
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1 

  

Abstract—Airspace complexity is a critical metric in 

current Air Traffic Management systems for indicating the 

security degree of airspace operations. Airspace complexity 

can be affected by many coupling factors in a complicated 

and nonlinear way, making it extremely difficult to be 

evaluated. In recent years, machine learning has been 

proved as a promising approach and achieved significant 

results in evaluating airspace complexity. However, 

existing machine learning based approaches require a large 

number of airspace operational data labeled by experts. 

Due to the high cost in labeling the operational data and the 

dynamical nature of the airspace operating environment, 

such data are often limited and may not be suitable for the 

changing airspace situation. In light of these, we propose a 

novel unsupervised learning approach for airspace 

complexity evaluation based on a deep neural network 

trained by unlabeled samples. We introduce a new loss 

function to better address the characteristics pertaining to 

airspace complexity data, including dimension coupling, 

category imbalance, and overlapped boundaries. Due to 

these characteristics, the generalization ability of existing 

unsupervised models is adversely impacted. The proposed 

approach is validated through extensive experiments based 

on the real-world data of six sectors in Southwestern China 

airspace. Experimental results show that our deep 

unsupervised model outperforms the state-of-the-art 

methods in terms of airspace complexity evaluation 

accuracy.  

 

Index Terms—Airspace complexity, data characteristics, 

deep learning, unsupervised learning. 

 
This work was supported in part by the National Key Research and 

Development Program of China under Grant 2019YFF0301400; in part by the 

National Natural Science Foundation of China (NSFC) under Grant 
61961146005 and Grant 62088101; and in part by the Engineering and Physical 

Sciences Research Council (EPSRC) under Grant EP/N029496/2. 

(Corresponding authors: Wenbo Du.) 
B. Li, W. Du and X. Cao are with the the National Engineering Laboratory 

for Big Data Application Technologies for Comprehensive Traffic, School of 

Electronic and Information Engineering, Beihang University, Beijing 100191, 
China.(e-mail:libiyue@buaa.edu.cn;wenbodu@buaa.edu.cn;xbcao@buaa.edu.

cn). 

Y. Zhang is with the Department of Civil and Environmental Engineering at 
the University of South Florida 4202 E. Fowler Ave. ENB118 Tampa, FL 

33620, USA. (e-mail: yuzhang@usf.edu) 

J. Chen is with the School of Engineering and Materials Science, Queen 
Mary University of London, Mile End Road London E1 4NS, U.K. (e-mail: 

jun.chen@qmul.ac.uk). 

Ke Tang is with the School of Computer Science and Engineering, Southern 
University of Science and Technology, Shenzhen, Guangdong 518055, China 

(e-mail: tangk3@sustech.edu.cn). 

I. INTRODUCTION 

ITH increasing globalization, the world’s civil aviation 

industry has been advancing at a fast pace. The number 

of flights in China has been increased from 7.93 million in 2014 

to 11.09 million in 2018. The average growth rate has reached 

8.7% in the past five years [1]. This massive air traffic flow has 

brought high control pressure to air traffic controllers (ATCos). 

ATCos are in charge of airspace sectors which are the basic 

control unit of airspace [2]. The control pressure causes fatigue 

among ATCos, resulting in higher airspace operation risks [3]. 

A notable example was a returning flight at Wuhan airport in 

2014 [4]. Two on-duty ATCos fell asleep due to high workload 

while the aircraft was approaching. The aircraft had to circle in 

absence of communication with the control tower. 

Accurate evaluation of airspace complexity plays a vital role 

in adjusting the sector control pressure. When airspace 

complexity exceeds the control capability of an ATCo, 

controllers’ operational errors are likely to increase [5]. 

Airspace complexity is affected by a combination of subjective, 

objective, dynamic and static factors, such as air routes and 

sector entering and exiting points, etc. Therefore, evaluation of 

airspace complexity is a non-trivial problem, attracting many 

investigations from scholars and field practitioners [6]-[16], 

[22]-[40]. Currently, the state-of-the-art methods for airspace 

complexity evaluation fall into two main categories: (1) 

Airspace complexity is described through a single indicator 

[6]-[14]; (2) Airspace complexity is evaluated based on a 

multi-indicator system [15], [16], [22]-[31]. 

Some researchers adopt a single indicator in an ad hoc way to 

represent the complexity of airspace. Lee et al. proposed an 

input-output approach by defining complexity as “how 

difficult” it is to resolve the potential conflicts in a circular 

airspace [6]-[8]. The approach proposed by Prandini et al. 

characterizes the mid-term traffic complexity at a certain point 

in airspace based on conflict risk estimation [9], [10]. Delahaye 

et al. proposed a complexity indicator which is defined by 

Lyapunov exponent based on traffic trajectories [11], [12]. 

While the complexity based on a single indicator can be 

directly calculated and is easy to use, it is usually not sufficient 

for comprehensively characterizing airspace complexity. 

Other approaches aim to comprehensively evaluate airspace 

complexity via multiple-complexity factors. Many researchers 

have investigated the mapping relationship between these 

complexity factors and airspace complexity. In 1998, NASA 

Ames Research Center defined the dynamic density as a linear 
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combination of 9 complexity factors [15]; this has become a 

standard and been implemented in the real system to evaluate 

airspace complexity until now [16]. The recent advent of 

machine learning technologies [17]-[21] encourages scholars to 

explore the nonlinear mapping between varying complexity 

factors and airspace complexity [22]-[31]. A pioneering work 

by Chatterji used the artificial neural network (ANN) to 

establish the nonlinear correlation for airspace complexity 

evaluation [22]. Gianazza trained a Back Propagation Neural 

Network (BPNN) based on samples from French sectors [23]. 

After dimension reduction with principal component analysis, 

the approach led to a great evaluation result [24]. Andraši et al. 

developed configuration-optimized ANNs to determine air 

traffic complexity [25]. Their results show the accuracy of the 

proposed model is comparable to the linear methods. Along this 

line, Xiao et al. employed a genetic algorithm to select critical 

factors in order to build an adaptive boosting model to evaluate 

airspace complexity [26]. However, the factor selection process 

through the genetic algorithm is extremely time consuming. 

Although the parallel genetic algorithm framework in [27] may 

speed up the selection process, this factor selection approach is 

still not able to evaluate airspace complexity in real-time. 

Furthermore, all of the above machine learning methods rely on 

a large number of labeled airspace samples in order to improve 

the accuracy of evaluation. Aiming at reducing the high cost in 

obtaining labeled data, Zhu et al. conducted a series of studies 

based on small samples [28]-[30] using integrated learning, 

semi-supervised learning, and transfer learning respectively, 

and obtained good evaluation results on six airspace sectors in 

Southwestern China. Similarly, the air traffic controller’s tasks 

are incorporated into training data in order to mitigate the issue 

of small samples [31]. However, extraction of controller’s tasks 

from traffic situation data is a non-trivial task.  

In practice, the airspace operation environment changes 

dynamically every several months (e.g., airspace structure, 

operation rules, etc.) [30]. However, the obtained labeled data 

for evaluating airspace complexity is in general not sufficient 

to capture such changes. Therefore, the evaluation models 

obtained through supervised learning must be retrained using 

newly labeled samples, which entail a high cost for labeling. In 

light of the above, it is necessary to develop an unsupervised 

model that does not depend on labeled airspace samples. 

