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Abstract—Applying of network slicing in vehicular networks
becomes a promising paradigm to support emerging Vehicle-to-
Vehicle (V2V) applications with diverse quality of service (QoS)
requirements. However, achieving effective network slicing in
dynamic vehicular communications still faces many challenges,
particularly time-varying traffic of Vehicle-to-Vehicle (V2V) ser-
vices and the fast-changing network topology. By leveraging
the widely deployed LTE infrastructures, we propose a semi-
decentralized network slicing framework in this paper based
on the C-V2X Mode-4 standard to provide customized network
slices for diverse V2V services. With only the long-term and
partial information of vehicular networks, eNodeB (eNB) can
infer the underlying network situation and then intelligently
adjust the configuration for each slice to ensure the long-
term QoS performance. Under the coordination of eNB, each
vehicle can autonomously select radio resources for its V2V
transmission in a decentralized manner. Specifically, the slicing
control at the eNB is realized by a model-free deep reinforcement
learning (DRL) algorithm, which is a convergence of Long Short
Term Memory (LSTM) and actor-critic DRL. Compared to the
existing DRL algorithms, the proposed DRL neither requires any
prior knowledge nor assumes any statistical model of vehicular
networks. Furthermore, simulation results show the effectiveness
of our proposed intelligent network slicing scheme.

Index Terms—V2V communication, C-V2X Mode-4, network
slicing, deep reinforcement learning.

I. INTRODUCTION

In recent years, vehicle-to-vehicle (V2V) communication
has become one critical enabler for the rapidly growing
connected vehicle and intelligent transportation industries.
The global connected vehicle market is expected to grow
from $ 42.25 billion in 2018 to $ 142.49 billion by 2026,
expanding at a Compound Annual Growth Rate (CAGR) of
16.4 % [1]. Meanwhile, emerging V2V applications, such
as cooperative collision avoidance, autonomous driving, and
platooning control, have led to a broad spectrum of Quality
of Service (QoS) requirements on vehicular networks [2], [3].
However, conventional vehicular networks supporting human-
centric applications cannot fully meet the highly diverse QoS
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requirements of future V2V applications. This limitation re-
quires the new generation of vehicular networks to enable
diverse QoS provisioning by intelligent and efficient utilization
of limited radio resources [4].

One promising solution for diverse QoS provisioning in
vehicular networks is network slicing, which provides a mul-
tipurpose platform to enable a wide range of applications and
services. Network slicing creates multiple virtual customized
networks, referred to as network slices, on top of a common
substrate infrastructure. Therefore, the main goal of this paper
is to implement the network slicing paradigm in vehicular
networks, where the operator can flexibly compose network
slices for meeting specific QsS demands of various V2V
applications.

However, the detailed design of the network slicing scheme
for vehicular networks is still very challenging due to the
following two open issues,
• How to integrate the network slicing paradigm with state-

of-art vehicular communication techniques in a cost-
effective and scalable manner?

• How to realize proactive and situation-aware network
slicing that can ensure diverse QoS requirements of V2V
services in time-varying vehicular networks?

This paper addresses these two issues by combining the Cel-
lular Vehicle-to-Everything (C-V2X) system with the concept
of Artificial Intelligence (AI) empowered network slicing.

Firstly, the C-V2X standard has been proposed to replace the
existing IEEE 802.11p protocol, which cannot fully support
today’s V2V services. Currently, the C-V2X standard includes
two modes of operation, i.e., C-V2X Mode-3 and C-V2X
Mode-4. In Mode-3, eNodeB (eNB) directly allocates radio re-
sources to vehicles for their V2V transmissions in a centralized
way. In Mode 4, vehicles perform distributed radio resource
scheduling to autonomously select radio resources from a radio
resource pool without a centralized scheduler [5]. However,
compared with Mode 4, Mode 3 could cause unbearable
control signaling overhead and processing delay in the dense
and dynamic V2V scenarios. Since the poor scalability of
Mode 3, exploration of Mode 4 is a potential direction to
enable diverse QoS provisioning in realistic transportation
environments.

Secondly, although network slicing can customize network
slices according to specific QoS demands, this performance
gain comes at the cost of introducing much more complexity
into the communication system. This high complexity makes
traditional mathematical model-based approaches to awareness
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of network situation and network operation no longer adequate
since the model-based approaches either lack explicit models
or do not have the processing time to calculate heuristic
solutions [6], [7]. This challenge motivates us to propose
an AI-empowered network slicing architecture for vehicular
networks to support vehicular applications [8]. It shows great
potential in developing intelligent network slicing schemes for
supporting V2V applications with diverse QoS requirements.

With the observed considerations, this paper proposes a
semi-decentralized network slicing framework based on C-
V2X Mode 4 to maximize the long-term QoS performances of
V2V services. In principle, the operation of network slices is
under the supervision of eNB. Based on deep reinforcement
learning (DRL), eNB extracts the underlying network situa-
tions and adjusts slice configuration accordingly. Under the
coordination of eNB, vehicles of each slice are automatically
performing radio resource scheduling procedures. The follow-
ing briefly summarizes the main technical contributions of this
work:

• Design of a semi-decentralized network slicing frame-
work based on C-V2X Mode 4. It has two layers. First,
eNB executes adaption of slice configuration, i.e., inter-
slice radio resource allocation and tuning of parameters
of Mode 4 protocol, according to the network dynamics
at a large timescale. Then, conditioned by the slice
configuration determined by the eNB, the vehicle in each
slice performs autonomous radio resource selection for
V2V transmission based on Mode 4. In this framework,
the eNB performs slicing control with coarse resource
and time granularity and does not require frequent inter-
action between eNB and vehicles, significantly reducing
the signaling overhead and allowing sufficient time for
intelligent processing.

• Model-free DRL to realize the situation-aware slicing
control with only partial information of vehicular net-
works. The adaption of slice configuration at eNB is
functioned by a DRL agent. However, the eNB only
has partial observation information of vehicular networks.
This makes conventional DRL methods inefficient, which
are relying on the prior knowledge of systems. There-
fore, based on the partially observed Markov decision
process (PoMDP), we propose an actor-critic structured
DRL algorithm by exploring the long short-term memory
(LSTM). Specifically, LSTM enables the eNB to extract
the underlying network situation from historical, partial
information of the vehicular network. With the proposed
DRL algorithm, eNB can perform slicing control with
self-configuration and self-optimization capabilities.

The remainder of this paper is structured as follows. Section
II presents related works. Section III describe the considered
system model of network slicing in Mode 4 based vehicular
networks. In Section IV, we propose a semi-decentralized net-
work slicing framework based on C-V2X Mode 4. In Section
III, we formulate the optimization of slicing configuration
policy at the eNB as a PoMDP problem. In Section IV, we
propose an actor-critic structured DRL algorithm to solve
the formulated problem. In Section V, we present numerical

experiments to compare the performance of the proposed
algorithm against state-of-the-art baseline schemes. Finally,
Section VI draws the conclusions.

