route
has two control points and that the holding baseline can hold
the buses there without any time constraint. In order to mimic
real-life operations, they are chosen as stops where the transit
agency already performs bus holding in practice. One control
point is chosen to be the central station of Gothenburg, as it is
the stop with the highest passenger flow in our dataset, and the
other is chosen to be the stop which is the farthest away from
the city center, as it corresponds to the actual bus terminus of
the line. The location of these control points on the route is
shown in Fig. 5.

PI-controller: This controller operates along the same lines
as the PI-controller presented in [28]. The main difference
here is that instead of spacing errors, we consider the error
between the current position of a given bus and the shifted
position of the preceding bus. More precisely, the position
of the preceding bus is shifted backward in time by one
target headway, i.e. 5 minutes here. More details on this
error term can be found in [27]. The control inputs are then
updated in discrete-time proportionally to the current error,
with proportionality constant KI , and to the current rate of
change of this error, with proportionality constant K P . In other
words, KI is the integral gain and K P is the proportional gain
of the controller. These parameters can be tuned to decide
how fast and with what amplitude the PI-controller updates
its control input based on the errors observed. We invite the
reader to refer to [28] for further information on the design
of this controller. In order to make the comparison with the
MPC accurate, we consider that the control input provided
by the PI-controller is the longitudinal force too. In the
simulations, these control inputs are updated with a period
of 1s.

Contrary to the MPC, the PI-controller does not include any
predictive information about the route or the passengers, but
can only apply reactive control based on the current errors
observed. Note also that the state constraints introduced in the
modelling section cannot be directly included in the design
of this controller. Instead, they are enforced in the simulation

framework, in case the PI-controller returns a control input
which is not feasible given the current state of traffic.

C. Performance Metrics

In order to assess the regularity of bus service, we use the
squared coefficient of variation of headways, noted CV 2, as a
performance indicator. It can be defined as:

CV 2 = σ 2
hw

μ2
hw

(20)

for any given set of headways, where μhw and σhw denote
the sample mean and sample standard deviation of this set,
respectively. Lower values of CV 2 therefore correspond to sta-
ble headways, up to perfectly balanced headways if CV 2 = 0.
In addition, one can show that the average passengers waiting
time is directly proportional to CV 2 if the passengers arrive
at stops following a Poisson process [42], so that CV 2 can
be used as a proxy to monitor passengers waiting times at
stops. Since transit agencies ultimately aim to provide good
service to their passengers, we focus on the set of headways
observed at each bus stop in the simulations, i.e. what the
passengers would be experiencing in practice. This set of
observed headways is used to compute CV 2 according to (20).

Transit agencies might also value the commercial speed
of their vehicles as it can e.g. affect the waiting times of
passengers already on board. In fact, there is a trade-off
between regular and short headways since the intervention
methods studied are built around preventing some buses from
traveling as fast as possible along the route, either by slowing
them down or by holding them at stops. The commercial
speed is monitored by looking at the sample mean μhw of the
observed headways, as it correlates directly with the average
speed of the buses.

In addition to these two passengers-related metrics,
the amount of battery energy consumed to enforce the different
control methods is also studied.

D. Experiments

Several scenarios are generated, each with different initial
spacings of the buses, as a way to evaluate the control strate-
gies in different operational settings. Namely, these 10 sce-
narios are meant to cover most levels of bus bunching. They
are ordered from 1 to 10 based on the mean deviation from
homogeneous spacings that the buses have at the beginning of
the simulations. Scenarios 1 and 10 represent two extreme sit-
uations: buses with homogeneous spacings and buses bunched
into one broad cluster, respectively. The initial state of the bus
line at the start of the simulations for every scenario can be
found in Table I. Each scenario is simulated 5 times in order
to provide an averaged representation. For each simulation,
the same sample of traffic-related disturbances is used by all
control methods to compare them on an equal footing.

The number of shooting points for each MPC horizon
is chosen as N = 200. This is enough for the Runge-Kutta
method to simulate the bus dynamics with a good accuracy
over potentially long horizons, such as those that come up
in the last few scenarios. Increasing the number of shootings

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:59:53 UTC from IEEE Xplore.  Restrictions apply. 



