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Abstract— The purposes are to explore the effect of Digital
Twins (DTs) in Unmanned Aerial Vehicles (UAVs) on providing
medical resources quickly and accurately during COVID-19 pre-
vention and control. The feasibility of UAV DTs during
COVID-19 prevention and control is analyzed. Deep Learn-
ing (DL) algorithms are introduced. A UAV DTs information
forecasting model is constructed based on improved AlexNet,
whose performance is analyzed through simulation experiments.
As end-users and task proportion increase, the proposed model
can provide smaller transmission delays, lesser energy con-
sumption in throughput demand, shorter task completion time,
and higher resource utilization rate under reduced transmission
power than other state-of-art models. Regarding forecasting
accuracy, the proposed model can provide smaller errors and
better accuracy in Signal-to-Noise Ratio (SNR), bit quantizer,
number of pilots, pilot pollution coefficient, and number of
different antennas. Specifically, its forecasting accuracy reaches
95.58% and forecasting velocity stabilizes at about 35 Frames-
Per-Second (FPS). Hence, the proposed model has stronger
robustness, making more accurate forecasts while minimizing the
data transmission errors. The research results can reference the
precise input of medical resources for COVID-19 prevention and
control.

Index Terms— Unmanned aerial vehicles, digital twins, epi-
demic, deep learning, medical resource, COVID-19 prevention
and control.

I. INTRODUCTION

AS CASES of Coronavirus Disease 2019 (COVID-19)
keep growing, social-distancing, including wearing a

mask, becomes the everyday practice. COVID-19 is still not
optimistic up to today. Unmanned Aerial Vehicles (UAVs)
have become broadly applied in real-life settings to suppress
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COVID-19 from spreading, including safety inspections, mate-
rial delivery, disinfection, thermal sensing, temperature mea-
surement, and prevention and control propaganda, a powerful
means of COVID-19 prevention and control [1], [2]. Using
UAVs for “non-contacting” COVID-19 prevention and control
can improve work efficiency while reducing the infection risks,
creating a stereo disease prevention and control model [3].
While their performances are improved through advanced
technologies such as big data and Artificial Intelligence (AI),
applying UAVs to COVID-19 prevention and control has
attracted researchers and scholars worldwide.

Against COVID-19, the efficiency of prevention and con-
trol directly affects the effectiveness of governance. Based
on informatization and intelligence, updating ground grid
management systems into “big data + grid” air-space patrol
systems can strictly prevent and control severely affected areas
and vital nodes, thereby improving the efficiency of group
defense, group control, and group governance while saving
human resource costs [4]. Such systems can make full use
of the fast maneuvering features of UAVs. The suddenness,
unpredictability, and uncertainty of epidemics require quick
responses and control of UAVs, thereby ensuring smooth
prevention and control works. Hence, UAVs can quickly
perform tasks, saving time and improving the efficiency of
prevention and control. Moreover, data transmission requires
high confidentiality against COVID-19 prevention and control.
COVID-19 prevention and control involve diverse information,
such as the disinfection of key locations, the materials and
equipment in medical spots, and the transportation informa-
tion. During epidemics, accurate and safe data transmission
helps decision-makers make timely and accurate commands
and supports scientific plans and policies [5], [6].

While preventing and controlling epidemics such as
COVID-19, UAVs can substitute vehicles to monitor the flows
of vehicles and pedestrians from high altitudes and transmit
surveillance footages to the headquarters of the Public Security
Bureau in real-time, thereby help the works of monitoring
and supervision [7]. However, the high costs of manually
screening massive data features such as images and videos
returned by UAVs cause frequent errors and omissions. In this
regard, Computer Vision (CV) can be introduced as an aux-
iliary monitoring tool. CV mimics the observing behaviors
of human beings using computers and associated devices,
enabling computers to observe and understand the world via
vision. Deep Learning (DL) is an AI algorithm; the Convo-
lutional Neural Network (CNN), one of DL networks, can
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provide excellent performance in image feature extraction [8].
Therefore, AI approaches, such as CNN, can remove the
fundamental technical limitations for UAVs in perception
problems and applications. In addition, due to the complexity
of UAV flight path in reality, the existing UAV field situation is
mapped to the virtual space for analysis, namely digital twins
(DTs) technology. The innovation and development of DTs
technology in intelligent manufacturing and other fields has
brought new guiding ideas to solve the intelligent problem of
UAV system driven by DTs, which is of great significance to
the intelligent development of UAV system [9].