II. RELATED WORKS

Since the C-V2X standard is relatively new, which is
introduced in 3GPP Releases 14 and 15 and will be further
enhanced in Release 16 [9], [10]. Current works mainly focus
on three research topics: performance analysis of C-V2X
network, radio resource management, and network slicing in
C-V2X networks.

As mentioned above, C-V2X Mode-4 employs the dis-
tributed radio scheduling scheme, referred to as sensing
based Semi-Persistent Scheduling (SPS) scheme, to enable
autonomous radio resource management of each vehicle. In
the sense-based SPS scheme, vehicles sense and keep a
history of the channel status and utilize it to select suitable
radio resources for V2V transmissions. Since the autonomy
nature of C-V2X Mode 4, it faces radio resource sharing
conflicts, i.e., packet collisions when two or more vehicles
simultaneously utilize the same radio resources. This issue will
affect the performance of vehicular networks. Thus, based on
probabilistic theory, performance analytical models of C-V2X
Mode 4 network are proposed for quantifying the collision
probability, and throughput as a function of vehicle density
and the distance between transmitting and receiving vehicle
[11], [12]. Besides, based on network-level simulations, the
authors in [13]–[15] analyze the impact of the main parameters
of Mode 4 on the network performance, which shows that
Mode 4 is robust and scalable for highly dynamic vehicular
scenarios.

To further improve the performance of C-V2X networks,
different studies have proposed options to enhance the radio
resource management schemes. The authors in [16] propose
a distributed radio resource management scheme for C-V2X
Mode 4, which exploits geography information of vehicles
to improve V2V communication reliability. Likewise, in [17],
a spatial reuse-based radio resource management scheme is
proposed to improve the spectrum utilization of vehicular
networks. Instead of simply improving spectrum utilization, in
the context of C-V2X assisted autonomous driving, the authors
in [18] jointly optimize radio resource allocation, cooperative
driving perception, and vehicle controls to improve driving
safety and transportation efficiency.

However, the effectiveness of C-V2X Mode 4 still needs to
be improved due to the following two limitations:
• Low operation efficiency of C-V2X Mode 4 network.

In this decentralized network, each vehicle performs the
distributed radio resource scheduling independently based
on its local knowledge and needs, leading to selfish deci-
sions from different vehicles. Thus, to avoid unreasonable
decisions from each vehicle, it is critical to establish
coordination between eNB and vehicles.

• Extreme difficult for network situational awareness.
Firstly, due to the high mobility of vehicles, vehicular
network status could change rapidly. Meanwhile, real-
time sensing of network situations will consume exces-
sive overheads to exchange sensing information between
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eNB and vehicles. These make the real-time and precise
awareness of network situations challenging at the eNB.

Recently, network slicing has been introduced into vehicular
networks to meet diverse QoS requirements for V2X services.
By leveraging Lyapunov optimization, [19] proposes a RAN
slicing scheduling strategy for the joint radio resource alloca-
tion and power control, aiming to maximize long-term network
capacity while guaranteeing the strict QoS requirements of
V2V services. In [20], a hierarchical RAN slicing framework
is developed for the heterogeneous vehicular networks, where
other slices opportunistically reuse the idle radio resources of
one network slice to improve the spectrum efficiency.

Based on our literature review and analysis, the above works
on the C-V2X based vehicular networks have the following
two limitations,
• Most of the literature assumes that network infrastruc-

tures can fully observe the status of the vehicular network.
However, this assumption is too optimistic for the real
scenarios of vehicular networks due to the high mobility
of vehicles [21]. This characteristic hinders the direct
sensing of network situations since it needs frequent inter-
action between eNB and vehicles, which will consume a
large amount of signaling overheads. Thus, one effective
solution is to enable the network slicing with only the
long-term and partial information of vehicular networks.

• Most works are regulated by the conventional mathemat-
ical model-based approaches. The fundamental premise
of these model-based approaches is to obtain a precise
mathematical model to describe the system. Then, based
on the accurate system model, we can further analyze or
optimize the system performance. However, the dynamics
and variation pattern of vehicular networks are difficult
to be modeled accurately. Thus, it is reasonable for us to
enable the operation of C-V2X based networks through
a model-free AI technology, such as model-free DRL
technologies.

Notations: In the following, italic boldface lower-case and
upper-case characters denote vectors and matrices, respec-
tively. Sets are denoted by calligraphic letters, i.e., U . The
operator |U| represents the cardinality of set U . To ease
readability, we list the major notations in Table I.

III. SYSTEM MODEL

Consider a freeway scenario with one eNB, where total
available bandwidth is B. The time dimension is partitioned
into slots of duration δ, indexed by t ∈ {1, 2, ...}. Assume
the physical vehicular network is split into N network slices,
denoted by N = {1, 2, ..., N}, each of which has a specific
V2V application it provides. Vehicular user equipment (VUE),
counted in terms of transmitter, associated with slice n ∈ N
are denoted as Vn. Assumed that all VUEs can successfully
receive the information of slice configuration from the eNB.

A. Traffic Model of V2V Services

In slice n ∈ N , each VUE needs to periodically transmit
packet to its receiving vehicle with a period of Tn slots.

TABLE I
MAJOR NOTATIONS USED IN THIS PAPER

Notation Definition
N Set of network slices: {1, ..., N}
Vn Set of VUEs belong to network slice n ∈ N
B Total available bandwidth
δ Duration of each time slot
Fn Number of subchannel in slice n ∈ N
Bn Bandwidth of each subchannel in slice n ∈ N
T sw
n Length of the selection window in slice n ∈ N

si,m,t si,m,t = 1 if VUE i selects the m-th sub-channel at slot t
ri,t Data rate of VUE i at slot t
∆t Each epoch is composed by ∆t consecutive slots
d̄n,k Average packet delay of VUEs in slice n
β̄n,k Average Packet Drop Ratio (PDR) of slice n
x̄n,k Average subchannel occupancy ratio in slice n
On,k Observation of slice n at epoch k:

{∣∣Vn,k∣∣, d̄n,k, β̄n,k, x̄n,k}
Ok Observation of network at epoch k: {On,k |n ∈ N }
Hk Observation history of network at epoch k: (O1, ...,Ok−1)
Ck Configuration of slice n at epoch k: {Fn, Bn, T sw

n ,∀n ∈ N}
πθ Slice Configuration Policy: Mapping from Hk to Ck

J (Ok) QoS-related reward function of all slices

Assume the packet in slice n ∈ N have a fixed data size Zn (in
bits). It is assumed that each VUE has a queue buffer to store
the packet to be delivered, and the packet is delivered based
on the first-come-first-serve (FCFS) criteria. Let l(= 1, 2, ...)
denotes the index of the packet arriving at VUE i’s buffer in
slice n. Furthermore, the inter-packet arrival time instant of
l-th packet of VUE i is denoted as tai,l = l · Tn.

B. V2V communication based on C-V2X Mode 4

The total bandwidth B are sliced and assigned to each slice
by the eNB. In slice n ∈ N , the assigned bandwidth are re-
organized as Fn sub-channels, indexed by m ∈ {1, 2, ..., Fn},
and the bandwidth of each subchannel is Bn (FnBn < B).