10672 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 8, AUGUST 2022

TABLE I

INITIAL POSITIONS OF THE BUSES AND CORRESPONDING AVERAGE DEVIATIONS FROM HOMOGENEOUS SPACINGS
FOR ALL SCENARIOS. ALL THE VALUES BELOW ARE GIVEN IN METERS

TABLE II

PERFORMANCE INDICATORS FOR DETERMINISTIC SIMULATIONS OF

SCENARIO 5 WITH DIFFERENT PARAMETERS α AND β FOR
THE MPC. THE HEADWAY-RELATED INDICATORS

ARE AVERAGED OVER ALL BUS STOPS

points in these extreme cases only marginally improves the
accuracy, while increasing the computation time, thus moti-
vating our choice for N .

Likewise, the parameters α and β, which regulate the
trade-off between the objective terms in the optimization
problem solved by the MPC, are kept fixed for all simulations.
They are calibrated by running the MPC in an intermediately
bunched environment (scenario 5) and in fully determinis-
tic settings for several different values of these parameters.
Table II provides the performances obtained for several para-
meters pairs. The one which achieves the best CV 2 score while
keeping μhw within 10 seconds of what is achieved by the
holding baseline is chosen. This sets a bound on how slowly
the MPC is allowed to operate the buses on average, since
better CV 2 scores and better energy savings could potentially
be achieved at the price of slowly-traveling buses. Transit
agencies may adjust these parameters accordingly, depending
on what they value the most. In what follows, we then assume
that α = 2 and β = 2.78 s/kW.

The gains KI and K P of the PI-controller are tuned in a
similar way. The same deterministic simulation settings are
used, with the same requirement on the commercial speed of
the buses. It was found that KI = 10 and K P = 10 achieved
the best regularity performances. Note that the trade-off
between headway regularity, commercial speed, and energy
consumption is not reflected as explicitly when tuning these
gains as it is when setting the weights in the objective function
of the MPC, where each weight has a clear physical meaning.

This in turn might make the design phase harder to handle
for transit agencies when using a PI-controller. Table VII in
the Appendix gathers the rest of the numerical values for the
parameters used in the simulations.

E. Results

Fig. 6 presents the evolution of the performance indicators
for scenario 5, which corresponds to an intermediate level of
initial bunching. Note that unlike Fig. 6c and Fig. 6b, Fig. 6a
displays the sample mean and sample standard deviation of the
bus headways for only one simulation instance of scenario 5.
This is meant to showcase the convergence profile of each
method, but the observations below can be easily generalized
to all other simulation instances.

As can be seen in Fig. 6a, all control strategies manage
to dissipate the initial service irregularities and to reach
roughly homogeneous headways after some time, despite the
permanent disturbances coming from the passengers and from
traffic. The MPC algorithm converges naturally to headways
of around 5 minutes once regular service is restored, thereby
confirming that a target headway of 5 minutes was a sensible
choice for the baselines.

It can be observed on this figure that the controllers have
different convergence profiles. Indeed, the MPC first leverages
its adaptive feature to set higher headway commands to the
buses during the first 30 minutes of simulation. This results
in a strong initial increase of the average headways observed,
but it enables a faster convergence to homogeneous headways
as the standard deviation decreases much earlier than for
the baseline buses. Since the holding controller makes the
buses travel at maximum speed, their headways remain low on
average. However, it takes a longer time to dissipate the initial
bunching since all the buses must reach the control points first,
and wait there for possibly long periods of time. In addition,
the standard deviation of the headways of the MPC-controlled
buses is consistently lower than that of the baseline buses
during the last hour of simulation. One of the main reasons
for this is that the MPC relies on its models to anticipate the
expected quantities of passengers at upcoming stops. It can
thereby take preemptive action to slow down or speed up
buses accordingly, hence keeping low headway variations.
The PI-controller, on the other hand, only reacts to current
observations, which results in a higher headway variability.
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Fig. 6. Results for scenario 5. In these figures, the shaded areas are bounded above and below by the maximum and minimum metrics values observed among
all the simulations of scenario 5 for the control strategy concerned. (a) Temporal evolution of the average headways at stops, for one simulation instance
of this scenario (solid lines). The dashed lines are plotted one sample standard deviation away from the average lines to indicate the current dispersion of
headways in this simulation instance. (b) Average total energy consumption of the buses over time (solid lines). (c) Average squared coefficient of variation
of headways CV 2 at each of the stops (solid lines).

