
HAL Id: hal-03428046
https://hal.science/hal-03428046

Submitted on 14 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Deep Learning Approach for Flight Delay Prediction
through Time-Evolving Graphs

Kaiquan Cai, Yue Li, Yiping Fang, Yanbo Zhu

To cite this version:
Kaiquan Cai, Yue Li, Yiping Fang, Yanbo Zhu. A Deep Learning Approach for Flight Delay Prediction
through Time-Evolving Graphs. IEEE Transactions on Intelligent Transportation Systems, inPress,
pp.1-11. �10.1109/TITS.2021.3103502�. �hal-03428046�

https://hal.science/hal-03428046
https://hal.archives-ouvertes.fr


1

A Deep Learning Approach for Flight Delay
Prediction through Time-Evolving Graphs

Kaiquan Cai, Member, IEEE, Yue Li, Yi-Ping Fang, Member, IEEE, and Yanbo Zhu, Member, IEEE

Abstract—Flight delay prediction has recently gained growing
popularity due to the significant role it plays in efficient airline
and airport operation. Most of the previous prediction works
consider the single-airport scenario, which overlooks the time-
varying spatial interactions hidden in airport networks. In this
paper, the flight delay prediction problem is investigated from a
network perspective (i.e., multi-airport scenario). To model the
time-evolving and periodic graph-structured information in the
airport network, a flight delay prediction approach based on
the graph convolutional neural network (GCN) is developed in
this paper. More specifically, regarding that GCN cannot take
both delay time-series and time-evolving graph structures as
inputs, a temporal convolutional block based on the Markov
property is employed to mine the time-varying patterns of
flight delays through a sequence of graph snapshots. Moreover,
considering that unknown occasional air routes under emergency
may result in incomplete graph-structured inputs for GCN,
an adaptive graph convolutional block is embedded into the
proposed method to expose spatial interactions hidden in airport
networks. Through extensive experiments, it has been shown
that the proposed approach outperforms benchmark methods
with a satisfying accuracy improvement at the cost of acceptable
execution time. The obtained results reveal that deep learning
approach based on graph-structured inputs have great potentials
in the flight delay prediction problem.

Index Terms—Flight delay prediction, time-evolving airport
network, graph-structured information, graph convolutional neu-
ral network.

I. INTRODUCTION

A IR transportation is of great significance in business and
tourism, achieving a record high to accommodate near

4.5 billion passengers worldwide in 2019 [1]. According to
the statistics in the same year, the average delay per flight
was 13.1 minutes in Europe and 12.9 minutes in the United
States, and the number in China was around 14 minutes [2]–
[4]. These delays have led into inevitable consequences such
as unpleasant passenger experiences, followed by economic
losses of relevant airspace users. The annual cost of flight
delays to the global economy was estimated to be $50 billion
in 2019 [5]. Such high loss motivates the analysis of air traffic
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delays and the development of more advanced flight delay
prediction approaches in both industry and academia [6].

In flight delay prediction, mathematical simulations and
data-driven methods are currently two types of representative
work. The mathematical simulation methods [7]–[9] employ
mathematical tools to model air traffic operations and usually
require huge computational resources. Moreover, there are
typically some impractical assumptions and/or simplifications
made in these methods, which make it more challenging for
these methods to be used in actual situations and greatly
decrease the prediction accuracy [10]. In recent decades, data-
driven methods have gained extensive attention owing to the
availability of massive air traffic data [11]–[13]. In detail, Hao
et al. [14] developed a regression model combined with an
econometric method to predict flight delays at three major
commercial airports in New York. Chen et al. [15] utilized
a multi-label random forest classification method combined
with air traffic operation to predict sequence future delays for
individual flights along their scheduled itineraries. Yu et al.
[16] proposed a deep belief network method to mine the inner
patterns of flight delays within a set of micro influential factors
and presented a practical flight delay prediction at Beijing
Capital International Airport.

However, above-mentioned works only concerned on the
single-airport scenario and neglected dynamic spatial interac-
tions hidden in airport networks. Indeed, flight delays can
randomly take place within air transportation system and
readily propagate throughout the tightly connected airport
network owing to the large number of interconnected resources
(e.g., aircraft, flight crews, passenger, and infrastructure) [17]–
[19]. Therefore, it is necessary to focus on the dynamic spatial
interactions among connected airports, i.e., graph-structured
information.

Recent years have witnessed a growing interest in under-
standing the spatial dependencies in flight delay prediction
problem [20]–[22]. Specifically, Pyrgiotis et al. [23] devel-
oped network decomposition models to study the complex
phenomenon of the propagation of delays and provided several
encouraging consequences. Similarly, Du et al. [17] applied a
delay causality network to study the propagation mechanism
of flight delays within a large-scale airport network based on
the interdependence of delay time-series. Recently, Wu and
Law [24] developed a Bayesian network in the delay-tree
framework to examine complicated delay propagation effects
in an airline network.

In spite of the advances in understanding the spatial de-
pendencies among airports in flight delay prediction problem,
previous works mostly concentrate on analyzing the qualitative
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influence of flight delays on airport networks and may not be
appropriate for quantitative prediction within dynamic spatial
interactions.

