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H-TD?: Hybrid Temporal Difference Learning
for Adaptive Urban Taxi Dispatch

Benjamin Riviere

Abstract— We present H-TD?: Hybrid Temporal Difference
Learning for Taxi Dispatch, a model-free, adaptive decision-
making algorithm to coordinate a large fleet of automated taxis
in a dynamic urban environment to minimize expected customer
waiting times. Our scalable algorithm exploits the natural trans-
portation network company topology by switching between two
behaviors: distributed temporal-difference learning computed
locally at each taxi and infrequent centralized Bellman updates
computed at the dispatch center. We derive a regret bound
and design the trigger condition between the two behaviors to
explicitly control the trade-off between computational complexity
and the individual taxi policy’s bounded sub-optimality; this
advances the state of the art by enabling distributed oper-
ation with bounded-suboptimality. Additionally, unlike recent
reinforcement learning dispatch methods, this policy estimation
is adaptive and robust to out-of-training domain events. This
result is enabled by a two-step modelling approach: the policy is
learned on an agent-agnostic, cell-based Markov Decision Process
and individual taxis are coordinated using the learned policy
in a distributed game-theoretic task assignment. We validate
our algorithm against a receding horizon control baseline in a
Gridworld environment with a simulated customer dataset, where
the proposed solution decreases average customer waiting time
by 50% over a wide range of parameters. We also validate in a
Chicago city environment with real customer requests from the
Chicago taxi public dataset where the proposed solution decreases
average customer waiting time by 26% over irregular customer
distributions during a 2016 Major League Baseball World Series
game.

Index Terms—Real-time taxi dispatch, adaptive systems,
multi-agent systems, distributed decision-making, autonomous
vehicles.

I. INTRODUCTION

OORDINATING a large fleet of automated taxis in com-

plex and dynamic urban environments is an anticipated
challenge for transportation network companies such as Uber,
Lyft, Waymo, and Tesla. A typical urban mobility problem
for these companies is taxi dispatch, where a fleet of taxis
service customers and the remaining, idle taxis are coordinated
with a dispatch algorithm to minimize the customer waiting
time of future requests. In practice, a transportation network
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Fig. 1. Concept graphic of an intelligent transportation network. Autonomous
taxis, that can include both ground and air vehicles, estimate in real-time
the customer demand and coordinate locally to behave with bounded
sub-optimality.

company might be composed of a dispatch center equipped
with complete information and a large computational budget
and a fleet of taxis, each operating with local information
and a limited amount of processing power and communication
bandwidth (see Fig. 1). In this manner, the transportation net-
work company network can be decomposed into an underlying
“star-topology”” network between taxis and the dispatch center,
and an arbitrary peer-to-peer network between taxis. The pro-
posed algorithm, H-TD?, exploits this topology explicitly by
proposing a hybrid algorithm with two distinct behaviors: the
central node computes exact, large-batch policies infrequently,
and each taxi computes approximate, online updates with local
information.

The overview of H-TD? is shown in Fig. 2. At a given
timestep, the closest taxis service the new customer requests,
and the rest of the free taxis are dispatched to reduce expected
waiting time of future requests. The free taxis coordinate
with a distributed game theoretic scheme to optimize their
policy estimate, where the policy is estimated as follows:
the servicing taxis communicate the customer data to their
neighboring taxis, where the expected reward (e.g. customer
waiting time) is estimated with a distributed estimation algo-
rithm. Then, all taxis use the estimated reward to update their
policy estimate with temporal difference learning. If any of the
taxis determine that their policy estimate error is larger than
the user specified threshold, the taxi signals to the dispatch
center for a centralized policy update.
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Fig. 2. Overview of H-TD?, where blue represents the taxi network, yellow
represents the customers, and green represents the dispatch center. The ith
taxi estimates the dispatch policy with local operations: distributed estimation
of reward, R;. computed in (9), and temporal difference learning to update
the policy, Qf, (13). If any of the taxis determines that its policy estimate
error, Je, is larger than the user specified threshold, dy, the taxi signals to the
dispatch center to receive a centralized policy update, Q%’ (6). Finally, each
free taxi uses the policy in a game theoretic formulation, @ (20), to find its
dispatch position vector, uj.

The contributions of the paper are stated as follows:

o« We derive a novel regret bound by leveraging distrib-
uted estimation methods in local online policy esti-
mation and introduce a trigger condition to the batch
update, permitting the user to explicitly specify the
policy’s computational and communication expense Vs.
bounded sub-optimality trade-off. This advances the state
of the art by enabling distributed operation with bounded
sub-optimality.

« We propose a taxi-dispatch solution that is adap-
tive, model-free, and coordinated. Unlike state-of-the-art
reinforcement-learning dispatch methods, our method
directly adapts the policy based on real-time data, thereby
providing a property of robustness to irregular urban
mobility events such as traffic, weather, and major pub-
lic events. This advancement is enabled by two step
approach: first we propose a hybrid policy estimation
in a finite-dimensional, agent-agnostic cell abstraction,
and then we interface the resulting policy estimation
for agent-based coordination with a local prescriptive
game-theoretic task assignment.

