
2434 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 3, MARCH 2022

Train Time Delay Prediction for High-Speed Train
Dispatching Based on Spatio-Temporal Graph

Convolutional Network
Dalin Zhang , Yunjuan Peng, Yumei Zhang, Daohua Wu , Hongwei Wang , and Hailong Zhang

Abstract— Train delay prediction can improve the quality of
train dispatching, which helps the dispatcher to estimate the
running state of the train more accurately and make reasonable
dispatching decision. The delay of one train is affected by
many factors, such as passenger flow, fault, extreme weather,
dispatching strategy. The departure time of one train is generally
determined by dispatchers, which is limited by their strategy and
knowledge. The existing train delay prediction methods cannot
comprehensively consider the temporal and spatial dependence
between the multiple trains and routes. In this paper, we don’t
try to predict the specific delay time of one train, but predict
the collective cumulative effect of train delay over a certain
period, which is represented by the total number of arrival
delays in one station. We propose a deep learning framework,
train spatio-temporal graph convolutional network (TSTGCN),
to predict the collective cumulative effect of train delay in one
station for train dispatching and emergency plans. The proposed
model is mainly composed of the recent, daily and weekly com-
ponents. Each component contains two parts: spatio-temporal
attention mechanism and spatio-temporal convolution, which can
effectively capture spatio-temporal characteristics. The weighted
fusion of the three components produces the final prediction
result. The experiments on the train operation data from China
Railway Passenger Ticket System demonstrate that TSTGCN
clearly outperforms the existing advanced baselines in train delay
prediction.

Index Terms— Train delay prediction, graph convolutional
network, spatio-temporal dependence, collective cumulative
effect.

I. INTRODUCTION

BY JANUARY 2021, the total mileage of China’s
high-speed railway is 39,000 kilometers. High-speed

trains are favored by people for low price, high travel effi-
ciency, safety and service quality. In recent years, with the
continuous expansion of high-speed railway network and the
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continuous improvement of service quality, high-speed train
has become one of the most important travel modes in China.
Train delay is always one of the key research issues in
train dispatching management and transportation organization.
Unplanned interference may cause delay. The train delay has
propagation characteristics. Delayed trains not only affect their
own operation, but also spread in one area, affecting the
operation of other trains. Therefore, train delay prediction
is one of the core tasks of train dispatching. Train delay
prediction is of great significance to improving the quality
of dispatching.

Train delay prediction is mainly about to predict the influ-
ence degree of train operation interference and delay propaga-
tion, which is helpful to realizing real-time risk analysis and
early warning of dispatching, as well as real-time adjustment
of multi-mode transportation schedule in emergency [1]. It can
assist dispatchers to analyze the operation status of trains, esti-
mate delay risk, and serve as the basis for making reasonable
traffic dispatching decisions [2]. Therefore, it is of significance
to study the prediction model of train delay, which can provide
support for the high-speed railway traffic command automation
system.

A lot of work has been done to analyze and predict the train
delay. Milinkovi et al. [3] proposed a fuzzy Petri net model to
simulate the traffic process and train operation in the railway
system; Tikhonov et al. [4] analyzed the relationship between
the arrival delay of passenger trains and various features of
the railway system, then applied SVM to the train delay
analysis; Corman and Kecman [5] and Lessan et al. [6] built
a train delay prediction model based on Bayesian network;
Yaghini et al. [7] proposed a high-precision ANN model
to predict the delay of Iranian railway passenger trains;
Ping et al. [8] established a deep learning model for predicting
the train delay time based on RNN. Most of these researches
focus on whether one train is delayed. Train delay is affected
by many factors, such as route fault, train and communication
network fault, extreme weather, passenger flow and on-site
dispatch. The prediction accuracy will be reduced without
considering these factors. Besides, they rarely consider both
the temporal and spatial properties of trains and routes. In the
train operation, the cumulative effect caused by delay is
obvious, and different routes in some junction stations will
cause different effects.

Different from the above researches, this paper does not
predict the delay of one train, because if the delay of one
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train leads to the delay of other trains, the specific dispatching
decision is made by the train dispatching department, which
depends on the experience and knowledge of dispatchers.
On the contrary, we predict the number of delayed trains
in each period for each station, which is more valuable for
train dispatching. The departure time of the delayed train is
decided by the dispatcher on site. For example, in Beijingnan
station (Beijing), there are four trains (the number is t1,
t2, t3, t4) to Shanghai, Taiyuan and Wuhan respectively.
Table I shows the departure information of these four trains.
Due to the extreme weather, the trains are delayed. The
station dispatcher may give priority to trains t1 and t4 to
Shanghai based on the station environment (such as passenger
flow).

It can be seen from the above example that it is of little
significance to predict the specific delay time of one train.
Predicting the number of delayed train (collective cumulative
effect) in a certain period is more valuable, which can guide
the dispatcher’s decision-making. In addition, collective cumu-
lative effect will also consider the external factors like extreme
weather that cause train delay, avoiding inaccurate prediction
caused by incomplete considerations.

Based on the above analysis, this paper builds a TSTGCN
model to predict the total number of the delayed train in each
railway station. More precisely, we predict the number of
arrival delays to provide reference for train dispatching and
emergency plans.

Compared to the existing work, our contribution can be
summarized as follows:

• The collective cumulative effect prediction for train dis-
patching under the delay scenario is proposed for the first
time to the best of our knowledge.

• A collective cumulative effect prediction of train delay
model TSTGCN is constructed to predict the arrival
delays in one station in a certain period. The proposed
model fully considers the temporal and spatial depen-
dence.

• A real graph of China’s high-speed railway network is
constructed, which includes not only all the stations, but
also the mileage information of the routes. A 16 week
actual operation data set of China’s high-speed railway is
also built by us, containing 1,954,176 delay records from
October 8, 2019 to January 27, 2020, 727 stations, and
all the routes between the stations,.

• ANN, SVR, RF, LSTM baselines are compared with our
TSTGCN, and mean absolute error (MAE), root mean
squared error (RMSE) and mean absolute percentage
error (MAPE) are used to evaluate the performance in
train delay prediction.

The subsequent parts are organized as follows:
Chapter 2 systematically investigates the existing train
delay prediction and spatio-temporal data mining methods;
Chapter 3 analyzes the operating data of high-speed
train; Chapter 4 introduces the collective cumulative
effect prediction of train delay model TSTGCN in detail;
Chapter 5 describes the experiments carried out in this paper;
lastly, a summary of this paper is discussed in Chapter 6.