Fortunately, utilizing deep learning methods to capture
spatial and temporal dependency, timely and accurate traf-
fic prediction has gained growing attention in transportation
management area due to the significant benefits it might bring
to traffic control and guidance [25]–[28]. More specifically,
the graph convolutional neural network (GCN), with the
capability of extracting complex non-linear relationships in
general graphs, brings opportunities in handling complicated
traffic forecasting problems with the consideration of graph-
structured information [29]–[32]. Recently, based on GCN
models, researchers have proposed a series of intelligent meth-
ods to provide quantified diagnostics for ground transportation
[33]–[35]. Yu et al. [36] utilized a recurrent neural network to
model the sequential data and developed a deep neural network
based on long short term memory units for traffic forecasting.
To model the non-linear temporal dependency of traffic, Pan et
al., [37] proposed a meta recurrent neural network combined
with an encoder-decoder architecture to predict urban traffic.
Zhang et al. [38] improved GCN by applying the attention
mechanism to aggregate features from the neighbours of a
node and developed a deep learning framework to predict
traffic speed.

Inspired by the recent success of GCN in various prediction
tasks for ground transportation, this paper addresses the flight
delay prediction problem by abstracting it as a time-series
analysis task based on graph-structured information of an air-
port network. And an improved GCN is utilized to capture the
highly meaningful patterns of flight delays in the multi-airport
scenario. Due to the dynamic nature of airport networks, two
critical problems need to be overcome:

• The structure of an airport network may evolve over time
in a day, e.g., scheduled air routes for rush or slack
hours; flight cancellations due to accidents or natural
disasters. However, the conventional GCN cannot handle
both delay time-series and time-evolving graph structures
simultaneously.

• To address urgent requirements (e.g., military activity
and mechanical failure) in daily operation, the air traffic
management department might develop temporary air
routes to mitigate the severe effects of emergencies.
These temporary air routes are quite ad hoc and typically
unknown to flight delay prediction models, which results
in incomplete graph-structured inputs for GCN.

To address the above problems, this paper proposes a
novel flight delay prediction method by jointly modeling the
spatio-temporal features of an airport network. Specifically, a
deep learning architecture with graph-structured inputs, named
Multiscale Spatial-Temporal Adaptive Graph Convolutional
Neural Network (MSTAGCN), is designed to resolve the flight
delay prediction problem for multi-airport scenario in this
paper. Considering the time-varying graph-structured inputs
for GCN, a temporal convolutional block based on the Markov
property is developed to capture the temporal dependency
of air traffic through a sequence of graph snapshots. More-

over, to capture the unknown newly-formed air routes under
urgent requirements, an adaptive graph convolutional block
is embedded into the architecture, which parameterizes two
types of graphs (namely, importance and similarity graphs)
based on predefined structure of an airport network. These
parameterized graphs are trained and updated jointly with
convolutional parameters of the model. Overall, the proposed
flight delay prediction approach can be distinguished from the
prior works in the following two aspects:

• To model the dynamic spatial interactions hidden in
an airport network, the flight delay prediction problem
is investigated from a network perspective (i.e., multi-
airport scenario).

• Considering unknown newly-formed air routes under
urgent requirements, an adaptive graph convolutional
network component is developed to learn complete graph-
structured inputs for GCN.

This paper is organized as follows. In Section 2, we formu-
late the flight delay prediction problem and elaborate on the
details of time-evolving nature of airport networks. Section
3 describes the methodology, including the deep learning ar-
chitecture, the temporal convolutional block, and the adaptive
graph convolutional block. In Section 4, the proposed model
is compared with several benchmark approaches. Section 5
reports the case study of the Chinese airport network. The
final section concludes the paper with some brief remarks.

II. PROBLEM FORMULATION

We define a set of nodes as V = {v1, v2, ..., vn} to represent
all airports in an airport network. At time t, the airport network
can be described as a directed and weighted network G(t) =
(V,E(t),W (t)), where E(t) is a set of edges representing air
routes among nodes in V . W (t) ∈ Rn×n denotes the weighted
adjacency matrix of G(t), with its element w(t)

ij representing
the number of flights between airport vi and airport vj during
(t − 1, t). Moreover, Y (t) = {y(t)1 , y

(t)
2 , ..., y

(t)
n } ∈ Rn is

employed to denote an observation vector of n airports at time
t, of which each element y(t)i records the delay experienced
at a single airport i during (t− 1, t). For airport i, in addition
to the actual flight delays, cancellations should be considered
as a delay metric to assess the on-time performance of an
airport. Therefore, according to the regulations of the Federal
Aviation Administration (FAA), the Eurocontrol’s Network
Manager (NM) Operations Centre, and the Civil Aviation
Administration of China (CAAC), ρ is utilized to indicate the
equivalent delay time of a cancellation. Then, the weighted
value of the actual flight delays and the equivalent delays of
cancellations is used to represent the average delay y(t)i of an
airport.

y
(t)
i =

m
(t)
i + ρ ∗ c(t)i

a
(t)
i

, (1)

where m
(t)
i denotes the total delay of departure flights at

airport i during (t − 1, t), c(t)i and a
(t)
i reveal the number

of cancelled flights and scheduled departure flights at airport
i during (t − 1, t), respectively, and ρ = 180 represents the
equivalent delay of a cancellation [17].
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Fig. 1. Illustration of constructing the multiscale historical delay sequences
based on graph snapshots.