We demonstrate the performance and computational properties
of our method with numerical experiments: our algorithm
reduces customer waiting time compared to a receding horizon
control baseline and the simulation runtime is linear with the
number of agents. We also validate our claim that adaptive
algorithms are robust to general irregular events with a case
study of the Chicago City taxis during the 2016 Major League
Baseball World Series.

The remainder of the paper is organized as follows: in
Sec. II, we review the related literature and compare our
method with the state of the art. In Sec. IIl, we present the
taxi dispatch problem description and a motivating example.
In Sec. IV, we present the cell-based Markov Decision Process
(MDP). In Sec. V, we discuss the exact and approximate
solutions to the MDP and the integration of the learned policy
into a game theoretic method. In Sec. VI, we present numerical
experiments demonstrating the advantages of our algorithm
compared to a receding horizon control baseline in simulated
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and real customer datasets. The details of the fleet simulator
implementation are presented in Appendix.

II. RELATED WORK

Recent urban mobility research has developed dynamic
and scalable methods. A well-studied example is the vehicle
routing and dial-a-ride problems [1], [2] where taxis find a
minimum cost path through a routing graph, and its dynamic
extension, where part or all of the customer information is
unknown and revealed dynamically. Recent dynamic rout-
ing research proposes scalable solutions to dynamic routing
problems with bio-inspired methods [3], data-driven methods
[4]-[6], and model-based methods [7], [8]. In this paper,
we study a variant of the dynamic routing problem, taxi
dispatch, where we propose a novel two-stage approach:
distributed estimation with temporal difference learning, and
game-theoretic coordination. This advances the state of the
art by permitting adaptive distributed operation with bounded
sub-optimality with respect to the optimal centralized policy.

Taxi dispatch is an emerging urban mobility problem where
free taxis are dispatched to locations in the map to minimize
customer waiting time of future requests. Recent approaches
have adopted model-based [9], [10] and model-free [11]
methods. An online model-based method like [9] uses
real-time data to fit a system prediction model (for example,
customer demand and taxi supply) and then compute
a receding horizon control solution in response to that
model. Pre-specified system models can be over-restrictive,
and recent reinforcement-learning model-free methods
[11]-[13] have been used successfully to overcome this
limitation. In a model-free method, events are not explicitly
modelled, they are captured by the arbitrary dynamics of
the underlying reward. In regular operation, this reward is
periodic, and can be accurately predicted (either explicitly or
implicitly) and used for fleet control. However, it is possible
that an irregular event occurs out of training domain and
causes the reward dynamics to be unpredictable. In this
case, we argue that it is better to adapt in real-time than
predict with irrelevant data. Our model-free approach adapts
the policy directly in response to real-time data, achieving
performance that is robust to unpredictable, irregular events
such as weather, accidents, and major public events.

Our method leverages results from reinforcement learning
in convergence of temporal difference iteration [14]—-[16] in
a dynamic environment, i.e. when the reward or transition
probabilities are changing over time. An alternative online
model-free approach is online actor-critic [17], where our work
differs from this result in two ways: we consider a general
non-quadratic reward function and we consider a multi-agent
setting by analyzing a hierarchical system of a temporal
difference iteration with distributed estimation of the reward
model. To the best of the authors knowledge, the only other
work to propose a distributed temporal difference algorithm is
recent work [18] that addresses the convergence properties of
consensus on model parameters in the case of linear function
approximations.

In general, multi-agent reinforcement learning research
is challenging because the MDP’s state and action space

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on January 03,2022 at 16:27:23 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RIVIERE AND CHUNG: H-TD?: HYBRID TEMPORAL DIFFERENCE LEARNING FOR ADAPTIVE URBAN TAXI DISPATCH 3

dimensionality is coupled to the number of agents, which is
typically handled by using either (i) function approximation
methods such as deep neural networks or (ii) decoupled,
decentralized solutions. A survey paper on multi-agent rein-
forcement learning discusses additional methods [19]. In con-
trast to an agent-based (or Lagrangian) approach, our method
uses a naturally scalable cell-based (or Eulerian) model that
decouples the problem dimensionality from the number of
agents, inspired by a method used in probabilistic swarm
guidance [20].

Because of the cell-based abstraction, our algorithm requires
an additional task assignment component to coordinate taxis.
Task assignment is a canonical operations research problem
and there exists many available centralized [21]-[24] and
decentralized [25]-[27]. Among these options, we use a dis-
tributed prescriptive game theory [28] approach that leverages
existing asymptotic game theoretic optimality and convergence
results. In contrast to conventional descriptive game theory,
prescriptive game theory designs multi-agent local interactions
to achieve desirable global behavior. Using one such method,
binary log-linear learning [28], the taxis achieve global coop-
erative behavior with only local information.

III. PROBLEM DESCRIPTION
A. Notation

We denote vectors with a bold symbol, matrices with plain
uppercase, scalars parameters with plain lowercase, functions
with italics, and we use caligraphic symbols for operators
and sets. We denote a taxi index with an i or j superscript,
a customer index with a k superscript, and the time index
with a subscript ¢. Also, I, denotes the n-dimensional identity
matrix.