In addition, it must be noted that these two control methods
are able to react immediately if any bus starts falling behind
schedule, while the holding controller has to wait for the
concerned bus to reach the next control point. This accounts
in part for the better headway regularity performances of the
MPC and PI-controller over the holding baseline.

Fig. 6c comes as the logical consequence of the previous
observations. It displays the CV 2 score at each bus stop for
the controllers. The CV 2 score of the MPC is consistently
lower than that of the holding baseline at nearly every bus
stop across all simulation instances, and is lower than that
of the PI-controller at about half of the bus stops, both CV 2

scores being roughly the same at the other half. In other words,
the MPC algorithm achieves more stable headways at stops,
according to (20), which translates directly into lower average
passengers waiting times, as explained previously. It can also
be seen on this figure that the holding baseline dispatches
buses most regularly at the two control points (which have
indices 13 and 28), as expected. The few stops located right
after the control points benefit from the regular incoming flow
of buses, and have relatively low CV 2 scores too. The regular-
ity of the uncontrolled baseline buses eventually worsens until
the next control point is reached, hence making CV 2 adopt a
characteristic sawtooth pattern. Similarly, the CV 2 scores of
the PI-controller have a similar shape than that of the CV 2

scores of the MPC, indicating that headway regularity may be

TABLE III

HEADWAY-RELATED INDICATORS, AVERAGED OVER ALL

BUS STOPS, FOR ALL SCENARIOS

harder to enforce locally at some of the stops. Finally, Fig. 6b
showcases the better energy efficiency of our control algorithm
when compared with both baselines.

The same general patterns, in terms of headway regulariza-
tion and energy consumption, are also found when investigat-
ing the other scenarios. Table III gathers the CV 2 scores and
the average headways for all the scenarios. As expected, these
two indicators increase with the strength of the initial bunching
since the controllers need to exert a stronger slowing control
on the buses in that case, and regular headways are thereby
restored later in the simulation. The CV 2 scores observed
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are orders of magnitude apart across scenarios, showing how
strongly bunching can affect the quality of the service provided
by the bus line.

Another clear pattern emerges from these results: buses
controlled by the MPC algorithm are slightly slower on
average than those controlled by the holding method, but
they manage to achieve much better CV 2 scores. Indeed,
the MPC-controlled buses may have 10 to 20 seconds longer
headways on average, but their CV 2 scores are 2 to 4 times
lower. This essentially means that the MPC regularizes head-
ways faster and more consistently than the holding baseline.
Ultimately, this results in lower passengers waiting times at the
price of a slightly lower commercial speed. The conclusion is a
bit different when comparing the MPC with the PI-controller.
In scenarios with weak bunching, the two controllers have
similar CV 2 scores, but the baseline buses are slower. The
situation is reversed for scenarios with intermediate to strong
bunching, where the commercial speed of the buses is compa-
rable, but where the MPC achieves a better headway regularity
than the PI-controller. Finally, it should noticed that the
PI-controller too outperforms the holding baseline in terms
of headway regularity, but at the price of a lower commercial
speed. The MPC and PI-controller display clear similarities
here again, but the predictive feature of the MPC enables it to
systematically outcompete the PI-controller in terms of service
performances.

Note that the MPC-controlled buses could have been made
to travel faster with a different choice of trade-off parameters,
albeit increasing their CV 2 score in doing so. However, it was
observed that the general conclusion would have remained the
same, even with different sets of parameter values.