In summary, during epidemic outbreaks, reliable prevention
and control measures and accurate supplies of med-
ical resources are of vital practical values. The innov-
ative points are: (1) analyzing the feasibility of UAV
DTs for COVID-19 prevention and control while using
UAVs; (2) introducing AI algorithms such as DL to build a
UAV DTs information forecasting model based on improved
AlexNet. The research results can provide experimental evi-
dence for the precise input of medical resources during
COVID-19 prevention and control.

II. RELATED WORKS

A. Research Progress of UAVs Data Collection

As a new aerial working platform, UAVs have been
universally applied in aerial photography, patrol inspec-
tion, and precision agriculture. As the Fifth Generation
(5G) communication technology gets popularized, UAVs
begin to present strong data collection advantages, attracting
researchers worldwide. Fawaz et al. improved the perfor-
mance of relay-assisted File System Object (FSO) by integrat-
ing UAVs as buffer auxiliary mobile relays into the traditional
relay-assisted FSO [10]. Ye et al. researched the confidentiality
performance of a UAV on the UAV systems. One UAV acted
as the source (S) that transmitted information to a legitimate
UAV receiver, while a group of UAVs attempted to eavesdrop
on information transmitted between S and the legitimate
UAV receivers. Finally, the proposed model was verified by
Monte Carlo simulation [11]. Zhang et al. investigated how to
achieve millimeter-wave channel capture and precoder design
for UAVs. They also discussed the challenges and possible
solutions of UAV millimeter-wave cellular networks, including
communication and spectrum sharing of UAVs to base stations
and users [12]. To improve the coverage and performance of
UAV communication systems, Yang et al. proposed a recon-
figurable UAV scheme based on Reconfigurable Intelligent
Surface (RIS). This scheme employed RIS installed on the
architecture to reflect signals from the ground sources to
UAVs. Meanwhile, UAVs were deployed as relays to forward
the decoded signals to the destinations. Results demonstrated
that RIS could improve the coverage and reliability of UAV
communication systems [13].

B. Influences of UAVs Data Collection on COVID-19
Prevention and Control

Medical resources have become increasingly scarce since
the outbreak of COVID-19, forcing most countries to partially

or completely lockdown. Moreover, countless false reports,
rumors, and unsolicited fears about the coronavirus are
spreading. In this regard, scholars worldwide have researched
the impact of data collection during COVID-19 preven-
tion and control. Against the current COVID-19 situation,
Chamola et al. applied the Internet of Things (IoT), UAVs,
blockchain, AI, and 5G to prevent and control COVID-19,
in an effort to mitigate the impacts of COVID-19 [14]. Li et al.
designed a Flight Resource Allocation Scheme based on Deep
Deterministic Policy Gradients, denoted as DDPG-FRAS. This
scheme could optimize UAV flight control and data collection
and scheduling jointly in real-time during COVID-19, thereby
minimizing the packet loss of the ground sensor networks
asymptotically [15]. Regarding the increasing number of
newly diagnosed and suspected COVID-19 cases worldwide,
Kumar et al. explored the possibilities and opportunities of
UAVs to fight against the disease. They put forward some
suggestions that could help healthcare sectors to suppress the
virus from spreading [16].

To sum up, data collection is extremely critical during
epidemic outbreaks. Despite that UAVs have been applied
to COVID-19 prevention and control, the collected data are
not analyzed particularly. Therefore, using DL approaches
to extract features from disease-associated data collected by
UAVs is vital for COVID-19 prevention and control, as well
as the accurate supplies of medical resources.

