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Abstract—En-route charging stations are essential to ensure
the adoption of electric vehicles. However, careful planning is
necessary due to high cost in infrastructure and potentially long
waiting queues. Existing literature on the placement of charging
stations largely disregards competition, sets prices to cover
costs and/or disregards queues. In contrast, this work models
competing station investors who aim to maximise expected profit,
while electric vehicle drivers aim to minimise expected travel costs
including queues. Following a game-theoretic approach, investors
strategically decide station capacities, locations and charging unit
power outputs as well as fees, taking into consideration building
and operational costs. Given the complexity of the problem, the
solution involves a combination of theoretical and algorithmic
techniques to obtain subgame-perfect equilibria of investor and
driver choices. Subgame-perfect equilibria are found to be at
least 92.85% efficient, for reasonable fluctuations of problem
parameters. Furthermore, it is found that charging prices can
be up to approximately 5 times higher than marginal cost due
to long charging times, and also that better charging technology
may not necessarily benefit drivers in the near future. Finally,
subsidies towards the purchase of charging units are shown to be
beneficial for both drivers and investors, being able to generate
up to 14.3% additional value than the cost of the subsidy. In
contrast, subsidies on the energy price for stations are found to
have small effect and can be abused by investors.

Index Terms—Electric Vehicle, Game theory, charging station,
firm, competition, subsidies

I. INTRODUCTION

ELECTRIC Vehicles (EVs) are not yet widely popular,
which is largely attributed to their limitations in range

combined with long charging times [1]. In addition, charging
infrastructure is expensive to build [2], [3] something that can
potentially lead to congestion at en-route charging stations,
with long waiting times for EV drivers [4], [5]. In this paper,
we address the problem by simultaneously modelling charging
station investors’ decisions about the locations, capacities (i.e.
number of available charging units), the charging units’ power
outputs and the prices of charging (or LCOP for short) for
their stations. We do so by considering multiple competing
charging stations, as well as the EV driver behaviour.
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In modelling EV driver behaviour, existing work utilises
game theory to model the choice of charging stations by EV
drivers (see Section II). For example, [6] consider stochastic
choices by EV drivers, taking into account potential queues.
The model optimises charging station capacities over a given
urban area with fixed station locations. However, that type of
work assumes that (1) there is a monopoly in charging stations
and (2) the recharging fee is equal to the cost of electricity.
In contrast, this paper investigates the setting where several
self-interested investors (i.e. station owners) compete, which
affects charging prices, the choice of locations and capacities,
and the power outputs of charging units.

Competition between firms has received extensive attention
in the literature, but existing research (in Section II) does not
consider the multiple choices made by station investors. For
example in [7], charging stations first announce prices and then
drivers select stations based on prices and capacities, and the
authors prove that an equilibrium in prices exists. However,
this results in somewhat arbitrary prices, and further insight
into pricing and competition is needed. To address these limi-
tations, this work presents a novel sequential, game-theoretic,
model for firm competition and algorithms for solving it. In
doing so, the work makes the following contributions.

Firstly, we produce the first model where competing in-
vestors can own several heterogeneous charging stations, and
can decide on locations, capacities, charging unit power out-
puts and prices for their stations. Based on investor decisions,
EV drivers then choose stochastically among stations so as
to minimise the expected cost of travelling, by trading off
between travel time, expected queuing time, and charging fees.
We also include an outside option where drivers can use a
different mode of transport instead. As we will show, this helps
fine tune the model to obtain well-scaled prices.

Second, the model is solved by combining theoretical and
algorithmic techniques to locate subgame-perfect equilibria
(SPEs). This helps improve computational complexity and also
provides important insight into pricing competition. SPEs are
highly efficient compared to centralised (e.g. monopolistic)
station allocations that optimise station profit. In particular,
worst-case social welfare (i.e. the utilities of both drivers and
investors combined) in SPE is found to be within 92.85%
of optimal utility for reasonable fluctuations of the problem’s
parameters, and in many cases within 98% of the optimal.

Third, we show that equilibrium prices are significantly
higher than the marginal cost (up to approximately 5 times),
This is because EVs need non-negligible time to recharge.
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In addition, the travel time to reach stations is a significant
product differentiation factor and we find that investors would
prefer to compete on the same rather than different routes.
Further, better charging units improve charging time, but we
find that this does not necessarily translate to improved travel
costs—or even queuing—in the foreseeable future.

Fourth, this is the first work to compare the effectiveness of
subsidies to competing station investors. Our empirical results
show that subsidising the purchase cost of charging units is
beneficial for both drivers and investors, and can generate
value in excess of the cost of the subsidy. In the examples
studied here, they generate up to 14.3% extra value. On the
other hand, subsidising the price of electricity can be highly
ineffective or even detrimental to drivers.

The remainder of this paper is structured as follows. Section
II discusses additional relevant academic literature. Next, Sec-
tion III presents the formal model for this work and Section IV
presents the solution to the model, together with a theoretical
analysis on equilibrium prices. An empirical evaluation then
follows in Section V, and Section VI concludes this paper and
discusses future directions for this work.

II. RELATED WORK

Apart from research discussed in Section I, there is further
work which is of interest. In [8], the authors present a model
for nearly-optimal control of EV charge and discharge with
the goal of utilising renewable resources effectively during
times when charging prices are low. This is a very interesting
problem but it does not include charging stations nor the com-
petitive business aspect of recharging EVs. A game-theoretic
model for coordinating the day-ahead charging problem for
EVs is presented in [9]. However, two key differences with
our work are that (1) it does not address the need for en-route
charging and (2) it looks at the power grid as a whole and is
therefore indifferent to charging stations and their competition.