In Mode 4, VUE autonomously selects and reserves sub-
channel for V2V transmission with Sensing based Semi-
Persistent Scheduling (SPS) scheme [5]. As shown in Figure
1, at slot tai,l, supposing that VUE i ∈ Vn needs to select a
sub-channel to transmit l-th packet (l = 1, 2, ...), then this
procedure can be divided into the following three steps, Step
1 (Sensing): VUE i continuously senses the signal strength in
each subchannel during the last Tsense slots before slot tai,l
(referred to as sensing window), and calculate the average
signal strength of subchannel.

Step 2 (Subchannel Selection and Transmission): VUE
i can select a subchannel within a Selection Window (SW).
SW is a time window that includes the slots in the range[
tai,l, t

a
i,l + T sw

n

]
, where T sw

n is the length of selection window.
VUE i sorts the candidate sub-channels in terms of the average
received signal strength during the last sensing window, and
then reserves the sub-channel with the lowest average received
signal strength, which can be stated as:
• VUE i ranks all sub-channels in the selection window by

their average signal strength in a descending order and
selects the bottom 20% of them to compose the list of
candidate sub-channels, denoted as S;

• VUE i will randomly choose one of the candidate sub-
channel in list S. Assume VUE i chooses m-th (1 ≤ m ≤
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sens
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Fig. 1. An illustration of Sensing based Semi-persistent scheduling (SPS) process of VUE i ∈ Vn in network slice n: At slot tai,l, VUE i needs to select
a sub-channel to transmit its packet. VUE i can select a subchannel within a Selection Window (SW). SW is a time window that ranging from slot tai,l to
tai,l + T sw

n , where T sw
n is the length of SW. Then, VUE i sorts the idle sub-channels in terms of the average signal strength, which are sensed during the

last sensing window that ranging from slot tai,l − Tsense to slot tai,l. Finally, VUE i selects a sub-channel with the lowest average signal strength.

Fn) sub-channel at t-th slot for transmitting l-th packet.
Let si,m,t denote sub-channel selection indicator for VUE
i, where si,m,t = 1 means m-th sub-channel at the t-th
slot is chosen by VUE i; otherwise, si,m,t = 0.

However, m-th sub-channel at t-th slot may be used by other
VUEs in slice n. For instance, supposing that VUE i and
i′ ∈ Vn simultaneously selects m-th sub-channel at t-th slot,
i.e., si,m,t = si′,m,t = 1. This condition will induce the intra-
slice interference, which deteriorates the reliability of V2V
communication. Then, Signal-to-Interference-plus-Noise Ratio
(SINR) of the receiving vehicle of VUE i in m-th subchannel
at t-th slot is given by

γi,m,t =
P |gi,m,t|2∑

i′∈Vn\{i} si′,m,tP |gi′,m,t|
2 +N0

, if si,m,t = 1, (1)

where gi,m,t is the channel gain, which contains path loss,
shadowing effect and small-scale fading, from VUE i to its
receiving vehicle in m-th subchannel, gi′,m,t is the interference
channel gain from VUE i′ to the receiving vehicle of VUE i,
P is the transmitted power of VUE, and N0 is the power of
additive white Gaussian noise (AWGN) in each sub-channel.

Therefore, the achievable data rate of receiver of VUE i at
the t-th slot can be approximated by Shannon theory,

ri,t =
∑Fn

m=1
si,m,t · [Bnδ · log (1 + γi,m,t)], i ∈ Vn, (2)

where Bn is the bandwidth of each subchannel in slice n and
δ is the time duration of slot.

The selected sub-channel is used to transmit a full packet.
Then, delay of l-th packet at VUE i’s buffer can be expressed
as,

di,l = t− tai,l, i ∈ Vn. (3)

Specifically, packet latency di,l approximately follows discrete
uniform distribution unif {1, T sw

n }. Thus, in slice n ∈ N , the
latency of VUE is impacted by T sw

n (selection window length).
In our system model, packet is lost when Zn error-free

bits (i.e., packet size) cannot be correctly decoded by the
receiving vehicle of VUE i. Thus, let binary variable Li,l
denotes the packet loss indicator at VUE i’s buffer, which
can be represented as

Li,l =

{
1, if ri,t < Zn,

0, otherwise

Furthermore, we define subchannel occupancy ratio, xn,t,
to characterize the level of subchannel congestion in slice n,

xn,t =
∑Fn

m=1
1

{∑
i∈Vn

si,m,t ≥ 1
}/

Fn, (4)

where 1 {·} is the indicator function. Step 3 (Reservation
and Re-selection): Once a sub-channel is reserved, the same
sub-channel will be used for several consecutive V2V trans-
missions. After a random number of V2V transmissions VUE
i will reselect its reserved sub-channel with probability pres,
and repeat Step 1 and 2.

Remark 1: Specifically, all VUEs associated with network
slice n ∈ N have the same parameters (i.e., Fn, Bn and T sw

n )
of C-V2X Mode 4. The V2V communication performance
is determined by these parameters. In our proposed network
slicing framework (Section III-A), the eNB will determine
how to adjust the parameters of C-V2X mode 4 for each slice
according to the network situations.

IV. SEMI-DECENTRALIZED NETWORK SLICING AND
PROBLEM FORMULATION

A. Proposed Network Slicing Framework

In this study, as an extension of our original work [8], a
semi-decentralized network slicing framework for vehicular
networks is proposed. It consists of an upper-level and a
lower-level. As shown in Figure 2, at the upper-level, eNB
is responsible for adjusting the slice configuration according
to the dynamics of V2V service traffic at a large timescale.
Specifically, the time resolution of upper-level is defined as
an epoch, indexed by k ∈ {1, 2, ...}, the k-th epoch is ranging
from slot k · ∆t to slot (k + 1) · ∆t − 1. At the lower-level,
vehicles in each slice autonomously select their sub-channel
using the sensing-based SPS scheme, which is configured by
the upper-level. It is noteworthy that the upper-level is not
involved in the real-time radio resource scheduling for V2V
communications.