B. Problem Statement

We consider the urban taxi dispatch problem, where we
control a fleet of taxis to minimize customer waiting time.
At each timestep, each customer requests is serviced by the
nearest taxi. These servicing taxis use customer information
to update their reward model and exchange information with
neighboring taxis. The remaining free taxis are dispatched to
locations in the map according to the proposed dispatch algo-
rithm. The overall fleet control is summarized in Algorithm 1
and implementation details are given in Appendix.

Algorithm 1 Fleet Control Problem

1 initialize taxi fleet;

2for t €[ty :ty] do

3 | broadcast local customer requests to taxis;

4 assign closest free taxis to service customers;
5 | dispatch free taxis to locations in the map;

6 end

The system, as shown in Fig. 3, is composed of customers
and taxis. The k™-customer state, ¥, is composed of the time
of request, trip duration, pickup location, and dropoff location,
ie. ck = [tf, tZi‘, pk’p, pk’d] and its pickup location is shown in

Fig. 3. State space representation of a Gridworld simulation with 1000 taxis,
with corresponding value function estimation. In the top subplot, the blue
dots are free taxis positions, the orange dots are positions of taxis currently
servicing customers, and the green dots are the new customers requests pickup
positions. In the bottom subplot, the approximate value function distribution
is shown over the state space.

green in the top subplot. The i™-taxi is defined by a position
vector, pi and an operation mode: free (shown in blue) or
servicing (shown in orange). The dispatch solution is a desired
position vector for each of the free taxis, ui, that results
in minimizing customer waiting time over a time horizon.
Our method estimates the optimal policy, visualized with the
value function over the state-space in the bottom subplot, that
maximizes the expected reward over time.

IV. CELL-BASED MARKOV DECISION PROCESS

The previous section described the dispatch problem with a
agent-based perspective, i.e. in terms of positions and actions
of individual taxis and customers. Next, we will introduce the
cell-based Markov Decision Process (MDP), where cell-based
refers to an Eulerian perspective in which we analyze values
like location and reward with respect to cells of a discretized
map as shown in Fig. 3. The cell-based formulation decouples
the decision making problem from the number of agents,
permitting a finite dimensional policy representation. The
decision making problem is formalized with a MDP, M,
defined as a tuple of state space, action space, transition model,
reward model, and discount factor [29]:

M=(S, A P,R,y). (1)

o The state space, S, is defined as the set of map cells
shown in Fig. 3, where the state of the i™-taxi, s/ is the
cell index that contains that taxi’s position. The number
of cells in the environment is denoted by the cardinality
of the set, |S|.

o The action space, A, is defined as a movement between
map cells for taxi i. The taxi on dispatch has 5 actions:
af e A = ({stay,right, up, left, down}, defined with
respect to its current map cell in S.

o The transition function, P : S x A x S — P is defined
as P(sf,af,s;+]) = ]P(stiH|st",a§). We define P with a
deterministic, cell-based dynamical model, f:

sty =f(s{,a}) where P(s;,al, s, )= L. @)

If the next state is valid, the cell-based dynamical model
moves the taxi from the initial state, s; to the neighboring
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state sf 41 according to its action. If the next state is not
valid, the dynamical model returns the initial state.

o The reward function R, : S x A — R is defined to be
the negative of the expected customer waiting time and is
estimated from reward samples; reward is the negative of
the time it takes the taxi to go from its current position to
the dispatch position defined by the cell-action, and then
from that position to the customer request. The reward has
a subscript ¢ because we assume the reward changes over
time due to the changing customer distribution. We equiv-
alently write the R, function as a vector of state-action
pairs, R,(s,a) = R;[s|A| +i(a)] and R; € R", where
ng = |S||A| and i(a) denotes the action’s index. Given a
customer request, ¢X, we compute a sample of the reward
function, ri that can be used to estimate the underlying
reward, R; according to an observation model:

riGst,aly = —(n(pl,ul) + n(al, ptr)) 3)
rf = H,’R, + vj 4)

Recall that p! is the position of the i™-taxi, u is the
dispatch desired position, and p*? is the k™-customer
pickup position. Also, # is the estimated time-of-arrival
function that accepts position vectors, returns a scalar
time value, and is specified in Appendix. It is parame-
terized by the average taxi velocity v xi. The measure-
ment noise is sampled from a normal distribution with
variance ¢, vf ~ N(0,¢I). Finally, the cell-based
observation model, Hti € R™*" is a binary diagonal
matrix with unity elements at the state-actions pairs
where the customer request ¢f contains information of
the corresponding state-action pair, and 0 otherwise.

o Note that y is the discount rate of the system. This
parameter determines the trade-off between greedy and
long-term optimal behavior.

V. ALGORITHM DESCRIPTION AND ANALYSIS: H-TD?

We describe the details of H-TD? in this section, defin-
ing the exact and approximate policy estimation, the hybrid
switching behavior, and the game theoretic task assignment.
The overview of the method is given in Algorithm 2.