III. INFORMATION FORECASTING ANALYSIS OF UAV DTS

FOR COVID-19 PREVENTION AND CONTROL

A. Feasibility Analysis of UAV DTs for
COVID-19 Prevention and Control

Sufficient information sources are important foundations
for post-epidemic works. Comprehensive information about
public health can create favorable conditions for decision-
making. Only technical support can increase urban governors’
abilities to resist risks. As a product of science and tech-
nology development, UAVs have the features of flexibility,
comprehensive vision, and easy operation. UAVs can collect
information and complete various tasks, such as key area
inspections, temperature measurement, and aerial panoramic
reconnaissance [17], [18]. Therefore, linking space-time infor-
mation via UAVs to acquire panoramic dynamic data of
the cities helps build a smart city and assists COVID-19
prevention and control. The demand analysis of UAV DTs
in COVID-19 prevention and control is presented in Figure 1.

Figure 1 presents that UAVs have been gradually applied
in many fields, such as traffic guidance, big data informa-
tion sharing, personal temperature measurement, key area
inspection, secret case investigation, and epidemic prevention
knowledge publicity. Data collection during COVID-19 pre-
vention and control pose following demands. Regarding key
area inspections, the features of UAVs can solve insufficient
resources, limited monitoring ranges, and blind inspection
spots. In particular, for high-risk areas such as medical spots,
quarantine spaces, and resettlement areas, UAVs can assist
in 24-hour dynamic control of key personnel and places in
the jurisdiction [19].
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Fig. 1. Demand analysis of COVID-19 prevention and control by UAV DTs.

Regarding temperature measurement, for cities with large-
scale population migrations every day, traditional temperature
measurement tools have problems such as low efficiency, low
safety, and poor reliability. In comparison, UAVs equipped
with infrared thermometers and face recognizers can achieve
functions such as simultaneously scanning multiple persons
and recording body temperatures in real-time.

Regarding hidden crime investigations, the community is
closed for management during the epidemic; however, hidden
crimes, such as gambling and drug abuse, may occur in
closed places, bringing a bad impact on social security. UAVs
can detect these places panoramically and identify personnel
and surrounding environment quickly, playing a vital role in
multiple stages such as forensics and reconnaissance [20].

Regarding information propagation, UAVs can propagate
epidemic prevention knowledge, dredge traffic jams, and share
information between multiple departments. While propagat-
ing epidemic prevention knowledge, modern and traditional
means, online and offline propaganda, and air and ground
tools are jointly utilized to launch propaganda from multiple
channels and aspects. In this way, people can learn the latest
epidemic situation, thereby eliminating social panic [21].

Regarding traffic jam dredging, the successful combination
of UAVs, high-definition cameras, and 5G technology can
easily obtain high-definition and high-current aerial images,
thereby strengthening video surveillance management and
improving urban traffic management during major epidemics.

Regarding information sharing, the key protection areas,
as well as the location information and health status of key
personnel, can be classified using different colors and codes
and superimposed on the electronic maps, thereby serving the
linkage system of COVID-19 prevention and control [22].

During the outbreak, the prevention and control of a major
epidemic are characterized by complexity and uncertainty.
A series of complicated factors such as the difficulty of
sequencing the virus’s gene and analyzing the transmission
path pose a serious challenge to people’s life safety and health.
The chaos and delays in the fight against epidemics reflect the
fragmentation and incoordination of data collection, sharing,

Fig. 2. Flowchart of UAVs image data preprocessing.

and processing. Therefore, it is of great significance to apply
UAV DTs to acquire and share medical information resources
during epidemic prevention and control.

B. UAVs Data Processing and Transmission Analysis

During COVID-19 prevention and control, while detecting
targets and collecting data, images taken by UAV sensors are
often degraded due to imaging technique, shooting environ-
ment, relative movement between objects, and camera shaking.
Noises and blurs are the most typical image degradation
phenomena, requiring image preprocessing before they can be
utilized [23]. Therefore, it is critical to preprocess the image
data obtained by UAVs, and Figure 2 presents the detailed
process.