We denote the adjacency matrix W (t) and the delay vector
Y (t) as a graph snapshot at time t [39]. A sequence of graph
snapshots W = {W (0),W (1), ...,W (t)} and corresponding
delay observations Y = {Y (0), Y (1), ..., Y (t)} is regarded as
a time-evolving graph in this paper. Note that the structure
of an airport network can evolve over time in a day, and
the evolution presents obvious periodic patterns. In fact, a
flight schedule in air transportation is typically composed
of two different flight seasons: Winter-Spring season and
Summer-Autumn season. In each season, all carriers perform
similar daily flight plans except for weekends, thus air traffic
and flight delays at each airport show similar daily patterns.
Furthermore, due to the regular flight timetables, air traffic and
flight delays also exhibit weekly periodicity, e.g., air traffic
pattern on the latest Tuesday has a strong similarity with the
air traffic on Tuesdays in history. To take advantage of the
long-term periodicity of air traffic, we formulate the multiscale
historical delay sequences X(t) = {P (t)

w , P
(t)
d , P

(t)
r } at time

t as shown in Fig. 1, where P
(t)
w ∈ RN×n, P (t)

d ∈ RN×n,
and P (t)

r ∈ RN×n represent the weekly-periodic segment, the
daily-periodic segment and the recent segment, respectively.
The details of the three delay segments are described as
follows:

P (t)
r = {Y (t−N), Y (t−N+1), ..., Y (t−1)}, (2)

P
(t)
d = {Y (t−N−24+1), Y (t−N+1−24+1), ..., Y (t−1−24+1)}, (3)

P (t)
w = {Y (t−N−7∗24+1), Y (t−N+1−7∗24+1), ..., Y (t−1−7∗24+1)},

(4)
where the time t is represented by the red graph snapshot
in Fig. 1. The recent delay sequence P (t)

r , including N graph
snapshots before time t during the same day and the day before
if t ≤ (N − 1)h, records the neighboring graph snapshots
which have inevitable influences on future traffic. The daily-
periodic delay sequence P (t)

d is consisted of N graph snap-
shots tracing back from (and including) the predicted period in
the day before, representing the daily periodicity of air traffic.
The weekly-periodic delay sequence P (t)

w , including N graph
snapshots tracing back from (and including) the predicted
period in the same day of the previous week, exposes the
weekly periodicity of air traffic. For example, assuming that
N = 21 and the time t denotes a period from 16:00h to 17:00h
on a Wednesday. Then, the recent delay sequence records
the historical delays of all airports between 19:00h (Tuesday)
and 16:00h (Wednesday); The historical delays of all airports
between 20:00h (Monday) and 17:00h (Tuesday) are poured

time
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Fig. 2. System architecture of Multiscale Spatial-Temporal Adaptive Graph
Convolutional Network.

into the daily-periodic delay sequence; The weekly-periodic
delay sequence consists of delays of all airports between
20:00h (the last Tuesday) and 17:00h (the last Wednesday).
Through extensive experiments, N = 21 is chosen in our case
study.

In this paper, the flight delay prediction problem is con-
verted to a time-series analysis task on time-evolving airport
networks and we aim to predict the most likely delays for
each airport in the next M time steps given the air traffic
observations in the historical 3 ∗N time steps (Note: the past
3∗N hours are chosen no matter they are in the same calendar
day or not). This procedure can be formulated as

[X(t)]→ [Y (t), ..., Y (t+M−1)], (5)

III. METHODOLOGY

A. Overview of the proposed model

The proposed model (i.e., MSTAGCN) is composed of
two multiscale spatial-temporal adaptive graph convolutional
layers and a residual connection is added for each layer to
stabilize the training procedure, as shown in Fig. 2. Each mul-
tiscale spatial-temporal adaptive graph convolutional layers is
consisted of a temporal convolutional block and an adaptive
spatial convolutional block.

MSTAGCN takes a time-evolving airport network (i.e., a
sequence of graph snapshots) and the multiscale historical de-
lay sequences as inputs. After stacking two multiscale spatial-
temporal adaptive graph convolutional layers, we apply a fully
connected output layer at the final step and the prediction
results are generated. Moreover, the Mean Squared Error is
employed as the loss function to evaluate the performance of
the proposed approach.

B. A temporal convolutional block for mining the time-varying
patterns of flight delays

An airport network (a directed graph) can be considered as
a multi-relational graph with incoming and outgoing relations,
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and the relational GCN (R-GCN) is capable of handling multi-
relational graphs. So, we first employ R-GCN to model the
spatial interactions of each airport in a single graph snapshot.
Then, the temporal dynamics of flight delays between two
adjacent graph snapshots is investigated in accordance with the
Markov property. Based on above observations, we generalize
R-GCN to process the time-evolving graph.

Considering a single graph snapshot, the adjacency matrix
W (t) and the multiscale historical delay sequences X(t) are
taken as inputs. We define the notion of graph convolution
operator ?G based on spectral graph convolution, as the
multiplication of the multiscale delay sequences X(t) with a
kernel ΘF :

ΘF ? GX(t) = σ(
∑
r∈R

(D(t)
r )−1W (t)

r X(t)Mr +X(t)M0), (6)

where ΘF denotes the parameter set used in a single
graph snapshot, σ(·) represents the activation function. R =

{in, out} reveals a set of relation type, W (t)
in = W (t) denotes

the incoming relation and D(t)
r is the diagonal degree matrix

with (D
(t)
r )ii =

∑
j(W

(t)
r )ij , W

(t)
out = (W (t))T represents the

outgoing relation. And Min,Mout reveal the weight matrix for
incoming and outgoing relations, respectively. M0 represents
the self-connection weight matrix [40]. Moreover, to further
generalize R-GCN and prevent overfitting, a linear combina-
tion of incoming and outgoing relations is utilized to simplify
the self-connection weight matrix [39]. The Eq. (6) can then
be rewritten as