A. Centralized Q-Value Computation

We present the idealized Bellman solution to the cell-based
decision making problem specified in (1). The solution is a
policy function that maps states to an action that maximizes
the discounted reward over time and can be represented as a
value function, as shown in Fig. 3, or an action-value function
known as Q?—values. We use the latter and use the superscript b
notation to denote the policy that is synthesized with a Bellman
iteration method. We adopt the conventional optimal Q}’-value
function as follows:

Qlt)(sta ay) = ES“’P(S”S;,@)[Rf +y Ea{Nanb(sz/, a;)] (5)

We specify this general formulation with some assumptions.
First, we use a finite-dimensional tabular Q't’ and write the
Q',’ function as a vector of state-action pairs, Q',’ € R,
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Algorithm 2 H-TD? at Timestep ¢

1 input: set of total, free, and servicing taxis: Z,Z ¢, Zs
2 output: action profile for free taxis, u,

/* Hybrid Temporal Difference */
3 for Vi € 7 do

4 | if 0, > d4 (15) then

5 slow update Q! with aggregated global
information (6) at the central node;

6 | else

7 fast update Qﬁ with local information (13) at each
taxi;

8 | end

9 end

/* Game Theoretic Task Assignment */

10 randomly initialize cell-based action profile A;;

11 while A; not converged do

12 | randomly pick i € Z¢ that has not converged;

13 | consider current action, a,i ;

14 | propose random action af/;

15 | compute marginal utility, J with Q! (20);

16 | stochastically assign action with J (21);

17 | check i"-taxi action convergence;

18 end

19 Convert cell-based actions af to position vectors ui;

as done with the reward in Sec. IV. Next, we apply the
deterministic transition function, P(sf, af, sti +1), as specified
in (2) to remove the outer expectation. We remove the inner
expectation by specifying the policy 7P to be a transition
kernel matrix F® such that Fle,)(s,i) = max, Ql,’(sti,a,i).
Combining these, we rewrite a simplified expression for Q}’
as the fixed point of the Bellman operator 7 :

Q=R +yFQ =7Q" (6)

The Bellman iteration can be solved using conventional
value iteration or policy iteration methods from batch customer
data. For the purpose of this paper, we use a Modified Policy
Iteration (MPI) method [30] to solve line 5 of Algorithm 2.
However, there are complications with implementing a pure
Bellman approach, which we address in the next subsection.

B. Distributed Reward Estimation and Q-Value Iteration

We present a policy approximation that overcomes the
Bellman solution’s practical limitations. The first issue with a
pure Bellman solution is that in an online setting, the reward
information is hidden a priori and received incrementally in
samples, ri. So the expectation of the reward is not imme-
diately available. Furthermore, each taxi only has access to
local information. To overcome these problems, we assume
the hidden reward evolves as a random walk process and
synthesize linear estimators for the hidden reward R;:

Ryt =R +w @)
S =R+ > K/(r] - H/R) ®)
jeT
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1 =Rl + D> A —R) ©)
JjeT

Recall rf is the reward sample defined in (4). Also RY, Rf €
R are centralized and distributed reward estimators that will
be used in the upcoming temporal difference learning, where
the superscript ¢ denotes a centralized quantity. The H/ matrix
is the i"-taxi’s measurement model defined in (4) and the
K } matrix are the corresponding estimator gains. The process
noise, w; ~ N0, &I) is sampled from a normal distribution
where the parameter ¢ is computed offline from training data.
The row-stochastic adjacency block matrix, A;, specifies the

local information available to each agent and is defined as:

.. .. : .. .. KJHJ . Tt
A7 = BY/> BY, where B =1 11T S50 ()
4 Yn «n, e€lse
j—l q q
Il =1{jeZ | Ip,—p/ll <Reomm}- (11)

with diagonal block matrices A, B/ e R"*"s and full
matrices A;, B, € R™"a>""s_The i agent constructs the B’
matrices from the gain and measurement matrices shared by
its neighbors j € I,i. The local observation is parameterized
by the radius of communication, Rcomm-

The second issue with the Bellman approach is an intrinsic
drawback that at higher state/action dimensions the Bellman-
iteration calculation becomes computationally-expensive and
cannot be quickly evaluated online. Instead, temporal differ-
ence learning [31] can be used as an approximate method to
estimate Q-values online using Ry:

Q1 = Qf +a®R +7 F°Qf - Q)
where a € R is the system learning rate and F° is the
transition kernel for this policy.

This formulation requires a central node to collect the data,
compute a policy, and broadcast the new information at every
timestep, scaling the computation complexity, bandwidth, and
network delay with the number of taxis. To address this
limitation, we introduce a distributed algorithm using com-
munication between the taxis, and propose a policy update
computed at each taxi using only local information:

Q1 =Q +aR +yFQ -Q)
where this temporal difference (13), with the distributed
reward estimation (9) defines line 7 of Algorithm 2.

Using the approximate temporal difference method and
estimating with only local information hurts the quality of the
final policy used by each taxi. We derive the upper bound of
the negative effect of these approximations through a regret
bound analysis, comparing the policy synthesized with the
proposed algorithm (13) and the Bellman-optimal solution (6).

Theorem 1: The expected distance between an arbitrary
taxi Q-value estimates, Q;, and the Bellman-optimal solution
Q}’ is upper bounded by:

(12)

13)

2/ng(e+¢)
(1= 7)1 = /1= dmin(S 7 AD)

where Amin(.) denotes the smallest eigenvalue of a matrix.

E[Q: — Q|2 <

(14)

Proof:  First, we write the distributed iteration as an
application of the Bellman operator on the previous timestep
with a disturbance. Then we solve for the disturbance to derive
the final bound.