Regarding competition, Bertrand’s model expects that firms
will set prices to the marginal cost (e.g. the cost of recharging
one more EV). However, this assumes that all customers
choose the cheapest firm, firms will satisfy all demand, and
goods are homogeneous [10]. Based on this, [11] present an
oligopoly where two charging stations in fixed locations decide
charging prices. They relax goods homogeneity by assuming
different travel times for each station, and find empirically
that prices will differ from marginal cost. In contrast, we
argue that peak charging demand may not be satisfied all at
once due to limitations in charging, and in conjunction with
high investment costs this may lead to queuing. In addition to
prices, firms in [12] also decide production capacities, and then
customers choose firms based on these. A randomly selected
proportion of customers are not served if the customers arriv-
ing at the firm are more than its production capacity (called
rationing). However, rationing excludes queuing (i.e. waiting)
as an option, and is not realistic for en-route charging. Notable
is the work in [13], where stations select charging prices and
drivers choose charging stations based on these. The authors
present a more realistic driver model than the one we consider
in this paper, but due to the increased complexity charging

station competition is simpler. We have deliberately chosen
the other route of simplifying the driver model to gain insights
into charging station competition. Hence [13] is different from
our work in that (1) charging stations can only choose charging
prices, (2) station utility only considers gross earnings, (3) the
authors find the ε-Nash equilibrium approximation in prices
and (4) there is no insight in the actual scale of prices. In
contrast, charging stations in our work make several decisions
including prices, we include the building and operational costs
for stations, our work finds the true equilibrium in prices
theoretically which we use to gain several insights, and our
work takes into account the value of time for drivers and
extraneous competition to produce more realistically-scaled
prices and station capacities.

This work further improves significantly upon Network
Pricing Games (NPGs). These model network providers who
select prices for their service in order to maximise profit, and
users who optimise over the price and quality of the service,
which is conceptually similar to the LCOP. In [14], determin-
istic concave demand is assumed for modelling services where
users will switch to a comparable alternative if prices are
too high. More advanced NPGs such as [15] use a dedicated
customer model. This research significantly extends these by
introducing locations, service rates (capacity), and the speed of
service (power output at firms. Moreover, an alternate option
for customers allows for stochastic demand satisfaction.

Related is spatial competition with homogeneous [16], [17]
or heterogeneous [18] firms. This is involved with the location
choice of firms in a uniform area, like a marketplace, where
those that are closer to each other may compete more intensely
for customers. Although the location choice presented here
is a form of spatial competition, it is not a typical example.
Typical models consider a homogeneous product and do not
consider queuing. Spatial competition here is more abstract,
with different travel times to reach different stations. This
induces product differentiation and—although this may as
well be in uniform space—we focus on non-uniform space
(different routes). Spatial competition within the same route
requires too many new parameters (e.g. distance from power
substations, further costs), which would hinder analysis and
raise questions on where their valuations come from.

This work resembles a Stackelberg game where players
compete by moving sequentially. However, it is different from
typical Stackelberg competition [19], in that firms compete on
several levels, including service rate, service speed, locations
and prices, and in that firms move simultaneously in making
certain decisions. The price competition with queues in [20]
may resemble our model, but (1) customer flows to firms are
deterministic, (2) service rate is always greater than the arrival
rate, and (3) each firm has only one server. In contrast, in our
work driver flows to stations are stochastic, we are especially
interested in the situation where queues are over-saturated, and
stations can serve multiple drivers synchronously.

Situations where the utility of using a resource decreases
as the number of players that choose it increases, often call
for using congestion games [21]. This is similar to our setting
where queuing time increases with the number of EVs that
travel to the same station. However, congestion games assume
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that players have incentive to follow a pure-strategy Nash
equilibrium, which requires some coordination mechanism, as
in [22], but in general it is more realistic to assume a mixed
strategy for drivers, as is the case in other work [4], [6], [7].

Last, other research considers monopolistic charging station
infrastructure optimisation. For example, [23] and [24] focus
on reducing building costs, and [25]–[28] additionally consider
the EV routing problem, but station capacity does not affect
driver choices. Further research is concerned with maximum
local population coverage [28]–[30], or optimising power dis-
tribution [31]–[34], and therefore does not consider parameters
such as prices, queues and driver behaviour. Driver behaviour
is considered in [35], where the power grid decides its price
in order to maximise revenue, and then drivers make charging
decisions based on that, but that again refers to monopoly
whereas this work examines competition.

Investors choose locations, capacities, 
and charging power output.

Investors choose the fees for 
recharging.

Drivers choose over actions with  
probability distributions.

So
lu

ti
on

Fig. 1. The three stages of the extensive-form game. Players at each
stage can observe the outcome of the previous stages and initialisation
(perfect information). The solution follows backward induction, hence stage
1 corresponds to Section III-C and stages 2 and 3 to Sections III-B and III-A.

III. MODEL

The LCOP problem is formalised as an extensive-form
game comprising the following three stages/subgames: (1)
first, investors announce locations, capacities and charging
unit power outputs; (2) then, investors announce charging
prices given the previous stage; (3) finally, drivers announce
probabilities over actions given the previous stages, where an
action is choosing either one of the stations or an outside
option. Since solutions are obtained using backward induction,
in what follows we present these stages in reverse order.

A. Stage 3: Drivers Choose Stations

In this subgame, a finite number of EV drivers simul-
taneously choose among several en-route charging stations.

This models a particular time of day when demand is high
and potential queues can form. Stations can be at different
locations with different prices, capacities, and charging unit
power output. EVs are required to recharge and have to
choose one of the stations. To prevent stations from setting
arbitrarily high prices, we introduce an outside option for
drivers, which can be considered an alternative means of
transport. Furthermore, for simplicity, we assume that all EVs
are identical, they have the same start and destination, and
will recharge fully. These assumptions do not affect the issues
this paper negotiates, and are commonly made to simplify the
complexity of mixed strategy Nash equilibria and to promote
game-theoretic analysis (e.g. [11], [14], [16], [17], [20]).

In more detail, this subgame is defined as the tuple
〈N,A, u(·)〉 where N is the finite set of n drivers. Let
Ai = {1, . . . ,m} be the finite set of m actions (station
choices) available to driver i, where the mth action refers to
the outside alternative. Then, A = A1 × . . . × An is the set
of action profiles and each vector a = 〈a1, . . . , an〉 ∈ A is an
action profile. Last, u(·) = 〈u1(·), . . . , un(·)〉 is the n-tuple of
driver utilities, where ui(·) : A 7→ R is a real-valued utility
function for driver i. We assume that, in equilibrium, drivers
play a mixed strategy, i.e. drivers randomise their choices
each day. Given this, let Π (Ai) be the set of all probability
distributions over all actions in Ai. Then Si = Π (Ai) is the set
of mixed strategies for driver i and S = S1×. . .×Sn is the set
of mixed strategy profiles. Each vector s = 〈s1, . . . , sn〉 ∈ S
is a mixed strategy profile which contains the mixed strategies
si = {s1i , . . . , smi } played by each driver in that mixed strategy
profile. By sji ∈ [0, 1] we denote the probability that driver i
chooses action j ∈ Ai, and it must be ∀i :

∑
j∈Ai s

j
i = 1.