II. RELATED WORK

Train delay prediction has always been a key research
issue in the field of railway transportation. In the existing
researches, traditional mathematical model-driven methods are
widely used, such as establishing graph models, time-event
networks, distribution models, queuing models [8], [9] to
simulate train operation, study the propagation process of train
delay. Zhaoxia and Zhongying [10] developed a train delay
propagation simulation system with graphical tracer and “con-
trolled randomness” to analyze the performance of different
train diagrams; Xin et al. [11] established the state dynamics
equation and delay propagation model based on the discrete
event dynamic system theory; Kecman and Goverde [12] used
the time-event network diagram with dynamic weights to
estimate the time of the train operation; Carey et al. [13]
developed a train delay propagation simulation test system
based on the stochastic approximation method. The traditional
mathematical model-driven methods are based on assumptions,
which cannot effectively deal with the complex data generated
by train operation in the real world and has insufficient
guidance for train dispatching under the situation of train
delay [14].

Data-driven method is favored in the field of train control
in recent years, which mainly includes statistical models,
intelligent and machine learning methods [9]. In terms of
statistical analysis methods, Yuan and Hansen [15] proposed
a new analytical stochastic model to predict the spread of
train delay; Guo et al. [16] established a linear regression
model for delay prediction. In terms of intelligent methods,
calculation theories such as Fuzzy networks and Bayesian
networks can better solve the uncertainty modeling in the train
operation [9]. Milinkovi et al. [3] proposed a fuzzy Petri net
model with characteristics of hierarchy, color, time, and fuzzy
reasoning to simulate the train operation and estimate delay;
Corman and Kecman [5] [5] presented a stochastic model
for predicting the propagation of delay based on Bayesian
networks, characterize the effect that the prediction horizon
and incoming information about running trains may have on
the probability of the delay; Lessan et al. [6] presented a
Bayesian network-based model to solute the complexity and
dependency nature of train operations. The experimental result
showed that a well-designed hybrid Bayesian network struc-
ture, developed based on domain knowledge and judgments
of expertise and local authorities, can achieve high accuracy
and low error. However, if the spatio-temporal properties of
each track section were included in the prediction model,
the prediction error could be lower. In terms of machine
learning methods, Lee et al. [17] analyzed the causes and
effects of train delay and established a decision tree model;
Zhi-ming et al. [18] proposed a train arrival time prediction
model based on RF, and carried out simulation experiments
using the data of Tianjin-Qinhuangdao High-speed Railway;
Yaghini et al. [7] presented an ANN model with high accuracy
to predict the delay of passenger trains in Iranian Railways;
Oneto et al. [19] proposed a fast learning algorithm for
Shallow and Deep Extreme Learning Machines, and build
a data-driven train delay prediction system; Puet al. [20]
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TABLE I

TRAIN DEPARTURE INFORMATION

established the delay prediction model based on SVM, con-
structed the “delay confusion matrix” to evaluate the model
and obtained the good effect on predicting the range of delay.

In the existing researches of train delay prediction based on
data-driven method, intelligent methods rely on prior dispatch-
ing knowledge and cannot objectively and automatically pre-
dict train delay. Compared with statistical regression, machine
learning models can usually get better fitting results, which
shows potential in analyzing and predicting [9]. However, it is
found that the performance of the existing machine learning
train delay prediction models largely depends on Feature
Engineering, which means that a lot of experience of experts
is needed, and the train delay data is not considered to be
obvious spatio-temporal data.

At present, deep learning methods are widely used to estab-
lish train delay prediction model. For example, Ping et al. [8]
established a deep learning model based on RNN, which
introduces the concept of time series. Although it can identify
the temporal dependence between multiple trains, it does not
consider that the data are interrelated in temporal and spatial
dimensions. Besides, Huang et al. [21] developed a deep
learning network named CLF-Net that models factors related
to non-time-series, time-series, and spatio-temporal character-
istics of complex systems. The model combines 3-dimensional
CNN, LSTM and fully-connected neural network architec-
tures. The CLF-Net shows great performance in train delay
prediction. This model can effectively capture spatio-temporal
characteristics, but the limitation is that the input data must be
two or three dimension. Oneto et al. [22] used advanced data
analysis technology based on multivariate statistical concept to
predict train delay, integrated weather variables into the model,
and built a data-driven train delay prediction system that can
integrate heterogeneous data. Although the model takes the
external factors into consideration, it also regards the train
delay as a time series problem.

Train delay data is a typical spatio-temporal network data.
Spatio-temporal data mining has been widely used in trans-
portation science and other fields. In recent years, a lot of
researches use graph neural network modeling method to
learn the complex correlation in spatio-temporal data. Now,
graph neural network for spatio-temporal data is mainly
used to deal with spatial dependence and spatial-temporal
correlation. The classical models include graph convolution
recurrent neural network [23], which combines GCN and
LSTM to establish spatial dependence and temporal cor-
relation respectively; spatial-temporal convolution network
(STGCN) [24], using GCN and CNN to build correlation;
multi-component spatio-temporal graph convolutional network
(MSTGCN) [25], which captures super long time depen-
dence through multi-component modeling based on STGCN;

attention based spatial temporal graph convolutional network
(ASTGCN) [26], which introduces attention mechanism on
the basis of MSTGCN and considers the influence of different
time periods and locations. All of the above methods use graph
convolution to model the spatial dependence, and construct
the spatial association between nodes through graph structure,
but they pay little attention to the edge information (such as
the distance between nodes). As we all know, the propagation
of train delay is affected by distance. The farther the distance
between two stations, the more time the delayed train can have
to adjust the operating status, and then the delay impact will
be less. The manual influences are different between different
stations because the distance. Although the above methods
have advantages in traffic flow prediction, it is not suitable for
train delay prediction in high-speed railway network because
they only establish the relationship between nodes through
graph structure and ignore the influence of distance.

The above research methods mainly have one or more of
the following problems:

1) Predicting performance relies too much on expert knowl-
edge, and the temporal and spatial dependence of train
delay are not taken into account.

2) It focuses too much on the specific delay time prediction
of one train, and does not consider that the dispatching
strategy is generally decided by dispatchers.

3) There are some limitations in the proposed model inputs.
Especially, the spatial-temporal graph neural network
considers a relatively simple structure, which cannot
meet the characteristics of high-speed railway network.

Based on the above analysis, we use the high-speed train
operation data from the China Railway Passenger Ticket Sys-
tem https://www.12306.cn, and develop a collective cumula-
tive effect prediction of train delay model TSTGCN to predict
the delay situation of railway stations. The model can directly
process the train operation data on the original graph-based
high-speed railway network, which can effectively capture
spatio-temporal characteristics and dynamic spatio-temporal
correlation and make more accurate analysis and prediction.

