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Abstract—Traffic state estimation (TSE) bifurcates into two
categories, model-driven and data-driven (e.g., machine learning,
ML), while each suffers from either deficient physics or small
data. To mitigate these limitations, recent studies introduced a
hybrid paradigm, physics-informed deep learning (PIDL), which
contains both model-driven and data-driven components. This
paper contributes an improved version, called physics-informed
deep learning with a fundamental diagram learner (PIDL+FDL),
which integrates ML terms into the model-driven component
to learn a functional form of a fundamental diagram (FD),
i.e., a mapping from traffic density to flow or velocity. The
proposed PIDL+FDL has the advantages of performing the TSE
learning, model parameter identification, and FD estimation
simultaneously. We demonstrate the use of PIDL+FDL to solve
popular first-order and second-order traffic flow models and
reconstruct the FD relation as well as model parameters that are
outside the FD terms. We then evaluate the PIDL+FDL-based
TSE using the Next Generation SIMulation (NGSIM) dataset.
The experimental results show the superiority of the PIDL+FDL
in terms of improved estimation accuracy and data efficiency over
advanced baseline TSE methods, and additionally, the capacity
to properly learn the unknown underlying FD relation.

Index Terms—Traffic state estimation, fundamental diagram
learner, physics-informed deep learning.

I. INTRODUCTION

TRAFFIC state estimation (TSE) refers to the data

mining problem of reconstructing traffic state variables,
including but not limited to flow, density, and speed, on road
segments using partially observed data from traffic sensors [L1]].
TSE approaches can be briefly divided into two main cat-
egories: model-driven and data-driven [2]. A model-driven
approach is based on a priori knowledge of traffic dynamics,
usually described by a physical model, e.g., the Lighthill-
Whitham-Richards (LWR) model [3], [4] and Aw-Rascle-
Zhang (ARZ) model [3], [6], to estimate the traffic state using
partial observation. It assumes the model to be representative
of the real-world traffic dynamics such that the unobserved
values can be properly added using the model with small data.
The disadvantage is that existing models, which are provided
by different modelers, may only capture limited dynamics of
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the real-world traffic, resulting in low-quality estimation in
the case of inappropriately-chosen models and poor model
calibrations. Paradoxically, sometimes, verifying or calibrating
a model requires a large amount of observed data, undermining
the data efficiency of model-driven approaches.

A data-driven approach is to infer traffic states based on
the dependence learned from historical data using statistical
or machine learning (ML) methods. Approaches of this type
do not use any explicit traffic models or other theoretical
assumptions, and can be treated as a “black box” with no in-
terpretable and deductive insights. The disadvantage is that in
order to maintain a good generalizable inference to long-term
unobserved values, massive and representative historical data
are a prerequisite, leading to high demands on data collection
infrastructure and enormous installation-maintenance costs.

To mitigate the limitations of the above-mentioned TSE
approaches, hybrid TSE methods are introduced, which inte-
grate the traffic knowledge in the form of traffic flow models
to ML models for TSE. The hybrid methods based on the
learning paradigm of physics-informed deep learning (PIDL)
are gaining increasing attentions in recently years, and is the
focus of this paper. PIDL contains both a model-driven com-
ponent (a physics-informed neural network for regularization)
and a data-driven component (a physics-uninformed neural
network for estimation), making possible the integration of
the strengths of both model-driven and data-driven approaches
while overcoming the weaknesses of either.

Despite that the addition of physics could guide the training
of PIDL efficiently, complicated mathematical formulas could
instead make the PIDL difficult to train. There are many
theoretical attempts made to add sophistication (usually in the
form of complicated terms) to the FD relation for an improved
description of the dynamics. To balance the sophistication
and trainability of encoding physics, this paper explores a
promising direction by approximating the FD relation with
an ML surrogate, instead of hard-encoding an FD equation.
Following this direction, we introduce an improved PIDL
paradigm, called physics-informed deep learning with a fun-
damental diagram learner (PIDL+FDL), which integrates an
ML surrogate (e.g., an NN) into the model-driven component
to represent the fundamental diagram (FD) and estimate the
FD relation. We focus on highway TSE with observed data
from loop detectors, using traffic density or velocity as traffic
variables. Our contributions are:

o We propose the PIDL+FDL-based TSE method that pos-

sesses advantages to
- Perform the TSE with improved estimation accuracy:
A proper integration of ML surrogates may avoid directly
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encoding the complicated terms in PIDL and trade off
between the sophistication of the model-driven aspect of
PIDL and the training flexibility, making the framework
a better fit to the TSE problem;

- Perform the FD estimation: The PIDL+FDL uses an
ML surrogate to directly learn the underlying FD relation
without any FD output measurements, i.e., the ML surro-
gate is purely trained under physical regularization from
PIDL, making it more likely to learn a suitable relation
along with the TSE training. It can also get around the
calibration of parameters inside the FD equation;

- Perform the model parameter identification: For a
complete traffic model reconstruction, in addition to the
FD estimation, there may exist model parameters outside
the FD terms to be learned. The proposed PIDL+FDL
conducts the model parameter identification jointly.

o We validate the PIDL+FDL performance with both nu-
merical experiments and real-world data: To demon-
strate the strengths of the PIDL+FDL, we design the
PIDL+FDL architectures for the traffic dynamics gov-
erned by the Greenshields-based LWR and ARZ models,
respectively. Additionally, experiments using the real-
world data, the Next Generation SIMulation (NGSIM)
dataset, are conducted. The experimental results show the
advantages of PIDL in terms of estimation accuracy and
data efficiency over baselines and the capacity to properly
estimate the FD relation and model parameters.