Table IV displays the energy consumed by the buses for
all control methods. The values presented are averaged over
all simulation instances for any given scenario. It can be
observed that the MPC algorithm consistently has a better
energy efficiency than the two baselines, and enables energy
savings of up to 9.3% over the best performing baseline.
In addition, no baseline is clearly better than the other
in terms of energy consumption. The PI-controller has a
more intensive energy consumption for scenarios with strong
bunching, while the reverse is true for scenarios with weak
bunching. This observation may seem surprising since the
holding-controlled buses always travel at the maximum speed,
while the PI-controlled has the ability to adjust the speed of the
buses in operation. However, it is useful to remember here that
the holding baseline is allowed to have buses dwell indefinitely
at stops, where they do not consume any energy. On the
other hand, both the MPC algorithm and the PI-controller
require buses to constantly be on the move when not picking
passengers up. This difference in the intervention strategy
of each method explains our previous observation. This is
also why the performance indicator monitored is the total
energy consumption rather than e.g. the energy consumption
per distance unit. It accounts for the intervention difference
between the two classes of methods, and aims at giving some
indications of the actual energy savings that can be expected
for the transit agency when implementing an energy-aware
velocity control method over generic baselines.

TABLE IV

TOTAL ENERGY CONSUMED BY THE BUSES IN ALL SCENARIOS (IN kWh).
THE ENERGY SAVINGS DENOTE THE ENERGY EFFICIENCY

IMPROVEMENT OF THE MPC OVER THE BEST

PERFORMING BASELINE IN EACH SCENARIO

In the simulations, the MPC leverages its predictive feature
to generate energy-efficient driving profiles for the buses, e.g.
by decreasing their speed before steep downhill sections in
order to empty their kinetic energy buffers, thus avoiding
unnecessary braking. By doing so, it manages to compensate
the longer dwell times of the holding-controlled buses, and to
surpass the myopic commands of the PI-controller, even when
it operates buses at a lower commercial speed, since it lacks
an eco-driving component. In addition, Table IV suggests that
the expected energy savings depend on the initial bunching
strength. For scenarios with strong bus bunching, the holding
controller holds buses for a longer part of the simulation
in order to regularize headways, thus consuming less energy
compared with the MPC. This also explains why the holding
controller starts having a lower energy consumption than the
PI-controller as the bunching strength increases. Therefore,
it can be concluded that the expected energy savings from
the MPC are the largest in the case of intermediate to no
bunching.

F. Reaction to a Major Perturbation in the Service

The previous series of experiments investigated how the
control methods fare when recovering from bus bunching
during normal operations, but one may go one step further
and see how they each adapt to a major disturbance (one bus
breaking down) during the recovery process.

Some simulations of scenario 5 in which the last bus of
the line is removed after one hour of simulation time are run.
The control methods have mostly stabilized the headways by
that time, so that the effects of the bus breakdown can be
clearly seen. The simulations are then carried on as before
for one more hour. To be fair to the holding strategy and to
the PI-controller, the target headway is increased to 6 minutes
when the breakdown occurs. This is meant to provide them
with a reasonable goal, since only 7 buses are then available.
This scenario is simulated 5 times for each controller, and the
averaged results are presented in Table V.

It can be observed from Fig. 7a that all control methods
slow the buses down right after the breakdown occurs. As in
the previous experiments, the MPC temporarily increases the
headway commands of the buses. It then decreases them
again until the headways are stabilized around the new natural
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Fig. 7. Results for scenario 5 in the case where one bus breaks down after one hour of simulation (dashed vertical lines). As before, the shaded areas
are bounded by the most extreme metrics values observed. (a) Average headways at stops for one simulation instance (solid lines). (b) Average total energy
consumption. (c) Average squared coefficient of variation of headways CV 2 at each of the stops (solid lines).

TABLE V

AVERAGE PERFORMANCE INDICATORS FOR SCENARIO 5 IN THE CASE OF

A BUS BREAKDOWN HALFWAY THROUGH THE SIMULATION

headway of the bus line (around 6 minutes). It must also be
noted from this figure that all methods manage to converge
to stabilized headways faster than when dissipating the initial
bunching. The reason for this is that the breakdown happens
when buses already have roughly homogeneous headways,
thus creating only one large gap in service, which is then easier
to bridge. Fig. 7b and Fig. 7c present the energy consumption
over time and the CV 2 scores at the stops, respectively. The
patterns are similar to those of Fig. 6b and Fig. 6c, with the
exception that the overall energy consumption now increases
more slowly after one bus is removed from the line.