The upper-level is in charge of tuning the slice configuration
to improve the QoS performance of services according to the
partial observation history of vehicular networks. First, the



5

Large timescale

( )1 -th epochk − ( )1 -th epochk +

Output

-th epochk

Input

Slice Configuration   Slice Configuration   Slice Configuration   

Observation history  sSsObservation history  sSsObservation history  sSs
kHObservation history  sSs
kHObservation sss

Unobserved

Observation sss

Unobserved

Vehicular Networks

Observation sss

Unobserved

Vehicular Networks

Observation sss

Unobserved

Vehicular Networks

Observation sss

Unobserved

Vehicular Networks

1k−OObservation sss

Unobserved

Vehicular Networks

1k−O

kC
Observation sssssObservation sssssObservation sssss

kOObservation sssss
kO

Slice Self-Configuration PolicySlice Self-Configuration PolicySlice Self-Configuration Policy

( ) : Pr ,k k k k k k →    C H H C H C

Slice Self-Configuration Policy

( ) : Pr ,k k k k k k →    C H H C H C

Small timescale

Fig. 2. The flowchart of the proposed semi-decentralized network slicing scheme for the C-V2X Mode 4 based vehicular networks.

specific definition of partial observation of vehicular networks
is given as follow:

Definition 1 (Partial Observation of Vehicular Networks):
The observation of vehicular network at k-th epoch is defined
as

Ok= {On,k |n ∈ N } ∈ O,

where the observation of slice n ∈ N at k-th epoch is

On,k= {|Vn,k|, x̄n,k} ,

a). Number of VUEs in slice n, |Vn,k|: It is defined as the
number of vehicles associated with slice n in k-th epoch,
i.e. |Vn,k|, where Vn,k is the VUE set in slice n during
k-th epoch. Because epoch is in the level of hundreds of
milliseconds, which is smaller than the vehicle inter-arrival
time. Therefore, we assume that set Vn,k does not change
within k-th epoch.

b). Average subchannel occupancy ratio in slice n, x̄n,k: It is
defined as

x̄n,k =
1

∆t

∑(k+1)∆t−1

t=k∆t
xn,t.

Besides, O is the set of all possible observations of vehicular
networks.

Remark 2: Within each epoch, the eNB gets these two kinds
of information through sensing subchannels at each slot, which
barely needs information exchange between eNB and vehicles
in its service area. At the end of each epoch, eNB aggregates
the temporal dynamics of these raw information within epoch
and converted into the observation of vehicular network Ok.
However, due to the high complexity and time varying nature
of vehicular networks as well as the limited sensing ability, the
observation of vehicular networks Ok is an partial information
of network situation, which cannot be regarded as a full status
of vehicular network.

Therefore, the eNB (i.e., the upper-level controller) can
exploit the observation history of vehicular networks and infer
the full information of network situation. Specifically,

Definition 2 (Observation History of Vehicular Networks):
At the beginning of k-th epoch, the eNB obtains the partial
observation of vehicular networks during the previous epoch
(i.e., Ok−1) and add it to the observation history. Herein, the
observation history of vehicular networks is defined as

Hk = (O1, ...,Ok−1) .

With the observation history, as shown in Figure 2, the upper
level controlling policy are described as follows,

Definition 3 (Network Slicing Configuration Policy): The
slicing configuration policy π is defined as a stochastic policy,

πθ (Ck |Hk ) : Hk → Pr [Ck |Hk ] , Ck ∈ C,

which is a mapping from observation history of vehicular
networks Hk to a probability distribution over the candidate
slice configuration C, which is the collection of all candidate
slice configurations. Furthermore, Ck is the slice configuration
at k-th epoch,

Ck=
{
Fn, Bn, T

sw
n

∣∣∣∑
n∈N

Fn ·Bn ≤ B,n ∈ N
}
,

a). Fn is the number of subchannels in slice n;
b). Bn is the number of subchannels in slice n;
c). T sw

n is the length of selection window of slice n.
Remark 3: In this paper, the network slicing configuration

policy is represented by an Artificial Neural Network (ANN)
πθ, where θ is the weight vector associated with this ANN.
The output of πθ is a probability distribution over candidate
slice configurations. For instance, πθ (Ck |Hk ) is the probabil-
ity of selecting slice configuration Ck ∈ C under the condition
of observation history Hk.

B. Problem Formulation
In the following, we formulate the optimization of the

RAN slicing policy in the proposed scheme as a stochastic
optimization problem, whose goal is to maximize the long-
term QoS performance of V2V network slices. Specifically,
the average packet delay of UE, should be considered as one
important metric of QoS for each slice, which is defined as,

d̄n,k=
1

|Vn,k|
∑

i∈Vn,k

E
{
di,l
∣∣k∆t ≤ tai,l < (k + 1) ∆t

}
, n ∈ N .

Meanwhile, the average Packet Drop Ratio (PDR) of UE
quantifies the communication reliability, which should be
considered as another metric of QoS. It is defined as,

β̄n,k=
1

|Vn,k|
∑

i∈Vn,k

E
{
Li,l

∣∣k∆t ≤ tai,l < (k + 1) ∆t
}
, n ∈ N .

Then, we define the reward function for slice n at the k-th
epoch as

Jn,k = αn,1 · UPDR
QoS

(
β̄n,k, β̄

max
n , β̄min

n

)
︸ ︷︷ ︸

PDR related reward

+ αn,2 · ULat
QoS

(
d̄n,k, d̄

max
n , d̄min

n

)
︸ ︷︷ ︸

Packet Delay related reward

, (5)
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UPDR
QoS

(
β̄n,k, β̄

max
n , β̄min

n

)
=


1, β̄min

n > β̄n,k ≥ 0,(
β̄max
n − β̄n,k

)/(
β̄max
n − β̄min

n

)
, β̄max

n > β̄n,k ≥ β̄min, (6)

0, β̄n,k > β̄max
n ,

ULat
QoS

(
d̄n,k, d̄

max
n , d̄min

n

)
=


1, d̄min

n > d̄n,k > 0,(
d̄max
n − d̄n,k

)/(
d̄max
n − d̄min

n

)
, d̄max

n > d̄n,k ≥ d̄min
n , (7)

0, d̄n,k ≥ d̄max
n ,

where UPDR
QoS (·) is a normalized reward function of average

PDR β̄n,k of slice n. To stabilize the learning procedure of the
proposed DRL algorithm developed in Section IV, UPDR

QoS (·) is
designed as a piecewise-linear concave function in (6), where
β̄min
n and β̄max

n denotes the min (target) and maximum tolerant
PDR for V2V service in for slice n. αn,1 is the maximum
revenue, when β̄n,k is less than target PDR value β̄min

n .
Meanwhile, ULat

QoS (·) in (7) is a normalized reward function
of average packet delay d̄n,k of slice n, where d̄max

n and d̄min
n

denote the maximum tolerant value and minimum (target) of
packet delay for V2V service in slice n. αn,2 is the maximum
revenue, when d̄n,k is less than minimum packet delay d̄max

n .
Therefore, at each epoch k, the reward function of all slices

can be defined as

Jk (Ok) =
∑

n∈N
Jn,k. (8)

The goal of this paper is to find the optimal network slicing
configuration policy with weights θ∗ that can maximize the
long-term reward of all slices, which can be formulated as

max
θ

{
J (πθ) = E

[∑∞

k=1
λk−1Jk (Ok)

∣∣∣πθ]} , (9)

where λ is the discount factor.