The rest of this paper is organized as follows. Section II
briefs related work on TSE and PIDL. Section III formalizes
the PIDL+FDL framework for TSE. Sections IV and V detail
the designs and experiments of PIDL+FDL for Greenshields-
based LWR and Greenshields-based ARZ, respectively. Sec-
tion VI evaluates the PIDL+FDL on NGSIM data over base-
lines. Section VII concludes our work.

II. RELATED WORK OF TRAFFIC STATE ESTIMATION

Most model-driven estimation approaches are data assimila-
tion (DA) based, which find “the most likely state,” allowing
observation to correct models’ prediction. Popular examples
include the Kalman filter (KF) and its variants [7]], [8]. Other
than KF-like methods, particle filter (PF) [9] with improved
nonlinear representation, adaptive smoothing filter (ASF) [10]]
for combining multiple sensing data, were proposed to im-
prove and extend different aspects of the TSE process. In
data-driven approaches, to handle complicated traffic data, ML
approaches were involved, including long short term memory
(LSTM) and deep embedded models [11], [12].

A paradigm integrating physics to ML has gained increasing
interests recently. Yuan et al [[13] proposed a physics regular-
ized Gaussian processfor macroscopic traffic flow modeling
and TSE. The hybrid methods using the PIDL framework [14],
[L15] is becoming an active field. Huang er al [16] studied
the use of PIDL to encode the Greenshields-based LWR
and validated it in the loop detector scenarios using SUMO
simulated data. Barreau et al [[17]], [18], [19] studied the probe
vehicle sensors and developed coupled micro-macro models
for PIDL to perform TSE. Shi er al [20] extended the PIDL-

based TSE to the second-order ARZ with observed data from
both loop detectors and probe vehicles.

We want to highlight that, as to model reconstruction, which
is another feature of PIDL-based TSE, this paper only assumes
a traffic flow conservation equation and optionally, a momen-
tum equation for the velocity field, without specifying any
mathematical relation between traffic quantities. While [17],
[19] directly fit a velocity function using measured density
and velocity from probe vehicles before or during the PIDL
training, we, in this paper, focus on a more general case, where
the output of the FD function is unobserved from sensors,
and the end-to-end FD relation is learned directly using ML
surrogates under the PIDL framework. In summary, this paper
contributes to the trend of developing hybrid methods for TSE
and model reconstruction, especially with both FD estimation
and model parameter identification involved.

III. MATHEMATICAL SETTING FOR PIDL+FDL

This section introduces the PIDL+FDL framework in the
context of TSE at a high level.

A. PIDL for TSE

Consider a traffic flow dynamics of a road segment that
is governed by a set of non-linear equations (e.g., partial
differential equations, PDEs):

NM(t,x),Q;\) =0,z €[0,L],t €[0,T], (1)

where L € R™, T € R*. We use bold symbols to denote vec-
tors by default. The operator A/ contains the governing non-
linear equations of the traffic flow dynamics, while M (¢, x)
contains the traffic state variables, such as the traffic density
p(t, z) and velocity u(t, z). A contains the model parameters.
The model includes intermediate unobserved traffic variables
Q that have some hidden relationship with M (¢, z). Thus, the
dynamics can be represented by

N(M,Q(M);X) =0, 2

and M stands for M (¢, x). For general discussion, the values
of @ are not assumed to be directly observable, and the relation
is either unknown or deduced based on assumptions which
may be deficient. The TSE problem is to reconstruct the traffic
states M at each point (¢,2) in a continuous domain from
partial observation of M. Accordingly, the continuous spatio-
temporal domain D is a set of points: D = {(¢,2)|Vt €
[0,T],z € [0,L]}. We represent this continuous domain in
a discrete manner using grid points G € D that are evenly
deployed throughout the domain. We define the set of grid
points as G = {(t",z(")|r = 1,.., N,}. The total number
of grid points, Ny, controls the fine-grained level of G as a
representation of the continuous domain.

PIDL approximates M (¢,x) using a neural network with
time ¢ and location x as its inputs. This neural network is
called physics-uninformed neural network (PUNN) (or esti-
mation network in our TSE study), which is parameterized
by 6. We denote the approximation of M (¢,z) from PUNN

as M(t,z;0). When N, Q and X\ are known, during the



learning phase of PUNN (i.e., to find the optimal 6 for PUNN),
the following equiation defines the residual values of the
approximation M (¢, x; 0):

F(t2:0) == N(M(t,2:0), Q(M(t,z:0)); ), ()
which_is designed according to the traffic flow model in
Eq. . The calculation of residual f(t,x;6) is done by a
physics-informed neural network (PINN). This network can
compute f(t,x;0) directly using M(t,z;0), the output of
PUNN, as its input. When M (¢, z; ) is closer to the true value
M (t,z), the residual f will be closer to 0. PINN introduces
no new parameters, and thus, shares the same 6 of PUNN.