III. HIGH-SPEED TRAIN OPERATION DATA ANALYSIS

A. Spatio-Temporal Correlation of Train Delay

Train delay prediction is a typical spatio-temporal data
prediction problem. The data of adjacent stations and time
stamps are dynamically related to each other. When analyze
the delays of trains, it is necessary to consider temporal and
spatial dependence between the multiple trains and routes.
Train delay data has the characteristics of spatial dependence,
temporal correlation, and spatio-temporal correlation.
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1) Spatial Dependence: Spatial dependence originates from
the relationship between station and its neighbor stations on
high-speed railway network. A station often directly affects its
first-order neighbors. To fully explain the property, we show
the impact of train delay from spatial aspects in Fig. 1. The
line between two stations represents the intensity of their
interaction, and the darker the line is, the greater the intensity
is. As we can see, there is a connection between Jinan station
and Xuzhou station, the delayed trains may depart from Jinan
to Xuzhou, therefore, their train delay number are related.
If the station is a junction station and adjacent to multiple
stations, the number of delays will have a direct impact on
multiple stations, such as Zhengzhou station in Fig. 1, where
multiple trains with different routes and directions stop, when
a train in here is delayed, it may cause delays for trains
in multiple directions and routes. In addition to the spatial
characteristics of stations, the adjacent distance also affects the
number of delayed trains. For example, the distance between
Zhengzhou station and Xuzhou station is farther than that
between Xuchang station, when the trains from Zhenzhou to
Xuzhou and Xuchang are delayed, the trains to Xuzhou can
have more time to adjust from delay to normal operation,
so Xuzhou station will be affected less by the delay than
Xuchang station.

For two nodes on high-speed railway network, if there is
an edge between them, it is considered that the two nodes
can influence each other. If the distance of the edge is long,
the degree of mutual influence is considered to be small. In the
spatio-temporal network, it is considered that there is a spatial
dependence between the two nodes.

2) Temporal Correlation: The operation of trains is multi-
directional, which is divided into up and down. Different
operation direction of one train lead to different influences
on other trains in different directions. It is very difficult to
predict the delay of one train in a certain direction, involving
dispatching. No matter which direction the train goes to and
which route it runs on, the station shared by passengers is
always the same. When a delay occurs, the dispatcher needs to
determine the order of trains based on the station’s situation,
the trains at the same station are not easy to be discussed
separately. Therefore, the focus of this paper is arrival delays
in one station. For each station on the high-speed railway
network, the delay is obviously related to the historical delays
of one or more period in the past. For example, suppose that
there are four trains t1, t2, t3, t4 will arrive in station A, t1
delays at A at 12:00, which may cause the delay of t2, t3 and
t4 that will arrive in the next 2 hours. Due to the efforts of
the dispatcher, t3 arrives at A and departs on time, so t4 may
not be delayed. In addition to the proximity in the temporal
dimension (the delay of one station is related to the delay of
the past few hours), the delay also reflects a certain periodicity,
that is, the delay of a certain period of one station has the same
trend as that of the past few days and weeks. This property
of proximity and periodicity is the temporal correlation in
spatio-temporal network data.

3) Spatio-Temporal Correlation: In spatial dimension,
the degree of interaction between stations is different, even
the same station, with the passage of time, the impact on its

Fig. 1. Spatio dependence diagram of high-speed train delays.

neighbors also changes; in temporal dimension, the historical
data of one station have different effects on the delay state of
the station and its neighbors at different time in the future.
Therefore, the train operation data shows strong dynamic
correlation in both spatial and temporal dimensions. This
shows that in order to accurately predict the delay, it is
necessary to explore the complex nonlinear spatio-temporal
network data, not just establish a prediction model based on
a single time series. TSTGCN proposed in this paper is based
on the spatial-temporal characteristics and dynamic correlation
of the train operation data to predict the collective cumulative
effect for stations.

B. High-Speed Train Operation Data Description

We use the high-speed train operation data from the China
Railway Passenger Ticket System, which includes the train
operation records of 727 railway stations from October 8,
2019 to January 27, 2020. The attributes include train opera-
tion date, train number, station name, station number, expected
arrival time and departure time, actual arrival time and depar-
ture time, stop over time, whether arrival delay and whether
departure delay. The train operation data is recorded in whole
minute. The operation data of some trains passing through
Beijingnan station are shown in Table II. From Table II, it can
be seen that from 19:00 to 21:00 on October 19, 2019, there
are seven trains arrived at Beijingnan station, among which
the delayed trains were G21, G269 and G207. The arrival
delay of G207 affected the operation of G4961. At this time,
the dispatcher decided which train departed first.

The focus of this paper is to establish a collective cumulative
effect prediction of train delay model to predict the total
number of arrival delays in one station in a specific period.
We use the number of departure delay and arrival delay with
time stamp as the features of two dimensions of each station.

IV. PREDICTION MODEL

A. Collective Cumulative Effect Prediction of Train Delay

The high-speed railway network can be regarded as an
undirected graph. The nodes on the graph represent a series
of interconnected stations. The connections between stations
are determined by the routes of trains. More precisely, if a
train passes through station A and station B , then there is a
connection between them. Any train running on the network
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TABLE II

TRAIN OPERATION RECORDS

has an itinerary consisting of stations S = S1, S2, . . . , SN .
The kind of itinerary is characterized by one departure and
destination station and several intermediate stations. There are
many stations all over the country, which are distributed in
different locations. Each station specifies the trains that can
passing through and the expected arrival and departure time.
For station S, the schedule defines that a train should arrive
at time t̂ S

A and leave at time t̂ S
D after staying at station S for

a period of time. In most cases, the schedules are accurate,
which means that most trains will arrive at the expected
time. However, due to uncontrollable reasons such as extreme
weather, passenger flow and certain emergencies, trains may
not arrive on time. The actual arrival and departure time are
defined as t S

A and t S
D . The difference between the expected

and actual arrival time t̂ S
A − t S

A is defined as arrival delay,
the difference between the expected and actual departure time
t̂ S
D − t S

D is defined as departure delay [27]. If t̂ S
A − t S

A < 0,
we count it as an arrival delay. It should be noted that the train
has no arrival time at the departure station and no departure
time at the terminal station. The actual running time at two
stations refers to the time t S+1

A − t S
D required for the train to

depart from the first station and arrive in the second station.
The train departure time depends on the dispatching strat-

egy, and the formulation of this strategy is related to the delay
situation in this station. Analyzing the arrival delays that may
occur in the station can help the dispatcher make the correct
strategies faster and more convenient, so as to ensure the
orderly operation of each train. Combined with arrival delay
prediction and the dispatching strategy, the departure time of
one train can be estimated more accurately.