However, due to the characteristics of practical airspace 

operational data, such as coupled dimensions, imbalanced 

categories, and overlapped boundaries, the existing 

unsupervised models do not generalize well on the problem of 

airspace complexity evaluation.  

In order to tackle the above challenges, we propose a novel 

Deep Unsupervised learning approach for Airspace 

Complexity Evaluation (DUACE). The main contributions of 

this paper are summarized as follows: (1) We develop a data-

oriented deep unsupervised learning model to solve the airspace 

complexity evaluation problem which can further reduce the 

cost due to labeling. To the best of our knowledge, it is the first 

time that a deep unsupervised learning approach has been used 

to evaluate airspace complexity. (2) We introduce a new loss 

function, consisting of reconstruction loss, Kullback-Leibler 

divergence loss and probabilistic cluster loss, to better describe 

the characteristics pertaining to practical airspace complexity 

data. (3) We find that one of the hyperparameters in our 

proposed model is closely related to geographical regions, 

indicating a potential way to further remove this parameter in 

future. (4) Extensive experiments are carried out using real-

world airspace complexity datasets for Southwestern China 

region. Experimental results indicate that our model achieves 

the best evaluation performances compared to those of the 

existing baselines. 

The remainder of this paper is organized as follows. Section 

II provides an analysis of the problem, an overview of the 

existing unsupervised learning methods, and the proposed 

DUACE. Section III presents an experimental investigation 

based on the dataset of six airspace sectors in Southwestern 

China. In Section IV, we conclude this study and provide some 

further discussion. 

 

II. METHODOLOGY 

In this section, we first introduce the problem of airspace 

complexity evaluation. Furthermore, we review and analyze the 

characteristics and limitations of the existing unsupervised 

models in solving similar problems. Inspired by these methods, 

we propose a deep unsupervised learning approach.  

A. Problem Description and Review of Existing Methods  

The complexity of airspace is determined by synthesizing 

numerous complexity factors. The most widely used 

complexity factors, including 28 dimensions (factors), are put 

forward by Gianazza and Guittet [23]. A detailed explanation 

of the proposed factors is included in TABLE I, in which similar 

airspace complexity factors are grouped together. Furthermore, 

airspace complexity can be divided into several levels, 

including High, Normal and Low. Correspondingly, the 

original data can be classified into three clusters based on the 

complexity level. Therefore, airspace complexity evaluation 

can be formulated as a clustering problem. The samples 

belonging to the same centroid form a cluster whose 

corresponding complexity level can be determined by referring 

to the levels of the centroids or several samples in the same 

cluster. 

Distance-based clustering methods [41], such as K-means, 

Gaussian Mixture Models, Spectral Clustering, and Density-

Based Spatial Clustering as well as some recent improvements 

[42], [43] determine the centroids by minimizing the distance 

of the samples and centroids. However, the above methods may 

be ineffective when the input data are of high dimensionality 

and complex coupling, also known as the curse of 

dimensionality. To address this problem, it is essential to 

implement dimension reduction to map the original samples 

into a lower dimensional space which is more suitable for 

clustering. Some dimension reduction techniques, e.g. Principal 

Component Analysis (PCA) [44] and manifold learning [45], 

have been adopted to extract latent representations of the 

original data. Note that, the dimension reduction methods 

mentioned above are based on the hypothesis that the original 
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data have a linear or manifold structure. In reality, factors in 

evaluating airspace complexity are interacting nonlinearly. 

Therefore, the structure of data should not be oversimplified. A 

non-linear dimension reduction method that can address the 

complex data structure is needed. 

As a mature framework in deep learning, the Autoencoder 

based algorithms use deep neural network (DNN) architectures 

to extract inherent features in complex data, leading to effective 

nonlinear dimension reduction [46]-[48]. The Autoencoder is 

composed of the encoder and decoder formulated as two neural 

networks. The Autoencoder is trained based on a reconstruction 

loss function. The encoder network transforms the input data 

into the latent representations that are of lower dimension, 

while the decoder network reconstructs the output from such 

representations. The data-driven characteristics and flexibility 

of the Autoencoder make it applicable to many complex tasks. 

Many deep clustering methods employing the Autoencoder 

have shown impressive results in clustering [49]-[51]. Such 

methods generate suitable-for-clustering representations from 

the original data by adding the designed cluster loss on the basis 

of the reconstruction loss during the network training process. 

In [49], Deep Clustering Network (DCN) first jointly learns 

clustering-friendly representations, clustering centroids, and 

cluster assignments from Autoencoder with K-means clustering 

loss. The robustness of the model can be further improved 

through ensemble Autoencoder learning [52]. However, the 

learned representations may not be well separable. Therefore, 

transformed subspace clustering is proposed to relieve the issue 

[53]. Although these methods can provide outstanding results 

in discriminating images and texts, they cannot be directly 

applied to evaluate airspace complexity data for the following 

reasons.  

1) The proportion of the airspace operation period with 

low/normal/high complexity is naturally imbalanced, resulting 

in category imbalance in the airspace complexity dataset. Due 

to this imbalance, the learning model performs poorly in 

identifying minority categories.  

2) For images or texts, a deterministic assignment for 

clustering is effective because data belonging to different 

classes are significantly apart from each other spatially after 

dimension reduction. However, for airspace complexity 

datasets, data belonging to different complexity levels are still 

overlapped near the category boundaries even after dimension 

reduction. This is due to the high-dimensional coupling 

characteristics of complexity factors. This so-called overlapped 

boundary phenomenon increases the difficulty for learning 

models in discriminating the data located near the category 

boundary. The above characteristics are not unique to the 

airspace complexity data, representing a great challenge for 

conventional clustering algorithms. It is worth pointing out that 

the proposed algorithm can be used in handling other clustering 

problems having similar data characteristics. 

B. Proposed Deep Unsupervised Model 

1) Overview of the Model 

The network structure of our proposed deep unsupervised 

model is shown in Fig. 1. The original airspace complexity data 

will be input into the Synthetic Minority Over-Sampling 

Technique (SMOTE) algorithm for interpolation in order to 

generate a new dataset [54]. The newly generated dataset will 

be the input into the Autoencoder. The encoder network outputs 

the latent features of the airspace complexity data after 

dimensionality reduction, which are the input to the decoder 

network to obtain the reconstructed data. 

TABLE I 

COMPLEXITY FACTORS (SIMILAR FACTORS ARE GROUPED TOGETHER.) 

Factor Number Annotation 

1 ~ 4 
Total number of aircraft, square of total number of aircraft,  

number of descending, number of climbing aircraft. 

5 ~ 8 Future incoming flow in horizons of 5 min, 15 min, 30 min, 60 min. 

9 ~ 12 
Density of aircraft, horizontal proximity between aircraft,  

two kinds of vertical proximity between aircraft. 

13 ~ 15 
Variance of aircraft ground speeds, ratio of standard deviation of aircraft ground speeds to 

aircraft average ground speed, average of absolute values of aircraft vertical speeds. 

16, 17 
Number of potential crossings of aircraft trajectories,  

measures the mixing degree of aircraft at different flight states (descending /level /climbing). 

18, 19 Variability in aircraft headings, variability in aircraft speeds[23]. 

20, 21 
Rate of divergences between aircraft pairs (Div),  

rate of convergences between aircraft pairs (Conv). 