We now introduce the utility function of a driver. Given that
drivers start simultaneously, driver i will arrive at any place in
the queue of station j with the same probability. Then i will
experience an average delay due to congestion at station j:
Q (x) =

∑x
k=0 bk/cjcRj/(x+ 1), where x is the number of

other drivers that choose station j, cj ∈ N+ is the number of
charging units (capacity) of station j and Rj is the time it takes
to recharge a single EV at j. However, this does not provide
a closed-form solution to work with. It is thus approximated
as Q (x) = x

2cj
Rj , which is an overestimate especially when

capacity is small. In order for drivers to trade-off between
time and monetary costs, we use the value of time parameter,
vd ∈ R+. This represents how much a driver is willing to pay
in order to save time [36]. The utility for driver i, for choosing
station j given that x other drivers choose the same station is:

uji (x) = −vd(tj +
x

2cj
Rj +Rj)− fj (1)

where fj is the price set by station j and tj ∈ R+ is the travel
time needed to get to the destination, if the driver chooses
station j. In addition, the utility for the outside option is:

umi (x) = −vm · tm − x ·D − fm (2)

where vm ∈ R+ is the value of time for the means of transport
the outside option represents, tm ∈ R+ is the travel time and
fm ∈ R is the fee for using the outside option. Parameter D is
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a model calibration parameter used to set a level of satisfactory
service and is explained in Section V-A.

The assumptions made so far mean that all drivers have the
same utility function, which guarantees a symmetric mixed
strategy Nash equilibrium (NE) where drivers choose over
available actions with the same probability distribution [21].
To compute it, we need to determine the expected utility
for driver i of choosing action j. After trivial binomial
transformations on (1), the expected utility for i of choosing
station j in mixed strategy profile s, where x out of n − 1
other drivers also choose j with probability sj−i is:

E[uji (x) |s−i] = −vd

(
tj +

sj−i (n− 1)

2cj
Rj +Rj

)
− fj (3)

where j ≤ m−1. The expected utility of choosing the outside
option from (2) is:

E[umi (x) |s−i] = −vmtm − sm−i (n− 1)D − fm (4)

B. Stage 2: Investors Choose Prices

In this subgame, station investors compete with each other
in order to maximise net profit, by selecting prices for each
of their stations. Each investor may own multiple charging
stations, but at most one at each available location. It is further
assumed that peak congestion at stations can occur a given
number of times per day, and that queues are empty when
peak traffic arrives at stations. It is unlikely that the number of
competitors in reality can be so large as to render observation
of the opponents’ prices the previous day difficult or partial.
Hence it was chosen that investors will play pure strategies,
that is pick a single price for each station and play it. To
avoid more confusing notation, j will be used here to denote
the station a single investor may own in a particular location.

Given these, this sub-game is defined as a tuple 〈I, F, r(·)〉,
where I is the finite set of z charging station investors. Let
L = {l1, . . . , lµ} be the finite set of locations available to
investors and FLk = (−∞,+∞) be the infinite set of price
options available to investor k. Then, Fk = (l1 ×F 0

k )× (l2 ×
F 0
k )× . . .×(lµ×F 0

k ) is the set of actions available to investor
k. F = F1 × . . . × Fz is the set of pure strategy profiles
and f = 〈f1L, . . . , fzL〉 ∈ F is a pure strategy profile. Thus
pure strategy fkL contains the prices fkj investor k chose for
each location j ∈ L in pure strategy profile f . Finally, r(·) =
〈r1(·), . . . , rz(·)〉 is the z-tuple of utilities for the investors.

Station utility is introduced as the net profit of a station,
i.e. the normalised earnings minus the costs. If sjki is the
probability of n drivers choosing station j owned by investor
k, then expected traffic flow toward it is sjki n, which is in fact
a function of the prices of all stations. Then expected utility
for station j setting price fkj in pure strategy profile f is:

E[rkj (f)|s] =


sjki (f)n(fkj − hkj )w − bkj ckj − okj , ckj > 0

0 , ckj = 0

(5)

where hkj is the cost for the station to recharge each EV (i.e. the
price paid to the energy grid), bkj is the building cost for each
charging unit, ckj (capacity) is the number of charging units in

the station and okj is an one-time building cost for station j.
The parameter w normalises earnings for a given time frame.
Maintenance costs can also be weighed like this, or they can be
integrated directly into the cost of building a charging unit bkj
for the whole time-frame under examination. Note that when
ckj = 0, the driver’s expected utility for that station in (3) is not
defined, hence due to backward induction sjki is not defined.
In that case, expected utility is explicitly set to 0 to reflect
a state where investor k does not operate a station in that
location. Then, the expected utility for investor k of playing
in pure strategy profile f is the sum of expected utilities of
all potential stations investor k can own across locations.

E[rk(f)|s] =
∑
j∈L

E[rkj (f)|s] (6)

C. Stage 1: Investors Choose Locations, Capacities and
Charging Unit Power Outputs

Here, station investors compete with each other to maximise
net profit by deciding locations, capacities and the power
output of charging units for their stations. In addition to
the assumptions from Section III-B, we will assume that an
investor will choose one power output to be used across all
the investor’s stations. This will keep the model tractable,
and does not affect the outcomes of this work. An investor’s
behaviour is expected to show long-term commitment when
it comes to deciding the magnitude of investment, therefore,
pure strategies will again be used. The potential existence of
many symmetric or asymmetric pure strategy NE in this game
is something that will offer better insight into firm competition.

This sub-game is defined as a tuple 〈I, C, r(·)〉, where I is
the set of z investors. Let C0

k = [0,Θ] ( N be the finite set
of capacity choices available to investor k and G be the finite
set of charging unit power output options. If L = {l1, . . . , lµ}
is the finite set of locations available to investors, then Ck =
((l1×C0

k)×(l2×C0
k)×. . .×(lµ×C0

k))×G is the set of actions
available to investor k. Then, C = C1× . . .×Cz is the set of
pure strategy profiles and each vector c = 〈c1L, . . . , czL〉 ∈ C
is a pure strategy profile. So pure strategy ckL contains the
capacities ckj investor k chose for each location j ∈ L, and
the power output option gk in pure strategy profile c. Finally,
r(·) = 〈r1(·), . . . , rz(·)〉 is the z-tuple of investor utilities.