In order to solve the problem of predicting the arrival delays
of one train, we transform the existing train operation data into
spatio-temporal data, and then use TSTGCN model to train the
data.

B. Collective Cumulative Effect Prediction of Train Delay
Modeling

High speed railway network is defined as an undirected
graph G = (S, E, A, M). S is the set of all stations, |S| =
N . E is edges, which represents the routes between stations.
A ∈ R, which represents the connectivity between stations.
A is the adjacency matrix of G. M represents the distance
between stations, which is the distance weight matrix of G.
The longer the distance, the smaller the weight. In G, each
station has multiple statistical values in period τ , such as
the number of arrival delays and departure delays. We use

F to represent the number of features of each station, X τ
i ∈

R represents all eigenvalues of station i in the period τ .
X τ = (

X τ
1 , X τ

2 , . . . , X τ
N

)T ∈ RN×F represents all eigenvalues

of all stations in the period τ . χ = (
X1, X2, . . . , Xt

)T ∈
RN×F×t represents all eigenvalues of all stations in t periods.
In addition, we set yτ

i ∈ R to represent the arrival delays of
one station i in the future period of time τ .

Given a fixed period τ and the eigenvalue measures of
all stations on the high-speed railway network generated by
the train data set in the past period τ , we predict the arrival
delay sequence Y = (y1, y2, . . . , yN )T ∈ RN×Tp of stations in
the future period of time Tp , yi =

(
yτ+1

i , yτ+2
i , . . . , y

τ+Tp
i

)
represents the arrival delay sequence of station i in the future
period Tp .

C. TSTGCN Based on Attention Mechanism

This paper was inspired by paper [26], [28]–[31]. Fig. 2
is the overall framework of TSTGCN used in this paper.
We use the historical operation data of trains as training
data to build the collective cumulative effect prediction of
train delay model. The total number of train arrival delays
at station S is

∑τ
0

(
t̂ S
A − t S

A < 0
)

in the period of time τ .
Learning from the structure of paper [26], in this paper,
the prediction model is mainly composed of three independent
components with the same structure, which model the recent,
daily, and weekly dependence of the historical operation data
of trains respectively. It is mainly composed of three parts
with the same network structure, each of which is composed
of several spatial and temporal blocks and fully connected
layers. Each block has a spatio-temporal attention module
and convolution module. In order to improve the efficiency
of training, we use a residual learning framework in each
component. Finally, the output results of the three components
are further combined based on the parameter matrix to obtain
the final prediction results. TSTGCN can well capture the
dynamic spatio-temporal correlation of input data, and the
forecast length can also be adjusted, which has good appli-
cation scalability. Next, we will introduce our TSTGCN in
detail.

1) Graph Time Series: The input data of TSTGCN is
the delay data of multiple stations in multiple periods,
which is a type of typical spatio-temporal network data.
The spatio-temporal network can be regarded as the time
series data composed of graph signals on the network. The
data of each node on the network is a time series, which
has complex correlations such as proximity and periodicity.
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Fig. 2. Overall framework of TSTGCN Xh , Xd , Xw : train delay graph
time series data; SAtt: spatial attention mechanism; TAtt: temporal attention
mechanism; GCN: graph convolution network; Conv:convolutional layer; FC:
fully connected layer.

This paper mainly discusses the recent, daily and weekly
time series data. Suppose the sampling frequency is q per
day, the current time is t0 and the size of the prediction
window is Tp . We intercept three time series segments with
the length of Th , Td and Tw on the time axis as the inputs of
the recent, daily and weekly components respectively, where
Th , Td and Tw are integral multiples of Tp. We use Xτ to
represent the graph signal on the spatial network in the past τ
period. The details of the three time series components are as
follows:

a) Recent time series: Recent time series Xh =(
Xt0−Th+1, Xt0−Th+2, . . . , Xt0

) ∈ RN×F×Th . Specifically, if a
train running between fixed railway stations arrives late at a
station due to some reasons, the arrival delay of the next station
may be affected to a certain extent, and this influence will
be transmitted to multiple railway stations on the high-speed
railway network through the connecting relations between
stations. Therefore, the arrival delays of one or more stations
in the past will inevitably affect the arrival delays of multiple
stations in the future.

b) Daily time series: Daily periodic time series Xd =(
Xt0−(Td/Tp)×q+1, . . . , Xt0−(Td/Tp−1)×q+1, . . .

)
∈ RN×F×Td .

Daily periodic time series is composed of data in the same
time period as the forecast time period in the past few days.
Due to the regularity of people’s daily travel arrangements,
delays may occur in a relatively fixed period of time, such
as 14:00 to 15:00 in the afternoon every day. The purpose
of building this component is to simulate the day periodic of
train arrival delay data.

c) Weekly time series: Weekly periodic time series
Xw =

(
Xt0−7×(Tw/Tp)×q+1, . . . , Xt0−7×(Tw/Tp−1)×q+1, . . .

)
∈ RN×F×Tw . Weekly periodic time series is composed of
fragments from the past few weeks. The weekly attribute and
time interval of these fragments are the same as the prediction
period. Generally, the traffic pattern on Monday is similar to
that on Monday in history, but it may be very different from
that on Saturday and Sunday. A large number of people will
choose to travel on high-speed trains on Saturday and go back
on Sunday afternoon, which may result in relatively heavy
traffic at stations, which may lead to delay of trains. Therefore,

the design of this component is to capture the weekly periodic
characteristics in the arrival delay data.

2) Attention Mechanism: In this paper, TSTGCN uses a
multi-attention mechanism model based on temporal and
spatial attention mechanism. This multi-attention model can
capture the spatio-temporal correlation of input data well.