Step 1: Consider (13) and add and subtract aR;:

Q41 = Q +aR] + 7 F'Q; — Q) +aR; — aR,
=Q;+aR +yF'Q — Q) +aR; —Ry)
=Ql +a(7TQ! - Q) +ae

where ef = R! — R,. The system is contracting at rate
1 —oa(1—y), implying the system geometrically converges to
an equilibrium about 7Q} = Qj. In addition, from Banach’s
fixed point theorem [32], 7 contracts to a unique fixed point,
Q}’. Applying Discrete Gronwall’s lemma [32]:
i b llej
||Q; -Q/ll =< ﬁ

Note that the decaying initial condition term does not appear
because we assume that the policy estimate is initialized with
the Bellman solution, i.e. Qf = Qg. _

Step 2: Here we need to bound the value ||e} ]|, i.e. the error
between the estimated reward and the true reward. We write
the dynamics of the error vector e; by subtracting (7) from (9):

e =0—> Ael+d
jeZ

where d; = w, + > ;.7 A}/ v]. By applying Weyl’s interlacing
eigenvalue theorem [33], we prove that the i system is
contracting at rate lower bounded by 4; = 1—Zmin (> ;7 A7)

We rewrite the disturbance as the product of an input matrix,

M, and the stacked noise, z, ~ N (0, W):
d;, = Mz,
where z, = [wi; v); .. v M = [I,,q, AR Af’"i] and
W = blkdiag(eln,, ¢ In,» - - » S In,)-
By application of the convergence theorem of discrete

stochastic contracting systems [34], [35], the expected error
of a single agent is upper bounded by:

2V/¢C
1—- \/1 - imin(zj‘ej[ Aij)
C = trace(M! M, W)

Elell <

It remains to calculate the value C:

C = ¢ trace(lp,) + ¢ z trace ((Aij)TA;]) <ngle+¢)
JjeT

where we use the linearity of the trace operation to move
it outside of the sum, then we use the non-negativity and
row-stochasticity of A; to bound szI(A;j)TAV < I,. The
final result is found by plugging the result from Step 2 into
the result from Step 1. |

Remark 1: The regret bound is driven by the contraction
rate of the system AL, a combined graph and observability
quantity. Intuitively, this corresponds to a non-zero value
when taxi i and its neighbors taxis j can measure the entire
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state-action vector. We can also consider a batch measurement
over a time interval, nt and an average contraction rate, i;.
This time interval approach exists in the multi-agent adaptive
control literature, where if > 0 is analogous to an excitation
level in the Collective Persistency of Excitation condition [36].

Remark 2: The proposed online method is used to estimate
the optimal policy in a dynamic environment, i.e. the reward
model, R; is time-dependent. In this case, the optimal policy
is non-stationary, i.e. Q}’ 1 F Q't’. In order to guarantee
the convergence of the TD-algorithm, we require that there
exists a timescale separation between the convergence of the
TD-algorithm and the dynamics of QP:

Remark 3: The adjacency matrix A; dictates that each
agent takes a convex combination of the neighboring mea-
surements. Further, the estimation gain matrices, K| are
chosen with a Distributed Kalman Information Filter, whose
proof of optimality with respect to mean-squared-error can be
found in [37], [38]. Thus, the agents weigh the neighboring
measurements appropriately.

C. Hybrid Temporal Difference Algorithm

We define the switching condition in line 4 of Algorithm 2
with two parameters, J,, the estimated error in the system, and
dd4, the user specified desired error in the system.

Proposition 1: If we define:

_ 2/ng(e+¢)
(1= 7)1 = /1 = dmin(S ;7 AD))

the expected policy sub-optimality will be bounded by dq.
Nominally, the system evolves with the distributed temporal
difference method (13), computing J, at each timestep. Each
agent is able to compute this value because ¢, ¢, and y are
known system parameters and each agent keeps track of its
own Amin(Q jeT A/') values. Applying the result from Theo-
rem 1, the expected policy suboptimality is identically J,, so,
if d, exceeds the desired error, dy, the desired sub-optimality
is violated. However, if this condition occurs at time ¢,
the system resets all taxis with a central policy update (6), i.e.
Q; = Q}’, Vi € Z. Therefore, the H-TD? algorithm maintains
the distance between the estimated policy and a true regret
policy to user specification. In effect, J; controls the trade-off
of computational expense to policy sub-optimality, where
04 — 0 produces a solution with no regret but maximum
computational effort and d; — oo produces a solution with
potentially infinite regret with little computational effort.

Je 15)

D. Game Theoretic Task Assignment

In this section, we propose a game-theoretic task assignment
to coordinate the taxis according to the Qi-values estimated in
Sec. V-B. The Q; policy does not account for the actions of
the other taxis and, without additional coordination, the taxis
would behave greedily by all going to the highest value cell,
increasing the overall customer waiting time. To avoid this
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behavior, we design a potential game and a local action profile
iteration to maximize each agent’s marginal utility. This is
implemented in Algorithm 2, Lines 10-18.

First, we introduce a global action profile, A; and a local
action profile for the iM taxi, Aﬁ:

A;=1{a] |VjeI}, and Aj={a] |VjeZI]} (16)
where the jth-neighbor taxi communicates its action, a,] , to the
i"-taxi, where a] is defined in (1).