In most cases, even the model is given, the model param-
eters A are unknown and can be made as learning variables
in PINN for model parameter identification. The residual f is
then redefined as

F(t,0:0.0) == N(M(t,2:6), QM (¢, 236));A).  (4)
This paper assumes unknown model parameters by default.

In PINN, f(t,x;e,/\) is calculated by automatic differ-
entiation technique, which can be done by the function
tf.gradient in Tensorflow. The activation functions and the
connecting structure of neurons in PINN are designed to
conduct the differential operation in Eq. {@). We would like
to emphasize that, the connecting weights in PINN have fixed
values which are determined by the traffic flow model and
A are encoded as learning variables. Thus, the residual f is
parameterized by both 6 and A.

The training data for PIDL consist of (1) observation points
0O = {(tg), ())|z = 1,..,N,}, ) target values P =
{MW|i =1,..,N,} (ie., the true traffic states at the obser-
vation points), and (3) auxiliary points A = { D, 295 =
1,...,N,}. i and j are the indexes of observation points and
auxiliary points, respectively. One target value is associated
with one observation point, and thus, O and P have the same
indexing system (indexed by ¢). This paper uses the term,
observed data, to denote {O, P}. Both O and A are subsets
of the grid points G (i.e., O € G and A € G).

Observation points O are limited to the time and locations
that traffic sensors can visit and record. In contrast, auxiliary
points A have neither measurement requirements nor location
limitations, and the number of A is controllable. A are used
for regularization purposes, and this is why they are called
“auxiliary”. To train a PUNN for TSE, the loss is used:

Lossg =a-MSE,+ - MSE,
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where o and 3 are hyperparameters for balancing the con-
tribution to the loss made by data discrepancy and physical
discrepancy, respectively. The data discrepancy is defined as
the mean square error (MSE) between approximation M on
O and target values P. The physical discrepancy is the MSE
between residual values on A and 0, quantifying the extent to
which the approximation deviates from the traffic model.

Given the training data, we apply neural network training
algorithms to solve (0*,A*) = argmin, 5 Lossg x. Then, the
\*-parameterized traffic flow model of Eq. is the most
likely physics that generates the observed data, and the 6*-
parameterized PUNN can then be used to approximate the
traffic states on (G, which are consistent with the reconstructed
traffic flow model in Eq. (@).

B. PIDL + FDL for TSE

As has been discussed previously, the PIDL-based TSE
methods may perform poorly when informed by a highly
sophisticated traffic flow model. This is because the mod-
els may contain complicated terms that are unfriendly to
differentiation-based learning (e.g., square root operators of
learning variables in the denominator, etc.), making the train-
ing and performance very sensitive to the structural design
of PINN. Many efforts such as variable conversion, decom-
position and factorization need to be made to have the PINN
trainable and the loss to converge. In our framework of Eq.(2),
these “unfriendly” terms can be contained as part of the hidden
relation @. To address the issues of PIDL-based TSE, we
propose to use an ML surrogate Q to directly represent the
Q@ and learn the relation under the PIDL framework, instead
of hard-encoding a complicated term in PINN.

The advantages of properly introducing an ML surrogate
of @ are two-fold: (1) An ML term is usually differentiation-
friendly, giving the PIDL more flexibility to achieve an im-
proved TSE accuracy. (2) No assumptions are made to the
hidden relation, and it is possible to learn a more suitable Q
when trained under the physical regularization from PINN.

This paper focuses on one kind of hidden relationships, the
fundamental diagram (FD), and the corresponding learning
paradigm is called PIDL with an FD Learner (PIDL+FDL).
Specifically, the FD Learner, formalized as Q(M ;w), can be
designed as a neural network parameterized by w to represent
the unknown FD relation, which takes the estimated traffic
variables M (t,z;6) as its input. The residual of Eq. is
redefined as the following

Ft 0,0, 0) == N(M(t,2;0), QM (¢, 2;0); w); ). (6)

The loss function becomes

Lossg ) =a-MSE,+3-MSE,
N,
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Using the training data, we apply neural network training
algorithms to solve (6*,w*,A*) = argming , 5 L05Sgu -
Then, in addition to TSE learning and model parameter
identification, the FD estimation is conducted automatically.
The w*-parameterized Q can be used to represent the unknown
hidden fundamental diagram relation. Note that the values of
Q are not assumed to be observablg, and thus, are not part of
the data (i.e., to directly learn the @ from data cannot apply).

In some cases, the curve of the learned Q may present
abnormal shapes on edge conditions. To mitigate this, one
can encode prior knowledge into the loss as an additional
regularization term Reg(Q) to reshape the FD. As an example,
we can use @ to represent the density-flow relation, i.e., the
flux function (one typical kind of FD), mapping the density p
to the flow value, which is denoted as a scalar Q(p). Existing
theoretical works usually assume () to be concave with respect
to the traffic density p. To impose the concavity property, we
design the following regularization term:

b 2
Reg(Q) :/ max(0, 866,202'0)

)dp, ®)

where the hyperparameters a and b determine the interval of
p on which the reshaping takes effects without interfering the
learning on other regions. We propose this design because
most abnormal shapes only occur on edge region and it is not
necessary to regularize over the whole traffic density domain.
We apply Lossg,x = - MSE,+3-MSE, +¢- Reg(Q) in
the learning phase and properly reshape the learned FD curves.