The utility and expected utility for investors and their
stations are the same as in the price game (Section III-B),
only now they are functions of pure strategy profile c.

IV. SOLUTION AND THEORETICAL ANALYSIS

Solving the model employs backward induction to locate
Subgame-Perfect Equilibria (SPEs), which is common in
solving extensive-form games. Because players have perfect
information, any combination of Nash equilibria s∗, f∗, c∗ of
the subgames is also a SPE of the extensive-form game [21].
First we solve the driver and price equilibria theoretically, and
last the equilibrium in locations, capacities, and power output
with an algorithm. To maintain intelligibility, a two-station
example (stations 1 and 2) with no outside option, and simple
notation as in Section III-A will be used.
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A. Stage 3: Drivers’ Equilibrium & Boundary Conditions

In the mixed NE s∗, drivers must have no incentive to
deviate from their chosen mixed strategy [21]. Intuitively, it
must be that for driver i, choosing an action j yields the same
expected utility as choosing any other action. In addition, we
seek a symmetric equilibrium s∗ where driver i chooses j with
the same probability as other drivers do. That is s∗ji = s∗j−i.
Therefore, to find the symmetric mixed NE we solve the
following m×m system of linear equations:

E[u1i (x) |s∗−i] = E[u2i (x) |s∗−i]
. . .

E[um−1i (x) |s∗−i] = E[umi (x) |s∗−i]
s∗j−i + . . .+ s∗m−i = 1

(7)

Solving the NE for two stations from (3) and (7) is straightfor-
ward. Assuming recharge time Rj is the same (R1 = R2 = R)
at both stations for simplicity, drivers’ NE probabilities are:

s1∗i =
c1vdR(n− 1) + 2c1c2vd(t2 − t1) + 2c1c2(f2 − f1)

vd(n− 1)(c1 + c2)R

s2∗i =
c2vdR(n− 1) + 2c1c2vd(t1 − t2) + 2c1c2(f1 − f2)

vd(n− 1)(c1 + c2)R

vd, c1, c2 > 0 n > 1

(8)

Let us now examine boundary conditions for the probabilities.
In order to have s1∗i < 0, it must be that the numerator of s1∗i
in (8) is negative:

c1vdR(n− 1) + 2c1c2vd(t2 − t1) + 2c1c2(f2 − f1) < 0⇔

vd
n− 1

2c2
R+ vdt2 − vdt1 + f2 − f1 < 0⇔

−vdt1 − f1 < −vdt2 − vd
n− 1

2c2
R− f2 ⇔

−vdt1 − vdR− f1 < −vdt2 − vd
n− 1

2c2
R− vdR− f2 ⇔

Replacing from (2) u1
i (0) < u2

i (n− 1).

(9)

This means that s1∗i < 0 when the utility for driver i of going
to station 1 with no queue, is less than the utility of going to
station 2, even if all n−1 other drivers went to 2 as well. In that
case, station 1 is conceptually undesirable and drivers should
play the pure strategy of going to station 2. Alternatively, from
(9), station 1 is not desirable when:

t1 > t2 +
n− 1

2c2
R+

f2 − f1
vd

More generally for m stations, if −j is a station other than j,
station j is not desirable by driver i when:

tj >
∑
−j∈Ai

t−j +R

 ∑
−j∈Ai

n− 1

2c−j
+m− 2

+

∑
−j∈Ai

f−j − fj

vd

Being that for driver i the probabilities for all choices add
up to 1, a probability greater than 1 simply means that the
probability for some other station is negative.

B. Stage 2: Equilibrium in Prices

Concerning the pure strategy NE f∗, investors should not
have incentive to deviate from the equilibrium strategy. More
intuitively, each investor’s prices are a best response to the
other investors’ prices; that is each investor will maximise
utility, given the other investors also maximise [37]. This
translates to solving the following system of partial derivatives:

∀k ∈ I : ∀j ∈ L :
∂E[rk(f∗)|s∗]

∂fk∗j
= 0 (10)

Theorem 1. Let a two-investor instance of the investors’ price
game in Section III-B, where investors have already chosen
locations, capacities and the speed of service. Without loss of
generality, it is assumed for simplicity that each investor has
only one station, that the cost of charging EVs is the same for
both stations (h1 = h2 = h), and that charging speed is the
same for both stations (R1 = R2 = R). Last, it is assumed
that there is no outside option for drivers.

This game has a unique Nash equilibrium in prices f∗ =
(f∗1 , f

∗
2 ), in which charging prices will deviate from the

marginal charging cost (i.e. Bertrand equilibrium) h due to
the inability to satisfy charging demand immediately, and due
to goods heterogeneity different travel times impose.

Proof: For proving Theorem 1, the two-station example
that was shown in Section IV-A is useful. From there, the
next step is to substitute the probabilities of (8) into investor
expected utilities in (5) and (6). Then we solve the simple
system of two partial derivatives from (10). This part is long
and has been omitted, as it is trivial for two stations. It results,
however, in the equilibrium prices being:

f∗1 = h− 1

3
vd(t1 − t2) +Rvd(n− 1)

2c1 + c2
6c1c2

f∗2 = h− 1

3
vd(t2 − t1) +Rvd(n− 1)

c1 + 2c2
6c1c2

vd, c1, c2 > 0 n > 1

(11)

It is evident from (11) that prices in equilibrium deviate from
the marginal cost h because of the Rvd(n − 1)2c1 + c2

6c1c2
and

Rvd(n− 1)c1 + 2c2
6c1c2

terms. There is also some fluctuation in
prices due to different travel times to reach stations, through
the vd(t1− t2) and vd(t2− t1) terms. This makes the product
stations sell heterogeneous even though charging times are the
same. A station with a lower travel time has an advantage in
the ability to ask for a higher fee, whereas one with higher
travel time has to reduce price to remain competitive. Finally,
from (11) we have that:

lim
R→0+

f∗1 = h− 1

3
vd(t1 − t2)

lim
R→0+

f∗2 = h− 1

3
vd(t2 − t1)

That is when both stations take the same time to reach (t1 =
t2), equilibrium prices converge asymptotically to the marginal
cost h with a decreasing charging time R, something which
is in line with Bertrand competition [10]. It must be noted
that in the case where travel times are different, price cannot
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be lower than h. In the greater picture of the extensive form
game this would mean losses, and a losing strategy will always
be strictly dominated in the first stage by the strategy of not
opening the station at all.