ΘF ? GX(t) = σ(
∑
r∈R

W̃ (t)
r X(t)Mr), (7)

where W̃ (t)
r = (D̃

(t)
r )−1(W

(t)
r + In), (D̃

(t)
r )ii =

∑
j(W

(t)
r +

In)ij , and In represents a n-dimension identity matrix.
Considering two adjacent graph snapshots at time t−1 and t,

we take the processed adjacency matrix W̃ (t−1)
r , W̃

(t)
r and the

multiscale historical delay sequences X(t−1), X(t) as inputs.
Then, the graph convolution operator ?G for two adjacent
graph snapshots can be generalized as follow:

ΘB ?G[X(t−1), X(t)] = σ(ΘH ?GX(t−1)+ΘF ?GX(t)), (8)

where ΘB denotes the parameter set used in two adjacent
graph snapshots. ΘH ? GX(t−1) represents the graph convo-
lution operation at time t− 1, and it take W̃ (t−1)

r and X(t−1)

as inputs. Note that the parameter set ΘH does not change
over time. Overall, the graph convolution operation for two
adjacent graph snapshots can be viewed as a combination of
both current and accumulating previous graph snapshots.

Finally, a hidden state H(t−1) is utilized to memorize the
accumulating previous graph snapshots, and a combination of
the hidden state and the current input is employed to generate
a new hidden state:

H(t) = σ(ΘB ? G[H(t−1), X(t)]), (9)

where ΘB includes ΘH and ΘF . In these settings, we can
handle a time-evolving graph through applying Eq. (9) se-
quentially.

Adaptive

Fig. 3. Illustration of the evolution of the graph convolution operator. Blue
point: civil airport. Black line: the scheduled air routes. Red line: the unknown
temporary air routes.

C. An adaptive graph convolutional block for capturing un-
known spatial interactions hidden in airport networks

The adaptive graph convolutional block is composed of a
spatial GCN (Convs), a temporal GCN (Convt), a dropout
layer, and a residual connection. Each GCN-based layer is
followed by a batch normalization layer (BN) and a ReLU
layer (ReLU). Here, the temporal GCN is the same as the
model proposed by Shi et al. [41], i.e., it applies a Kt × 1
convolution on the Ct×N×n feature map to capture temporal
information through an airport network. The spatial GCN for
the space domain is described as follows.

The adjacency matrix is defined as A corresponding to
the last hidden state H(tlast) of the temporal convolutional
block. As shown in Fig. 2, the adaptive graph convolutional
block employs a spatial GCN in the middle to concatenate
the temporal convolutional block. Therefore, we can take the
adjacency matrix A and the last hidden state H(tlast) as inputs
to the spatial GCN. Then, the graph convolution operator ?G
is defined as the multiplication of the last hidden state H(tlast)

with a kernel ΘI :

ΘI ? GH(tlast) = ΘI(L)H(tlast)

= ΘI(UΛUT )H(tlast)

= ΘI(In −Q−1A)H(tlast),

(10)

where ΘI denotes the parameter set used in the spatial
GCN modeling. The graph Fourier basis U ∈ Rn×n is the
eigenmatrix of the random walk Laplacian L = In−Q−1A =
UΛUT ∈ Rn×n, where In represents a n-dimension identity
matrix, A ∈ Rn×n is the adjacency matrix and Q ∈ Rn×n is
the diagonal degree matrix with Qii =

∑
j Aij , Q

−1 denotes
the inverse matrix of Q, and Λ ∈ Rn×n indicates the diagonal
matrix of eigenvalues of L. To efficiently study flight delays
at the system level, the 1st-order Approximation method [42]
is adopted in this paper due to its simplicity and proven
performance. The Eq. (10) can then be rewritten as

ΘI ? GH(tlast) ≈ θ0H(tlast) + θ1(
2

λmax
L− In)H(tlast)

≈ θ0H(tlast) − θ1(Q−1A)H(tlast),
(11)

where θ0, θ1 represent two shared parameters in the kernel
ΘI . To ensure a stabilize numerical performance [10], here
we assume that θ = θ0 = −θ1. The Eq. (11) can then be
expressed by

ΘI ? GH(tlast) = θ(In +Q−1A)H(tlast), (12)

note that the graph convolution operator designed by Eq. (12)
concentrates on the scheduled air routes of an airport network,
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while the unknown temporary air routes for urgent require-
ments (as shown in Fig. 3) are neglected. To address this
problem, an adaptive graph convolutional layer is employed to
model the complicated spatial interactions in airport networks
under urgent situations. More specifically, the importance
and similarity matrixes based on the scheduled structure of
an airport network are added and parameterized, and these
matrixes are trained and updated jointly with the convolutional
parameters of the model. These matrixes are unique for
different layers and reveal the critical airports in flight delay
propagation. The Eq. (12) can then be rewritten as