Figure 2 shows the pre-processing process of the collected
image data information, which mainly includes using the sub-
network to estimate the noise, adjusting the noise level of
the image, using U-Net to remove the noise, and finally
outputting the image data. The image data collected by UAVs
can be transmitted after preprocessing. The channel matrix
from the paired user k to the j -th base station cluster is defined
as H j Fj , 1 ≤ j ≤ q , where H j indicates the fast fading
channel from the paired user to the j -th base station, and
Fj refers to the diagonal array. Thus, the equivalent Multiple
Input Multiple Output (MIMO) channel of the multi-point
coordinated system based on base station cooperation can be
obtained as:

H = [H1F1, H2 F2, . . . , HP FP ]T (1)

The data flow sent is S = [S1, S2, . . . , SP ]T , where Sk refers
to the r -th data flow sent by the k-th user, calculated as:

Sk = [
Sk,1, Sk,2, . . . , Sk,r

]T (2)
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The received signal at the cluster end of the cooperative
base station can be expressed as:

y = H S +
q∑

j=1

H ( j )S( j ) + n (3)

In (3), H ( j )S( j ) refers to the interference from the
j -th interfering base station cluster. The cooperative base sta-
tion cluster is detected using Mini-Mental State Examination
(MMSE) to eliminate the interference between users. The
MMSE equalization matrix is:

G =
(

H H H + σ 2 IpNT

)−1
H H (4)

Data flow after detection can be expressed as:
�
s t = GSH + G

q∑
j=1

H ( j )S( j ) + Gn (5)

Suppose that A = GH, and A( j ) = G H ( j ). In that case, the
Signal-to-Interference plus Noise Ratio (SINR) of the t-th data
flow is:

SI N Rt

= |A(t, t)|2
pNT∑

k=1,k �=t
|Ai (t, k)|2 +

q∑
j=1

(A( j )
i (A( j )

i )H )n + σ 2(Gi G H
i )

(6)

Furthermore, factors such as UAV fast and slow decays in
image data transmission are considered. The combined channel
for multi-user transmission with k user-pairs can be expressed
as:

H = (H1, H2, . . . , Hk−1, Hk) (7)

At Hi(1 ≤ i ≤ k), channel matrices of the first k-1 users
are paired, and the matrix dimension is nr × nt . Suppose the
transmitting end evenly distributes its power to each transmit
antenna and the channel gains. In that case, the channel
capacity can be expressed as:

C = log2 det

[
Inr + SN R → ∞

min(nt , nr )
H H H

]
(8)

In (8), Inr refers to interference intensity. If SN R → ∞,
the channel capacity in the above equation can be approxi-
mated as:
C = lim

S N R→∞ [log2 det
(

H H H
)

+ min(nt , nr ) log2 det(
SN R

min(nt , nr )
)] (9)

Hence, if det
(
H H H

)
takes its maximal value, channel

capacity will also reach the maximum. The determinant Dn

can be defined:

Dn = det
(
Hn H H

n

)
tr

(
Hn H H

n

) (10)

In (10), Hn is the channel matrix on the n-th subcarrier, and
H H

n refers to the conjugate transposition of Hn. According to

Fig. 3. UAV DTs information forecasting model based on improved AlexNet.

the maximum capacity principle, the selected k-th paired user
should be:

k = arg max
ik

1

N

N∑
n=1

Dn,i1,i2,··· ,ik (11)

In (11), N refers to the number of subcarriers occupied by
the user group.

C. DL-Based UAV DTs Information Forecasting Model
Under COVID-19 Prevention and Control

UAVs transmit image data via wireless channels; afterward,
these data can be analyzed and forecasted to accurately sup-
ply medical resources for COVID-19 prevention and control.
AlexNet [24], a deep CNN model, is selected considering its
multiple network layers and stronger learning ability to extract
features from the image data transmitted by UAVs. Further-
more, the functional layer of AlexNet’s convolutional layer
is improved. The operation of “local normalization before
pooling” is advanced to “pooling before local normalization”
to reduce the calculation amount and enhance CNN’s gen-
eralization performance. Therefore, a UAV DTs information
forecasting model is designed based on the improved AlexNet,
which balances the model’s forecasting effect and the system’s
real-time performance, as illustrated in Figure 3.

In this information forecasting model, the t-th feature map
yl

t (i, j) of the l-th convolutional layer is sampled using over-
lapping pooling:

al
t (i, j) = max{yl

t (i, j), is ≤ i ≤ is + wc − 1,

js ≤ j ≤ js + wc − 1} (12)

In (12), s is the pooling movement step size, wc refers to
the width of the pooling area, and wc > s.