Next, we introduce the current global fleet distribution €,
i.e. the number of taxis in each cell, as a function of the action
profile:

1 o
Qs A = Zﬂ(s =f(s! . a})) (17)
JjeZ

where I denotes the indicator function and f is the dynam-
ics model specified in (1). The local fleet distribution, Q;,
is found with the same calculation but summing only over
the neighboring agents, j € Z!. By defining the radius of
communication as Rcomm = 3ds where ds is the length of
a cell in the environment, we guarantee that the i th taxi can
always calculate the fleet distribution in neighboring cells, S,
within one action of the current cell of the i™ taxi.

Next, we describe the desired fleet distribution using the
Q-values as computed in (9). Consider the following Boltz-
mann exploration strategy [31] strategy to synthesize a desired
distribution, Q*, from the Q-value estimates:

exp (f maxye 4 Q;(s, a))
2 weaexp (BQi(s.a)

Recall that A are the local actions available to each taxi
defined in (1) and f € R is an exploration/exploitation
design constant. For simplicity of notation, we have written
the action-values in its functional form, Qﬁ.

The goal of the game theoretic task assignment is to
find an action profile, A, through local iteration methods
that minimizes the distribution distance between the current
distribution, €, and the desired distribution Q*. We describe a
potential and noncooperative game meaning that the taxis will
try to converge to a Nash equilibrium with a high potential
function value. The global and marginal potential functions,
@ and J are defined as follows:

Q*(s,0) =

(18)

O(A) = — > (Q*(s,0) — Q(s, A))? (19)
seS

JA)) = = D7 (Q*(s, 0) — Q(s, AD)? (20)
seSi

For the calculation of J, we only require the indices that
correspond to neighboring cells of the current cell of the i™-
taxi, thereby permitting a local calculation.

Remark 4: The game’s utility function, ®(A;) has an anal-
ogy to sample-based planners if each taxi in the fleet is con-
sidered as a sampled action of a stochastic policy, Q*(s, Qﬁ).
This choice of utility function is interesting because it could
be the utility function chosen by a centralized algorithm but
we can maximize it with local calculations through J.
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Remark 5: Note that J is indeed the marginal contribution
on the global potential function:

D(A)) — d(A,) = J(A) — J(AD)

where A; = {a,]| VjelZ/{i}}u {at"/} is the global alternative
action set.

We use a game-theoretic reinforcement learning technique,
binary log-linear learning [28] to iterate to an action set A,,
shown in line 10-19 of Algorithm 2. At each timestep, ¢,
the action set, A; is randomly initialized. While all other taxi’s
actions are held, a randomly selected i®_taxi chooses between
the previously held action, ati, and an alternate action ati/ with
probability pi(Al, Al'):

exp (J(A))/7)
exp (J(AD/7) + exp (J(AY) /1)

where A" = {a]| Vj € T!/{i}} U {a!} is the local alternative
action set. The coefficient 7 € R.( is a design parameter
specifying how likely taxi i chooses a sub-optimal action,
to specify the trade-off between exploration and exploita-
tion. The action set is chosen once the iteration has con-
verged, completing the game-theoretic task assignment. Then,
the cell-based action a! is converted to a dispatch vector u!,
where ui is a randomly sampled position vector in the cell
after the dispatch action is taken.

pi(AL AT = 1)

VI. NUMERICAL EXPERIMENTS
A. Baseline and Variants

We compare our H-TD? solution with a receding horizon
control (RHC) baseline dispatch algorithm, adapted from the
baseline in [11]. For this section, we use independent notation
from the rest of the paper, matching the notation in [11]. The
RHC dispatch algorithm is formulated as the following linear
program:

10+trhe M

u* = argmax E pl=io E min(w;,; — X, 0)

t=to i=1

M M
s.t. E Uijt = Xi+1,i» E Ujjr = Xy
j=1 i=1

wije =0 Yj ¢S, xqi=Xo, (22)

where the state variable, x; € Z!S!, is the number of free taxis
in each cell, the control variable u;;, is the number of taxis
moving from cell i into cell j at time ¢ and #yc is the RHC
planning horizon. The first two constraints are conservation
constraints: (i) the number of taxis in cell i is the number of
taxis moving into cell i, and (ii) the number of taxis moving
from cell i is equal to the number of taxis previously in cell i.
The third constraint is that each taxi can only move to a
neighboring cell. The fourth constraint is the initial condition.
For large fleets, a proper assumption from [11] is to relax w;; ;
from integers to real numbers, resulting in a linear program
in w;;,. The reward is the difference of customer demand
and taxi supply, where w;; is the expected customer demand
and is computed from offline training data with a calculation

proposed in [9], [11]. The baseline is chosen to demonstrate
the advantage of fast adaption over learned prediction: static
prediction methods (either explicit in model-based or implicit
in model-free) are vulnerable to events occurring outside of
the training domain.