ΘA ? GH(tlast) = θ∗(In +Q−1(A+ Z + S))H(tlast), (13)

where ΘA denotes the parameter set used in the spatial
GCN, θ∗ represents the shared parameter in the kernel ΘA.
A represents the scheduled structure of an airport network,
Z ∈ Rn×n shows the importance of each airport in an airport
network and plays the same role as the attention mechanism
[43]. Moreover, elements in Z are updated and trained together
with other parameters based on the training inputs. Therefore,
there is no constraint on the value of each element, which
allows the generation of temporary connections not existing
in the scheduled structure of an airport network. To determine
whether there is a connection between two airports and how
strong the connection is, the normalized embedded Gaussian
function (i.e., Eq. (14)) is employed to measure the similarity
of two airports (Note that the similarity function is not sym-
metric because the airport network is described as a directed
network in this paper):

f(vi, vj) =
exp(ϕ(vi)

T
)ψ(vj)∑n

j=1 exp(ϕ(vi)
T

)ψ(vj)
, (14)

where ϕ(·) and ψ(·) represent two embedding functions
designed to map the original feature map H(tlast) into two
embedded feature maps S1 ∈ Rn×CeN , S2 ∈ RCeN×n.
Specifically, we firstly embed the original feature map H(tlast)

into H(tlast)
∗ ∈ RN×n×Ce with the two embedding functions.

Here, we employ a 1 × 1 convolutional layer as the embed-
ding function based on extensive experiments. Then, the two
embedded feature maps are rearranged to S1 and S2, so the
similarity matrix S can be defined as the multiplication of S1

with S2. Since the normalized embedded Gaussian is equipped
with a softmax operation, we can obtain the similarity matrix
S based on Eq. (14) as follow:

S = softmax(H(tlast)
T

ΘT
ϕΘψH

(tlast)), (15)

where Θϕ,Θψ reveal the parameter set of the embedding
function ϕ(·) and ψ(·), respectively.

IV. EXPERIMENTAL RESULTS OF THE CHINESE AIRPORT
NETWORK

A. Dataset

The data used in this paper are provided by CAAC, compris-
ing all domestic flights from April 1, 2018 to October 31, 2018
(i.e., Summer-Autumn flight season). Considering the sparse
flight schedules at spoke airports, 224 civil airports are ranked
according to the handling capacity and the top 74 busy airports

are poured into the experimental dataset. The dataset contains
2.19 million scheduled flights connecting 74 critical airports,
which serve more than 90% of the air traffic in China. All raw
data are normalized by Z-Score method. 70% of the dataset
is employed for training, 15% are used for testing while the
remaining 15% for validation. All experiments are tested on a
Linux cluster (i.e., CPU: Intel (R) Xeon (R) Gold 6126 CPU
@ 2.60GHz, GPU: NVIDIA TITAN RTX).

B. Baselines

We compare our model with two types of baseline mod-
els: single-airport scenario model and multi-airport scenario
model.

(1) Single-airport scenario models
• ARIMA [44]: Auto-Regressive Integrated Moving Aver-

age, which is one of the most popular methods in time-
series prediction task.

• SVR [45]: Support Vector Regression with Radial Basis
Function Kernel, the penalty term is set to 0.1, the number
of historical observation is 21.

(2) Multi-airport scenario models
• DCRNN [46]: Diffusion Convolutional Recurrent Neural

Network. Both encoder and decoder contain two recurrent
layers and there are 64 units in each recurrent layer. The
initial learning rate is 1e−2 with a decay rate of 0.1 after
every 10 epochs and early stopping is utilized on the
validation dataset. The maximum step of random walk is
set to 3. We train our models by minimizing the mean
square error using Adam (Adaptive Moment Estimation)
optimizer for 50 epochs with batch size 64.

• STGCN [10]: Spatial-temporal Graph Convolutional Net-
work. The channels of three layers in ST-Conv block are
64, 16, 64 respectively. Both the graph convolution kernel
size and temporal convolution kernel size are set to 3.
The initial learning rate is 1e−4 with a decay rate of 0.6
after every 5 epochs. We train our models by minimizing
the mean square error using Adam (Adaptive Moment
Estimation) optimizer for 50 epochs with batch size 64.

C. Evaluation Metrics

The Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and Mean Absolute Percentage Error (MAPE)
are employed to evaluate the performance of the models:

RMSE =

√√√√1

k

k∑
i=1

(x̂i − xi)2, (16)

MAE =
1

k

k∑
i=1

|x̂i − xi|, (17)

MAPE =
100%

k

k∑
i=1

| x̂i − xi
xi

|, (18)

where k is the number of testing samples. x̂i and xi denote the
real traffic information and predicted flight delay, respectively.
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON THE CHINESE AIRPORT NETWORK.

M Metric ARIMA SVR DCRNN STGCN MSTAGCN
RMSE 18.89 12.201±0.471 11.313±0.187 11.288±0.133 10.371±0.168

1 hour MAE 12.79 7.154±0.128 6.605±0.095 6.564±0.049 5.884±0.072
MAPE 32.72% 19.31±0.95% 16.68±0.58% 16.42±0.27% 13.39±0.45%
RMSE 21.841 12.601±0.489 11.554±0.193 11.506±0.151 10.613±0.174

2 hours MAE 15.33 7.421±0.143 6.824±0.094 6.773±0.047 6.123±0.089
MAPE 41.51% 20.19±0.98% 17.57±0.61% 17.24±0.32% 14.90±0.52%
RMSE 24.547 12.761±0.514 11.684±0.191 11.641±0.159 10.787±0.181

3 hours MAE 17.811 7.493±0.142 6.963±0.095 6.924±0.054 6.252±0.093
MAPE 47.62% 20.92±0.97% 18.28±0.62% 17.97±0.41% 15.11±0.56%

Note: we run each experiment 10 times independently and report the mean and standard deviation.