22 ~ 25 
Sensitivity of distance change between diverging/converging aircraft with speed (𝑠𝑒𝑛𝑠𝑖_𝑑,

𝑠𝑒𝑛𝑠𝑖_𝑐) and heading modifications applied to them (
𝐷𝑖𝑣2

𝑠𝑒𝑛𝑠𝑖_𝑑
, 

𝐶𝑜𝑛𝑣2

𝑠𝑒𝑛𝑠𝑖_𝑐
). 

26, 27 Conflict perception of “good pairs”, conflict perception of “bad pairs”. 

28 Geometric volume of a sector. 
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As depicted in Fig. 1, the DUACE model is developed based 

on the loss function of the Autoencoder framework which is 

deliberately designed based on the characteristics of airspace 

complexity data. 

The Kullback-Leibler Loss (KL Loss) and SMOTE are 

designed to address the impact of category imbalance. We first 

follow SMOTE [54] to generate more samples through linear 

interpolation in the original datasets. The Kullback-Leibler 

divergence (KL divergence) is calculated between the original 

datasets and the reconstructed data after the Autoencoder so as 

to align their distributions to be similar. The difference between 

the data after SMOTE and the reconstructed data after the 

Autoencoder is measured by Reconstruction Loss in order to 

ensure the latent representations are meaningful [46]. Details of 

KL divergence and SMOTE are described in Section B-2. 

As for overlapped boundaries, the Clustering Loss with 

probabilistic assignment is proposed. Different from a 

deterministic centroid in K-Means, we assign the samples to a 

probabilistic centroid which is calculated by a weighted average 

of all centroids. The Clustering Loss aims to update neural 

network parameters and centroids by minimizing the distance 

between the samples and the probabilistic centroids. This 

process will produce a gradient component for those 

misclassified samples near the category boundaries to further 

update network parameters and centroids in the right direction. 

Details of probabilistic assignment are described in Section B-

3.  

The optimization of the proposed deep unsupervised model 

contains two procedures. During the pre-training process, the 

Reconstruction Loss and KL Loss are firstly computed to 

initialize the neural network parameters. After a number of 

predefined epochs, the Clustering Loss is included in the total 

loss function to further tune network parameters. This tuning 

process is termed as the joint fine-tuning process. Details of the 

optimization procedure are discussed in Section C.  

2) SMOTE by KL Divergence 

SMOTE by KL Divergence is designed to address the 

category imbalance problem of airspace complexity data. 

SMOTE generates new data, while KL Divergence guarantees 

the quality of the interpolated data by calculating the similarity 

between the original data distribution and the reconstructed data 

distribution after the autoencoder. Stochastic Neighbor 

Embedding (SNE) is used to calculate the data distribution. Due 

to the dimensions mismatch between the original data and the 

reconstructed data, PCA is used to perform dimension reduction 

of the original data and reconstructed data so that the KL 

divergence can be calculated between the original data and 

reconstructed data. 

The inherent category imbalance of airspace data has a 

negative impact on learning the classification strategy that 

assigns each sample to its corresponding cluster and complexity 

level. One solution is to take advantage of data enhancement 

techniques such as over-sampling and augmentation to generate 

new data in the minority class [54]. The former is not suitable 

because over-sampling will duplicate many existing original 

data. This may lead to the over-fitting problem. Data 

augmentation generates new data by randomly adding white 

noise to the original data, which may aggravate the boundary 

overlapping problem of airspace complexity data. SMOTE 

constantly generates new data through interpolation between 

two data points belonging to the same cluster. Therefore, 

SMOTE has a relatively higher probability of generating new 

data belonging to the same cluster and is more suitable for the 

proposed approach. 

 
Fig. 1.  Network structure of the proposed deep unsupervised model. 
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SMOTE is exploited to generate more data and boost the less 

represented category. In order to ensure that new data is 

generated as uniformly as possible, we firstly perform K-means 

clustering on the original datasets. After that, the generation 

process by SOMTE can be defined as: 𝑥𝑔  𝑥𝑖 + 𝛿(𝑥𝑗 − 𝑥𝑖) 

with 0 < 𝛿 ≤ 1, where 𝑥𝑔 represents the newly generated data 

point, 𝑥𝑖 , 𝑥𝑗 ∈  ,  ∈ ℝ𝑁×𝐷  represents the original data and 𝑥𝑗 

is another sample in the same cluster of 𝑥𝑖 . The number of 

samples in the original data is 𝑁, and the dimension of each 

sample is 𝐷. The procedure is repeated for several times to get 

a new dataset:  ∈ ℝ𝑁 ×𝐷, where 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑔 ∈   and the ratio of 

the interpolation is set to 30%. The number of samples in the 

new dataset is 𝑁 .  

The reconstructed data after the Autoencoder (AE) is 

represented as    ( (   )  ̂),  ∈ ℝ𝑁 ×𝐷 .    (∙) denotes 

the encoder of the Autoencoder while    (∙)  denotes the 

decoder.   is the parameter of the encoder network and  ̂  is 

axisymmetric to   [46]. The Reconstruction Loss (𝐿𝐴𝐸) in the 

Autoencoder measures similarity between the data after 

SMOTE and the reconstructed data after the Autoencoder, 

ensuring the latent representations are meaningful. 

𝐿𝐴𝐸  𝑚𝑖𝑛 ,  ‖ −  ( (   )  ̂)‖
2

2
             (1) 

Since the airspace complexity data obeys a more complex 

distribution, the data distribution after SMOTE may be different 

from the original datasets. In order to impose restrictions on the 

newly created data, the Kullback-Leibler (KL) divergence is 

used to calculate the similarity between the original and 

reconstructed data distributions. SNE [55] is utilized to 

compute the data distribution, which converts the distance 

relationship into a two-dimensional probability matrix: 

𝑝𝑖𝑗  
exp (−‖𝑥𝑖−𝑥𝑗‖

2

2
/2𝜎𝑖

2)

∑ exp (−‖𝑥𝑖−𝑥𝑘‖2
2/2𝜎𝑖

2)𝑘≠𝑖
                    (2) 

𝑞𝑖𝑗  
exp (−‖𝑦𝑖−𝑦𝑗‖

2

2
)

∑ exp (−‖𝑦𝑖−𝑦𝑘‖2
2)𝑘≠𝑖

                          (3) 

where 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘 ∈  ,  ∈ ℝ𝑁×𝐷  and 𝑦𝑖 , 𝑦𝑗 , 𝑦𝑘 ∈  ,  ∈ ℝ𝑁 ×𝐷 . 

𝜎𝑖 is the variance of the Gaussian that is centered on the features 

of data point 𝑥𝑖 , 𝑥𝑗 . 𝑃  and 𝑄  are matrices composed of 

elements 𝑝𝑖𝑗  and 𝑞𝑖𝑗 . 𝑃  (𝑝𝑖𝑗)𝑁×𝑁  and 𝑄  (𝑞𝑖𝑗)𝑁 ×𝑁 , 

represent the distribution of original data   and the 

reconstructed data  , respectively. The KL divergence between 

𝑃 and 𝑄 is minimized to ensure that those newly generated data 

are sampled from the distribution of the original data instead of 

randomly by linear interpolation. However, as dimensions of 𝑃 

and 𝑄  are different, a transformation of 𝑃  and 𝑄  should be 

carried out before calculating the KL divergence.  

PCA is used to perform dimension reduction on 𝑃 and 𝑄 to 

ensure the KL divergence can be calculated between the 

original and reconstructed data. The column vectors in 𝑃 and 𝑄 

are respectively represented by 𝑝𝑗 ∈ ℝ𝑁×1  and 𝑞𝑗 ∈ ℝ𝑁 ×1 . 