IV. PIDL+FDL FOR GREENSHIELDS-BASED LWR

The first numerical example aims to show the capability of
our method to estimate the traffic dynamics governed by the
LWR model with a Greenshields flux function.

Define flow rate (Q (a scalar) to be the number of vehicles
passing a specific position on the road per unit time, and
traffic density p to be the average number of vehicles per
unit length of the road. The traffic flux Q(p) describes @ as
a function of p, which is the FD relation of interest in this
numerical example. We treat p as the basic traffic state variable
to estimate. Greenshields flux is a basic and popular choice
of Q(p), which is defined as Q(p) = pumaz(1 — p/Pmaz)s
where U,q, and ppq, are maximum velocity and maximum
(jam) density, respectively. This flux function has a quadratic
form with two coefficients 4, and pPpmqq-

The LWR model [3], [4]] describes the macroscopic traffic
flow dynamics as p; + (Q(p)), = 0, which is derived from
a conservation law of vehicles. In order to reproduce more
phenomena in observed traffic data, such as delayed driving
behaviors due to drivers’ reaction time, diffusively corrected
LWRs were introduced, by adding a diffusion term, containing
a second-order derivative p,,. We focus on one version of the
diffusively corrected LWRs: p; + (Q(p))z = €psz, Where € is
the diffusion coefficient.

In this section, we study the Greenshields-based LWR traffic
flow model of a “ring road”:

pe +(Q(p))z = €pas, t €[0,3], z €[0,1],
Q(p) = P Umazx (1 - d ) (FD Telation),

plt,0) = p(t,1)
px(t,0) = pz(t,1)
where par = 1.0, Umer = 1.0, and € = 0.005. py,q, and
Umaz are usually determined by physical restrictions of the
road and vehicles.

Given the bell-shaped initial 0.1+ 0.8¢~(*02")°, 2 € [0, 1],
we apply the Godunov scheme to solve Eqgs. (9) on 960 (time)
x 240 (space) grid points G evenly deployed throughout the
[0,3] x [0,1] domain. In this case, the total number of grid
points G is N, =960x240. The numerical solution is shown
in Fig. [2| (see the heat map background). From the figure, we
can visualize the dynamics as follows: At ¢ = 0, there is a peak
density at the center of the road segment, and this peak evolves
to propagate along the direction of x, which is known as the
phenomenon of traffic shockwave. Since this is a ring road, the
shockwave reaching x = 1 continues at = 0. This numerical
solution of the Greenshields-based LWR model is treated as
the ground-truth traffic density. We will apply a PIDL+FDL-
based approach method to estimate the entire traffic density
field using observed data as well as to estimate the FD relation
and model parameters.

(boundary condition 1),

(boundary condition 2),

A. PIDL+FDL Architecture Design

The authors’ previous work [20] has shown the capacity of
PIDL to perform both TSE and model parameter identification
when the closed traffic flow model is given. Here we are
only given the knowledge of conservation law and boundary
conditions, i.e., the FD relation is unknown and no direct
observation of () is available.

We employ a neural network Q(, w) to estimate the traffic
flow from the traffic density and to represent the FD relation
of interest. Based on Egs. @), we define the residual value of
PUNN’s traffic density estimation p(¢,x;0) as

f(ta ;5 07 w, 6) = ﬁt(tv 3 0)+(Q(ﬁ(ta x; 9), w))m_eﬁﬁf(tv xz; 0)
(10)
Note that the parameter A contains the coefficient € only.
Given the definition of f, the corresponding PIDL+FDL
architecture is shown in Fig. This architecture consists
of a PUNN for traffic density estimation, followed by a
PINN+FD Learner for calculating the residual Eq. (I0). The
PUNN parameterized by 6 is designed as a fully-connected
feedforward neural network with 8 hidden layers and 20
hidden nodes in each hidden layer. Hyperbolic tangent function
(tanh) is used as the activation function for each hidden neuron
in PUNN. In contrast, in PINN, connecting weights are fixed
and the activation function of each node is designed to conduct
specific nonlinear operation for calculating an intermediate
(hidden) value of f . The flow value is calculated by a separate
neural network Q(p;w) with two hidden layers and 20 hidden
nodes for each. The model parameter € is held by a variable
node (blue rectangular nodes).
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Fig. 1. PIDL+FDL architecture for first-order traffic dynamics, consisting of
a PUNN for traffic density estimation and a PINN+FD Learner for calculating
the residual Eq. @) The model parameter € is held by a variable node (blue
rectangular nodes). All connecting weights are predefined and fixed in PINN.

To customize the training of PIDL+FDL to Egs. (9), in
addition to the training data O, P and A defined in Sec-
tion we need to introduce boundary auxiliary points
B={t",0)k =1,... N} U{(E" D)k =1,..., N,}, for
learning the two boundary conditions in Eqs. (9).

For experiments of state estimation with both parameter
identification and FD estimation, we design the following loss

Lossgye=0a-MSE,+ 3 -MSE,+~v-Bl+n-B2
N,

_ e Are(@) (). gy _ ()2
- J\7—Oizzl|p(toZ amoz 70) pz |
B
+E 4 |f(tl(1j)axz(zj);9aw7€)|2
Jj=1
7
~r,(k ~r(k
5 2 p(6.0:0) — (e 1:6)?
b=
N
~ k ~ k
5 2 e, 0:60) — (7, 1,0,
b =1

(1)

B1, scaled by 7, is the MSE between estimations at the two
boundaries x = 0 and x = 1. B2, scaled by 7, quantifies the
difference of first order derivatives at the two boundaries.