The headway sample means presented in Table V are larger
than those obtained in the previous version of scenario 5,
which was expected since less buses are running during
the second half of the simulation. Likewise, the overall energy
consumption is lower than it was previously, but the energy
savings from the MPC remain similar (9.7% against 8.9%
before). However, the CV 2 scores are nearly the same as

they were before. This may seem counter-intuitive since the
system is now subject to additional disturbances, but it is
good to recall here that the sample mean of the headways
appears in the definition of CV 2 in (20). In this particular
case, the increase of the headway variability thus seems to be
offset by the increase of the headway sample mean. But as
far as the comparison in the performances of the controllers is
concerned, the same general conclusions as for the previous
series of experiments can be drawn from this modified version
of scenario 5.

V. CONCLUSION

This paper developed a model and a velocity control strategy
for a line of electric buses. Thanks to a variable change
to the space domain in the modeling step, the impractical
complexity of mixed-integer problems could be avoided by
modeling bus stops without resorting to additional integer
variables. The optimal control problem assembled from the
model could then be reformulated into a smooth NLP, after
additional variables had been added to lift the problem and get
rid of its discontinuities. In contrast to other studies, the choice
of variable horizons to the preceding buses made it possible
to regularize time headways directly in the NLP instead of
having to use an indirect proxy for headway regularity, such
as bus spacings. By leveraging some powerful results from
parametric optimization, a bilevel optimization scheme was
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proposed to decompose and solve this NLP, which was then
embedded in an MPC to enforce closed-loop control.

Extensive simulations were carried out to investigate the
headway regularization and energy savings performances of
the proposed MPC strategy for different degrees of bus bunch-
ing in a real bus line. It was found that the MPC systematically
achieved better headway regularity when compared with a
classical holding baseline but had a slightly lower commercial
speed on average. In addition, the predictive feature of the
MPC enabled it to outcompete a simple PI-controller with
a similar speed control intervention strategy. Consequently,
the MPC was able to provide a more reliable service to
passengers and to lower their waiting times at stops. The MPC
was also able to recover from bunching faster than the baseline
controllers by temporarily slowing down the buses to allow
any late bus to catch up on schedule. These observations were
found to be consistent across scenarios with various bunching
strengths, and also in a scenario where the breakdown of one
of the buses in operation acts as a major line disturbance. Due
to the longer dwell times at stops of holding-controlled buses
in highly-bunched settings, the energy savings of the MPC
were highest for low and intermediate levels of bus bunching.
We report savings of up to 9.3% in such favorable cases, which
the MPC was able to achieve by adopting energy-efficient
driving strategies when adjusting the bus velocities.

This work aimed to demonstrate that the bus fleet
eco-driving problem could be treated in conjunction with
the bus line regularity control problem, and formulated in a
framework that enables its real-time implementation. Indeed,
large-scale NLPs can generally be solved in real-time with
purpose-built solvers, as demonstrated in [44]. The proposed
control strategy is scalable, since the bus-level NLPs can be
solved in parallel aboard buses, and adaptive, as it can be
deployed on any bus line without requiring any prior target
headway. In addition, the limited quantity of information that
needs to be exchanged between the buses and the central node
makes the approach robust to losses or noisy communication
data.

The framework presented in this paper could be adapted
to include additional charging-related constraints on top of
the energy minimization objective. The scheduling of the
charging decisions could then be investigated by including a
limited driving range for the electric buses, which could be
complemented well with a stochastic MPC to include a more
thorough modeling of the external disturbances. The real-time
implementability of the problem could also be addressed by
designing an efficient solver tailored for that purpose. Other
future research directions of interest include considering bus
capacity constraints, and extending our approach to an entire
bus network, with several lines interacting in shared corridors.

APPENDIX

A. Proof of Proposition 1

The lifted NLP (15) only differs from the original prob-
lem (12) through the modified torque constraints (13) and
torque expression (14). A careful examination of the torque
constraints (5)-(6) and (13) is enough to conclude that they

define the same feasible set for the longitudinal force and the
torque in both problems, and thus do not affect optimality.
It remains to show that the different expressions for the
torque (5) and (14) do not affect optimality either. A sufficient
condition for this is if the same longitudinal force values yield
the same torque values in both problems. In that case, both
the original and the lifted problems would behave the same,
and hence have the same optimal solution. This requires an
additional assumption, however.