A local normalization layer is added after the first and sec-
ond pooling layers of AlexNet to standardize feature map
cl

t (i, j):

cl
t (i, j) = al

t (i, j)/

⎛
⎝k + α

min(N−1,t+m/2)∑
max(0,t−m/2)

(
al

t (i, j)
)2

⎞
⎠

β

(13)

In (13), k, α, β, m are all hyperparameters valuing 2, 0.78,
10−4, and 7, respectively, and N is the total number of
convolution kernels in the l-th convolutional layer. To prevent
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“gradient dispersion” [25], the activation function takes Rec-
tified Linear Unit (ReLU) to activate the convolution output
Sl

t (i, j):

yl
t (i, j) = f

(
Sl

t (i, j)
)

= max
{

0, Sl
t (i, j)

}
(14)

In (14), f
(
Sl

t (i, j)
)

represents ReLU. To prevent over-
fitting in the fully connected layer, the dropout parameter
is set to 0.5 [26]. All the feature maps when l values 5
in equation (12) are reconstructed into a high-dimensional
single-layered neuron structure C5; thus, the input Z6

i of the
i -th neuron in the sixth fully connected layer is:

Z6
i = W 6

i C5 + b6
i (15)

In (15), W 6
i and b6

i are the weight and bias of the i -th neuron
in the sixth fully connected layer, respectively.

While improving the generalization ability, the neurons Cl

of the sixth and seventh fully connected layers are discarded
and output, r l

j ∼ bernoulli(dp), C̃l = r lCl ; in this regard,
the i -th neuron’s input in the seventh and eighth fully con-
nected layers Zl+1

i is Wl+1
i C̃l + bl+1

i , where the i -th neuron’s
input in the sixth and seventh fully connected layers Cl

i
is f

(
Zl

i

)
, namely max

{
0, Zl

i

}
. Finally, the input qi of the

i -th neuron in the eighth fully connected layer can be obtained:

qi = so f t max(Z8
i ) = eZ8

i∑12
j=1 eZ8

i

(16)

The cross-entropy loss function suitable for classification is
taken as the model’s error function, and the equation is:

Loss =
∑K

i=1
yi · log (pi) (17)

pi = exp (ỹi )∑K
i=1 exp

(
ỹ j

) (18)

In (17) and (18), K denotes the number of categories,
yi describes the true category distribution of the sample,
ỹi describes the network output, and pi represents the classi-
fication result after SoftMax classifier. SoftMax’s input is a
N-dimensional real number vector, denoted as x . Its
equation is:

ξ(x)i = exi

N∑
n=1

exi

, i = 1, 2, . . . , N (19)

Essentially, SoftMax can map an N-dimensional arbitrary
real number vector to an N-dimensional vector whose values
all fall in the range of (0,1), thereby normalizing the vector.
To reduce the computational complexity, the output data
volume is reduced to 28 through μ companding conversion,
that is, μ = 255, thereby improving the model’s forecasting
efficiency.

f (xt ) = sign(xt )
ln(1 + μ |xt |)

ln(1 + μ)
, |xt | < 1 (20)

The model is trained through learning rate updating using
the polynomial decay approach (Poly) [27]. The equation is:

ini t_lr ×
(

1 − epoch

max _epoch

)power

(21)

Fig. 4. Algorithm flow of the improved AlexNet.

In (21), the initial learning rate ini t_lr is 0.0005 (or 5e−4),
and power is set to 0.9. The algorithm flow of the improved
AlexNet is demonstrated in Figure 4.

Due to category imbalance in different epidemic situations,
the Weighted Cross-Entropy (WCE) is accepted as a cost
function to optimize model training.

Suppose that zk(x, θ) describes the unnormalized logarith-
mic probability of the pixel x in the k-th category under the
given network parameter θ . In that case, the SoftMax function
pk(x, θ) is defined as:

pk(x, θ) = exp {zk(x, θ)}
K∑
k�

exp {zk�(x, θ)}
(22)

In (22), K represents the total number of situation cat-
egories. During forecasting, once equation (17) reaches the
maximum, pixel x will be marked as the k-th category, namely
k∗ = arg max {Pk (x, θ)}. A semantic segmentation task needs
to sum the pixel data loss in each input mini-batch. Here,
N denotes the total number of pixels in the training batch
of image data, yi refers to the real semantic annotation of
pixel xi , and pk(xi , θ) describes the forecasted probability
of pixel xi belonging to the k-th semantic category, that is,
the log-normalized probability, abbreviated as pik . Hence,
the training process aims to find the optimal network parameter
θ∗ by minimizing the WCE loss function �(x, θ), denoted
as θ∗ = min