PCA is applied to 𝑝𝑗  and 𝑞𝑗  to reduce their dimensions by 

multiplying the transpose of projection matrices 𝑊𝑝 and 𝑊𝑞: 

𝑝̂𝑗  𝑊𝑝
𝑇𝑝𝑗                                   (4) 

𝑞̂𝑗  𝑊𝑞
𝑇𝑞𝑗                                   (5) 

where 𝑝̂𝑗 ∈ ℝ𝑚×1 , 𝑞̂𝑗 ∈ ℝ𝑚×1,  𝑊𝑝
𝑇 ∈ ℝ𝑚×𝑁 , 𝑊𝑞

𝑇 ∈ ℝ𝑚×𝑁 , 

and 𝑚 < 𝑁 < 𝑁 . 𝑊𝑝 and 𝑊𝑞 are computed as below:  

𝑃𝑃𝑇𝑊𝑝  𝜆𝑝𝑊𝑝                                 (6) 

𝑄𝑄𝑇𝑊𝑞  𝜆𝑞𝑊𝑞                                  (7) 

where 𝜆𝑝 and 𝜆𝑞 are composed of the highest 𝑚 eigenvalues of 

the diagonal matrices 𝑃𝑃𝑇  and 𝑄𝑄𝑇 , respectively. The 

resulting matrices 𝑃̂𝑗   (𝑝̂1, 𝑝̂2, … , 𝑝̂𝑗, … 𝑝̂𝑁) ∈ ℝ𝑚×𝑁  and 

𝑄̂𝑗  (𝑞̂1, 𝑞̂2, … , 𝑞̂𝑗 , … 𝑞̂𝑁 ) ∈ ℝ𝑚×𝑁  are of the same row 

dimensionality by implementing PCA along the columns of  𝑃 

and 𝑄. In the same way, PCA is applied along the rows of  𝑃̂𝑗 

and 𝑄̂𝑗 . The final resulting matrices 𝑈  (𝑢𝑖𝑗)𝑚×𝑚  and 𝑉  

(𝑣𝑖𝑗)𝑚×𝑚 are of the same dimensionality. The matrices 𝑈 and 

𝑉 are the results of 𝑃 and 𝑄 after PCA dimension reduction of 

the row and column vectors. 

Finally, we calculate the KL divergence between 𝑈𝑖𝑗  and 𝑉𝑖𝑗: 

𝐿𝐾𝐿  𝑚𝑖𝑛 ,  𝐾𝐿(𝑈 ∥ 𝑉)  𝑚𝑖𝑛 ,  ∑ ∑ 𝑢𝑖𝑗𝑙𝑜 
𝑢𝑖𝑗

𝑣𝑖𝑗
𝑗𝑖      (8) 

Combining 𝐿𝐴𝐸  and 𝐿𝐾𝐿, not only does it increase the number 

of samples in the less represented categories, but also ensures 

that the newly generated data after SMOTE follows the 

distributions of the original datasets. 

𝐿1  𝐿𝐴𝐸 + 𝛾𝐿𝐾𝐿  

 𝑚𝑖𝑛 ,  (‖ −  ( (   )  ̂)‖
2

2
+ 𝛾 ∑ ∑ 𝑢𝑖𝑗𝑙𝑜 

𝑢𝑖𝑗

𝑣𝑖𝑗
𝑗𝑖 )   (9) 

𝛾 is a constant between [0, 1] to balance the impact of 𝐿𝐴𝐸  

and 𝐿𝐾𝐿 . 𝐿1  is differentiable with respect to  ( ,  ̂)  so that a 

gradient descent method can be implemented to minimize 𝐿1. 

3) Probabilistic Assignment 

A more suitable latent representative space for clustering is 

obtained by applying an additional cluster loss in the loss 

function:  𝐿𝑐𝑙𝑢  ∑ ‖𝑧𝑖 − 𝑆𝑅𝑇‖2
2𝑁 

𝑖=1 , where 𝑅  denotes the 

centroids and 𝑆 is the assignment vector. 𝑧𝑖   (𝑥𝑖   ) ∈   is 

the latent representation mapped from 𝑥𝑖 ∈    through the 

dimensionality reduction of AE, where  ∈ ℝ𝑁 ×𝐷′
,  ∈ ℝ𝑁 ×𝐷, 

and 𝐷′  is the reduced dimension. When the assignment is 

deterministic, 𝑆  is a one-hot vector and its 𝑖𝑡ℎ  element is 1, 

indicating the sample belongs to the 𝑖𝑡ℎ cluster.  

Airspace complexity data may still overlap near the category 

boundaries even after dimensionality reduction. Therefore, at 

the beginning of neural network training, it is difficult to find 

the true centroid for those samples around boundaries through 

the deterministic assignment. Instead of deterministically 

assigning a sample to a specific centroid, the impact of all 

centroids on a sample should be considered. The weight 𝑤𝑖𝑗 is 

hence introduced and is dependent on the Euclidean distance 

between latent representation 𝑧𝑖  of sample 𝑥𝑖  and centroid 𝑟𝑗 . 

𝑤𝑖𝑗  represents the effect of different centroids on the 𝑖𝑡ℎ 

sample. 

𝑤𝑖𝑗  ‖𝑧𝑖 − 𝑟𝑗‖2
 ,  s. t. 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑘                 (10) 

We use the probability to represent the pulling of a sample 

by different centroids. The SoftMax function can transform the 

one-hot matrix 𝑆 into a probability matrix 𝐺. It has also been 

proven to be effective for multi-categorical samples. [56]. 
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𝐺𝑖𝑗(𝑧𝑖 , 𝛼, 𝑟𝑗)  
exp (−𝛼𝑤𝑖𝑗)

∑ exp (−𝛼𝑤𝑖𝑘)𝑘
                      (11) 

The element of probability matrix  𝐺𝑖𝑗 , represents the 

probability that 𝑧𝑖  is assigned to the centroid 𝑟𝑗 . As 𝑤𝑖𝑗  

increases, 𝐺𝑖𝑗  becomes smaller.  𝛼  is a user defined 

hyperparameter, 𝛼 ∈ ℤ0
+. The larger 𝛼 is, the more sensitive 𝐺𝑖𝑗 

is with respect to 𝑤𝑖𝑗 . The setting of 𝛼 will gradually increase 

with the epochs of deep neural network training until 𝐺 

approaches a one-hot matrix [56]. Therefore, during the early 

stage of deep neural network training, samples around cluster 

boundaries have chances to be corrected in the right direction. 

In summary, the Clustering Loss in this paper is defined as: 

𝐿𝑐𝑙𝑢  𝑚𝑖𝑛 ∑ ℓ( (𝑥𝑖   ), 𝐺𝑖𝑅
𝑇)𝑁 

𝑖=1                (12) 

s. t. 𝑅  (𝑟1, 𝑟2, … , 𝑟𝑘) ∈ ℝ𝐷′×𝐾 , 
𝐺𝑖  (𝐺𝑖1, 𝐺𝑖2, … , 𝐺𝑖𝑘) ∈ ℝ1×𝐾 . 

where ℓ(∙)  𝐾(𝑥, 𝑥′)  exp (
−‖𝑥−𝑥′‖2

2

2𝜎2 ) is the Gaussian Kernel 

function. ℓ(∙) is more suitable for handling high-dimensional 

data [57]. The probability matrix 𝐺  (𝐺1, 𝐺2, … , 𝐺𝑖 , … 𝐺𝑁 )𝑇 ∈

ℝ𝑁 ×𝐾 .  
We formulate the loss function of the whole model as follows.  