C. Stage 1: Equilibrium in Locations, Capacities & Charging
Unit Power Outputs

Unlike stages 2 and 3, stage 1 is solved with an algorithm
which will now be explained. First, the EV drivers’ NE is
solved symbolically (line 3) (i.e. without replacing param-
eters). Next, this is used to solve the equilibrium in prices
symbolically (line 4). Then, the pure strategy NE in locations,
capacities and speed of service is solved and subgame-perfect
equilibria are obtained (lines 5-19). Instead of calculating all
the utilities, we employ an Iterated Best Response algorithm,
where investors are initialised in a random state (lines 6, 7) and
take turns playing their best strategy given the other players’
strategies (lines 10-15). Then, if a full round (lines 9-16)
passes without change in the strategy profile investors started
the round with, that profile is a pure strategy NE.

1: procedure FIND SPES
2: X ← {} . Set of all SPEs found
3: s∗ ← solve system (7) symbolically
4: f∗ ← solve system (10) symbolically given s∗

5: for threshold= 1→ K do
6: curCapState← rand{c11, . . . , c1µ, . . . , cz1, . . . , czµ}
7: curSpeedState← randomise {g1, . . . , gk}
8: O ← shuffle(I) . Randomise investor order
9: repeat

10: prevCapState ← curCapState
11: prevSpeedState ← curSpeedState
12: for k = 1→ z do
13: player ← O(k)
14: curCapState, curSpeedState ←

arg max
ckL∈Ck

E[rk(ckL, c
−k
L )|s∗, f∗]

15: end for
16: until prevCapState=curCapState and
17: prevSpeedState=curSpeedState . SPE found
18: c∗ ← (curCapState, curSpeedState)
19: X ← X ∪{{s∗, f∗, c∗}}
20: end for
21: end procedure

Note that in maximising the investor’s utility (line 14),
prices are actually calculated numerically first. Then drivers’
probabilities are calculated numerically. At this point, bound-
ary conditions are checked and enforced. If the probabilities
for some stations are negative, they are set to zero and
probabilities and prices are recalculated as these stations are
not desirable (see Section IV-A). In case all stations have zero
capacity and there is no outside option, station utilities are set
to −∞ to ensure that at least one station is there to serve the
drivers. Last, the IBR algorithm can locate only one SPE with
a given initialisation and playing order. To locate all possible
equilibria, the IBR is repeated several times (line 5), adding
the resulting SPE to the set of SPEs if not present (line 19).

It has been determined empirically that if there are λ SPEs, a
number of repetitions K = 10λ will find all equilibria.

V. EMPIRICAL ANALYSIS

As is common in game-theoretic analysis, we utilise
duopoly examples—where allowed—for tractability in eval-
uating qualitative behavioural characteristics. The presented
work, however, can be utilised for larger numbers of investors
and locations. In some cases there are many SPEs for particular
parameter settings. Only the SPE with the worst utility for
investors will be shown. Furthermore, because capacities are
discrete, it is possible for investors to play different strategies
(asymmetric equilibria) even where all their parameters are the
same. In that case, all permutations of these strategies across
stations are also SPEs. The experiments that follow present a
sensitivity analysis which utilises reference settings. In each
experiment one parameter is varied to observe the outcome.

Reference parameter settings will now be explained. Drivers
drive the Nissan Leaf with a 24kW battery and charging
efficiency of 85% [2]. This results in a requirement E =
28.24kW to fully charge the battery. Given a cost of £0.1
per kWh, which was a realistic price at the time of the
experiments, recharging each EV costs h1 = h2 = £2.824.
Charging unit power output is set to 50kW [2]. For simplicity,
it is assumed that the output of charging units is linear over
time, hence charging time is roughly 33 minutes and 40
seconds. In the model, however, time will be represented in
half-hours which makes charging time R = 1.1294 half-hours.

For a more realistic setting, experiments correspond to the
inter-city trip Central Southampton→Central London, with
a length of 80 miles, where EV drivers can also opt to
use the train. At an average speed of 60mph the trip takes
10/3 half-hours which is a realistic value without traffic. The
value of time for driving and taking the train have been
set to vd = 12.56 £/half-hour and vt = 18.1 £/half-hour
respectively, based on the tables of the UK Department of
Transport [36]. Trip length for going through charging stations
is set to t1 = t2 = 10/3. To normalise profits, it was
considered that a peak traffic of n = 30 drivers occurs three
times a day. The station’s daily income consists of the income
during peak hours, plus income from the rest of the day which
is assumed to be equal to the income in peak hours. The
game is played with a horizon of 1 year. This makes profit
normalisation w = 365 ∗ 6 = 2190. One-time building costs
are set to o1, o2 = £30000, and costs for adding charging units
b1, b2 are set to £36000. Rapid charging unit installation costs
can vary, but these values were realistic to consider for 50kW
rapid DC chargers at the time of the experiments, including a
cycle of yearly maintenance [3]. The train ticket costs ft =
£21.9, and the trip with the train lasts is tt = 4 half-hours,
including 20 minutes to commute to and from train stations.
Last, the calibration parameter D is set to D = 0.95, and this
is explained in Section V-A below.

A. Calibrating the Model

The parameter D is used in Section III-A to model the
drivers’ disappointment at not being able to use their EV.
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Fig. 2. SPE capacities and prices (a) and probability of taking the train (b) for an increasing D. When stations can decide capacity, an increasing D leads
to a deterioration in station services, and a generally increasing tendency to use the train. Capacities and prices for an increasing n (c) show an increasing
trend. After n = 60, investors become less inclined to invest and increase prices more.