B. TSE+FDL using Observation from Loop Detectors

We justify the capacity of PIDL+FDL in Fig. [I] for esti-
mating the traffic density field using observation from loop
detectors, i.e., only the traffic density at certain locations where
loop detectors are installed can be observed. By default, loop
detectors are evenly located along the road. To be specific,
the grid points at certain locations are used as the obser-
vation points O, and their corresponding densities constitute
the target values P for training. There are N, = 100,000
auxiliary points in A randomly selected from grid points G.
Ny = 650 out of 960 grid time points (i.e., the time points
on the temporal dimension of G) are randomly selected to
create boundary auxiliary points B. A sparse version of the
deployment of O, A and B in the spatio-temporal domain is
shown in Fig. 2} Each observation point is associated with a
target value in P. Note O, A and B are all subsets of G.

We train the proposed PIDL+FDL on an NVIDIA Titan
RTX GPU with 24 GB memory. By default, we use the IL2

==== Observation points in O where corresponding ground truth density is observed
X An auxiliary point in 4
A A boundary auxiliary point in B

Fig. 2. A sparse presentation of the deployment of observation points O at
loop detectors, auxiliary points A randomly selected from G, and boundary
auxiliary points B deployed at the boundaries £ = 0 and « = 1 for certain
time points. The heatmap is the numerical solution of Eqs. () using the
Godunov scheme. We treat the numerical solution as the ground truth.

relative error on GG to quantify the estimation error of the entire
domain:

ot

pED, 2);0) — p(t), 2M) [’
VN (e, 2)

Err(pp) = - 12

The reason for choosing the IL? relative error is to normalize
the estimation inaccuracy, mitigating the influence from the
scale of true density values. One remark is that there are some
TSE methods (e.g., non parametric ones) that do not perform
any estimation on the observation points and directly use the
target values there. For these cases, the observation points will
be removed from G before calculating Eq.(T2).

We use the Xavier uniform initializer to initialize 6 of
PUNN and w of FD Learner (FDL). This neural network
initialization method takes the number of a layer’s incom-
ing and outgoing network connections into account when
initializing the weights of that layer, which may lead to a
good convergence. The ¢ is initialized at 0. Then, we train
the PUNN, FDL and e through the PIDL+FDL architecture
using a popular stochastic gradient descent algorithm, the
Adam optimizer, for a rough training. A follow-up fine-grained
training is done by the L-BFGS optimizer [21] for stabilizing
the convergence, and the process terminates until the loss
change of two consecutive steps is no larger than 10716, This
training process converges to a local optimum 6%, w* and €*
that minimize the loss in Eq. (TI).

We would like to clarify that in this paper, the training data
are the observed data from detectors, i.e., the traffic states on
the points at certain locations where loops are equipped.

The results of applying the PIDL+FDL with 4 loops to
the Greenshields-based LWR dynamics is presented in Fig. [3]
where PUNN is parameterized by the optimal 6*. As shown
in Fig. [3| the estimation p(t,x;60*) is visually the same as
the true dynamics p(t,z) in Fig. By looking into the
estimated and true traffic density over x at certain time
points, there is a good agreement between two traffic density
curves. The IL? estimation error Err(p, p) is 1.287 x 1072
Empirically, the difference cannot be visually distinguished
when the estimation error is smaller than 6 x 1072,
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Fig. 3. Top: Estimation of the traffic density dynamics p(t,z;6*) on grid
points G in the domain using the trained PUNN. Bottom: Snapshots of
estimated and true traffic density at certain time points.

TABLE 1
PERFORMANCE OF PIDL+FDL ON THE LWR DYNAMICS

loops 2 3 4 5
Err(p,p)  0.6021 0.03327  0.01287  0.004646
€* 3.12573  0.00495  0.00506  0.00509

loops stands for the number of loop detectors. €* is the
estimated diffusion coefficient. Note the true e = 0.005.

We change the number of loop detectors. For a fixed number
of loop detectors, we use grid search for hyperparameter
tuning by default. Specifically, since Adam optimizer is scale
invariant, we fix the hyperparameter o to 100 and tune the
other hyperparameters from [1, 10, 50, 100, 150, 200] with
some follow-up fine tuning. The minimal-achievable estima-
tion errors of PIDL+FDL over the numbers of loop detectors
are presented in Table m From the table, we can see that
the traffic density estimation errors improve as the number of
loop detectors increases. When more than two loop detectors
are used, the model parameters to be learned are able to
converge to the true parameters e. Specifically, with three
loop detectors, in addition to a good traffic density estima-
tion error of 3.327x10~2, the model parameter converges to
€* = 0.00495, which is very close to the true value 0.005.
The results demonstrate that PIDL+FDL method can handle
both TSE and model parameter identification with three loop
detectors for the traffic dynamics of the Greenshields-based
LWR.