𝐿  𝐿1 + 𝐿𝑐𝑙𝑢  𝐿𝐴𝐸 + 𝛾𝐿𝐾𝐿 + 𝐿𝑐𝑙𝑢                 (13) 

𝐿  𝑚𝑖𝑛 ,    ( ‖ −  ( (   )  ̂)‖
2

2
              (14) 

+𝛾 ∑ ∑ 𝑢𝑖𝑗𝑙𝑜 
𝑢𝑖𝑗

𝑣𝑖𝑗
𝑗𝑖 + ∑ ℓ( (𝑥𝑖  ), 𝐺𝑖𝑅

𝑇)𝑁 
𝑖=1 )       

C. Optimization Procedure 

Optimizing  𝐿  contains two procedures. During the pre-

training process, we initialize the parameters of the 

Autoencoder and the centroids of latent representations. After a 

number of predefined epochs, the update of network parameters 

and centroids will be alternately performed during the fine-

tuning process. 

1) Parameter Initialization 

As the Autoencoder possesses a large number of parameters, 

a random initialization for   will lead the network to be trapped 

in local optima. We use the layer-wise pre-training method as 

in [46] for training the Autoencoder, which means that we use 

the output of each layer to train the next layer. 𝐿1( ,  ̂) is fully 

differentiable with respect to ( ,  ̂) , so that 𝐿1( ,  ̂)  can be 

optimized by the following update formula:  

( ,  ̂) ← ( ,  ̂) − 𝜂∇( ,  )𝐿1( ,  ̂)                (15) 

where 𝜂 denotes the learning rate. After layer-wise pre-training, 

the result is a multilayer deep Autoencoder with a bottleneck 

coding layer in the middle. To initialize the centroids of latent 

representations  ∈ ℝ𝑁 ×𝐷′
, we perform K-means to the outputs 

of the bottleneck layer to obtain initial values of 𝑅 and 𝐺. 

2) Updating Network Parameters 

For fixed 𝐺 and 𝑅, the Clustering Loss is included in the total 

loss function to jointly fine-tune the network parameters. 𝐿 is 

differentiable with respect to all parameters. 

∇( ,  )𝐿( ,  ̂)  ∇( ,  )𝐿1( ,  ̂) + ∇( )𝐿𝑐𝑙𝑢( )       (16) 

∇( ,  )𝐿( ,  ̂) will be used to update the parameters in the 

network through back-propagation [58]. 

( ,  ̂) ← ( ,  ̂) − 𝜂∇( ,  )𝐿( ,  ̂)                 (17) 

3) Updating Centroids 

For fixed   and network parameters ( ,  ̂), it is necessary to 

assign each sample in the latent representative space to its 

corresponding cluster before updating centroids. We calculate 

the distance from each 𝑧𝑖   (𝑥𝑖  ) to all 𝑘 initial centroids. 

𝑑𝑗,𝑖 indicates whether  (𝑥𝑖   ) belongs to the 𝑗𝑡ℎ centroid, i.e., 

 (𝑥𝑖  ) will be assigned to the nearest centroid 𝑟𝑘.  

𝑑𝑗,𝑖  {
1             𝑖  𝑗  𝑎𝑟 min

𝑘
‖ (𝑥𝑖   ) − 𝑟𝑘‖2

2

0                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
        (18) 

Following the Deep Clustering Network (DCN) [49] and the 

Deep Embedded Clustering (DEC) [50], the updating law of 

centroids is as follows: 

𝑟𝑘 ← 𝑟𝑘 + ∑ (
1

𝐶𝑘
𝑖) ( (𝑥𝑖  ) − 𝑟𝑘)𝑑𝑗,𝑖𝑖               (19) 

where 𝐶𝑘
𝑖  denotes the total number of the samples assigned to 

the 𝑘th  cluster. The gradient step size 1/𝐶𝑘
𝑖  controls the 

learning rate. ∑ ( (𝑥𝑖   ) − 𝑟𝑘)𝑑𝑗,𝑖𝑖  indicates a vector formed 

by subtracting all  (𝑥𝑖   ) in the 𝑘𝑡ℎ cluster from centroid 𝑟𝑘. 

Algorithm 1. A Deep Unsupervised Learning Approach for  

Airspace Complexity Evaluation (DUACE) 

Input：Original Airspace sector datasets 

1：Data scaling and normalization. Get Data. 

2：Expand 30% on Data by SMOTE. Get  . 

3：DNN Pre-training： 

for each pre-training epoch： 

for each n batch step： 

3.1：Compute 𝐿1 by equation (9)  

3.2：Update network by equation (15) 

end for 

end for 

4：Initialize K centroids for  (   ) by k-means.  

Get 𝑅𝑘  (𝑟1，𝑟2，𝑟3) 

5：DNN Fine-tuning： 

for 𝛼：0 → 𝛼0： 

for each fine-tuning epoch： 

for each n batch step： 

5.1：Compute 𝐺𝑖𝑗( (𝑥𝑖   ), 𝛼, 𝑟𝑗) by  

equations (10) (11)  

5.2：Compute cluster loss by equation (12) 

5.3：Compute total loss by equation (14) 

5.4：Update network by equations (16) (17) 

end for 

5.5：Update the centroids by equation (19) 

end for 

end for 

Output：  ,  ̂,  , 𝑅. 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

D. The DUACE Algorithm 

The proposed deep unsupervised model is summarized in 

Algorithm 1. Note that an epoch, whether pre-training epoch 

or fine-tuning epoch, corresponds to a pass of all data samples 

through the network. n batch step is automatically calculated 

by the program, indicating how many times the mini-batch 

needs to be fetched within an epoch so that the network can pass 

all samples. The algorithmic procedure and the code demo of 

the DUACE are available at https://github.com/LiBiyue/demo-

ITS. 

III. EXPERIMENT STUDIES 

In the following experiments, the proposed DUACE model 

was respectively trained using one of the six sectors dataset. To 

verify our model’s performance, we calculate the complexity 

evaluation accuracy given by our model using the complexity 

rated by ATM experts. 

A. Datasets 

The experimental data were collected from the six airspace 

sectors located in Southwestern China, including “Chengdu01” 

(CD01), “Chengdu02” (CD02), “Chengdu04” (CD04), 

“Guiyang01” (GY01), “Guiyang02” (GY02) and “Kunming03” 

(KM03) (Fig. 2). The datasets cover the air traffic operation of 

these six sectors from 8:00 to 24:00 on July 28, 2010 [30]. Each 

sample corresponds to a one-minute air traffic scenario of one 

sector. Each sample is composed of 28 complexity factors and 

a corresponding complexity level (Low/Normal/High) assigned 

by ATM experts. There are 5760 (960 for each sector) samples 

in total. The number of samples in different categories of each 

sector is shown in TABLE II. 

B. Baseline methods and evaluation metrics 

We compared the performances of the proposed DUACE 

model with two existing representative airspace complexity 

evaluation methods (BPNN_PCA, SOCKT), four well-known 

deep unsupervised models (AE_K-means, DEC, DCN, ASPC-

DA), and one promising tree boosting approach (XGBoost). 