C. PoMDP
Since the network slicing configuration policy π, defined in

Definition 3, is based on the partial observation of network
status, Ok, instead of the complete network status. Therefore,
the formulated problem (9) can be treated as a PoMDP with
an infinite horizon discounted reward. PoMDP is an extension
of MDP by adding a set of observations and the corresponding
observation model [22], which is defined as follows,
• System State: The complete network status at k-th epoch

is denoted as Xk, which follows Markovian, but cannot
be directly observed by eNB;

• Observation: At each epoch, the eNB (agent) indirectly
observes the complete network status Xk through ob-
servation Ok in Definition 1, which can be seen as a
stochastic function of Xk;

• Action: The action of the controller is configuration of
slices Ck in Definition 3 and the discrete action space is
C (the collection of candidate slice configuration);

• Observation History: The observation history at the k-th
epoch Hk, in Definition 2;

• Reward Function: It is the revenue of all slice at each
epoch Jk(Ok) in formula (9);

• Q Function: It is expected long-term revenue from taking
action Ck under observation history Hk, which is

Q (Hk,Ck) = Eτ>k
[∑∞

k′=k
λk
′−kJk′ (Ok′) |Hk,Ck

]
,

where τ > k refers to the sampling trajectory of obser-
vations and actions after epoch k,

τ > k= (Ok,Ck,Ok+1,Ck+1, · · ·) .

• Value Function: It represents the expected long-term
revenue starting from observation history Hk and the
relationship between Q function and value function is,

V (Hk) =
∑

C∈C
πθ (C |Hk ) ·Q (Hk,C) ,

where πθ (C |Hk ) is the probability of choosing configu-
ration C ∈ C at observation history Hk, under stochastic
policy πθ.

Unfortunately, PoMDP is a very difficult to solve in general
and directly solving it suffers the high computational complex-
ity. However, we need to emphasize that utilizing existing RL
methods for the problem (9) will raise the following challenge.

Challenge 1: A key assumption underlying majority of RL
algorithms is the full observability of system status. However,
in this paper, only a partial observation of vehicular network
status is available for the eNB, which makes the existing RL
methods inadequate.

V. SOLUTION BASED ON ACTOR-CRITIC DEEP
REINFORCEMENT LEARNING

Deep Reinforcement Learning (DRL) can apply to a wide
range of control problems, since ANN can extract high-level
features from raw input data and provide a good approximation
of objective functions. Therefore, in this section, we develop a
DRL algorithm that can deal with PoMDP problem (9). Firstly,
we briefly explain the principles of Actor-Critic based RL
and show its potential for solving problem (9). Then, to deal
with Challenge 1, we propose an Actor-Critic DRL algorithm,
which can obtain the optimal slicing configuration policy πθ∗
from the observation history of vehicular networks, without
requiring prior expert knowledge of networks.

A. Actor-Critic based RL for Solving the Formulated Problem

Generally, there are two categories of RL methods: 1) (e.g.
Q-learning) and 2) RL based on policy search (e.g. policy
gradient) [22]. Under the basic assumption of Markovian
property, the value-based RL methods construct a value/Q
function model for estimating how good each state, or state-
action pair is, and then search for the optimal policy implic-
itly by optimizing the value/Q function. The RL based on
value function have a good sampling efficiency and stable
performance, but at cost of introducing bias in estimating of
the value/Q function. On the other hand, without maintaining
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a value function model, the policy search methods directly
search for the optimal policy by the approximated gradient
with respect to the parameters of policy. Compared to the
value-based RL methods, policy search methods can obtain
a good policy with a faster convergence rate, which can
be extended to the non-Markovian scenarios (e.g. PoMDP
problems). However, this category usually tends to converge
to a local optimal and suffer from higher variance and lower
sample efficiency.

To deal with these disadvantages, the Actor-Critic method,
a hybrid of both policy-based and value-based method, is
proposed. Particularly, as comparison of the value-based meth-
ods and the policy-based methods, we highlight two key
advantages of the actor-critic methods in the following:
• The actor-critic methods can be applied for non-

Markovian scenario, such as the PoMDP problem (9),
where only the observation of vehicular networks is
available at the controller;

• It can balance the trade-off between the variance of policy
gradient and bias of value function estimation, as well as
the satisfactory convergence property.

Thus, we utilize the actor-critic method to solve problem (9).
The “actor part” updates the policy in the direction given by
the “critic part”, that is,
a). The Actor Part: It uses the policy gradient method

to search the best performing policy over a set of
parametrized policies πθ, where vector θ is the parameters
of RAN slicing policy π defined in Definition 3. It is
assumed that the policy πθ is differentiable with respect
to parameter vector θ, and the gradient of the objective
function J(θ) in the problem (9) is denoted as ∇θJ (πθ).
Then, the maximum of the objective function J(θ) can
be obtained by ascending the gradient of the objective
function ∇θJ (πθ). The policy gradient update for the
parameter vector θ is given by

θ ← θ + η · ∇θJ (πθ) (10)

where η > 0 is the learning rate for the policy update.
b). The Critic Part: According a value function estimation

model, the goal of the critic part is to evaluate the perfor-
mance of the policy πθ and use it to calculate ∇θJ(πθ).
For problem (9), we can design an ANN to approximate
the value function and update the weights of ANN utilizing
the observation data set of vehicular networks.

Therefore, we aim at designing a mode-free DRL algorithm
with the actor-critic structure to solve problem (9). However,
two main technical challenges arise as follows:
• Challenge 2: How to deduce the policy gradient ∇θJ (πθ)

for the PoMDP problem (9)? Since existing policy gra-
dient methods can only apply to the Markovian scenario.

• Challenge 3: The input of the RAN slicing policy πθ is
observation history Hk, which is a time sequence. How
to perform temporal abstraction of Hk in a saleable way?

B. Proposed DRL Algorithm with Actor-Critic Structure

Firstly, we start with the policy gradient ∇θJ (πθ) to deal
with Challenge 2. It is noteworthy that the detailed design of
DRL algorithm will be discussed later. Here, we propose the

customized policy gradient for PoMDP.

Theorem 1 (Proposed Advantage Actor-Critic DRL algo-
rithm for PoMDP Problem): Following the idea of Advantage
Actor-Critic (A2C) methods for the MDP problems, the policy
gradient ∇θJ (πθ) for the formulated PoMDP problem (9) is
given by,

∇θJ (πθ) =

Eτ

[
∞∑
k=1

λk−1 · ∇θ log πθ (Ck |Hk ) ·A (Hk,Ck)

]
, (11)

where τ = (O1,C1,O2, ...) is a trajectory of network status,
and function A(Hk,Ck) is the advantage function, which is

A (Hk,Ck) = Q (Hk,Ck)− V (Hk) . (11a)

Proof: Detailed derivations are given in Appendix A.
Remark 4: Theorem 1 acquires an explicit form of policy

gradient ∇θJ (πθ), where the policy gradient (11) is an expec-
tation over entire trajectory τ of vehicular networks. We can
compute gradient (11) approximately by using Monte-Carlo
estimation. Specifically, the paradigm of policy gradient in
(11) is like the concept to the maximum likelihood (ML)
approaches in supervised learning, except that the policy
gradient is weighted by sums of advantage functions over
the trajectory. In fact, these sums of advantage functions may
be positive or negative, thus the policy gradient will try to
decrease the likelihood of samples with “negative sums of
advantage functions” and increase the likelihood of others.

Based on Theorem 1, we propose a DRL algorithm
with actor-critic structure. In the this framework, the critic
part utilizes an ANN to approximate the advantage function
A(Hk,Ck), which is defined in formula (11a), while the actor
part utilizes the gradient formula (11) to estimate the policy
gradient ∇θJ (πθ) and then updates the parameter vector θ of
the RAN slicing policy πθ according to the formula (10) in
Section IV-A.