Traditional encoder-decoders must compress all input infor-
mation into fixed-length vectors. Using such fixed-length
encoding to represent longer or more complex input data
often results in the loss of information. It is not possible to
model the correspondence between input and output sequence
by using this model structure. The attention mechanism was
originally proposed to solve the two problems existing in
traditional encoder-decoders. The core idea of the attention
model is to weight all the inputs of the encoder and then
input them to the decoder at the current position to affect
the output of the decoder. By weighting the output of the
encoder, more context information of the original data can be
used while achieving alignment with the output. The model
that calculates the attention weight once on the original data
is called the single-layer attention model, and the model that
overlays several layers of attention modules on the input is
called the multi-layer attention model.

a) Temporal attention mechanism: In the temporal
dimension, there is a correlation between the arrival delay of
stations in different period of time, and the correlation of each
station is also changing in different time. The arrival delay of
the train in the previous one or several period of time will
affect the future arrival delay of the station on the same route.
Here, we use an self-Attention mechanism based on time slice
to give different importance to data. First, we calculate the
time weight matrix Z of the input data. The elements in Z
indicate the degree of dependence between time i and j . The
calculation equation is as follows:

Z = Vt · sigmoid (((XU 1) U2) � (U3 X) + bt ) (1)

where, · represents the inner product, � represents
the Hadamard product, X = (

X1, X2, . . . , XTr−1

) ∈
RN×Fr−1×Tr−1 represents the input data of the r-th layer
spatio-temporal module, Fr−1 is the feature number of the r-th
layer input data, Tr−1 is the length of the time series of the r-th
layer input data, sigmoid is the activation function, Vt , bt ∈
RTr−1×Tr−1 , U1 ∈ RN , U2 ∈ RFr−1×N , U3 ∈ RFr−1 are feature
conversion matrices, which are all learnable parameters. After
that, we use the function so f tmax to normalize Z to ensure
that the sum of attention weights is 1, and get the final time
attention matrix:

Z ′ = softmax j
(
Zi j

) = exp
(
Zi j

)
∑Tr−1

j=1 exp
(
Zi j

) (2)

The obtained time attention matrix will be directly applied
to the input of the r-th layer of spatio-temporal module to
obtain the input data fused with time attention, which will
then be used as the input of the spatial attention module.

b) Spatial attention mechanism: In the spatial dimension,
there is a certain correlation between the arrival delays of
trains at different stations, especially the impact between
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adjacent stations is highly correlated. Besides, the mutual
influences between adjacent stations with different distances
are also different. Specifically, the spatial correlation of each
station is reflected when the train passes through two stations
continuously. The arrival delay of the train at the first station
will affect the arrival time of trains at the next station, thus
affecting the arrival delay of trains at the whole railway station;
the influence of the distance between adjacent stations is
reflected in the delay of a train departing from a station,
the greater the distance between these two stations, the greater
the possibility of adjusting from the delayed state to the normal
state, and the current the lower the impact of the delay on
the next station. Here, attention mechanism can be used to
adaptively capture the dynamic correlation and the influence
of distance between stations in spatial dimension.

Considering the static characteristics of high-speed railway
network, we first perform a linear transformation on the input
feature matrix, and calculate the correlation weight matrix C
between each cascaded stations. The equation is as follows:

C = VS · sigmoid (((X Z ′ · W1) W2) � (W3 X Z ′) + bS) (3)

where, X Z ′ ∈ RN×Fr−1×Tr−1 represents the input data
processed by the time attention module of the r-th layer,
W1 ∈ RTr−1 , W2 ∈ RFr−1×Tr−1 , W3 ∈ RFr−1 , VS, bS ∈ RN×N

are the feature conversion matrix, which are all obtained
through learning.

Then, the distance weight matrix M ∈ RN×N is calculated
to give more weight to the stations that are closer to each
other, and M ′ is obtained by standardization processing. The
weight of the distances between non-adjacent stations are 0
(we assign a value of 0 to the position of the unconnected edge
in the matrix). Assuming that the distance between station i
and station j is dSi S j , the weight of the corresponding position
of the distance matrix is:

Mij = 1

dSi S j

(4)

By fusing the correlation weight matrix C and the distance
weight matrix M ′, we obtain the spatial attention matrix Q.
Similarly, we use the function so f tmax to normalize Q to
obtain the final spatial attention matrix. The equations are as
follows:

Q = C � M ′ (5)

Q′ = softmax j
(
Qij

) = exp
(
Qij

)
∑N

j=1 exp
(
Qij

) (6)

The spatial attention matrix can capture the correlation and
distance influence between nodes on the high-speed railway
network. When performing graph convolution, we will dynam-
ically adjust the influence weight between nodes along with
the adjacency matrix and the spatial attention matrix.

3) Graph Convolution: In this paper, GCN is used to model
the spatial characteristics of the nodes on the high-speed rail-
way network. In the spatial dimension, the network is a kind of
graph structure data. Different from grid data, it exists in non
euclidean space, which makes it difficult for traditional neural
network to process. But graph convolution neural network can

directly model the original graph structure data and get the
representation of nodes in graph structure. The mainstream
graph convolution methods include the spatial method (vertex
domain) and the spectral method (spectral domain). In this
paper, spectral method is used to define graph convolution.
Spectral method uses convolution theorem and Fourier trans-
form to transfer graph from vertex domain to spectral domain,
and then defines convolution kernel in spectral domain. How
to capture the spatial dimension characteristics of stations by
graph convolution will be introduced in detail.

The characteristics of each station on the high speed railway
network can be regarded as the signals on the graph. In each
time slice, we use graph convolution based on spectral graph
theory to process the signals directly, making full use of the
spatial correlation of graph node signals.

In the spectral method, the properties of the high-speed
railway network structure can be obtained by analyzing the
Laplacian matrix and its eigenvalues. We establish Laplacian
matrix L = I − D− 1

2 AD
1
2 to represent the network, where

A represents the adjacency matrix, D represents the degree
matrix, and I represents the identity matrix. In order to extract
the features of the Laplacian matrix, it can be decomposed by
eigenvalue to obtain L = U�U T , where U is the Fourier
basis, and � = diag

([
λ0, λ1, . . . , λN−1

])
is the diagonal

matrix composed of the eigenvalues of the Laplacian matrix.
Taking the stations delay data at time t as an example,
the signals of all nodes on the graph x =

(
x f

1 , x f
2 , . . . , x f

n

)
can be transformed to x̂ = U T x by Fourier transform, and
x = U x̂ can be obtained by inverse Fourier transform of x
because U is an orthogonal matrix. The formal expression of
the convolution operation with the convolution kernel gθ is:

gθ∗G X = gθ (L)x = gθ

(
U�U T

)
x = Ugθ (�)U T x (7)

In the realization of graph convolution, the eigenvalue
decomposition of the Laplacian matrix is a very important
step. The scale of the high-speed railway network is very large,
and it is very expensive to decompose the Laplacian matrix
directly, so we use the Chebyshev polynomial to approximate
the solution. The convolution operation can be expressed as
the following form:

gθ∗G x = gθ (L)x =
K−1∑
k=0

θk Tk(L̃)x (8)

where, θk ∈ RK is the Chebyshev polynomial coefficient,
L̃ = 2 L/λmax − I , λmax are the largest eigenvalues of the
Laplacian matrix, Tk(L̃) represents a matrix containing the
K-order neighbor relationship. The recursion of Chebyshev
polynomials is defined as Tk(x) = 2 xTk−1(x) − Tk−2(x),
where T0(x) = 1, T1(x) = x .