Among them, DEC and DCN share the same centroid updating 

laws as our algorithm, but they do not use SMOTE by KL 

divergence and probabilistic assignment. Except for not 

considering the above two aspects, AE_K-means does not 

incorporate clustering into the deep learning model either. As a 

relatively new deep unsupervised learning algorithm, ASPC-

DA adopts a data augmentation approach and performs well in 

some image and text clustering tasks. BPNN_PCA, SOCKT, 

and XGBoost apply the classical supervised model to realize 

the evaluation of airspace complexity without deep neural 

networks and the proposed loss function in our model. 

Additionally, the above models (including the proposed 

DUACE model and all benchmark models) are independently 

trained for different sectors. 

1) BPNN_PCA 

The complexity factor reduction was implemented based on 

the principal component analysis and Bayesian information 

criterion. A backpropagation neural network (BPNN) is 

applied to classify the complexity level [23], [24]. 

2) SOCKT 

Sector operation complexity evaluation framework based 

on knowledge transfer is proposed to measure the sector’s 

traffic complexity under the condition of small samples. 

Zhu et al. employed the transfer learning method to classify 

the complexity level using labeled samples from not only 

target sector, but also other non-target sectors [30]. 

3) AE_K-means 

This approach extracts the latent features through a stacked 

Autoencoder (AE) [46]. After dimensionality reduction, the 

extracted latent features are clustered by K-means.  

4) DEC 

The Deep Embedded Clustering (DEC) approach performs 

joint dimensionality reduction and clustering, using the 

encoder as the network architecture and the KL divergence 

between the original data and embedded representations as 

the loss [50].  

5) DCN 

Deep Clustering Network (DCN) combines the k-means 

algorithm with an Autoencoder network. DCN is trained by 

reconstruction loss and k-means loss jointly[49].  

6) XGBoost 

XGBoost is a scalable end-to-end tree boosting system [59]. 

7) ASPC-DA 

The Adaptive Self-Paced Deep Clustering with Data 

Augmentation (ASPC-DA) approach is a two-stage deep 

clustering algorithm by incorporating data augmentation 

and self-paced learning [60]. 

To conduct fair comparisons, we adopt the standard 

unsupervised evaluation metrics for all unsupervised methods. 

We set the number of clusters to the number of ground-truth 

categories, that is, “High”, “Normal” and “Low”, and evaluate 

performance with the unsupervised clustering accuracy (ACC) 

[50]. 

𝐴𝐶𝐶  max
𝑚𝑎𝑝

∑ 𝛿(𝑙𝑖,𝑚𝑎𝑝(𝑐𝑖))
𝑁
𝑖=1

𝑁
.                       (20) 

 

Fig. 2.  Sectors used in the experiments. 

TABLE II 

BASIC INFORMATION OF SECTOR DATASETS  

Sector CD01 CD02 CD04 GY01 GY02 KM03 Total 

Low 60 582 77 52 274 279 1328 

Normal 360 297 498 411 391 458 2411 

High 540 81 385 497 295 223 2021 

Total 960 960 960 960 960 960 5760 
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where 𝑙𝑖  is the ground-truth label of each sample 𝑥𝑖; 𝑐𝑖  is the 

cluster assignment of 𝑥𝑖  produced by the algorithm; and 𝑁 is 

the total number of the samples. 𝛿(𝑥, 𝑦) is the delta function 

that equals one if 𝑥  𝑦  and equals zero otherwise. 𝑚𝑎𝑝(⋅) 

ranges over all possible one-to-one mappings between clusters 

and labels. ACC is the result under the best mapping, which is 

represented as 𝑏𝑒𝑠𝑡_𝑚𝑎𝑝(⋅) . The Hungarian algorithm can 

efficiently compute the best mapping [61]. Based on the best 

mapping, we finally determined the label of each cluster. 

ACCH, ACCN, ACCL of clusters “High”, “Normal” and 

“Low” can be calculated respectively. The number of the 

samples in each cluster is 𝑁𝑠, s ∈ {𝐻, 𝑁, 𝐿}.  

𝐴𝐶𝐶𝐻/𝐴𝐶𝐶𝑁/𝐴𝐶𝐶𝐿  
∑ 𝛿(𝑙𝑖,𝑏𝑒𝑠𝑡_𝑚𝑎𝑝(𝑐𝑖))

𝑁𝑠
𝑖=1

𝑁𝑠
            (21) 

For the supervised learning methods, ACC is the ratio of 

correctly classified samples to the total number of the samples. 

ACCH (N/L) is defined as the percentage of correctly classified 

samples in the high (normal/low) complexity category.  

C. Implementation  

For a fair comparison with the other Autoencoder based deep 

unsupervised methods (AE_K-means, DEC, DCN, ASPC-DA), 

the settings of the Autoencoder are the same. The settings of the 

user-defined parameters in the model are determined through 

the grid-search method, which is an exhaustive searching 

through a manually specified subset of the hyperparameter 

space of a learning algorithm. The optimal combination of 

hyperparameters is as follows: the encoder network is set as a 

fully connected multilayer perceptron (MLP) with dimensions 

D-24-20-16-12-8 for all experiments, where D is the dimension 

of the input data (features). The decoder network is a mirror of 

the encoder, i.e. an MLP with dimensions 8-12-16-20-24-D, 

where D is the dimension of the reconstructed data (features). 

All the output layers compute the data from the former layers 

using the ReLU activation function [48]. The network training 

is based on the Adam optimizer [48] with a learning rate 

η=0.001. The training mini-batch is 128 and γ is 0.8. The 

original data are preprocessed and scaled through standard 

normalization. The interpolation ratio of SMOTE in the 

proposed DUACE is set to 30%.   

During the layer-wise pre-training of DUACE, we initialize 

the weights with random numbers drawn from a zero-mean 

Gaussian distribution with a standard deviation of 0.01. In order 

to avoid the over-fitting issue, we determine the architecture of 

the model in a simple-to-complex manner. In the initial process, 

the model is set to be a shallow network with fewer layers and 

hidden units. Its performance is evaluated and the model is 

gradually added with more layers and hidden units continually 

until its performance starts to degrade. Each layer is pre-trained 

for 50 epochs without considering any complementary training 

or regulation strategy such as dropout and batch normalization. 

The centroids are initialized by K-means. 

During the fine-tuning of DUACE, experiments show that 

the probabilistic matrix 𝐺 will turn into a similar one-hot matrix 

as 𝛼  20. Therefore, we set 𝛼 to increase from 0 to 20. The 

reason for this setting is that in the early stage of the network 

training, we hope the model assigns a relatively random 

probability to the samples. With continuous training of the 

model, it can be gradually deterministic for the probabilistic 

assignment matrix. For each fixed 𝛼, 50 fine-tuning epochs will 

be implemented because the training error tends to be stable 

after 50 epochs.  

AE_K-means only has the pre-training process with 50 

epochs. For DEC, DCN and ASPC-DA, the pre-training and 

fine-tuning epochs are both set to 50, which is experimentally 

proved to be sufficient. 

For the supervised learning methods BPNN_PCA, SOCKT 

and XGBoost, their hyperparameters are tuned empirically to 

get the best results. The neural network of BPNN_PCA has two 

hidden layers with 100 units, where the activation function is 

ReLU and the loss function is the cross-entropy-loss. For 

XGBoost, the depth of the tree is set to 4, and the number of the 

estimators is 45. For the above two methods, 70% of the labeled 

dataset of each sector (672 samples) are used for training while 

the remaining 30% (288 samples) are used for testing. As for 

SOCKT, for a fair comparison, in each experiment group, the 

sizes of the target and non-target training sectors are set to 112 

(hence the total number of the training samples is 6 ∗ 112=672). 