C. Implementation of DRL with Actor-Critic Structure
1) Critic Part: Compared to the Q-function Q(Hk,Ck) and

the advantage function A(Hk,Ck), the value function V (Hk)
is the simplest one since it only depends on the observation
history Hk and thus is hoped to be easier for the critic
part to learn. With the value function V (Hk), the Q-function
Q(Hk,Ck) can be approximated by sample value. Then, the
advantage function A(Hk,Ck) can be approximated as follows

Â (Hk,Ck) =
∑∞

k′=k
λk
′−kJk′ (Ok′)− V (Hk) , (12)

where Ok and Hk are sampled through Monte-Carlo method.
Therefore, the critic part approximates the value function

V (Hk), and then estimate the advantage function A(Hk,Ck).
Like the idea of utilizing the Deep Q-Network (DQN) to fit the
Q function, we introduce a critic neural network V̂ to approxi-
mate the real value function V (Hk). However, as mentioned in
Challenge 2, the critic neural network V̂ is a function in terms
of the observation history at the k-th epoch Hk. To perform
the temporal abstraction of observation historyHk, we modify
V̂ by leveraging recent advances in recurrent neural networks
(RNN), that is, replacing the first fully-connected layer with
a Long Short-Term Memory (LSTM) layer, which is regarded
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as a memory cell with three different gates, which regulating
the information and thus allowing to keep the past information
[23]. Therefore, the LSTM layer can capture the longer-term
temporal dependencies of observation historyHk as compared
to the traditional RNNs.

Therefore, the critic neural network V̂ is represented as

V (Hk) ≈ V̂w(Ĥk).

where vector w is the weights of the critic neural network V̂
and term

Ĥk = (Ok−K , ...,Ok−1) .

is a finite fixed-length window of past observations, which
consists of the K ∈ N+ most recent observations of vehicular
networks and actions to the k-th epoch.

In the learning process of the critic neural network V̂ ,
weights w is learned by minimizing the Mean Square Error
(MSE) loss function at each learning step, which is given by

L (w) =
1

2
· E
{[
V̂w(Ĥk)−

∑∞

k′=k
λk
′−kJk′ (Ok′)

]2}
. (13)

Then, the weights w of the critic neural network V̂w(Ĥk) are
updated as

w ← w+ν · ∇wL (w) ,

where ν is the learning rate for weights w.
In the following, we describe the detailed structure of the

critic neural network V̂w(Ĥk).
a). Input: The input Ok (i.e. observation of vehicular net-

works) to the critic neural network is a vector size 2N ,
where the 2n+1-th to 2(n+1)-th input entries corresponds
to the observation of slice n ∈ N at the k-th epoch, On,k.

b). LSTM layer: It maintains an internal state and aggregate
observation states over time. This gives the critic neural
network is responsible of learning how to aggregate obser-
vation states over time. We use the Rectified Linear Unit
(ReLU) as the activation function for the LSTM layer.

c). Hidden layers: The number of neurons of each hidden
layer is the same, and ReLU function is used as the
activation function.

d). Output layer: The output of the DQN is a scalar, which
is the estimated value of function V (Hk) under current
observation history Hk.

2) Actor Part: Based on Theorem 1 and policy gradient
update equation (10), the weights θ of RAN slicing policy πθ
are updated as

θ ← θ + η · ∇θJ (πθ)

where η ∈ R+ is the learning rate for the update of parameter
w and

∇θJ (πθ) ≈
∑

k

[
λk−1 · ∇θ log πθ (Ck |Hk ) · Â (Hk,Ck)

]
,

and the advantage function Â(Hk,Ck) is defined in (12).
Furthermore, to evaluate the training performance of the

actor neural network πθ, we define the loss function of the
actor neural network as

L (θ) =
∑

k

[
λk−1 · ∇θ log πθ (Ck |Hk ) · Â (Hk,Ck)

]
. (14)

Actor neural network πθ has the same structure as the
critic neural network V̂w. It is noteworthy that the actor neural
network and the critic neural network share the same LSTM
layer, as illustrated in Figure 3. This setting can make the

actor and critic neural network shares the same hidden states
of LSTM layer, which makes DRL training more stable. The
output layer of policy πθ is described as follows: the output
of policy πθ is a vector of size |C|, where each element of
the output layer is mapping to the probability of candidate
configuration C ∈ C under current observation history Ĥk.

Output Layer

Fit a value function estimation model Fit a value function estimation model 

Output Layer

Fit a value function estimation model 

Critic Part

Hidden Layer Hidden Layer

Output Layer

Actor PartActor Part

LSTM Layer

Observation of Vehicular NetworksObservation of Vehicular Networks

Slice Configuration PolicySlice Configuration Policy

Fig. 3. The structure of the critic neural network and actor neural network.

The overall learning procedure of our proposed advantage
actor-critic DRL algorithm is provided in Algorithm 1.

Algorithm 1. Training of the RAN slicing policy πθ
Initialization:

Initialize the critic neural network V̂ and the RAN slicing policy (i.e.,
the actor part) πθ with weights w and θ. Initialize the replay buffer R.
Initialize the length of observation history K and the empty observation
history.

Repeat:
1) Receive observation of vehicular networks Ok .
2) Append observation and previous slice configuration to history, Ĥk ←
(Ĥk−1,Ok−1).
3) Select slice configuration, Ck ← πθ(Hk).
4) Store the sample trajectory {(Hk,Ck) : k = 1, ..., T}.
5) Update the critic neural network V̂w using equation (13),

w ← w+ν · ∇wL (w) .

6) Update the RAN slicing policy (the actor part) πθ using equation (14)

θ ← θ + η · ∇θJ (πθ)

Repeat:

3) Complexity of the Proposed DRL algorithm : According
to analysis method in [24], the computational complexity
of learning procedure for the proposed DRL algorithm (i.e.,
Algorithm 1) can be expressed by

O
(
TL ·

(∑Lactor

l=0
n

(l)
actor · n

(l+1)
actor +

∑Lcritic

l=0
n

(l)
critic · n

(l+1)
critic

))
,

where TL is the learning steps of slicing configuration policy
training, n(l)

actor is the number of neurons in the l-th layer of
the actor part, i.e., neural network πθ, n(l)

critic is the number
of neurons in the l-th layer of the critic neural network, i.e.,
neural network V̂w, and Lactor (Lcritic) denotes the number of
the hidden layers in the actor part (critic part).

VI. SIMULATION RESULTS AND ANALYSIS

In order to demonstrate the effectiveness of our proposed
network slice self-configuration scheme, a system level sim-
ulation platform is implemented. Herein, we consider a six-
lane freeway and each direction has three lanes, where the
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TABLE II
DEFAULT PARAMETER SETTINGS FOR SIMULATION.