In this experiment, the proposed method can reconstruct
the exact Greenshields FD when 5 loop detectors are used.
The results are meaningful because neither any assumptions
on the FD relation are made nor the flow values are observed
directly. In addition to traffic density estimation and model
parameter identification, the PIDL+FDL is able to make full
use of the conservation law and boundary conditions to retrieve
the density-flow relation automatically. For the visualization
of the results, please refer to Figure 4 in the supplementary
material in [22].

V. PIDL+FDL FOR GREENSHIELDS-BASED ARZ

The second numerical example aims to show the capacity of
the proposed method to handle the traffic dynamics governed

by the Greenshields-based ARZ, a second-order traffic flow
model with both traffic density p and velocity w as the traffic
state variables.

An ARZ model involves both a conservation law of vehicles
and a momentum equation on velocity. Specifically, we study
the following traffic flow dynamics of a “ring road” in ¢ €
[0,3], x € [0,1]:

pt + (pu)x = 07
(u+h(p))e +uu+h(p))e = Ueq(p) —u)/,

h(p) = Ueq(0) = Uey(p) (traffic pressure),  (13)
Ueq(P) = Umaz(1 — p/Ppmaz) (equilibrium speed),
p(t,0) = p(t, 1), u(t,0) = u(t, 1) (boundary cond.),

where we set the parameters irregularly as p,q., = 1.13,

Umaz = 1.02, and 7 = 0.02. U4 is the equilibrium velocity,
h(p) defines the traffic pressure and 7 denotes the relaxation
time scale. For more explanations of this ARZ setting, we refer
readers to our previous work in [20].

pU,x)

0.5

p(0,x)
0 05 x 10
a) ‘ b)

L5 ¢

Fig. 4. a) is the bell-shaped initial p and u over = € [0,1]; b) and c) are
numerical solutions for p and wu, respectively.

Given the bell-shaped initial of p and u as shown in Fig[d]a,
we apply the Lax—Friedrichs (LF) scheme to solve Eqs.(I3) on
grid G with 960 (time)x240 (space) points evenly deployed
over the [0, 3] x [0, 1] domain. The LF numerical solutions of
both p and u over the domain are shown in FigH] as well. We
treat this numerical solution as the ground-truth to test our
PIDL+FDL-based approach for the ARZ dynamics.

A. PIDL+FDL Architecture Design for ARZ

We employ a neural network U,(-;w) to estimate the
equilibrium velocity and Ue,(p) is the target FD relation in
this numerical example. Based on Egs. @), we define the
following residuals

]il(th; 9) = ﬁt + (ﬁ’&')fm

f2(t7 €Z; 0,(&17 T) = (’0: + h(ﬁ))t =+ ﬁ(ﬁ + h([)))x
—(Ueq(psw) — )/,
where p and @ are shorthands for j(t, z;6) and (¢, x; 0), re-
spectively outputted from a PUNN. By using the FD surrogate
ffeq, the relaxation 7 is the only model parameter to be learned.
Given the definition of ( fl, fz), the design of PINN+FDL
architecture is shown in Fig. 5} The structures of hidden
layers of the PUNN and FDL are the same with those of
Section [[V] For this experiment, we adjust the learning loss
as the following:

(14)
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(15)

We solve (0*,w*,7*) = argmin, , . Lossg -, and the
results of traffic state estimation and model parameter identi-
fication are presented in Table [l Empirically, the difference
between true and estimated values is visually indistinguishable
when the errors are smaller than 6.00 x10~2 and 2.90 x 1072
for density and velocity, respectively. Performances with ac-
curacy below these values are considered as “acceptable”.
From Table [lIl we can observe that the TSE performance of
PIDL+FDL with more than three loops is acceptable.

(3 2

PUNN
(estimation network)

FD Learner
U, (p;0)

PINN+FD Learner:

Fig. 5. PIDL+FDL architecture for second-order traffic dynamics. The model
parameter 7 is held by a variable node (blue rectangular node).

TABLE II
PERFORMANCE OF PIDL+FDL ON THE ARZ DYNAMICS

loops 2 3 4 5
Err(p,p) 0.5111 0.2249 0.04871 0.05243
Err(a,u) 0.1586 0.05914 0.01402 0.01389

T 0.02276  0.018994  0.019654  0.021619

loops stands for the number of loop detectors. 7* is the

estimated relaxation time. Note the true 7 = 0.02.

The experiment also demonstrates that the FDL perfor-
mance improves as the number of loop detectors increases,
and the proposed method with 4 loops and above is able to
correctly learn the Greenshields FD relation. For visualization
of the results, please refer to Figure 7 in the supplementary
material in [22].

VI. PIDL+FDL-BASED TSE ON NGSIM DATA

This section evaluates the PIDL+FDL-based TSE method
using real-world traffic data, the Next Generation SIMulation

2:0) — pO P + aola(tl), 25;0) — ul?

(NGSIM) dataseﬂ and compares its performance to baselines.

A. NGSIM Dataset

NGSIM dataset is widely-used and contains real-world
vehicle trajectories on several road scenarios. We focus on
a segment of the US Highway 101 (US 101), monitored by a
camera mounted on top of a high building on June 15, 2005.
The locations and actions of each vehicle in the monitored
region for a total of around 680 meters and 2,770 seconds
were converted from camera videos.