TABLE II
RESULTS OF COMPARISON AMONG DIFFERENT VARIANTS IN MSTAGCN ON THE CHINESE AIRPORT NETWORK.

M Metric MSTAGCN-NS MSTAGCN-NE MSTAGCN-NA MSTAGCN
RMSE 11.981±0.195 11.182±0.176 10.817±0.124 10.371±0.168

1 hour MAE 6.927±0.098 6.467±0.069 6.142±0.041 5.884±0.072
MAPE 18.02±0.52% 16.03±0.47% 14.46±0.22% 13.39±0.45%
RMSE 12.205±0.198 11.379±0.184 11.006±0.136 10.613±0.174

2 hours MAE 7.294±0.095 6.692±0.076 6.331±0.047 6.123±0.089
MAPE 19.17±0.57% 16.92±0.50% 15.57±0.28% 14.90±0.52%
RMSE 12.563±0.194 11.604±0.197 11.289±0.129 10.787±0.181

3 hours MAE 7.581±0.096 6.823±0.087 6.506±0.051 6.252±0.093
MAPE 19.98±0.58% 17.87±0.54% 16.30±0.29% 15.11±0.56%

Note: we run each experiment 10 times independently and report the mean and standard deviation.

D. Experimental Setting

MSTAGCN is composed of two multiscale spatial-temporal
adaptive graph convolutional layers and a residual connection
is added for each layer. Both the graph convolution kernel size
and temporal convolution kernel size are set to 5. The time-
window is set to 24. The initial learning rate is 1e−4 with a
decay rate of 0.6 after every 5 epochs. We train our models
by minimizing the mean square error using Adam (Adaptive
Moment Estimation) optimizer for 50 epochs with batch size
64.

Here, we vary the size of graph convolution kernel from
1 to 7 and test the impacts on the prediction performance
(MAE) for three different future time periods, as shown in
the left panel of Fig. 4. When the size of graph convolution
kernel grows from 1 to 5, MAE decreases slightly on three
future time periods. However, with increasing from 5 to 7,
MAE increases dramatically on all time periods. Therefore,
we set graph convolution kernel size as 5, and MSTAGCN
can achieve better and stable performance.

In addition, we also vary the size of the time-window from
12 to 24 and test the effect on the prediction performance
(MAE) for three different future time periods, as shown in
the right panel of Fig. 4. When the size of time-window
grows from 12 to 24, MAE declines gradually on three future
time periods. Therefore, we set the time-window as 24, and
MSTAGCN can achieve better and stable performance.

Fig. 4. Impacts of the graph convolution kernel size and time-window size
on the prediction performance (MAE) for three different future time periods.

E. Experimental Results

(1) Model Comparison
Table I reports the performance results of the proposed

approach and benchmark methods on the testing dataset. We
run each experiment 10 times independently and report the
mean and standard deviation. Specifically, the first row (i.e.,
M = 1 hour) in Table I shows the short-term prediction results
and the long-term forecasting is illustrated by the second and
third rows (i.e., M = 2, 3 hours). It is shown that our model
achieves the best performance in terms of all the statistical
metrics both in short-term and long-term predictions. Addi-
tionally, as validated by the analysis of variance (ANOVA)
[47], there is no significant difference among the predicted
results for three different future time periods. Such superior
performance of the proposed approach is mainly attributed
to the following two points. Firstly, considering the time-
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Fig. 5. Training MSE and validation MSE of MSTAGCN variants during the
training procedure.
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Fig. 6. Predictions of Beijing Capital International Airport (ZBAA), Shanghai
Pudong International Airport (ZSPD), Xian Xianyang International Airport
(ZLXY), and Guangzhou Baiyun International Airport (ZGGG) for three
consecutive days (from 06 : 00 to 22 : 00).

evolving structure of the airport network, this approach em-
ploys the Markov property to capture temporal dependency of
air traffic through a sequence of graph snapshots. Furthermore,
by parameterizing the additional two graphs based on the
scheduled structure of an airport network, the proposed method
can effectively explore the latent spatial relationships among
airports even if there is no scheduled air route connection.

(2) Variant Comparison
Because the proposed MSTAGCN contains multiple key

components, we additionally compare variants of MSTAGCN
with respect to the following perspectives to demonstrate
the performance of MSTAGCN: 1) the effect of the spatial
interactions, 2) the effect of the time-evolving component,
and 3) the impact of the adaptive component. The following
MSTAGCN variants are designed for comparison.

• MSTAGCN-NS: A variant of MSTAGCN with the spatial
interactions component being removed.

• MSTAGCN-NE: A variant of MSTAGCN with the time-
evolving component being removed.

• MSTAGCN-NA: A variant of MSTAGCN with the adap-
tive spatial interactions component being removed.

The ablation study results are shown in Table II and the
training MSE and validation MSE of MSTAGCN variants
during the training procedure are shown in Fig. 5.

1) Effects of the spatial interactions component: We com-
pare the performance of MSTAGCN with MSTAGCN-NS on
a real dataset (descried in Section IV.A) to investigate the
effectiveness of the spatial interactions component. From the
result, we observe that the proposed MSTAGCN performs
better than MSTAGCN-NS which confirms the superiority of
introducing the spatial interaction to our model.