Parameter Assumption
Carrier frequency/Bandwidth/Number of RBs 5.9 GHz/ 10 MHz/ 50
Pathloss model/Small-scale fading WINNER+ B1/ Rician fading
Total Transmit Power of VUE 20 dBm
The length of each epoch 400 ms (i.e., 400 slot)
Absolute vehicle speed 70 km/h
Average number of VUEs in the vehicular network 100
Service type Traffic safety related service Autonomous driving related service
Weighting factors in utility function (5) α1 = [1, 2] α2 = [1, 3]

Packet size per UE 300 Byte 200 Byte
Packet arrival period 50 ms 25 ms

Candidate slicing configurations
Fn 2 or 3 or 4 2 or 3 or 4
Bn 1.44 or 2.16 MHz 1.08 or 1.44 MHz
T sw
n 30 ms or 50 ms 25 ms or 15 ms

The number of candidate slicing configurations 36

length of the freeway is 3.4 km and the width of lane is
set as 4 m (A 1.2, Annex A, 3GPP 36.885 [9]). Software
including MATLAB 2019a and Keras 2.2.2 with Python 3.5.2.
are utilized for simulations. There are two types of services
and two corresponding slices are considered in the simulation:
a) network slice for traffic safety related service, which aims at
reducing the possibility of traffic accidents and improvement
of traffic efficiency; b). network slice for autonomous driving
related service, which is utilized for the cooperative awareness
and control between autonomous vehicles. Since the critical
nature of communication reliability in V2V services, we set
higher weighting factor for the PDR related function UPDR

QoS in
the reward function (5). The discount rate λ in the formulated
problem (9) for estimating long-term reward function is 0.9.

Based on the observation of vehicular networks Ok, the
proposed DRL algorithm trains the RAN slicing policy by
Algorithm 1. Furthermore, in Algorithm 1, the critic neural
network V̂ is a four layers neural network. The LSTM layer
contains 256 units and uses Rectified Linear Unit (ReLU) as
the activation function. There is one hidden layers in V̂ . The
hidden layer contains 64 units and uses ReLU as the activation
function. With linear activation function, the output layer gives
the estimated value function. On the other hand, the actor
neural network πθ is has same structure to the critic neural
network V̂ , which also has one hidden layer. Besides, the critic
neural network V̂ and the actor neural network πθ are learned
with a learning rate of 10−4.

A. Training Performances

The first experiment aims to examine the convergence of
the proposed actor-critic DRL algorithm. Under the default
simulation setup, as shown in Figure 4, we plot the variations
in the loss functions of the critic neural network V̂w and the
actor neural network πθ under different settings of learning
rate. This metric can measure the convergence speed of the
loss function during the training procedure in Algorithm 1.
In Figure 4(a), under default learning rate 10−4, the values
of loss function L(w) decrease close to 0.02 after the 300
learning steps, which means the value function V̂w has reached
to a stable performance. On the other hand, in Figure 4(b),
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(a) Training Loss of Critic neural network
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(b) Training Loss of Actor neural network

Fig. 4. Illustration of the convergence of the proposed DRL algorithm
under different learning rates: 1) the train loss of critic neural network V̂w
is measured by loss function L(w) defined in (13); 2). the loss function of
actor neural network πθ (i.e., the slice self-configuration policy) is estimated
by loss function L(θ) defined in (14).
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the values of loss function L(θ) decrease quickly during the
first 300 learning steps. After the first 300 learning steps, the
value curve of the L(θ) is convergent to the value of about
0.04, which indicates the slice self-configuration policy has
evolved into convergence condition. The results confirm that
the proposed DRL algorithm can avoid the mis-convergence
and unstable issues in the training procedure.

Since the learning rate is one crucial hyper-parameter in
deep learning, we compare the learning trends under different
learning rates. It can be seen that, with a higher value of
learning rate, the convergence speed of both actor and critic
neural networks is increasing, but at the cost of higher training
loss and drastic fluctuation at the convergence condition. For
instance, when learning rate equals to 3× 10−4, the train loss
is “stable” after 100 learning steps, but the value of train loss
is dramatically is dramatically fluctuating. Therefore, there is
a trade-off between convergence speed and convergence value
of training loss.

B. Performance Evaluation
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Fig. 5. CDF of the reward function in formula (8) with different schemes
under default settings: reward function J can reflect the overall performance
of network slicing control–the higher value of the function J , the better the
QoS performance of network slices.

For the performance comparisons, we consider the Deep
Recurrent Q-Network (DRQN), one of state-of-art DRL algo-
rithms, as the baseline scheme [8]. In the DRQN scheme, it
replaces the first layer of the DQN with a LSTM layer with 256
units and ReLU activation function. In the simulation, DRQN
is a four layers neural network. In the input LSTM layer, there
is one input, i.e., the observation of vehicular networks Ok.
Two hidden layers, each contains 128 units with the ReLU
activation function. The output layer has the same size as the
number of all candidate slicing configurations (i.e., IC), and
each element of the output layer is mapping to an estimated
value of Q(Ok,Ck) under the observation Ok. In the baseline
scheme, the DRQN is learned by using the Adam algorithm
with a learning rate of 10−4, and weights of the target DRQN
are copied from the weights of DRQN every 200 learning
steps. Besides, ε-greedy rule is used in the baseline scheme.
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(a) The slice for the autonomous driving related service.
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(b) The slice for the traffic safety related service.

Fig. 6. QoS performance of each network slice versus different vehicle density
(i.e., the average number of VUEs in the network) under different schemes.

The parameters of ε-greedy rule are set as εmin = 0.01 and
εdecay = 0.01.

From a statistical point of view, we evaluate the reward
function defined in (8), which is used to indicate the QoS
performance of slicing control. Figure 5 presents the cumula-
tive distribution functions (CDFs) of the reward function with
the proposed scheme and state-of-the-art DRQN scheme. It
shows that the overall performance of the proposed scheme
(mean value is 3.924) is better than the DRQN scheme (mean
value is 3.276). Specifically, the proposed DRL scheme can
improve around 20% than that of the DRQN scheme. The main
reason is that, compared to the proposed DRL algorithm, the
DRQN scheme, one kind of value-based DRL approaches, is
introducing a higher level of bias in the estimation of the Q-
value function, and then making the sub-optimal decisions.
Then, the DRQN scheme mis-estimates the real status of
network slices, and then make inappropriate adaption of slice
configuration, which may deteriorate the PDR performance of
each slice. In the following part, more experiment are carried
out to show the RAN slicing performance of different schemes.

As shown in the Figure 6, it depicts the QoS performance of
two considered network slices versus different vehicle density
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(i.e., the average number of VUEs in the network) under the
DRQN and the proposed scheme. Figure 6(a) depicts the QoS
performance of UE in the slice for the autonomous driving
related service. It can be seen that the average packet delay
and PDR of UE decreases on the increasing vehicle density.
Compared with the DRQN based network slicing, the proposed
scheme has both lower average packet delay and PDR of UE.
On the other hand, Figure 6(b) depicts the QoS performance
of UE in the slice for the traffic safety related service. It can
be observed from Figure 6(b) that, in the slice for the traffic
safety related service, the proposed scheme has better average
packet latency performance than the DRQN scheme. However,
the DRQN scheme has slight better average PDR performance
than the proposed scheme.