In order to dynamically adjust the correlation between
nodes, we fuse each term of the Chebyshev polynomial with
the spatial attention matrix to obtain Tk(L̃) ∗ Q′. Therefore,
the graph convolution operation based on the spatio-temporal
attention mechanism is expressed as follows:

gθ∗G x = gθ (L)x =
K−1∑
k=0

θk

(
Tk(L̃) ∗ Q′) x (9)
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Then, we use the linear correction unit ReLU as the
activation function, that is, ReLU (gθ∗G x). For each time slice,
we extract the information of its 0 to k − 1 neighbors from
each node on the entire high-speed railway network to update
the node’s information.

4) Standard Two-Dimensional Convolution: CNN is a type
of feedforward neural network that contains convolution calcu-
lations and has a deep structure. It is specially used to process
data with a similar grid structure. This paper uses 2D-CNN
to model the time correlation characteristics of nodes on the
high-speed railway network.

After the graph convolution operation collects the adjacent
information of each node on the high-speed railway network
in the spatial dimension, the standard convolution operation
along the temporal dimension updates the signal of the node
by merging the information of the adjacent time slices, and
then captures the dependency between adjacent time slices.
Taking the r-th layer in the daily periodic component as an
example, its convolution operation is expressed as follows:

X (r)
d = ReL U

(
� ∗

(
ReLU

(
gθ ∗G X̂ (r−1)

d

)))
(10)

where, ReLU is the activation function, and � is the
time-dimensional convolution kernel parameter.

The spatio-temporal attention module in TSTGCN model
will automatically pay more attention to valuable informa-
tion(with greater influence weight). The input data adjusted
by attention mechanism is input into the spatio-temporal
convolution module. Spatio-temporal convolution module is
composed of the spatial convolution module convoluted along
the spatial dimension and the temporal convolution module
convoluted along the temporal dimension. The former captures
the spatial dependence in the domain, while the latter utilizes
the temporal dependence of the data in the nearby time.

In a word, the spatio-temporal module can well capture the
spatio-temporal characteristics of high-speed railway network
data. A spatio-temporal attention module and a spatio-temporal
convolution module form a spatio-temporal module. Multiple
spatio-temporal modules can be superimposed to extract the
dynamic spatio-temporal correlation of data more deeply.
A full connected layer is attached after the output of each
component, which can ensure that the output of each compo-
nent has the same dimension and shape as the predicted target,
facilitating the integration of multiple components.

5) Multi-Component Integration: Here we introduce how
to fuse the outputs of multiple components. In central cities
such as Beijing, the flow of people has an obvious peak
in the morning or evening, and the high-speed trains may
also have some delay, so the output of daily periodic and
weekly periodic components is relatively critical. However,
in some remote areas, due to the lack of strong periodic flow,
the accuracy of daily periodic and weekly periodic components
may be poor. Therefore, when fusing the output of the three
components, the influence weight of the three components on
each node is different, which needs to be determined according
to the historical data of train operation. The final result of the
integration of the three components is:

Ŷ = Wh � Ŷh + Wd � Ŷd + Ww � Ŷw (11)

where, Wh , Wd , Ww ∈ RN×P are learning parameters, which
reflect the influence of three temporal dimension components
on the prediction target, P is time steps to prediction, Ŷh , Ŷd ,
Ŷw respectively represent the final output results obtained after
the output of the recent, daily periodic, and weekly periodic
components passing through the fully connected layer.

V. EXPERIMENTS

In order to evaluate the prediction effect of TSTGCN model,
we train it on the real data set that build by us. In addition,
we use ANN, SVR, RF and LSTM (which are used in the
previous work [7], [8], [18], [21], [23]) as baseline models to
evaluate the prediction effect of TSTGCN.

A. Data Processing

Our original data set is from the China Railway Passenger
Ticket System https://www.12306.cn. The data set includes
high-speed train operation and delay data of 727 stations. The
attributes have been introduced in detail in Chapter 3. The
data is from October 8, 2019 to January 27, 2020. We slice
the original data according to the time, and the size of the
time slice is set to 1 hour. From 0:00 on October 8, 2019 to
0:59 on October 8, 2019, we record all the time until 23:00 on
January 27, 2020 to 23:59 on January 27, 2020. We count
the number of arrival delay (actual arrival time - expected
arrival time > 0) and departure delay (actual departure time
- expected departure time > 0) trains of each station in each
time slice. There are two types of train delay characteristics
considered in the experiment, including arrival delays and
departure delays, the target of the prediction is the arrival delay
of the entire railway station.

In the experiment, 13:00 on January 5, 2020 is taken as
the time point to divide the training set and the test set.
In addition, we further segment the time series training and
test sets based on the sliding window algorithm, which is
used to divide a set of historical train delay data into group.
The algorithm program is shown in Algorithm 1. Where,
data is three-dimensional time series data, window_si ze
is the number of consecutive observations of each sliding
window, step_length represents the predicted number of steps
forward, data_length is the length of data. The algorithm
takes three-dimensional time series data, window size and step
size as input data, outputs x and y to learn the target train delay
prediction model.

B. Experimental Setup

We build TSTGCN model on mxnet framework. In our
model, the number of terms of Chebyshev polynomials is set
to 3, and 64 convolution kernels are used in all convolution
layers. All temporal convolution layers also use 64 convolution
core. The time span of data is adjusted by controlling the step
size of temporal convolution. For the length of three segments,
we set Th = 3, Td = 1, Tw = 1. The size of prediction window
Tp = 1, that is, our goal is to predict the arrival delays of
stations in the next hour. In this paper, M SE is used as the loss
function and minimized by back propagation. In the training
stage, the batch size is 4 and the learning rate is 0.00001.



2442 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 3, MARCH 2022

Algorithm 1 Splitting Time Serial Data
Input: data, window_si ze, step_length
Output: x, y
1: data_length = length(data);
2: window_num = data_length − window_si ze −

step_length + 1;
3: for i = 1 to window_num do
4: window = data(i : i + window_si ze − 1);
5: x = [x ; window];
6: step = data(i + window_si ze : i + window_si ze +

step_length − 1)
7: y = [y; step]
8: end for
9: return x , y;

We build the ANN, SVR, RF and LSTM models on the
WEKA3.8.5 platform of the Windows10 system. Among them,
ANN uses a single hidden layer network structure with a
learning rate of 0.01; the kernel function of SVR selects poly,
and the learning rate of it is 0.001; the learning rate of RF
is 0.001, the batch size of it is 128; LSTM contains two
hidden layers, the activation function of the hidden layer is
ReLU , the gate activation function is Sigmoid , the number
of outputs in each layer is 100, the activation function of the
output layer is Sof tmax , the loss function is L2Loss, and the
learning rate of it is 0.001. Except for RF, the training batch
size of each model is 64, and the other parameters remain the
default.