We select the data from all the mainline lanes of the US
101 highway segment to calculate the average traffic density
for approximately every 30 meters over a 1.5 seconds period.
After preprocessing to remove the time when there are non-
monitored vehicles running on the road (at the beginning and
end of the video), there are 21 and 1770 valid cells on the
spatial and temporal dimensions, respectively. We treat the
center of each cell as a grid point. The spatio-temporal field
of traffic density p(¢, z) and velocity u(¢, z) in the dataset can
be visualized in Figure 8 in the supplementary in [22].

For TSE experiments in this section, loop detectors are used
to provide observed data with a recording frequency of 1.5
seconds. By default, they are evenly installed on the highway
segment. We assume that the loop detectors are able to record
the density and average velocity of cells on certain locations

B. TSE Methods for Real Data

We first introduce the PIDL+FDL-based methods for the
real-world TSE problem, and then, describe advanced base-
lines to compare with.

P
FD Learner
O(p;w)

Q).
PUNN > 0(p; ) .
(estimation network) p

PINN+FD Learner

Fig. 6. The structure design of LWR-PIDL+FDL method for NGSIM data.

LWR-PIDL+FDL: This method is based on the PIDL+FDL
encoded with the first-order LWR, using the structure in
Fig. [T] except for two modifications: 1) no assumptions on
diffusion effects are made and the traffic flow becomes p; +
(Q(p))z = 0, which is commonly-used in literature [23]]; and
2) the estimation of velocity is calculated using an additional
calculation node & = Q(p;w)/p. Specifically, the modified
structure of this TSE method is presented in Fig. [6] We select
80% of the grid G as the auxiliary points A. The loss in
Eq. (with the MSE on velocity estimation added and the
boundary conditions removed) is used for training the PUNN
and FDL using the observed data from loop detectors (i.e., both
observation points O and corresponding target state values

'www.thwa.dot.gov/publications/research/operations/07030/index.cfm



P). After tuning the hyperparameters with grid search, we
present the minimal-achievable estimation errors. The same
for other baselines by default. Because the real data could be
noisy, leading to abnormal learned FD curves, the reshaping
regularization term in Eq. (8) is applied.

ARZ-PIDL+FDL: This method is based on the PIDL+FDL
encoded with the second-order ARZ, using the structure in
Fig. 5} The Eq. (with boundary conditions removed) is
applied as the loss function. Other experimental setups are the
same with those of the LWR-PIDL+FDL method.

Two-Dimensional Data Interpolation (Interp2): The two-
dimensional linear interpolation method is used as a baseline,
which interpolates the traffic states using the neighboring
observed data in a linear manner.

Adaptive Smoothing (AS) Method: This method estimates
the traffic state of a cell using the sum of all the observed
data weighted by some smoothing kernel filters. We implement
a generalized AS method proposed in [10] with parameters
suggested in [24].

Long Short Term Memory (LSTM) based Method: This
baseline method employs the LSTM architecture, which is
customized from the LSTM-based TSE proposed by [L1]. This
model can be applied to our problem by leveraging the spatial
dependency, i.e., to use the information of previous cells to
estimate the traffic density and velocity of the next cell along
the spatial dimension.

Other baselines include the Pure Neural Network (NN) and
the Extended Kalman Filter (EKF) as well as the advanced
PIDL-based TSE methods: LWR-based PIDL (LWR-PIDL)
and ARZ-based PIDL (ARZ-PIDL). For more descriptions
regarding these four baselines, we refer the readers to the
authors’ previous work in [20].

C. Results and Discussion

We apply PIDL+FDL-based, and baseline methods to TSE
on the NGSIM dataset with different numbers of loop detec-
tors. The results are presented in Fig.
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Fig. 7. TSE performance of PIDL+FDL-based methods and baselines.

From Fig.[7} we can observe that the PIDL-related methods
generally perform better than the model-driven and data-
driven TSE baselines. The EKF/Interp2/AS methods achieve
better errors than the NN/LSTM methods when the number

of loop detectors are small, while the NN/LSTM methods’
performance catches up when more loops are available.

The results are reasonable. The EKF is a model-driven
approach, making sufficient use of the traffic flow model to
appropriately estimate unobserved values when limited data
are available. However, the model cannot fully capture the
complicated traffic dynamics in the real world, and as a result,
the EKF’s performance flattens out. The Interp2 is a non-
parametric data-driven method interpolating the unobserved
fields using neighboring observation in a linear manner. The
AS method incorporates the characteristic velocities of infor-
mation propagation in free and congested traffic, by skewing
the principal axes of the smoothing kernel. The Interp2 and AS
methods have a relatively low complexity which can prevent
over-fitting when the data is small. However, they may not
effectively handle subtle state changes in the unobserved area
due to the linearly-extrapolating nature or filtering nature,
respectively. The PIDL-based method’s errors are generally
below the baselines, because it can make efficient use of both
the traffic flow model and observed data. The ARZ-PIDL
method is informed by a more advanced second-order traffic
model and its performance is superior to that of LWR-PIDL.