Furthermore, we randomly select 288 data as the test samples 

of the target sector, which do not overlap with the training data. 

In this way, the number of training data and test data of the 

supervised methods are consistent. 

D. Results 

In order to present the results in a statistically significant way, 

we carry out 60 seeded runs and use statistical metrics, mean 

and variance of the accuracy, to evaluate the performance of 

various models. The experiments are carried out on a ThinkPad 

P51 laptop, with the version of Python 3.7.3 and Tensorflow 

1.13.1.  

1) Performance Comparison  

The average accuracy and variance of 60 runs for each 

method are shown in TABLE III. We report the best result for 

each (data, metric) pair which is highlighted in bold face in this 

table. It can be seen from the results that the evaluation accuracy 

of DUACE outperforms those of all other models in most 

datasets (CD01, CD02, GY01, GY02). It is noteworthy that it 

performs better than the other models in three sectors on the 

ACCH indicator (CD01, CD02, GY02). In summary, the 

DUACE model can assist ATCos to comprehend whether the 

airspace operation status is complicated and provide an 

objective evaluation when ATCos are experiencing high 

workload and stress. 

It is also worth noting that although a higher mean of 

accuracy (ACC, ACCH, ACCN, ACCL) is achieved by our 

model, the variance is also relatively high. This high variance 

is not only because the gradient descent optimization of the 

neural network is a local search, but also the initialization of 

network parameters and cluster centroids is stochastic. In 

addition, the structure of deep neural networks is more 

complicated. There exists a trade-off between the mean and 

variance of a model [62]. From this perspective, the variance is 

compromised in exchange for the higher accuracy.  
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Our model outperforms the existing representative airspace 

complexity evaluation models (BPNN_PCA, SOCKET) and 

XGBoost in 14 out of 24 indicators, without using any expert 

labels for training. Although the above supervised models have 

the advantage of learning expert knowledge, our model 

achieves a relatively high evaluation accuracy. This higher 

accuracy is achieved through the power of non-linear mapping 

realized by deep neural networks and the deliberately designed 

loss function to address the characteristics of airspace 

complexity data.  

In comparison to other deep unsupervised methods (AE_K-

means, DEC, DCN, ASPC-DA), it is evident that our model 

emerges as the best across all airspace datasets. AE_K-means 

provides the lowest accuracy among these unsupervised 

methods. Instead of performing AE and K-means separately 

[63], DUACE, DEC, DCN, and ASPC-DA jointly optimize 

dimensionality reduction and clustering in a deep neural 

network, leading to superior results than those AE_K-means. 

Although the accuracy of DCN and DEC is slightly higher 

compared to AE_K-means, it is still lower than the DUACE 

model. The reason is that in our model the SMOTE and KL 

divergence loss is developed to address the category imbalance 

problem. Moreover, DCN and DEC only use a simple K-means 

loss function rather than the Clustering Loss with probabilistic 

assignment specifically designed for overlapped airspace 

complexity data. ASPC-DA utilizes an adaptive self-paced 

learning mechanism to improve the classification accuracy of 

the examples near cluster boundaries. However, ASPC-DA still 

adopts a deterministic cluster assignment approach.  

For those imbalanced datasets (CD01, CD02, CD04, GY01), 

the accuracy of using other deep unsupervised methods to 

classify the category with fewer samples is always lower, while 

the variance is higher. The results give clear evidence that those 

methods cannot extract underlying patterns of the skewed 

datasets effectively. In contrast, DUACE performs better on 

these imbalanced datasets and significantly improves the 

accuracy on the imbalanced categories (CD01- ACCL, CD02- 

ACCH, CD04- ACCL, GY01- ACCL). This improvement is 

mainly attributed to the integration of the KL divergence loss. 

The KL divergence loss ensures the distribution of the newly 

generated data after SMOTE to be similar to the original data. 

It is worth pointing out that all methods perform better on 

KM03 than they do on other datasets. An intuitive explanation 

is KM03’s geographical location. KM03 is on the southwestern 

border of China (Fig. 2) and its route topology is different from 

those of other airspace sectors.  

TABLE III 
PERFORMANCE COMPARISON WITH EXISTING METHODS (THE DATA IN THE TABLE IS REPRESENTED AS "AVERAGE ACCURACY (VARIANCE)".) 

Sector 
Metrics 

(%) 
DUACE BPNN_PCA SOCKT XGBoost 

AE_K-

means 
DEC DCN ASPC-DA 

CD01 

ACC 77.18(7.36) 75.75(4.21) 65.41(2.85) 70.83(3.88) 64.89(6.92) 67.98(16.98) 69.14(19.66) 71.53(15.29) 

ACCH 77.60(12.87) 76.94(5.66) 74.82(5.59) 71.99(4.72) 66.74(6.01) 68.04(18.05) 73.11(14.76) 72.75(13.56) 

ACCN 77.81(9.98) 74.01(7.79) 52.23(8.09) 71.74(6.45) 65.09(11.88) 69.19(19.67) 69.02(13.77) 70.63(11.87) 

ACCL 69.67(13.99) 63.33(19.10) 59.57(17.23) 68.94(11.32) 54.31(17.95) 60.91(24.33) 62.83(17.59) 62.87(13.66) 

CD02 

ACC 82.43(6.43) 80.08(2.43) 76.44(2.74) 82.42(3.56) 66.78(7.02) 71.49(10.74) 73.68(13.79) 76.81(19.01) 

ACCH 77.65(14.51) 74.81(10.45) 53.03(11.61) 71.43(12.78) 64.98(11.21) 67.87(11.28) 73.30(16.89) 71.64(18.57) 

ACCN 85.86(10.04) 82.61(5.10) 61.99(7.90) 81.33(6.19) 65.33(13.67) 72.80(14.02) 69.98(14.45) 75.39(12.06) 

ACCL 81.36(14.04) 84.93(3.24) 86.89(4.5) 85.43(4.88) 67.83(9.87) 70.09(17.75) 70.88(15.99) 78.25(14.40) 

CD04 

ACC 78.70(10.38) 80.75(5.35) 62.25(2.99) 81.67(4.92) 65.59(10.07) 69.78(14.84) 70.55(18.30) 72.75(12.82) 

ACCH 76.77(15.86) 82.97(6.46) 65.17(5.56) 75.51(5.32) 63.74(14.41) 67.83(19.68) 68.01(21.77) 73.68(10.94) 

ACCN 80.81(15.07) 79.92(7.54) 57.88(6.84) 85.48(8.09) 66.09(12.22) 70.31(17.09) 72.65(20.82) 73.25(12.88) 

ACCL 74.77(15.66) 62.32(14.91) 74.59(10.79) 70.89(10.44) 65.786(14.99) 68.71(18.59) 69.21(22.97) 68.37(18.26) 

GY01 

ACC 80.05(7.58) 77.31(5.78) 73.88(2.44) 79.75(4.12) 66.87(7.98) 68.46(15.88) 73.41(16.70) 75.26(16.67) 

ACCH 79.88(10.19) 82.77(8.74) 82.16(4.29) 82.03(7.46) 67.88(11.43) 69.90(13.23) 75.58(15.76) 76.86(13.80) 