θ
�(x, θ). Training samples with unbalanced cate-

gories in various epidemic situations usually make the network
notice some easily distinguishable categories, resulting in poor
recognition on some more difficult samples. In this regard,
the Online Hard Example Mining (OHEM) strategy [28]
is adopted to optimize the network training process. The
improved loss function is:

�(x, θ) = − 1
N∑

i=1

K∑
k=1

δ (yi = k, pik < η)

×
N∑

i=1

K∑
k=1

δ (yi = k, pik < η) log pik (23)
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In (23), η ∈ (0, 1] refers to the predefined threshold, and
δ(·) describes the symbolic function, which will take 1 if the
condition is met and 0 otherwise. The weighted loss function
for different COVID-19 prevention and control scenarios is
defined as:

�(x, θ) = −
N∑

i=1

K∑
k=1

wikqik log pik (24)

qik = q(yi = k|xi ) (25)

In (24) and (25), qik denotes the true label distribution of
the k-th category of pixel xi , as explained in equation (21);
wik refers to the weighting coefficient. The following strategy
is employed during training:

wik = 1

ln(c + pik)
(26)

In (26), c is an additional hyperparameter, set to 1.10 based
on experience during simulation experiments.

D. Simulation Analysis

The proposed model is simulated by OPNET [29] to verify
its performance during COVID-19 prevention and control.
OPNET builds a cellular network comprising three macro
base stations and 15 micro base stations, covering an area
of 5km × 5km. Each macro base station covers a circle whose
radius is 1km, in which there are five micro base stations.
Users are randomly distributed in their respective cells. UAVs
connect users at all edge positions to include all users in the
enclosed area formed by their trajectories. The built-in camera
model of UAV here is FC6310. Finally, the data collected
are split into a training dataset and a test dataset in 7:3. The
proportion of each failure data in the two datasets shall be kept
consistent. Hyperparameters of AlexNet are set as follows: the
number of iterations is 120, the simulation time is 2,000 sec-
onds, and the batch size is 128. Some state-of-art models
are included for performance comparison, including Long
Short-Term Memory (LSTM) [30], CNN, Naive Bayes [31],
AlexNet, and Multi-Layer Perceptron (MLP) [32]. In the
performance analysis, the proposed algorithm is compared
with the model algorithm proposed by other scholars from
the data transmission delay [33], throughput [34], average
transmission power [35], and data transmission accuracy [36].
The modeling tools are summarized in Table I:

IV. RESULTS AND DISCUSSIONS

A. Data Transmission Performance

Data transmission performances are analyzed in terms
of transmission delay, throughput, and average transmission
power. Results are presented in Figures 5 ∼ 7.

As shown in Figure 5a, as end-users in a cell increase,
competition for the same communication resource gets fierce,
and the system delay increases accordingly. According to
Figure 5b, as the proportion of end-users performing task
offloading increases, the system delay becomes lower. Fur-
thermore, the proposed model can provide the lowest trans-
mission delay. Therefore, in the UAV terminal transmission

TABLE I

MODELING TOOLS IN SIMULATION EXPERIMENTS

Fig. 5. Transmission delays (a. Under different numbers of end-users;
b. Under different task proportions).

Fig. 6. Relationships of energy consumption and task completion time to
throughput demand (a. Energy consumption; b. Task completion time).

delay, the UAV DTs information prediction model based on
improved AlexNet neural network has stronger robustness, that
is, the model has smaller error and stability.

Figure 6 analyzes the throughput demands of UAVs when
performing tasks. Compared with other models, the proposed
model significantly reduces the energy consumption and task
completion time of UAVs. More importantly, minimizing task
completion time and minimizing energy consumption are not
two opposite optimization goals. In fact, minimizing energy
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Fig. 7. Influencing factors of average transmission power (a. SINR demand;
b. Energy harvesting demand; c. Cross link gain demand).

consumption can also minimize task completion time, and vice
versa.