Assumption 1: The battery power Pb,i is a monotonically
increasing function in the motor torque Tm,i .

Note that Assumption 1 is not very restrictive, as it merely
states that a higher motor torque systematically causes more
energy to be drawn from, or supplied to, the battery. We can
now prove the following proposition.

Proposition 2: Under Assumption 1, any value Fm,i,k ,
k ∈ I[0,N−1] , i ∈ I[1,n], of the longitudinal force yields the
same motor torque value in both the original and the lifted
version of the NLP.

Proof: First, let us observe from (5) and (14) that the torque
value is the same if and only if Ft,i,k and Fg,i,k are mutually
exclusive (i.e. they cannot be non-zero simultaneously) in the
lifted NLP, where Fm,i,k = Ft,i,k − Fg,i,k holds.

Since η f < 1, it can be noticed in the torque expression (14)
that rw/(η f M f ) > η f rw/M f > 0. It follows from this obser-
vation that:

Tm,i,k ≥ rw

η f M f
Fm,i,k if Fm,i,k > 0, (21a)

Tm,i,k ≥ η f rw

M f
Fm,i,k if Fm,i,k ≤ 0, (21b)

where Tm,i,k is defined according to (14). Note that the lower
bounds in these inequalities are reached when either Ft,i,k

or Fg,i,k is zero, depending on the scenario. According to
Assumption 1, the battery power Pb,i is minimized for the
lowest feasible torque, which here corresponds to the case
where Ft,i,k or Fg,i,k are mutually exclusive. In other words,
any solution for which the inequality in (21) is strict would
require more energy while delivering the same longitudinal
force. Consequently, the torque value in the lifted NLP is set
to the same value as in the original NLP for any Fm,i,k . �

Since Proposition 2 holds, the optimal solution of the
two problems is the same, which concludes the proof of
Proposition 1.

B. Resolution of the Decomposed Problem (16)-(17)

This appendix presents how the high-level NLP (16) can
be solved by deploying an SQP algorithm. Under the assump-
tions that Linear Independent Constraint Qualification (LICQ)
and Second Order Sufficient Condition (SOSC) hold [39],
the Newton steps taken by the SQP algorithm can be computed
by solving the following quadratic program (QP):

min
H+

n∑
i=1

1

2
�i H+i

2 + α(H+i − H+i−1)
2 + β V̂i,Hi (H+i ), (22a)

s.t. H+i ∈ [H min
i , H max

i ], i ∈ I[1,n], (22b)

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:59:53 UTC from IEEE Xplore.  Restrictions apply. 



LACOMBE et al.: BILEVEL OPTIMIZATION FOR BUNCHING MITIGATION AND ECO-DRIVING 10677

TABLE VI

SUMMARY OF THE MAIN NOTATIONS USED IN THE PAPER
(APPENDICES EXCLUDED). THE SUBSCRIPTS i , l, AND k
CONSISTENTLY REFER TO THE BUS WITH INDEX i , THE

STOP WITH INDEX l, AND THE SHOOTING POINT

WITH INDEX k , RESPECTIVELY

where H+ = [H+1 , . . . , H+n ]� is the next primal solution,
and where V̂i,Hi is a quadratic approximation of Vi around
the point Hi . Note that Vi is the only term that needs to be
modified in (17) in order to obtain the local QP approxima-
tion (22), since the remaining terms in the objective are already
quadratic functions, and all the constraints are linear.

In order to approximate Vi , let us first observe that each
bus-level problem (17) is a parametric NLP, with a scalar
parameter Hi , i ∈ I[1,n]. Therefore, the implicit function Vi is
the parametric optimal cost function of the bus-level problem
for bus i [40]. Likewise, we can define the primal-dual solution

TABLE VII

NUMERICAL VALUES OF THE PARAMETERS USED IN THE
SIMULATIONS IN SECTION IV

of (17) as an implicit function of Hi , and note it zi . Some
results from parametric optimization may now be used to find
an expression for V̂i,Hi .