2) Effects of the time-evolving component: We compare
the performance of MSTAGCN with MSTAGCN-NE on a
real dataset (descried in Section IV.A) to investigate the
effectiveness of the time-evolving component. According to
the result, it is easy to observe that the proposed MSTAGCN
achieves better performance in terms of all the evaluation
metrics and it also accomplish much faster training and easier
convergences in the dataset. Thanks to the presence of the
time-evolving component, the proposed architecture achieves
a better performance in the long-term predictions.

3) Effects of the adaptive spatial interactions component:
We compare the performance of MSTAGCN with MSTAGCN-
NA on a real dataset (descried in Section IV.A) to inves-
tigate the effectiveness of the adaptive spatial interactions
component. According to the result, it is easy to observe that
the proposed MSTAGCN outperforms MSTAGCN-NA, which
denotes that the adaptive spatial interaction can consistently
provide supplementary information to benefit our model.

V. CASE STUDY OF THE CHINESE AIRPORT NETWORK

A. Case Description

We select four representative airports from the Chinese
airport network and show their prediction results for three
consecutive days, as shown in Fig. 6. More specifically,
the SVR model (the gray curve) represents the traditional
data-driven methods that overlook the spatial information in
an airport network. The STGCN model (the green curve)
denotes the deep learning architectures based on static graph-
structured inputs. And the proposed MSTAGCN model (the
orange curve) represents the deep learning architectures based
on evolving graph-structured inputs. In addition, four typical
airports are examined in detail including: 1). Beijing Capital
International Airport (ZBAA): an aviation hub in northern
China which served for a record high of near 100.98 million
people in 2018, ranking the first in the Chinese mainland; 2).
Shanghai Pudong International Airport (ZSPD): an aviation
hub in eastern China. The handling capacity of ZSPD reached
74.05 million passengers in 2018 and it ranked the second in
the Chinese mainland; 3). Xian Xianyang International Airport
(ZLXY): an aviation hub in western China. It handled 329,700
flights connecting 161 domestic cities and 50 international
cities in 2018, and its accessibility of air routes network ranked
the second in China; 4). Guangzhou Baiyun International
Airport (ZGGG): an aviation hub in southern China. The
handling capacity of ZGGG achieved 69.73 million in 2018
and it ranked the third in the Chinese mainland.

B. Prediction Results

From Fig. 6, it is easy to observe that STGCN and
MSTAGCN generally perform better than SVR, being able
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Fig. 7. Illustration of the temporal correlation among adjacent graph snap-
shots.

to effectively capture the dynamic changes from 07:00h to
09:00h and 17:00h to 20:00h. By considering (ignoring) the
specific “spatial interactions” in airport networks, the deep
learning models (SVR) make more (less) accurate predictions,
especially in the morning peak and evening rush hours.

More specifically, the proposed model can meet the practical
requirement for long-term prediction and has the potential for
short-term forecasting.

• One hour ahead delay predictions: the average error
between actual delay and predicted delay is 5.884±0.072
minutes.

• Two hours ahead delay predictions: the average error
between actual delay and predicted delay is 6.123±0.089
minutes.

• Three hours ahead delay predictions: the average error
between actual delay and predicted delay is 6.252±0.093
minutes.

In practice, the errors of the Airport-Collaborative Decision
Making System (A-CDM) powered by Beijing Capital Inter-
national Airport for one hour, two hours and three hours ahead
flight delay predictions are 7.84 minutes, 11.86 minutes and
17.26 minutes, respectively.

Unfortunately, the results of the proposed model present
a lag phenomenon compared to the actual delay data in
the ZBAA subfigure of Fig. 6. Note that it is the most
common phenomenon in time-series analysis tasks based on
deep learning approaches [48]–[50]. Moreover, each spot in
Fig. 6 represents the delay of an airport during an hour. The
lag phenomenon produces a minute-level error (less than 10
minutes), which brings few negative effects to practical flight
delay prediction problem.

C. Analysis of Temporal Correlation among Graph Snapshots

To show the advantages of temporal correlation among
graph snapshots in greater detail, we compare the graph-
structured input of MSTAGCN with MSTAGCN-NE in the
graph convolutional layer. We randomly select three adjacent
graph snapshots from a time-evolving graph and randomly
intercept a portion of them to form a 10 × 10 adjacency
matrix, as shown in Fig. 7. Each element in these matrices
denotes the number of flights per unit time between the
corresponding origin-destination pair. The key connections
among hub airports are represented by the mazarine dots
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Fig. 8. Illustration of the graph-structured input of MSTAGCN and
MSTAGCN-NA. The left matrix represents the scheduled structure of an
airport network (MSTAGCN-NA). An example of the corresponding adaptive
matrix learned by our model is represented in the right matrix (MSTAGCN).

(larger value) and the yellowish dots reveal the weak air routes
connections in the airport network. Specifically, if there is
no scheduled air route connection between origin-destination
pairs, the element would be assigned as zero.

As shown in Fig. 7, there are significant differences in the
graph snapshots at different time slots, namely, the graph-
structured input of the model changes dramatically over time.
Indeed, an airport at time t is not only correlated with other
airports at the same time, but also depends on airports at the
previous time step due to the large number of interconnected
resources. MSTAGCN-NE takes a static graph-structured in-
formation as input (i.e., maybe one of the subplots in Fig. 7)
and ignores the temporal correlation among graph snapshots.
However, the proposed MSTAGCN utilizes a sequence of
graph snapshots to model the temporal correlation, which
finely captures the changes in an airport network and greatly
improves the performance of deep learning models.