ACCN 80.80(9.44) 67.74(10.76) 65.26(6.09) 78.91(8.36) 66.31(14.56) 67.79(16.71) 69.56(16.88) 74.28(16.96) 

ACCL 75.81(10.06) 58.93(13.34) 61.38(12.93) 57.14(7.93) 60.41(13.39) 63.08(22.35) 65.50(20.09) 69.58(19.54) 

GY02 

ACC 78.29(13.45) 77.33(4.20) 74.47(3.31) 78.23(5.80) 63.21(11.21) 65.61(23.76) 68.92(22.47) 68.58(15.38) 

ACCH 78.12(18.25) 73.33(10.75) 77.57(5.61) 75.01(9.63) 55.63(19,01) 59.98(26.43) 61.73(24.62) 67.63(12.67) 

ACCN 83.07(14.67) 81.52 (8.70) 70.23(7.49) 82.86(9.65) 60.98(14.92) 61.71(19.11) 65.66(17.89) 69.19(15.33) 

ACCL 73.41(14.72) 73.48(9.35) 77.19(6.04) 83.58(7.57) 64.80(10.97) 70.03(15.72) 72.83(18.38) 71.81(12.50) 

KM03 

ACC 82.87(16.80) 84.67(4.24) 91.85(1.84) 87.58(5.16) 67.93(14.51) 68.91(22.73) 73.87(18.30) 76.90(13.38) 

ACCH 84.63(15.04) 80.53(11.37) 90.77(5.40) 81.03(8.32) 66.71(15.67) 69.22(21.03) 68.80(24.17) 73.67(18.20) 

ACCN 80.99(14.71) 86.14(12.36) 91.54(2.61) 92.12(9.60) 69.41(12.31) 70.53(19.87) 75.51(19.62) 78.07(18.52) 

ACCL 84.58(16.40) 83.46(8.33) 93.37(3.90) 87.98(5.79) 59.07(19.71) 62.02(23.52) 64.71(17.98) 79.93(16.72) 
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2) The Role of SMOTE by KL Divergence 

To further demonstrate the critical role of SMOTE and 𝐿𝐾𝐿, 

experiments with the variable control method are implemented. 

According to Section II-B, SMOTE by KL divergence plays a 

crucial role in handling the problem of data imbalance. 

Therefore, we carry out a more specific evaluation and analysis 

of DUACE on airspace complexity datasets of each sector to 

demonstrate the effectiveness of SMOTE and KL divergence. 

Fig. 3 provides a comparison of the “shuffle” (with SMOTE and 

𝐿𝐾𝐿) and “no-shuffle” (without SMOTE and 𝐿𝐾𝐿). The box-plot 

of accuracy through 60 runs on each airspace sector dataset is 

shown in Fig. 3. 

As can be seen from Fig. 3, the model with SMOTE and 𝐿𝐾𝐿 

contributes to improving the overall evaluation accuracy of the 

airspace complexity datasets. In addition, since SMOTE by KL 

Divergence is designed to address the category imbalance 

problem of airspace complexity data, the proposed model with 

“shuffle” enhances the accuracy on those categories of fewer 

airspace complexity samples (CD01-ACCL, CD02-ACCH, 

CD04-ACCL, GY01-ACCL, GY02-ACCL, KM03-ACCH). 

The design of SMOTE by KL Divergence greatly improves the 

evaluation accuracy of the DUACE model. 

3) The Role of Probabilistic Assignment  

In order to determine the role of probabilistic assignment, we 

observe how the hyperparameter 𝛼 in the probability matrix 𝐺 

of DUACE affects the evaluation accuracy and variance on 

each sector. Using the same experimental settings in Section C, 

we record all the accuracy as 𝛼 changes from 0 to 20. For each 

fixed 𝛼, the mean and the variance of accuracy for all 60 runs 

are computed. We then plot the error-bar for each airspace 

sector dataset as shown in Fig. 4. 

Instead of deterministically assigning a sample to a specific 

centroid, the probabilistic assignment considers the impact of 

all centroids on a sample. Therefore, the airspace complexity 

data with overlapped boundaries can still be clustered 

accurately. The experimental results in Fig. 4 confirm that the 

proposed probabilistic assignment improves the evaluation 

accuracy of the model.  

The results show that the accuracy varies with 𝛼. For some 

datasets (GY01, GY02, KM03), the accuracy is an incremental 

function of 𝛼, while for others (CD01, CD02, CD04), it is a 

parabolic function. This means that there exists an optimal 

choice for 𝛼  for DUACE to reach the best performance. 

Specifically, for GY01, GY02 and KM03, the accuracy is 

increased while the variance is decreased with the increase of 𝛼 

from 0 to 20. However, for CD01, CD02 and CD03, the most 

robust model with a satisfactory accuracy is obtained around 

𝛼  6. In summary, it is recommended to set 𝛼 to 18 for GY01, 

GY02 and KM03 and 6 for CD01, CD02 and CD04. 

A more in-depth look into the datasets reveals that 𝛼  is 

closely related to the geographical regions (the hidden structure) 

of airspace sectors (see Fig. 2). For the sectors in the South, 

including GY01, GY02 and KM03, 𝛼 is bigger. For the sectors 

in the North, including CD01, CD02 and CD04, 𝛼 is smaller. 

 shuffle no-shuffle shuffle no-shuffle 
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C
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Fig. 3.  Results between “shuffle” model and “no-shuffle” model. 
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Therefore, the setting of the hyperparameter 𝛼 in DUACE can 

be automated. The value of 𝛼  can also provide more 

information for airspace decision making.  

IV. CONCLUSION 

We have proposed a deep unsupervised learning approach for 

airspace complexity evaluation (DUACE). The approach takes 

full advantage of the non-linear mapping power provided by 

DNN and a specifically designed latent representative space 

which is tailored for clustering. The characteristics of the 

airspace datasets, including category imbalance and boundaries 

overlapping, pose significant challenges for machine learning 

in general and unsupervised learning in particular. In order to 

address the former problem, we used SMOTE to generate more 

data that is constrained by KL divergence. The aim is to balance 

the amount of data in different categories. For the latter, we 

proposed a probabilistic assignment loss function in the process 

of training to improve the clustering performance. Furthermore, 

we optimized the loss function through the pre-training and the 

joint fine-tuning processes. 

The proposed DUACE has been validated through a range of 

rigorously designed experiments. The results demonstrate 

consistent improvements in accuracy on different airspace 

datasets compared to two existing representative airspace 

complexity evaluation methods (BPNN_PCA, SOCKT), one 

promising tree boosting approach (XGBoost) and four well-

known deep unsupervised models (AE_K-means, DEC, DCN, 

ASPC-DA). Furthermore, we investigate the roles of the two 

newly proposed loss functions 𝐿𝐾𝐿  and 𝐿𝑐𝑙𝑢 , and demonstrate 

their contributions towards the improved performance. More 

interestingly, we discover that one of the hyperparameters of 

our proposed model is closely related to the geographical 

regions (the hidden structure) of airspace sectors, prompting a 

need for further research. 

In real practice, the DUACE model can assist ATCos to 

comprehend whether the airspace operation status is 

complicated and provide an objective evaluation when ATCos 

are experiencing high workload and stress. The output of the 

model is three data clusters and the corresponding centroids. 

Air traffic controllers can refer to the output centroids and few 

samples in the same cluster to determine the corresponding 

airspace complexity levels. In this way, the manpower, 

workload and material costs of the airspace complexity 

evaluation work will be greatly reduced. 
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