An increasing D will effectively set a worse benchmark for
stations, and a decreasing D a better one, because stations
can take action whereas the train cannot. Indeed, using the
reference settings, investors reduce capacity for an increasing
D (Fig. 2a top) and increase price (Fig. 2a bottom), and an
increasing portion of drivers opt to use the train (Fig. 2b).
Looking at (3), (4) and (7), an increasing D biases drivers
toward using their EVs more, by setting lower utility for
the train. This gives investors headroom to increase prices
and decrease capacity, which investors take advantage of. In
turn, this causes more drivers to use the train as services
deteriorate. This behaviour can be observed in Fig. 2b, where
the probability of taking the train climbs every time investors
either decrease capacity or increase prices significantly. After
each climb, it slowly reduces due to the bias D induces, even
though prices keep increasing.

It is still a question, however, what value should be set to
D. With good service by stations, no EV driver should have to
use the train. However, setting D exactly on the margin where
smi > 0 will mean that a small increase in traffic will cause
some drivers to use the train. Therefore D has to be a little
lower, to allow for fluctuation in EV traffic. For the reference
settings, a value of D = 0.95 will be used for n = 30 drivers.

B. SPE Efficiency and Robustness

To measure the system-wide efficiency of SPEs, we use the
ratio of maximum social welfare over the worst-case social
welfare in SPE. This is similar to the Price of Anarchy where
utility in equilibrium is compared with utility in a centralised
optimum strategy [38]. However, both investors and drivers
make decisions, thus the optimal strategy (i.e. where drivers
also follow an optimal routing policy) will offer little insight.
More meaningful is to allocate stations optimally, given that
drivers will play a mixed NE.

If X is the set of all SPEs, worst-case social welfare is
defined as the sum of utilities in the SPE in which the sum
is minimum. The maximum social welfare is defined as the

the maximum sum of utilities of all players across capacity
and price strategies. However, note that the drivers’ expected
utility in (3) and (4) is negative, and all drivers definitely
lose more utility than the investors gain (drivers pay other
travel costs, in addition to the fees). Therefore to get the
correct Optimum/SPE proportion we need to reverse the actual
fraction, as both optimal and SPE social welfare are negative.
SPE efficiency is then defined as:

SWR =

min
{c∗,f∗,s∗}ρ∈X

∑
j∈I

E[rj(c∗, f∗)|s∗] + nwE[ui(x)|s∗, f∗, c∗]


max

c∈C,f∈F

∑
j∈I

E[rj(c, f)|s∗] + nwE[ui(x)|s∗, f, c]


In Section V-A it was hypothesised that an increasing

number of drivers beyond n = 30, which this model instance
has been calibrated for, will use the train increasingly. This
is now tested using the reference settings. Results show that
SPE capacities (Fig. 2c top) and prices (Fig. 2c bottom) will
increase with an increasing n. It is noticed from Fig. 3a top,
that at n = 60 the probability of taking the train also rises
more rapidly, and the data shows that it has already started
rising from n = 39 onward. The chosen value D = 0.95
thus provides headroom for a 30% increase in peak traffic
before drivers consider using the train. In terms of robustness
of the solution, reasonable fluctuations in peak traffic do not
cause behavioural anomalies from investors. That is stations
can micro-adjust prices daily to account for small changes in
expected traffic, rather than having to adjust capacity. This is
also reflected in the SWR (Fig. 3a bottom), which remains
largely unaffected around n = 30. The SPE solution is found
to be very efficient, with optimal station allocation yielding at
most 2.4% better system-wide utility compared to the worst
SPE, up to a peak traffic of 56 drivers. Efficiency decreases
more rapidly after n = 56, which is nearly double the peak
traffic the model was calibrated for, but still is over 93% even
for n = 150 drivers.
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Fig. 3. Probability of using the train and SPE efficiency for an increasing n (a). The probability increases with an increasing peak traffic, and SPE efficiency
decreases although it is generally very good. SPE capacities and prices (b), and probability of using the train and SPE efficiency (c) for an increasing t1/t2
ratio. Station 1 has a very high advantage when the ratio is low, but is forced to not open soon after it becomes less competitive than the train.

Interesting is also the situation where the travel time for
only station 1 varies, because this can conceptually represent
situations where travel time can vary e.g. due to traffic con-
gestion, which this model does not address explicitly. Results
show that station 2 will start from a much lower capacity
than station 1 (Fig. 3b top) as it is heavily disadvantaged
when t1 is very small. At the same time, station 1, who is
also on a very favourable route to start with, will ask for a
very high charging price (Fig. 3b bottom), which is in line
with findings in Section IV-B. As t1 approaches t2, station
2 becomes more competitive and station 1 maintains capacity
and reduces price, while station 2 increases capacity and price.
When t1/t2 enters more realistic levels around 1, stations seem
to alter capacities more frequently. However, only the worst
SPE shown here. There is also a SPE at t1/t2 = 0.9, 0.925
for both stations to have a capacity of 7, that is the same
capacities as in t1/t2 = 0.875, 0.95, 0.975. At t1/t2 = 1.2,
the travel time for station 1 equals the travel time for the
train. Beyond that, station 1 loses customers to the train (as
seen in Fig. 3c top) and reduces capacity. Station 2 increases
capacity until station 1 cannot compete any more and does
not open at all, and station 2 then maximises against the train.
The model is quite robust to fluctuations in travel time. When
the two routes have comparable travel time, SPEs are very
efficient (Fig. 3c bottom). For example, in the travel time
ratio range 0.8 − 1.2, that is for a 20% variation in travel
time, SPEs are at least 92.85% efficient. Larger travel time
differences reduce efficiency, albeit they represent less realistic
station competition, because in reality stations only compete
with others within a certain range.

The parameter ranges within which SPEs remain highly
efficient for the given reference settings and calibration are
summarised in Table I. Note that sensitivity analysis has
considered all parameters, but only n and tj showed a
noteworthy effect on the efficiency of SPEs. An additional
aspect to be noted here is that the probability distribution for
the drivers’ choices is calculated theoretically and not from

observation, hence no dispersion around solutions is included.
In practice, we have found that when n = 30 drivers are
sampled from that theoretical distribution, there is a standard
deviation of ±20% for the expected traffic flow which is
within the 30% SPE efficiency limit identified above. This
dispersion reduces significantly with an increasing number of
drivers. Also because the model considers several peak traffic
incidences per day over a period of 365 days, this dispersion
is expected to even out across available choices hence average
station traffic flows are not going to be significantly different
from the theoretical distribution should one choose to simulate
the driver model than solve it theoretically.