C. Evaluation Metrics

In this paper, we use the following three common model
evaluation metrics to evaluate the prediction performance of
TSTGCN, ANN, SVR, RF and LSTM. They are mean absolute
deviation(MAE), root mean square error(RMSE) and mean
absolute percentage error(MAPE). Their calculation equations
are as follows:

MAE = 1

n

n∑
i=1

∣∣xi − x̂i
∣∣ (12)

RMSE =
√√√√ 1

n

n∑
i=1

(
xi − x̂i

)2
(13)

MAPE = 1

n

n∑
i=1

∣∣∣∣ xi − x̂i

xi

∣∣∣∣ × 100% (14)

where, xi is the actual value, x̂i is the predicted value, n is
the number of test samples.

D. Result Analysis

We compare TSTGCN with four baseline models on the
processed station delay data set. Table III shows the results
of train arrival delay prediction performance in the next
1 hour. Among them, the best scores are obtained by our
TSTGCN. We can observe that the prediction results of
traditional machine learning and deep learning methods are

TABLE III

COMPARISON OF ONE HOUR PREDICTION
PERFORMANCE OF FIVE MODELS

Fig. 3. MAE of five methods for 12 hour prediction.

Fig. 4. RMSE of five methods for 12 hour prediction.

usually not good, which indicates that these methods have
limited modeling capabilities for complex and nonlinear train
delay spatio-temporal network data. Among the four baseline
models, the best value of MAE, RMSE and MAPE are
0.4447 (SVR), 0.8299 (SVR) and 53.6608 (ANN). The scores
of TSTGCN are 0.16, 0.45 and 34.36, the performance is
improved by about 64%, 46%, 36% respectively than the
best baselines SVR and ANN. Compared with the worst
scores 0.6309, 0.9039 and 63.7141, TSTGCN obtains better
performance than them by about 75%, 50% and 46%. In a
word, our TSTGCN can achieve better results than previous
advanced models.

In order to further evaluate the performance of our TSTGCN
in short and long term prediction, we use line charts to
show the performance of these five methods under different
prediction time. Fig. 3, Fig. 4 and Fig. 5 show the metric scores
of these five methods in predicting the number of arrival delays
in the next 1 to 12 hours. We can observe that the predic-
tion performance of each method changes with the increase
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Fig. 5. MAPE of five methods for 12 hour prediction.

of prediction time. In general, with the increase of time,
the corresponding prediction difficulty is increasing, so the
error is also increasing. The errors of ANN, SVR, RF and
LSTM are always kept at a high level. With the increase
of prediction time, the prediction ability of RF decreases
sharply. In contrast, the performance of LSTM decreases
slowly. As show in Fig. 3-5, our TSTGCN can achieve the
best performance almost at any time. Even in the long-term
prediction, the error can be generally remain stable and at a
low level, that is because the spatio-temporal correlation is
particularly important in the long-term prediction.

Through the above analysis, we find that compared with
other existing advanced baseline methods, our TSTGCN can
better mine the dynamic spatio-temporal patterns of train delay
data, showing excellent prediction performance.

VI. CONCLUSION

According to the spatio-temporal characteristics and
dynamic spatio-temporal correlation of high-speed train oper-
ation data, this paper builds a TSTGCN model based on
attention mechanism to predict the train arrival delay cumu-
lative effect for railway dispatching. The model combines
spatio-temporal attention mechanism and spatio-temporal con-
volution to capture the spatio-temporal characteristics of train
operation data, so as to achieve more accurate prediction.
In the experimental stage, we compare our TSTGCN with
ANN, SVR, RF and LSTM models, and use MAE, RMSE
and MAPE to evaluate the prediction effect of these models.
The experimental results show that TSTGCN is clearly better
for the train delay cumulative effect prediction for train
dispatching.
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[4] N. Marković, S. Milinković, K. S. Tikhonov, and P. Schonfeld, “Ana-
lyzing passenger train arrival delays with support vector regression,”
Transp. Res. C, Emerg. Technol., vol. 56, pp. 251–262, Jul. 2015.

[5] F. Corman and P. Kecman, “Stochastic prediction of train delays in real-
time using Bayesian networks,” Transp. Res. C, Emerg. Technol., vol. 95,
pp. 599–615, Oct. 2018.

[6] J. Lessan, L. Fu, and C. Wen, “A hybrid Bayesian network model
for predicting delays in train operations,” Comput. Ind. Eng., vol. 127,
pp. 1214–1222, Jan. 2019.

[7] M. Yaghini, M. M. Khoshraftar, and M. Seyedabadi, “Railway passenger
train delay prediction via neural network model,” J. Adv. Transp., vol. 47,
no. 3, pp. 355–368, Apr. 2013.

[8] H. Ping, W. Chao, L. Zhongcan, Y. Yuxiang, and P. Qiyuan, “A neural
network model for real-time prediction of high-speed railway delays,”
China Saf. Sci. J., vol. 29, no. S1, pp. 24–30, 2019.

[9] W. Chao, L. Zhongcan, H. Ping, T. Rui, M. Weiwei, and L. Li, “Progress
and perspective of data-driven train delay propagation,” China Saf. Sci.
J., vol. 29, no. S2, p. 1, 2019.

[10] Y. Zhaoxia and D. Zhongying, “Simulation system of train delay
propagation,” J. China Railway Soc., vol. 17, no. 2, pp. 17–24, 1995.

[11] W. Xin, N. Lei, and L. Wen-Jun, “Study on robustness of high-speed
train working diagram based on EMU utilization,” Railway Transp.
Economy, vol. 36, no. 11, pp. 50–55, 2014.

[12] P. Kecman and R. M. Goverde, “Online data-driven adaptive prediction
of train event times,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 1,
pp. 465–474, Feb. 2015.

[13] M. Carey and S. Carville, “Testing schedule performance and reliability
for train stations,” J. Oper. Res. Soc., vol. 51, no. 6, p. 666, Jun. 2000.

[14] W. Chao, Y. Xiong, H. Ping, L. Zhongcan, and T. Youhua, “Review on
conflict detection and resolution on railway train operation,” China Saf.
Sci. J., vol. 28, no. S2, pp. 70–77, 2018.