The main reason is that, in the reward function (5), the
higher weighting factor for the PDR related to the slice for the
autonomous driving related service, the proposed scheme tends
to choose the slice configuration with more sub-channels and
wider sub-channel bandwidth for the slice for the autonomous
driving related service. This slicing strategy can ensure and im-
prove the reward function but at cost of sacrificing the average
PDR to a certain extent. The DRQN scheme is prone to choose
the slice configuration with longer selection window length,
which will decrease the average PDR but increase the average
packet delay. Besides, when the vehicle density is increasing,
the performance of DRQN is deteriorating rapidly. Overall,
the result conforms to our expectations of the proposed DRL
scheme for network slicing in C-V2X Mode 4 based networks.

VII. CONCLUSION

In this paper, we propose an intelligent semi-decentralized
network slicing framework for the C-V2X Mode 4 networks,
which aims at maximizing the long-term QoS performance
of V2V services. Specifically, the proposed network slicing
framework is implemented by a carefully designed actor-critic
structured DRL algorithm. It has following advantages. Firstly,
due to the proposed scheme has a semi-decentralize structure,
the eNB only operates at a large timescale (in the level of
hundreds of milliseconds), which has good scalability and
can significantly reduce the signaling overhead. Meanwhile,
because the eNB can infer the global view of vehicular net-
works from observation history, the decision-making process
of the slice configuration at the eNB side can better ensure
the control performance. Simulation results show that the
proposed scheme has stable convergence control performance
and achieves higher QoS performance as compared to the
state-of-art baseline scheme. However, due to the lack of data
generated in real V2V service traffic, the traffic model is as-
sumed as 3GPP model, which has a limitation in characterizing
the realistic scenario. Last but not least, the proposed DRL
algorithm is essentially an on-policy leaner, which has lower
sample efficiency. These issues need to be further studied.

APPENDIX

A. Proof of Theorem 1
Proof: Firstly, based on the definition of value function

in (11), the long-term revenue J (πθ) can be re-written as

J (πθ) = E
[∑∞

k=1
λk−1J (Ok)

∣∣∣πθ] =
∑

H1

Pr [H1]V (H1),

where observation history H1 = (O1). Then, gradient of J (πθ)
can be written as

∇θJ (πθ) =
∑

H1

Pr [H1]∇θV (H1).

Thus, our focus is to obtain the derivation of the value
function, (i.e. ∇θV (Hk), k = 1, 2, ...),

∇θV (Hk)

= ∇θ
(∑

Ck∈C
πθ (Ck |Hk ) ·Q (Hk,Ck)

)
=
∑

Ck∈C
[∇θ (πθ (Ck |Hk )) ·Q (Hk,Ck)

+ πθ (Ck |Hk ) · ∇θ (Q (Ck,Hk))], (15)

where the gradient of Q function can be written as

∇θ (Q (Hk,Ck)) =

∇θ
{∑

Ok+1∈O
Pr [Hk+1 |Hk,Ck ] · (Jk (Ok) + λ · V (Hk+1))

}
= λ ·

∑
Ok+1∈O

Pr [Hk+1 |Hk,Ck ] · ∇θ (V (Hk+1)) . (16)

Furthermore, for arbitrary policy πθ, based on the employment
of log-derivative trick, we have

∇θ (πθ (Ck |Hk )) =

πθ (Ck |Hk ) · log (∇θ (πθ (Ck |Hk ))) . (17)

Substituting equations (16) and (17) into gradient (15), then
∇θV (Hk)can be rewritten as formula (18), where

φ (Hk,Ck) = ∇θ (log (πθ (Ck |Hk ))) ·Q (Hk,Ck) .

Equation (18) has a nice recursive form and the future state
value function V (H ′k) (k′ = k + 1, k + 2, ...) can be repeated
unrolled by following the same equation.

Then, we keep on unrolling V (H ′k) in equation (18), we
can obtain equation (19), where

Pr [Hk′ |Hk;πθ ] =∏k′−k

i=0
π (Ck+i|Hk+i) · Pr [Ok+i+1 |Hk+i,Ck+i ] (20)

is the probability of transitioning from Hk to H ′k.
Direct use of equation (19) to estimate ∇θV (Hk) will

induce high variance of gradient estimation. To deal with this
issue, researchers propose an idea is to add a “baseline” that
will not affect the expectation but reduce the variance. One
such “baseline” can be derived using following reasoning:

For any policy πθ, it is true that
∑
Ck′∈C

πθ (Ck′ |Hk′ ) = 1.
Then, taking the gradient ∇θ from both sides and utilizing
equation (17), we can obtain:

0 =
∑
Ck′∈C

∇θ (πθ (Ck′ |Hk′ ))

=
∑
Ck′∈C

πθ (Ck′ |Hk′ ) · ∇θ (log (πθ (Ck′ |Hk′ ))). (21)

Multiplying the expression (21) with some value independent
of Ck′ , e.g., λk

′−kV (Hk′), we have∑
Ck′∈C

πθ (Ck′ |Hk′ )∇θ (log (πθ (Ck′ |Hk′ )))λ
k′−kV (Hk′) = 0.

Adding this equation into gradient formula (19), ∇θV (Hk)
can be rewritten as follows,
∇θV (Hk) =

Eτ>k

[
∞∑
k′=k

λk
′−k∇θ (log (πθ (Ck′ |Hk′ ))) ·A (Hk′ ,Ck′ )

∣∣∣∣∣Hk;πθ

]
,
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∇θV (Hk) =
∑

Ck∈C
[πθ (Ck |Hk ) · φ (Hk,Ck) + λ ·

∑
Ok+1∈O

πθ (Ck |Hk ) · Pr [Hk+1 |Hk,Ck ] · ∇θ (V (Hk+1))

]
(18)

∇θV (Hk) =
∑

Ck∈C
πθ (Ck |Hk ) · φ (Hk,Ck)

+ λ ·
∑

Ok+1∈O
Pr [Hk+1 |Hk;πθ ] ·

(∑
Ck+1∈C

πθ (Ck+1 |Hk+1 ) · φ (Hk+1,Ck+1)

)
+ λ2 ·

∑
Ok+1,Ok+2∈O,Ck+1∈C

Pr [Hk+2 |Hk;πθ ] ·
(∑

Ck+2∈C
πθ (Ck+2 |Hk+2 ) · φ (Hk+2,Ck+2)

)
+ · · ·

= Eτ>k
[∑∞

k′=k
λk
′−k∇θ (log (πθ (Ck′ |Hk′ ))) ·Q (Hk′ ,Ck′)

∣∣∣Hk;πθ
]

(19)

where A(Hk′ ,Ck′) is the advantage function defined in (11a).
Then the gradient of the objective function J(πθ) is

∇θJ (πθ) =

Eτ

[ ∞∑
k′=1

λk
′−1∇θ (log (πθ (Ck′ |Hk′ ))) ·A (Hk′ ,Ck′ )

∣∣∣∣∣πθ
]
.

Then, we obtain Theorem 1.
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