TABLE I
RANGE OF PARAMETERS WITHIN WHICH SPES REMAIN VERY EFFICIENT

WITH A GIVEN CALIBRATION FOR THE REFERENCE SETTINGS.

Parameter Range

Number of drivers (n) n ≤ 1.3n

Travel time (t1) 0.8t2 ≤ t1 ≤ 1.2t2

C. Equilibrium Prices

In Section IV-B it was shown that when station capacities
are constant, equilibrium charging prices will converge asymp-
totically to marginal cost h as charging time decreases. To
investigate this further with stations that choose capacities,
we employ a duopoly with reference settings where the power
output of the charging units is varied symmetrically. It is
hypothesised that investors will show the same behaviour,
only now prices will converge to the marginal charging cost
H . This should be h = £2.8235 in this case, plus the cost
of building the stations shared among the drivers that will
recharge (H = h+ c1b1 + c2b2 + o1 + o2

nw ).
Indeed, experiments (Fig. 4a top) showed that capacity

decreases with an increasing output. At 700kW station 2
reduces capacity to 1, and at 1000kW station 1 also does



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 9

0 4000 8000 12000

0

2

4

6

0 4000 8000 12000

1

1.02

1.04

(a)

0 4000 8000 12000

0

20

40

25 50 75 100 125 150

22

24

26

(b)

0 0.2 0.4 0.6 0.8 1 1.2

0

5

10

0 0.2 0.4 0.6 0.8 1 1.2

0

20

40

(c)

Fig. 4. SPE capacities and efficiency (a), and prices (b) for an increasing charging unit power output. As output increases, investors lose incentive to build
more units and prices converge to marginal cost. SPE capacities and prices when investors can build in multiple locations (c). Investors build on location 1
until it less competitive than location 2 when they switch to 2. Notice both choose the same location, which makes the problem symmetric for investors.
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Fig. 5. SPE capacities and prices (a), charging unit output (b), and driver expected queue and utility (c) for an increasing cost of the 80kW unit. Investors
will choose to build the ’slower’ but more affordable units when the 80kW units become too expensive. Notice that driver utility is not necessarily higher
with the faster units, as prices can be considerably higher and stations will reduce capacity which increases queues.

the same. From there, prices (Fig. 4b top) start an asymptotic
movement toward H = 4.8326. At 13575kW , charging prices
are at £4.8334. Immediately after, station 2 closes and station
1 maximises price. Note that in the end, it is also a SPE
for station 1 to close and for station 2 to maximise instead.
SPEs are very efficient regardless of charging unit power
output as seen in Fig. 4a bottom, with optimum allocation
being at most 3.8% more efficient than SPEs. By keeping
the cost of charging units constant, this experiment essentially
demonstrates a technological time-line, as better technology
will become more accessible. Even then, it is certain that prices
will converge toward the marginal cost at the time, which is
difficult to estimate given this may be many decades away.
This experiment is also equivalent to the situation where the
value of time approaches zero, and the situation where drivers
are increasingly indifferent to queues. In these cases, stations
do not have incentive to increase capacity beyond 1 which

reduces the problem to Bertrand-like competition.
A more microscopic look into prices (Fig. 4b bottom) within

our current mainstream technological window, reveals that we
are considerably far away from a significant reduction in prices
due to quicker satisfaction of demand. In fact, if investors
are able to purchase charging units of up to 75kW at the
price of 50kW units, prices (Fig. 4b bottom) will still rise.
However driver utility (not shown here), will keep improving
as better technology becomes more available due to a reduction
in queuing times. After prices peak around 75kW they start
reducing again. However, even for a power output of 150kW ,
prices are still not significantly lower than for 40 − 50kW
charging units, and that is assuming all units cost the same.

D. Location and Power Output Competition

To evaluate location choice we consider the reference set-
tings, only now each of the two investors can build one station
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in each route if they wish to. Results have shown that location
choice is independent of peak traffic n. Furthermore, as was
hypothesised in Section IV-B, investors do prefer the same
route when travel times are different. When the t1/t2 ratio is
varied for the two locations, both investors prefer location 1
when it offers a faster route (Fig. 4c top). At t1/t2 = 1, it is
an equilibrium for each investor to build in either route, and
past that investors prefer location 2. It is interesting that given
identical building costs for each location, an investor will never
choose to build on multiple locations, even when oJ = 0,
which is reasonable by everything observed so far. Stations
at longer routes have to offer lower prices to be competitive,
which means they need a larger investment to produce the
same revenue as in shorter routes. Of course, investors will
prefer longer routes if building costs at those are low enough.

Returning to two stations with reference settings, we now
evaluate the choice of charging unit power output. Two charg-
ing unit options are given to investors, a 50kW option which
costs £36000 as before, and an 80kW option the cost of
which will vary. Investors both choose the 80kW charging
units (Fig. 5b) when their cost is low, and at £92000 station
1 switches to the ’slower’, 50kW units. Up to that point,
as the cost of 80kW units increases, first station 2 reduces
capacity (Fig. 5a top) and increases price (Fig. 5a bottom) at
£47000. In response, station 1 asks for a higher price now that
it offers better service than 2. After £52000 and up to £92000
stations play the same strategy. Then, station 1 chooses the
50kW charging units and reduces price, and station 2 further
increases price. It is noteworthy that the expected utility for
driver i (Fig. 5c) when both stations are using 50kW units is
highly comparable to the utility before they switched. Average
expected queuing time for i is worse from £52000 and on with
faster charging units, because investors take advantage of faster
charging to build less charging units and ask for higher fees.