We study the effect of each component of the policy estima-
tion algorithm by comparing variants of the policy: Centralized
Temporal Difference (C-TD), Distributed Temporal Difference
(D-TD), and Bellman-optimal. All of these variants control
the fleet with binary log-linear learning (21), but they differ
in how Q is synthesized: C-TD uses (8) and (12), D-TD uses
(9) and (13), and the Bellman-optimal policy is synthesized
with (6). Equivalently, the D-TD and Bellman-optimal algo-
rithms can be interpreted as the limiting behavior of H-TD?
corresponding to the respective cases where d; = oo and
0q = 0.

B. Customer Demand Datasets

We consider two datasets of customer requests: a synthetic
dataset for a Gridworld environment and the real customer taxi
dataset from the city of Chicago [39]. Recall each customer
request is defined as follows: ck = [tf, t§, pk°1’, pk’d].

The synthetic dataset is generated as follows: At each
timestep, t € [to, o + A¢], the customer request model is
sampled n. times, where n. is the number of customers
per timestep of the simulation. The time of the request, tf
is uniformly randomly sampled in the timestep. The pickup
location, p*?, is found by sampling a 2-dimensional Gaussian
Mixture Model (GMM), where translating Gaussian distribu-
tions capture the underlying dynamic customer demand. The
dropoff location, p©¢ is a randomly sampled position in the
map, and the duration of the trip, t§ is given by 7(p*?, p&?).
The GMM model is parameterized by the number of Gaussian
distributions, ng, the speed of the distributions, v, the vari-
ance, og, and the initial position, and unit velocity vector of
the centroid for each distribution.

The real customer dataset is taken from the city taxi dataset
of Chicago [39] filtered by start and end timestamp. The
Socrata API permits importing raw data in the ¢ format,
where the location data is specified in longitude, latitude coor-
dinates. For this experiment, we load a city map of Chicago
as a shapefile and perform minor geometric processing with
the Shapely Python toolbox.

C. Results

1) Gridworld Simulations: We present variants of our
H-TD? algorithm against a RHC baseline in a Gridworld
environment as shown in Fig. 3. This flexible, synthetic envi-
ronment permits us to test on a range of system parameters.

First, we introduce the algorithms in a small-scale sim-
ulation. We synthesize a dataset with parameters: n, = 5,
ng =2, vg = 0.02625, og = 0.014, and randomly initialize
the mean and direction of the distributions. Our simulation
parameters are: n; = 100, |S| = 85, y = 0.9, a = 0.75,
nr = 10, ¢ = 0.014, ¢ = 0.0187, 0; = 0.025||Q8||,
£ = 150, vaxi = 0.125, = = 0.0001, and fruc = 10. We run
this experiment for each of the algorithms for 5 trials. This
experiment is shown in Fig. 3, modified with n; = 1000.
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Fig. 4. Cumulative customer waiting time for different algorithms in the
small-scale Gridworld environment. The algorithms behave as expected: in
descending order of performance, Bellman, centralized temporal difference,
H-TD?, distributed temporal difference, followed by the receding horizon
control baseline. The simulation is run 5 times, and the mean with standard
deviations is visualized in the plot.

Next, we collect statistics on the cumulative reward of
each algorithm, and plot the results in Fig. 4. The algorithms
behave as expected: in descending order of performance,
Bellman, centralized temporal difference, H-TD?, distributed
temporal difference, followed by the receding horizon control
baseline. At the cost of computational effort, the user can tune
the performance of H-TD? between the distributed temporal
difference and Bellman-optimal solution by changing d;. The
simulation is run 5 times, and the mean with standard devia-
tions is visualized in the plot.

To explain the performance difference between the vari-
ants of our method, we show an error trace of the policy
in Fig. 5. For a given policy Q, we calculate the error with
respect to the Bellman solution: e,Q = ||Q't’ — Q,||/||Q't’||. For
this experiment, we set the Jd; parameter is set to 2.5% of
the norm of the Bellman solution, indicated by the dashed
horizontal line. Initially, the H-TD? and distributed tempo-
ral difference (D-TD) algorithms behave identically, until
the trigger condition is satisfied and the H-TD? requests a
global Bellman-optimal update, thereby bringing its error to
zero. As expected, the centralized-temporal difference method,
C-TD, generally tends to estimate the Q-values better than its
distributed counterpart, D-TD.

Next, we test the proposed algorithm and baseline’s scala-
bility and performance across a wide range of taxi-densities
and plot the results in Fig. 6. We fix the parameters from
the small-scale simulation and only change the number of
taxis and number of customers, where we maintain the ratio
n;/ne = 10. In the top figure, the average reward is shown
across a variety of taxi density regimes, where the H-TD?
algorithm outperforms a RHC baseline by almost a factor of 2
in all taxi-density regimes. In the bottom figure, we show that
the computational time is approximately linear with number
of taxis (and taxi-density) across 3 orders of magnitude. The
computational complexity of both RHC and H-TD? scales
with the spatial resolution of the simulation, and in practice,
we limit the maximum number of cells to 200.