D. Analysis of Adaptive Spatial Interactions

To show the advantages of adaptive spatial interactions
in greater detail, we compare the graph-structured input of
MSTAGCN with MSTAGCN-NA in the graph convolutional
layer. As shown in Fig. 8, the adaptive adjacency matrix (in the
right panel) not only presents the inherent scheduled air routes
but also exposes the unknown temporary relationships among
airports under urgent requirements. From a macroscopic per-
spective, the adaptive matrix reduces the importance gap
between hub airports and spoke airports. Namely, it decreases
the difference among all elements in the adjacency matrix,
which brings more comparability for various inputs and greatly
improves the performance of deep learning models.

From a microscopic perspective, the change of each element
in the adjacency matrix is calculated to evaluate the alterations
of air route strength. Table III reports the top 10 air routes
with the greatest reduction of the strength of connections
in the Chinese airport network. Although these air routes
accommodate a great number of flights in scheduled structure
of the airport network, they do not insert flight delays into
the air transportation system and play an essential role in
flight delay absorption based on superior infrastructures. Take
ZGSZ→ZSSS as an example, both airports are capable of
handling flight delays based on advanced infrastructures, so
the flight delays from the upstream airports may be absorbed
by the air route connection between ZGSZ and ZSSS.



9

TABLE III
TOP 10 AIR ROUTES WITH THE GREATEST REDUCTION OF THE STRENGTH

OF CONNECTIONS IN THE CHINESE AIRPORT NETWORK.

Ranking Air route The scheduled
strength

The strength
learned by model

The strength
reduction

1 ZGSZ→ZSSS 1.458 1.042 0.417
2 ZBAA→ZSSS 1.792 1.413 0.379
3 ZGGG→ZSSS 1.417 1.054 0.363
4 ZUCK→ZSSS 0.625 0.337 0.288
5 ZGSZ→ZHCC 0.458 0.174 0.284
6 ZBTJ→ZGGG 0.5 0.22 0.28
7 ZSSS→ZBAA 1.792 1.518 0.273
8 ZSSS→ZGSZ 1.292 1.021 0.271
9 ZSSS→ZLXY 0.667 0.397 0.269
10 ZBAA→ZUCK 1 0.734 0.266

Note: the strength reduction represents the difference of connection
strength between the scheduled adjacency matrix and the adaptive matrix.

Moreover, Table IV reveals the top 10 air routes with the
greatest improvement of the strength of connections in the
Chinese airport network. On the one hand, although the air
routes in Table IV accommodate few flights in scheduled
structure of the airport network (e.g., ZWWW→ZWKL),
their poor infrastructures fail to handle flight delays from
upstream airports and lead to an increased strength of air
route connection. On the other hand, although there is no
scheduled connection between these origin-destination pairs
(e.g., ZGZH→ZSQD), our model learns a series of non-zero
values representing increased strength of these connections.
The increased strength may illustrate the importance of neigh-
boring airports in absorbing flights requiring diversion when
severe delays or emergency breaks out.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigate the flight delay prediction prob-
lem from a novel perspective and develop a flight delay predic-
tion method in which the time-evolving nature of an airport
network is considered. Specifically, based on a sequence of
graph snapshots, a temporal convolutional block in accordance
with the Markov property is employed to mine the time-
varying patterns of flight delays. Moreover, an adaptive graph
convolutional block is embedded into the proposed approach to
explore spatial interactions hidden in airport networks. Using
operational data obtained from CAAC, the proposed model
is compared with several benchmark approaches in a study
case involving 74 civil airports in China in 2018. The results
show that our model achieves the best performance with all
the evaluation metrics both in the short-term and the long-term
predictions. Additionally, by considering interactions among
airports, the deep learning approaches generally outperform
the classical methods in which the interactions among airports
are ignored.

The proposed model could be extended further if relevant
data is available. For example, a more comprehensive scenario
can be modeled by considering the overall landside and air-
side operation, such as boarding/de-boarding, security checks,
ground holding, and taxiing. Moreover, considering the fact

TABLE IV
TOP 10 AIR ROUTES WITH THE GREATEST IMPROVEMENT OF THE

STRENGTH OF CONNECTIONS IN THE CHINESE AIRPORT NETWORK.

Ranking Air route The scheduled
strength

The strength
learned by model

The strength
improvement

1 ZGZH→ZSQD 0 0.241 0.241
2 ZGDY→ZSWX 0 0.223 0.223
3 ZWWW→ZWKL 0.25 0.47 0.22
4 ZPDL→ZSYT 0 0.215 0.215
5 ZULS→ZSQZ 0 0.21 0.21
6 ZPDL→ZGZJ 0 0.206 0.206
7 ZBNY→ZPDL 0 0.205 0.205
8 ZWSH→ZBYN 0 0.2 0.2
9 ZSYA→ZUGY 0.042 0.241 0.199
10 ZGDY→ZHYC 0 0.198 0.198

Note: the strength improvement represents the difference of connection
strength between the scheduled adjacency matrix and the adaptive matrix.

that most of the interactions and operations in air transporta-
tion are subject to highly regulated terms and conditions, it
would be interesting to integrate data-driven methods with the
operating rules of air traffic management.
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