E. Subsidies

The model has also been applied to examine how subsidies
to charging stations can affect the utility for stations and
drivers. This is in essence a sensitivity analysis where the cost
of building a charging unit, or the cost of electricity is varied
with the addition of relevant metrics to evaluate subsidies. In
order to determine the efficiency of a subsidy, the difference
between utility with the subsidy and without it, is divided by
the total cost of the subsidy. This is done for all investors
and all drivers separately. Having used vd to convert time
costs in driver i’s utility, the total monetary gain for drivers
can be found, provided no drivers use the train as D does
not represent a monetary quantity. First, considering a subsidy
level σ for each charging unit, we examine the efficiency of
subsidies on the purchase cost of charging units. In this case,
the efficiency for all investors is:

εI =

z∑
k=1

Esu[rk(c)|s]−
z∑
k=1

E0[rk(c)|s]

σ

z∑
k=1

µ∑
j=1

ckj

(12)

and for all drivers is:

εN = nw
Esu[ui(x)|s]− E0[ui(x)|s]

σ

z∑
k=1

µ∑
j=1

ckj

(13)

Using reference settings, stations initially absorb the entire
subsidy up to £10500 (Fig. 6a), with no change in capacity or
prices. From there, however the subsidy begins to take effect.
Capacity subsidies have been found to be very beneficial for
both drivers and stations, and can often generate more than
one pound in system-wide utility for each pound spent in the
subsidy. This is because they provide incentive to investors to
both increase capacity and reduce prices, which significantly
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Fig. 6. Capacity subsidy efficiency (a) and electricity price subsidy efficiency (b), Iterated Best Response complexity (c). Capacity subsidies can generate
more than £1 in utility for drivers and stations, for each pound spent in the subsidy, and are quite efficient. kWh subsidies are not as efficient and can even
result is drivers losing utility. The IBR algorithm simplifies calculating the pure NE, but complexity still increases exponentially with the number of stations.
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improves utility for drivers. Additional results show the ef-
fectiveness of capacity subsidies increases with an increasing
number of drivers. It is also straightforward to determine
optimal subsidy levels. For example, optimal system-wide
utility is generated at a subsidy level σ = £16500, where each
pound spent in subsidies generates εI + εN = 1.143 pounds
in utility. Peak efficiency for the drivers is at £23500 and for
investors at £15000.

In a similar way, we analyse subsidising the price per kWh
at which stations buy electricity. Efficiency is as in (12) and
(13), only now the total cost of the subsidy in the denominator
is w(1 − smi )nEσ. It is noticeable that very small subsidies
can result in an improvement for drivers and stations (Fig.
6b), but the subsidy is generally absorbed by stations mostly,
who increase profits at the expense of drivers. At a subsidy
level of £0.012, station 1 reduces capacity to 7 and both
stations increase prices. Furthermore, at 0.018 there is an
increase in average capacity back to the initial levels, but
this is followed again by a spike in prices. This results in
drivers losing considerable utility overall. Additional results
for a varying number of drivers show similar behaviour, with
the subsidy being mostly absorbed by stations and minimal,
if any, benefit for drivers.

F. Complexity

The drivers’ equilibrium in (7) is quick to solve for many
stations, and is independent of the number of drivers as the
equilibrium is symmetric. As for the equilibrium in prices in
(10), even though each of the zµ partial derivatives is linear
with respect to that location’s price, solving it symbolically
shows an upper limit of 8 stations. This is because each
derivative includes µ capacity terms, each of which to the
power µ−1, that is a solution complexity between O(z2µµ+1)
and O(z3µµ+2). For larger settings it is better to solve the
equilibrium in prices numerically, which takes about 0.05s
for 12 stations. Complexity increase comes with calculating
the capacity, location and output equilibria. Each investor’s
utility function is a (Θ + 1)µzψz table, and checking whether
any investor can deviate through each strategy profile requires
O(z2(Θ + 1)µzψz) time. The IBR algorithm reduces this sig-
nificantly, by calculating the utility of the current player only
for a given state of the other players. However, complexity
still increases exponentially with the number of stations (Fig.
6c), and the IBR needs to be run many times to locate all
SPEs. In practice, complexity is more of an issue in generic
scenarios and parameter exploration. In reality there are several
constraints which reduce complexity significantly. For exam-
ple, it is unlikely for many investors to decide across many
locations simultaneously, and stations practically compete with
other stations within a certain range. More realistic is running
the model for a few new investors given existing competition,
or to use the model to consult investors on adjusting their
prices daily which is very quick to compute.

VI. CONCLUSIONS

This paper presented an extensive form game, as a model
for deploying an en-route EV charging station network, and

has proposed subgame-perfect equilibria (SPEs) to decide
competing stations’ locations, capacities, charging unit power
outputs and prices, given that congestion may occur at stations.
The model extends the state of the art in firm competition
significantly, by combining several aspects of network pricing
games, sequential games and spatial competition, and extends
other models of competing EV charging stations by consider-
ing several investor decisions and extraneous competition.

This approach has enabled answering substantive questions
on charging station competition. Specifically, charging sta-
tions’ fees will be significantly higher than the cost for stations
to recharge EVs (Sections IV-B and V-C), and convergence
of these two requires vastly superior technology. In addition,
longer routes impose a handicap in charging price and may
be undesired by investors (Sections IV-B and V-D). SPEs are
highly efficient for the drivers and investors, with worst-case
social welfare within 92.85% of optimal, and in many cases
within 2.4%. It is important that within the current techno-
logical window, switching to faster charging units does not
necessarily translate to lower travel costs—or even queues—
for drivers, as investors can take advantage of faster charging
times to increase prices and decrease capacities (Section V-D).
Last, metrics for the efficiency of subsidies to charging stations
were defined (Section V-E). Subsidising charging units helps
increase capacities and decrease prices, with an increasing
portion of the subsidy absorbed by the drivers as the subsidy
increases. Capacity subsidies can generate value for drivers
and investors in excess of the subsidy’s cost (up to 14.3% in
the example here). In contrast, subsidising the kWh price of
electricity entails a significant risk of stations reducing average
capacity and increasing prices, leading to increased travel cost
for drivers and abuse of the subsidy by investors.

Although experimental settings were based on real-world
parameters and additional results show that the model is
generally robust, some realism was sacrificed for abstraction to
allow for game-theoretic analysis. However, this also enables
using the model for other similar problems in which customers
minimise expected costs and demand is uncertain, and firms
can set prices and the speed of service. Future work will
firstly involve improving computational complexity to promote
large-scale application, which includes approximating pure
strategy Nash equilibria in the third stage. A second major
step will be to consider drivers who have different utilities,
perform different trips and have different choices available.
Using closed-form solutions for these in larger settings will
not be straightforward, but it is also possible to simulate
heterogeneous settings and asymmetric stochastic behaviour,
or to use techniques such as evolutionary learning.
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