The PIDL+FDL-based methods can generally achieve the
best estimation accuracy and data efficiency over the above
TSE baselines. The results demonstrate that the proper in-
tegration of the NN-based FD surrogate to the PIDL can
give the learning framework more flexibility to achieve an
improved TSE accuracy. One interesting phenomenon is that
the PIDL+FDL with the first-order LWR (LWR-PIDL+FDL)
can beat the one with a more sophisticated second-order
ARZ model (ARZ-PIDL+FDL). This observation supports our
discussion that sophisticated traffic models may not always
lead to a better TSE performance, because the model may
contain complicated terms that makes the TSE performance
sensitive to the PINN structural design, and thus, the model
becomes difficult to train. Compared to the ARZ-PIDL+FDL,
the LWR-PIDL+FDL can balance the trade-off between the
sophisticated level of PINN and the training flexibility more
properly, making it a better fit to the NGSIM scenario.

D. Discussions on Fundamental Diagram Estimation

The PIDL+FDL-based methods can further learn the hidden
fundamental diagram (FD) relation. We compare the FD
curves learned via the PIDL+FDL-based methods and PIDL-
based methods in the density-flow space when small number
of loops are available. The results are presented in Fig. [§] where
each dark blue dot is a density-flow data point in the NGSIM
dataset. Note, the flow values are not part of the observed data
during the training phase.

For the PIDL-based methods, the closed form of the flux
function and velocity function are given and the parameters in
the PINN component are learned along with the TSE training,
and thus, the shape of the FD curves are predefined. The
corresponding FD curves with the learned model parameters
are indexed as “3” in Fig. For consistent visualization,
the learned U,,(p;w) is converted to pU,,(p;w) to represent
the estimated flow. The LWR-PIDL method is encoded with



1. LWR-PIDL+FDL 1. ARZ-PIDL+FDL

2. LWR-PIDL+FDL with resh_aﬁing 2. ARZ-PIDLAFDL with reshaping .
3.3LWR—P1DL (using LWR with 3-parameter FD) | 3. 3ARZ-PIDL (using ARZ with Gr hields FD)
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Fig. 8. Comparison of the FD curves estimated by the PIDL+FDL-based
TSE methods and PIDL-based TSE methods. For consistent visualization, the
learned Ueq(p; w) is converted to pUeq (p; w) to represent the estimated flow.

the 3-parameter-based flux, and the ARZ-PIDL is with the
Greenshields function for the equilibrium velocity. The former
has a proper shape defined by the given mathematical formula,
but due to the complicated nature of the PINN for the 3-
parameter flux and the noisy quality of the data, the learned
FD curves do not fit the density-flow points to a satisfactory
extent. The latter has a predefined quadratic shape and can
capture the density-flow characteristics to a limited level.

For the PIDL+FDL-based methods, using the standard train-
ing loss in Eq.(7), the learned FD shapes (indexed as “1”
in Fig. [B) fit the NGSIM density-flow points well over the
domain where the observed traffic state data are distributed,
i.e., around p € [0,0.5]. However, the FD curves tend to curl
up in the large-density domain, where the data are sparse.
To address this abnormal shape, we apply the regularization
term in Eq. (8) for reshaping and impose the prior knowledge
of concavity over a narrowed interval of p € [0.6,0.7]. To
this end, we set the hyperparameters in Eq. §) to a = 0.6
and b = 0.7. The corresponding learned FD curves using the
reshaping regularization term are indexed as ‘“2” in the figures,
and they can properly capture the density-flow characteristics
to a satisfactory level. Because of using the FD Learner,
the LWR-PIDL+FDL contains no model parameters, and the
conservation law plus the Q( p;w*) constitutes the LWR model
reconstructed by the LWR-PIDL+FDL. The ARZ-PIDL+FDL
contains one model parameter, i.e., the relaxation time 7.
The learning with data from 3, 6 and 8 loops converges to
T = [23.36,25.99, 27.66], which is reasonably close to 7 =
[27.6,28.8,30.5] directly fitted from data. The conservation

law, the momentum of velocity with model parameter 7%, and
the learned U, (p; w*) constitute the ARZ model reconstructed
by the ARZ-PIDL+FDL.

The results demonstrate that the proposed PIDL+FDL-
based TSE method (with the regularization for reshaping) is
able to efficiently conduct high-quality TSE, model parameter
identification and fundamental diagram estimation at the same
time with relatively small amounts of observed data.

VII. CONCLUSION

We introduced the PIDL+FDL framework to the TSE prob-
lem on highways using loop detector data and demonstrate
the significant benefits of the integration of an ML surrogate
into the model-driven component in PIDL. This framework
can be used to handle traffic state estimation, model pa-
rameter identification, and fundamental diagram estimation
simultaneously. The experiments on real highway data show
that PIDL+FDL-based approaches can outperform baselines in
terms of estimation accuracy and data efficiency as well as the
estimation of FD.

The limitations and potential future works of this paper
are as follows: (1) Similar to most deep learning methods,
hyperparameter tuning is an issue of PIDL-based TSE, and
tuning such a large number of hyperparameters based on
approaches like cross-validation is too complicated for real-
world application, and the model basically has to be tuned for
each scenario (spatial resolution, temporal resolution, spatial
grid size, temporal grid size, observation error, etc), which
limits its applicability to real-world problems; (2) PIDL is
known to have issues with noisy data, and how the high
noise and corruption in the real traffic data undermine the
performance of PIDL-based TSE needs further investigations;
(3) It is worthy of considering more ML surrogate components
to represent other unobserved traffic quantities in the traffic
flow model, such as h(p) and Ueq(p—u)/7, and study to what
extent the addition of surrogates affects the performance.
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