The bus-level NLP (17) for bus i can be solved for any
fixed parameter value Hi by using primal-dual interior point
algorithms [39]. The relaxation of the KKT conditions used
by these algorithms creates a smooth modified version of the
problem. If LICQ and SOSC also hold at the solution zi (Hi),
then the parametric functions Vi and zi are twice continuously
differentiable locally. The implicit function theorem can now
be applied to compute the first-order variations of Vi around
Hi as:

dVi

d Hi

∣∣∣∣
Hi

= ∂Li

∂ Hi

∣∣∣∣
zi (Hi ),Hi

(23)

where Li is the Lagrange function of the NLP [40]. The
second-order variations of Vi can then be computed through
a simple application of the chain rule to (23):

d2Vi

d H 2
i

∣∣∣∣∣
Hi

=
(

∂2Li

∂ H 2
i

+∇2
Hi zi

Li
dzi

d Hi

)
zi (Hi ),Hi

(24)

where this function is well-defined everywhere thanks to the
smoothing of the problem mentioned earlier. As a result,
the following Taylor approximation of Vi may be used in (22):

V̂i,Hi (H+i ) = Vi (Hi)+ dVi

d Hi

∣∣∣∣
Hi

�Hi + 1

2

d2Vi

d H 2
i

∣∣∣∣∣
Hi

�Hi
2,

(25)

where �Hi = H+i − Hi .

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on October 17,2022 at 08:59:53 UTC from IEEE Xplore.  Restrictions apply. 



10678 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 8, AUGUST 2022

Algorithm 2: SQP Procedure for Solving the Decomposed
Optimization Problem (16)-(17). C Denotes Centrally-Run
Computations, While i Denotes Computations Carried Out
Aboard Bus i

1 i : solve NLPs (18) and (19) and send {H min
i , H max

i } to
central node

2 C: initialize H , H+
3 while ‖H+ − H‖2 > Tol do
4 C: H ← H+ and send H to buses
5 for i ∈ I[1,n] do
6 i : V̂i,Hi ← solve NLP (17), then (25)
7 i : send V̂i,Hi to central node
8 end
9 C: H+ ← solve QP (22)

10 end
11 C: H ← H+ and send H to buses
12 ∀i : Xi , Ui ← solve NLP (17)
13 return H , X1, U1, …, Xn , Un

The computation of the term dzi
d Hi

in (24) is not straight-
forward as it requires the first-order derivatives of the KKT
conditions [43]. However, they can generally be obtained
at a small computational cost. Computing the rest of the
terms in (23) and (24) is significantly easier. The quadratic
approximation (25) can consequently be used in (22) when
running the SQP algorithm. Note that the primal-dual solution
of the bus-level problem is needed each time (25) is computed
around a new parameter value. Therefore, the NLP (17)
must be solved again each time a Newton step is taken by
solving (22). These two problems are then solved sequentially
until convergence of the SQP method. The complete resolution
procedure is summarized in Algorithm 2, where the computa-
tions are assumed to be distributed between the buses and a
central node, as illustrated in Fig. 4.

As the main computational bottleneck lies in solving the
bus-level NLPs, only few computations are needed at the cen-
tral node. It can also be observed that very few variables need
to be exchanged between the central node and the individual
buses during the procedure. Consequently, the communication
loads remain very small.

Note that since the high-level NLP (16) is non-convex,
the SQP method deployed in Algorithm 2 converges to a
local minimum, which may or may not be the global solu-
tion of the problem. In general, SQP methods have robust
convergence properties, even from remote starting points.
Their convergence can notably be improved by using e.g.
quasi-Newton approximations, in case of ill-posed subprob-
lems, or backtracking line search methods [39]. However,
we observed that taking these precautions was not necessary
to guarantee the convergence of Algorithm 2 in practice. As a
result, the convergence rate of the SQP method in that case
is quadratic, under some LICQ and SOSC assumptions [39],
which is the best that can be expected when solving this type
of problems. In the simulations of Section IV, Algorithm 2
systematically reached convergence in 2 to 3 iterations in each
of the scenarios studied.
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