2) Chicago City Simulations: We present the H-TD? against
an RHC baseline using real customer data from the city of
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Fig. 5. Q-value error trace for different algorithms with respect to the
Bellman-optimal. Initially, the H-TD? and distributed temporal difference
algorithms behave identically, until the trigger condition is satisfied and the
H-TD? requests a global Bellman-optimal update, bringing the error to zero.
The J4 parameter is set to 2.5% of the norm of the Bellman solution and is
shown with a dashed black horizontal line.
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Fig. 6. Performance and scalability analysis of H-TD? and RHC against
number of taxis. In the top subplot, the average reward is shown across a
variety of taxi density regimes, and the proposed algorithm outperforms a
receding horizon control baseline by at least 50% in all taxi-density regimes.
In the bottom subplot, the computational time is approximately linear with
number of taxis (and taxi-density) across 3 orders of magnitude.

Chicago public dataset [39], in a Chicago map environment.
We show that our algorithm outperforms the baseline in
practical datasets and demonstrate that online algorithms are
robust in irregular urban mobility events.

In Fig. 7, we present the Chicago city taxi customer demand
across an irregular event: Game 5 of the 2016 Baseball
World Series. The map cells show the number of customer
pickup requests, and the green star is Wrigley Field’s (baseball
stadium) location. Below, we plot the customer demand over
time for the cell containing Wrigley Field. We show that a
reward model trained using data from the day before would
not accurately predict the behavior of the next day.

We evaluate the algorithms and plot the results in Fig. 8. Our
simulation parameters are: n; = 2000, |S| = 156, y = 0.8,
o =0.1,nr =10, ¢ = 0.0001, ¢ = 0.0001, 64 = 0.025||Q8||,
f = 1, daxi = 22 miles per hour, z = 0.0001, and
truc = 10. We train a reward model using the data from
October 29 2016 with a total of 91, 165 customer requests.
Then, we collect 54, 115 customer requests from October 30th,
2016, which we reveal real-time to the H-TD? and RHC
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Fig. 7. Chicago city taxi customer demand across an irregular event: Game 5
of the 2016 Baseball World Series. The map cells show the number of
customer pickup requests, and the green star is Wrigley Field’s location.
Below, we plot the customer demand over time for the cell containing Wrigley
Field to show that a reward model trained using data from the day does not
accurately predict the future behavior.
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Fig. 8.  Cumulative customer waiting time for the H-TD? and the RHC
baseline in a Chicago city environment with a fleet of 2,000 taxis servicing
54, 115 real customer requests during the 2016 Major League Baseball World
Series. The H-TD? algorithm has a total customer waiting time of 504hours,
an improvement of 26% over the RHC baseline.

dispatch algorithms. In total, the H-TD? algorithm has a total
customer waiting time of 501hours an improvement of 26%
over the RHC baseline of a cumulative customer waiting
time of 684hours. This result demonstrates the robustness of
adaptive algorithms to irregular events.

VII. CONCLUSION

In this work, we present H-TD?, a novel approach to taxi
dispatch that exploits the natural topology of transportation
network systems with hybrid behavior: a fleet of taxis compute
lightweight policy updates locally and, episodically, the policy
of all taxis are reset with a centralized batch update from
the dispatch center. We derive a regret bound on the local
policy estimation that introduces a trigger condition to the
batch update, permitting the user to explicitly specify the
computational expense/policy bounded sub-optimality trade-
off. Unlike state-of-the-art taxi dispatch methods, this algo-
rithm is adaptive, model-free and coordinated, permitting the
fleet to adapt in a flexible manner to regular and non-regular
events. Compared to a receding horizon control baseline,
the proposed algorithm decreases average customer waiting
time by 50% on a synthetic dataset across a wide range
of system parameters, and by 26% on real customer data

from the city of Chicago taxi dataset over irregular customer
distributions during Game 5 of the 2016 Baseball World
Series. In future work, we propose coupling H-TD? with a
lower-level motion planner such as [40].

APPENDIX
FLEET SIMULATOR

In this section we describe the implementation of the fleet
simulator described in Algorithm 1. In particular, the fleet
is initialized with uniform random initial positions in the
state space and in the dispatch operating mode (Line 1).
The customer requests are either synthetically generated in
Gridworld or drawn from the Chicago city taxi dataset (Line
3). The taxis are assigned to customers with a distributed
matching algorithm (Line 4). After the taxi’s choose a dispatch
action, the environment updates as follows:

The dynamical model of the i™-taxi servicing customer ¢
is defined as:

k

k
. t—t . .
k k k
P+ G 07 =) =t <1yt
[ ' Iy —t '
P = 1—1t% . .
pk,p+ kl’ (pk,d _ pk,p) l;’l <t< t]];,l + l§
d
where this model is evaluated for all servicing taxis, i.e. Vi €
s, tf,’l =t* + y(phr, pil() is the pickup time of customer k
by taxi i, and # is the estimated time of arrival function for
the environment.
The dynamic model of the i"-taxi dispatched by dispatch
action a; is given by:

(23)

i i A o i

P =P ey

where this model is evaluated for all free agents, i.e. Vi € I,

A, is the simulation timestep, and u! is the desired position
vector received from the dispatch algorithm.

The Estimated Time of Arrival (ETA), n accepts arbitrary

position vectors, returns a scalar time value and is defined as:
1 2
lp" —p~ll

Utaxi

(24)

' p*) = (25)
where Dy 1s the average taxi speed, computed offline as an
input parameter.

Remark 6: Our proposed dispatch algorithm is agnostic to
choice of models f, f;, n so these can be augmented with a
road network models or a data-driven approach.
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