[15] J. Yuan and I. A. Hansen, “Optimizing capacity utilization of stations by
estimating knock-on train delays,” Transp. Res. B, Methodol., vol. 41,
no. 2, pp. 202–217, Feb. 2007.

[16] J. Guo, L. Meng, P. Kecman, and F. Corman, “Modeling delay relations
based on mining historical train monitoring data: A Chinese railway
case,” in Proc. 6th Int. Conf. Railway Oper. Modelling Anal., 2015,
pp. 23–26.

[17] W.-H. Lee, L.-H. Yen, and C.-M. Chou, “A delay root cause discov-
ery and timetable adjustment model for enhancing the punctuality of
railway services,” Transp. Res. C, Emerg. Technol., vol. 73, pp. 49–64,
Dec. 2016.

[18] Z. Yuan, Q. Zhi-Ming, H. Kang, and F. Shan-Shan, “Forecast method of
train arrival time based on random forest algorithm,” Railway Transp.
Economy, vol. 38, no. 5, pp. 60–63 and 79, 2016.

[19] L. Oneto et al., “Train delay prediction systems: A big data analytics
perspective,” Big Data Res., vol. 11, pp. 54–64, Mar. 2018.

[20] Z. Pu, M. Lingyun, and L. Baoxu, “Prediction of high-speed railway
train delay evolution based on machine learning,” Electr. Eng., vol. 20,
no. z1, pp. 1–8, 2019.

[21] P. Huang, C. Wen, L. Fu, Q. Peng, and Y. Tang, “A deep learning
approach for multi-attribute data: A study of train delay prediction in
railway systems,” Inf. Sci., vol. 516, pp. 234–253, Apr. 2020.

[22] L. Oneto et al., “Advanced analytics for train delay prediction systems
by including exogenous weather data,” in Proc. IEEE Int. Conf. Data
Sci. Adv. Anal. (DSAA), Oct. 2016, pp. 458–467.

[23] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured
sequence modeling with graph convolutional recurrent networks,” in
Proc. Int. Conf. Neural Inf. Process. Cham, Switzerland: Springer, 2018,
pp. 362–373.

[24] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Proc. AAAI Conf.
Artif. Intell., 2018, vol. 32, no. 1, pp. 1–9.

[25] F. Ning, G. Sheng-Nan, S. Chao, Z. Qi-Chao, and W. Huai-Yu, “Multi-
component spatial-temporal graph convolution networks for traffic flow
forecasting,” J. Softw., vol. 30, no. 3, pp. 759–769, 2019.

[26] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proc. AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 922–929.

[27] Y. Li, C. Tang, S. Peeta, and Y. Wang, “Nonlinear consensus-based
connected vehicle platoon control incorporating car-following interac-
tions and heterogeneous time delays,” IEEE Trans. Intell. Transp. Syst.,
vol. 20, no. 6, pp. 2209–2219, Jun. 2019.

[28] C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal synchronous
graph convolutional networks: A new framework for spatial-temporal
network data forecasting,” in Proc. AAAI Conf. Artif. Intell., 2020,
vol. 34, no. 1, pp. 914–921.



2444 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 3, MARCH 2022

[29] Z. Diao, X. Wang, D. Zhang, Y. Liu, K. Xie, and S. He, “Dynamic
spatial-temporal graph convolutional neural networks for traffic fore-
casting,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019, pp. 890–897.

[30] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” 2017,
arXiv:1709.04875. [Online]. Available: http://arxiv.org/abs/1709.04875

[31] Y.-L. Sun and D.-L. Zhang, “ATSN: Attention-based temporal seg-
ment network for action recognition,” Tech. Gazette, vol. 26, no. 6,
pp. 1664–1669, 2019.

Dalin Zhang received the Ph.D. degree in computer
science from the Beijing University of Posts and
Telecommunications, in 2014. In 2017, he was a
Post-Doctoral Researcher with the School of Elec-
tronics and Computer Engineering, Purdue Univer-
sity, USA. He is currently an Associate Professor of
software engineering with Beijing Jiaotong Univer-
sity. His current research interests include railway
information technology, software engineering, and
system security. In the field of railway information
technology, he mainly applies technologies such as

big data analysis, data mining, deep learning, and business flow manage-
ment to improve the efficiency of railway operation and maintenance and
monitoring. His research results have been successfully deployed in China’s
high-speed railway operations. In the field of software engineering and
system security, his research focuses on developing applications of program
analysis and testing for improving software and system reliability, security, and
performance. These research areas are mainly in software engineering and also
data mining and programming languages. He is a member of China Computer
Federation (CCF) and CCF Technical Committee of Software Engineering
(TCSE).

Yunjuan Peng received the B.Eng. degree in soft-
ware engineering from the Jiangxi University of
Finance and Economics, Jiangxi, China. She is cur-
rently pursuing the master’s degree in electronic
and information engineering with Beijing Jiaotong
University, Beijing, China. Her research interests
include machine learning and data mining.

Yumei Zhang received the B.S. degree in mechani-
cal and electronic engineering from Beijing Jiaotong
University, Beijing, China, in 2011. She is currently
a Faculty Member with Beijing Jiaotong University.
Her research interests include the intelligent detec-
tion and evaluation of railway infrastrure condition
and safety of railway signalling systems.

Daohua Wu received the B.Sc. and M.Sc. degrees
from Beijing Jiaotong University, Beijing, China,
in 2007 and 2010, respectively, and the Dr.-Ing.
degree from the Institute of Traffic Safety and
Automation Engineering, Braunschweig University
of Technology, Braunschweig, Germany, in 2014.
Then, he became a Post-Doctoral Fellow with the
Institute of Traffic Safety and Automation Engi-
neering, Braunschweig University of Technology.
Since July 2015, he has been with the National
Research Center of Railway Safety Assessment,

Beijing Jiaotong University. His research interests include safety assessment,
modeling/system design, particularly for train control systems with formal
languages, system verification, and testing.

Hongwei Wang received the B.S. and Ph.D. degrees
in electronics and information engineering from Bei-
jing Jiaotong University, Beijing, China, in 2008 and
2014, respectively. He is currently a Faculty Mem-
ber with Beijing Jiaotong University. His research
interests include the train ground communication
technology in communication base train ground
communication (CBTC) systems, security of railway
signalling systems, and cognitive control in train
ground communication systems.

Hailong Zhang received the Ph.D. degree in com-
puter science and engineering from The Ohio State
University. He is currently an Assistant Professor
with the Department of Computer and Information
Sciences, Fordham University. He is also working
with Atanas Rountev and Raef Bassily. His research
interests lie in the general area of software engi-
neering, including program analysis, testing, and
optimization, programming languages and compil-
ers, and software security and privacy.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