Figure 7 demonstrates factors influencing the average trans-
mission power. An increase of SINR demand from 0dB to
40dB require more transmission power. The proposed model
provides the smallest average transmission power. Moreover,
a minimal SINR demand still requires some amount of trans-
mission power due to the fixed user energy demand. Therefore,
a tiny information rate demand will require some transmission
power if the energy demand exists. An increase in energy
harvested asks for more transmission power as well. Still, the
proposed model provides the smallest average transmission
power. As the cross-link becomes stronger and the interference
becomes smaller, the required transmission power stabilizes
after it increases to a particular value. The above results
demonstrate that the proposed model can reduce the power
required to complete the communication demand, utilize the
originally wasted radiofrequency energy, and thereby improve
the resource utilization rate.

B. Data Transmission Accuracy

Data transmission accuracies are compared regarding
Signal-to-Noise Ratio (SNR), bit quantizer, number of pilots,
pilot pollution coefficient, and number of different antennas.
Results are demonstrated in Figure 8:

As shown in Figure 8a, each model presents a decreasing
error rate as SNR goes uptrend. The proposed model performs
the best in almost all SNR situations, nearly 80 times than
other models. Figure 8b suggests that ADC accuracy affects
the estimation performance considerably. Specifically, NB’s
performance decreases by 8 times, while AlexNet decreases
by 20%. Figure 8c reveals that as the number of pilots
increases from 10 to 50, all models’ Mean Square Error (MSE)
gets improved; however, after 50, the MSE stops changing
significantly. As shown in Figure 8d, as the pilot pollution

Fig. 8. Data transmission accuracies (a. Different SNR; b. Different bit
quantizer; c. Different length pilot frequency; d. Different pilot frequency
pollution coefficient; e. Different antenna number).

Fig. 9. Changes in forecasting accuracy and velocity (a. Forecasting accuracy;
b. Forecasting velocity).

coefficient increases, the improved AlexNet can maintain its
MSE unchanged; in contrast, other models’ errors increase dra-
matically. As shown in Figure 8e, as antennas add up, MSEs
of NB, MLP, CNN, and LSTM all increase linearly because
the size of the channel matrix to be estimated increases lin-
early. Nevertheless, changes in antenna numbers only suggest
different sizes of input “image” data for the proposed model,
leading to smaller errors. To sum up, the proposed UAV DTs
information forecasting model based on the improved AlexNet
can provide higher accuracy than other state-of-art models.

C. Forecasting Performance

Forecasting performances are assessed considering accuracy
and velocity. Figure 9 presents the results.
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Figure 9 proves that the proposed model can provide the
highest forecasting accuracy, reaching 95.58%; meanwhile,
it also outperforms other models in forecasting velocity,
stabilizing at about 35 Frames-Per-Second with iterations.
Hence, the above results reveal that the UAV DTs information
forecasting model algorithm based on the improved AlexNet
neural network can greatly reduce the error of UAV data
transmission prediction for each situation in the process of
urban COVID-19 prevention and control, and achieve more
accurate forecasting effect.

V. CONCLUSION

UAVs and associated techniques play a positive role in
COVID-19 prevention and control, showing huge applica-
tion potentials. The prediction model of UAV DTs epidemic
information based on improved AlexNet neural network is
constructed based on the use of UAV, a new technology
product, to prevent and control epidemic diseases. The per-
formance analysis of simulation experiment suggests that the
transmission delay of UAV data information is significantly
lower than that of other algorithms, the energy consumption is
less in throughput demand, the task completion time is shorter,
and the resource utilization rate is obviously higher. The
data transmission accuracy reaches 95.58%, and the prediction
speed is also stable at about 35 FPS. It provides experimental
reference for epidemic prevention and control and precise
investment of medical resources in the later stage.

Nevertheless, the present study also has some weaknesses.
The proposed model assumes that UAV communication sys-
tems have sufficient resources to ensure offline training and
running deployment of DL algorithms. However, computing
power and power resources are often limited is real-life
settings. How to exercise the advantages of DL algorithms with
limited resources will be explored in the future. Moreover, all
the experiments are simulated on software. Physical simulation
platforms or tests can be constructed and performed in the
future for further exploration.
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